File: Float.st

package info (click to toggle)
gnu-smalltalk 3.1-6
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 33,300 kB
  • ctags: 13,999
  • sloc: ansic: 88,106; sh: 23,223; asm: 7,889; perl: 4,493; cpp: 3,539; awk: 1,483; yacc: 1,355; xml: 1,272; makefile: 1,192; lex: 843; sed: 258; objc: 124
file content (686 lines) | stat: -rw-r--r-- 18,302 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
"======================================================================
|
|   Float Method Definitions
|
|
 ======================================================================"

"======================================================================
|
| Copyright 1988,92,94,95,99,2000,2001,2002,2003,2007,2008
| Free Software Foundation, Inc.
| Written by Steve Byrne.
|
| This file is part of the GNU Smalltalk class library.
|
| The GNU Smalltalk class library is free software; you can redistribute it
| and/or modify it under the terms of the GNU Lesser General Public License
| as published by the Free Software Foundation; either version 2.1, or (at
| your option) any later version.
| 
| The GNU Smalltalk class library is distributed in the hope that it will be
| useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser
| General Public License for more details.
| 
| You should have received a copy of the GNU Lesser General Public License
| along with the GNU Smalltalk class library; see the file COPYING.LIB.
| If not, write to the Free Software Foundation, 59 Temple Place - Suite
| 330, Boston, MA 02110-1301, USA.  
|
 ======================================================================"



Number subclass: Float [
    
    <shape: #byte>
    <import: CSymbols>
    <category: 'Language-Data types'>
    <comment: 'My instances represent floating point numbers that have arbitrary
precision.  Besides the standard numerical operations, they provide
transcendental operations too.  They implement IEEE-754 correctly
if the hardware supports it.'>

    Float class >> signByte [
	"Answer the byte of the receiver that contains the sign bit"

	<category: 'byte-order dependancies'>
	self subclassResponsibility
    ]

    Float class >> e [
	"Returns the value of e. Hope is that it is precise enough"

	<category: 'characterization'>
	^2.718281828459045
    ]

    Float class >> log10Base2 [
	"Returns the value of log2 10. Hope is that it is precise enough"

	<category: 'characterization'>
	^3.321928094887363
    ]

    Float class >> ln10 [
	"Returns the value of ln 10. Hope is that it is precise enough"

	<category: 'characterization'>
	^2.302585092994045
    ]

    Float class >> pi [
	"Returns the value of pi. Hope is that it is precise enough"

	<category: 'characterization'>
	^3.141592653589793
    ]

    Float class >> radix [
	"Answer the base in which computations between instances of the receiver
	 are made.  This should be 2 on about every known computer, so GNU
	 Smalltalk always answers 2."

	<category: 'characterization'>
	^2
    ]

    Float class >> denormalized [
	"Answer whether instances of the receiver can be in denormalized
	 form."

	<category: 'characterization'>
	^self fminDenormalized > 0
    ]

    Float class >> fminDenormalized [
	"Return the smallest Float that is > 0 if denormalized values
	 are supported, else return 0."

	<category: 'characterization'>
	^self fminNormalized timesTwoPower: 1 - self precision
    ]

    Float class >> fmin [
	"Return the smallest Float that is > 0."

	<category: 'characterization'>
	| fminDen fmin |
	fmin := self fminNormalized.
	fminDen := fmin timesTwoPower: 1 - self precision.
	^fminDen = 0 ifTrue: [fmin] ifFalse: [fminDen]
    ]

    Float class >> epsilon [
	"Return the smallest Float x for which is 1 + x ~= 1"

	<category: 'characterization'>
	^(self coerce: 2) timesTwoPower: self precision negated
    ]

    hash [
	"Answer an hash value for the receiver"

	"Hack so that 2 hash = 2.0 hash"

	<category: 'basic'>
	^self fractionPart = 0.0 
	    ifTrue: [self asInteger hash]
	    ifFalse: [self primHash]
    ]

    negated [
	"Return the negation of the receiver.  Unlike 0-self, this converts
	 correctly signed zeros."

	<category: 'arithmetic'>
	^self * -1
    ]

    integerPart [
	"Return the receiver's integer part"

	<category: 'arithmetic'>
	^self - self fractionPart
    ]

    raisedToInteger: anInteger [
	"Return self raised to the anInteger-th power"

	<category: 'arithmetic'>
	"Some special cases first"

	| exp adjustExp val mant |
	anInteger isInteger 
	    ifFalse: [SystemExceptions.WrongClass signalOn: anInteger mustBe: Integer].
	anInteger = 0 ifTrue: [^self unity].
	anInteger = 1 ifTrue: [^self].

	"Avoid overflow when the result is denormal and we would have an
	 unrepresentable intermediate result for its reciprocal."
	adjustExp := self exponent.
	exp := anInteger abs.
	(anInteger > 0 or: [(adjustExp + 1) * exp < self class emax]) 
	    ifTrue: 
		[mant := self.
		adjustExp := 0]
	    ifFalse: 
		[mant := self timesTwoPower: 0 - adjustExp.
		adjustExp := adjustExp * anInteger].

	"Fire the big loop."
	val := mant raisedToInteger: exp
		    withCache: ((Array new: (255 min: exp))
			    at: 1 put: mant;
			    yourself).
	anInteger < 0 ifTrue: [val := val reciprocal].
	adjustExp = 0 ifFalse: [val := val timesTwoPower: adjustExp].
	^val
    ]

    isNaN [
	"Answer whether the receiver represents a NaN"

	<category: 'testing'>
	^self ~= self
    ]

    isFinite [
	"Answer whether the receiver does not represent infinity, nor a NaN"

	<category: 'testing'>
	^self - self = self zero
    ]

    isInfinite [
	"Answer whether the receiver represents positive or negative infinity"

	<category: 'testing'>
	^self = self class infinity or: [self = self class negativeInfinity]
    ]

    negative [
	"Answer whether the receiver is negative"

	<category: 'testing'>
	^self <= self zero and: [self unity / self <= self zero]
    ]

    strictlyPositive [
	"Answer whether the receiver is > 0"

	<category: 'testing'>
	^self > self zero
    ]

    positive [
	"Answer whether the receiver is positive.  Negative zero is
	 not positive, so the definition is not simply >= 0."

	<category: 'testing'>
	^self >= self zero and: [self unity / self >= self zero]
    ]

    sign [
	"Answer 1 if the receiver is greater than 0, -1 if less than 0,
	 else 0.  Negative zero is the same as positive zero."

	<category: 'testing'>
	self = self zero ifTrue: [^0].
	^self < 0 ifTrue: [-1] ifFalse: [1]
    ]

    truncated [
	"Convert the receiver to an Integer.  Only used for LargeIntegers,
	 there are primitives for the other cases."

	<category: 'coercing'>
	| exponent bytes positive float |
	self isFinite ifFalse: [^self].
	(positive := self > 0) 
	    ifTrue: [float := self]
	    ifFalse: [float := self negated].
	exponent := float exponent.
	bytes := LargePositiveInteger new: (self class precision + 7) // 8 + 1.
	float := float timesTwoPower: float class precision - exponent - 8.
	1 to: bytes size
	    do: 
		[:i | 
		bytes digitAt: i put: (float fractionPart timesTwoPower: 8) truncated.
		float := float integerPart timesTwoPower: -8].
	bytes := bytes bitShift: exponent - float class precision.
	positive ifFalse: [bytes := bytes negated].
	^bytes
    ]

    asCNumber [
	"Convert the receiver to a kind of number that is understood by
	 the C call-out mechanism."
	<category: 'coercion'>
	^self
    ]

    asExactFraction [
	"Convert the receiver into a fraction with optimal approximation,
	 but with usually huge terms."

	<category: 'coercing'>
	| shift mantissa |
	self checkCoercion.
	shift := self exponent negated + self class precision.
	mantissa := (self timesTwoPower: shift) truncated.
	^shift negative 
	    ifTrue: [mantissa * (1 bitShift: shift negated)]
	    ifFalse: [mantissa / (1 bitShift: shift)]
    ]

    asFraction [
	"Convert the receiver into a fraction with a good (but undefined)
	 approximation"

	<category: 'coercing'>
	| a x n2 d2 n1 d1 n0 d0 eps abs gcd |
	self checkCoercion.

	"This uses an algorithm based on continued fractions.
	 n2/d2 = numerator and denominator of the fraction two steps ago
	 n1/d1 = numerator and denominator of the fraction a steps ago
	 n0/d0 = numerator and denominator of the fraction at the current step"
	n1 := d0 := 0.
	n0 := d1 := 1.
	abs := self abs timesTwoPower: self exponent negated.
	eps := self class epsilon.
	x := abs.
	
	[a := x truncated.
	n2 := n1.
	d2 := d1.
	n1 := n0.
	d1 := d0.
	n0 := n1 * a + n2.
	d0 := d1 * a + d2.
	(x := self unity / x fractionPart) isInfinite 
	    or: [((self coerce: n0) / (self coerce: d0) - abs) abs < eps]] 
		whileFalse.
	self exponent < 0 
	    ifTrue: [d0 := d0 * (2 raisedToInteger: self exponent negated)]
	    ifFalse: [n0 := n0 * (2 raisedToInteger: self exponent)].
	gcd := n0 gcd: d0.
	n0 := n0 divExact: gcd.
	d0 := d0 divExact: gcd.
	^Fraction numerator: (self < 0 ifTrue: [n0 negated] ifFalse: [n0])
	    denominator: d0
    ]

    log [
	"Answer log base 10 of the receiver."
	<category: 'transcendental operations'>
	^self ln / self class ln10
    ]

    ceilingLog: radix [
	"Answer (self log: radix) ceiling."

	<category: 'transcendental operations'>
	| result ceil delta |
	self < self zero 
	    ifTrue: 
		[^self arithmeticError: 'cannot extract logarithm of a negative number'].
	radix <= radix unity 
	    ifTrue: 
		[radix <= radix zero ifTrue: [^self arithmeticError: 'bad radix'].
		radix = radix unity ifTrue: [^self arithmeticError: 'bad radix']].
	result := self log: radix.
	ceil := result ceiling.

	"If the result differs from ceil - 1 by <0.5ulp, round up."
	delta := (ceil - 1) - result.
	ceil - 1 - (delta / 2) - ceil = -1.0 ifTrue: [ ceil := ceil - 1 ].
	^ceil
    ]

    floorLog: radix [
	"Answer (self log: radix) floor."

	<category: 'transcendental operations'>
	| result floor delta |
	self < self zero 
	    ifTrue: 
		[^self arithmeticError: 'cannot extract logarithm of a negative number'].
	radix <= radix unity 
	    ifTrue: 
		[radix <= radix zero ifTrue: [^self arithmeticError: 'bad radix'].
		radix = radix unity ifTrue: [^self arithmeticError: 'bad radix']].

	result := self log: radix.
	floor := result floor.

	"If the result differs from floor + 1 by <0.5ulp, round up."
	delta := (floor + 1) - result.
	floor + 1 + (delta / 2) - floor = 1.0 ifTrue: [ floor := floor + 1 ].
	^floor
    ]

    estimatedLog [
	"Answer an estimate of (self abs floorLog: 10)"

	<category: 'transcendental operations'>
	^(self exponent + 1) asFloatD / FloatD log10Base2
    ]

    asFloat [
	"Just defined for completeness.  Return the receiver."

	<category: 'transcendental operations'>
	^self
    ]

    min: aNumber [
	"Answer the minimum between the receiver and aNumber.  Redefine
	 in subclasses if necessary to ensure that if either self or
	 aNumber is a NaN, it is always answered."

	"If both self and aNumber are zero, return aNumber in case it
	 has a negative sign, because we assume our zero is positive.
	 If the test is false, always answer aNumber in case it is a
	 NaN, because we assume that self is not a NaN."

	<category: 'comparing'>
	^aNumber < self 
	    ifTrue: [aNumber]
	    ifFalse: 
		[self = aNumber 
		    ifFalse: [aNumber = aNumber ifFalse: [aNumber] ifTrue: [self]]
		    ifTrue: 
			["Remember than -0.0 - +0.0 = -0.0, but the other pairs are +0.0."

			self = self zero ifTrue: [(self * -1 - aNumber) * -1] ifFalse: [self]]]
    ]

    max: aNumber [
	"Answer the maximum between the receiver and aNumber.  Redefine
	 in subclasses if necessary to ensure that if either self or
	 aNumber is a NaN, it is always answered."

	<category: 'comparing'>
	^aNumber > self 
	    ifTrue: [aNumber]
	    ifFalse: 
		[self = aNumber 
		    ifFalse: [aNumber = aNumber ifFalse: [aNumber] ifTrue: [self]]
		    ifTrue: 
			["Remember than -0.0 + -0.0 = -0.0, but the other pairs are +0.0."

			self = self zero ifTrue: [self + aNumber] ifFalse: [self]]]
    ]

    withSignOf: aNumber [
	"Answer the receiver, with its sign possibly changed to match
	 that of aNumber."

	<category: 'comparing'>
	^aNumber positive == self positive ifTrue: [self] ifFalse: [self negated]
    ]

    printOn: aStream [
	"Print a representation of the receiver on aStream"

	<category: 'printing'>
	self printOn: aStream special: #('Inf' '-Inf' 'NaN')
    ]

    isLiteralObject [
	"Answer whether the receiver is expressible as a Smalltalk literal."

	<category: 'storing'>
	^true
    ]

    storeLiteralOn: aStream [
	"Store on aStream some Smalltalk code which compiles to the receiver"

	<category: 'storing'>
	self storeOn: aStream
    ]

    storeOn: aStream [
	"Print a representation of the receiver on aStream"

	<category: 'storing'>
	| printString |
	(self isInfinite or: [self isNaN]) 
	    ifTrue: 
		[^self printOn: aStream
		    special: #('%1 infinity' '%1 negativeInfinity' '%1 nan')].
	printString := self printString.
	aStream nextPutAll: printString.

	"For FloatE/FloatQ, force printing the exponent at the end."
	self exponentLetter == $d ifTrue: [^self].
	(printString includes: self exponentLetter) 
	    ifFalse: [aStream nextPut: self exponentLetter]
    ]

    checkCoercion [
	"Private - Fail if the receiver is only representable as a Float"

	<category: 'private'>
	self isInfinite 
	    ifTrue: [self arithmeticError: 'Infinity can only be a Float'].
	self isNaN 
	    ifTrue: [self arithmeticError: 'Not-a-Number can only be a Float']
    ]

    printOn: aStream special: whatToPrintArray [
	"Private - Print a decimal representation of the receiver on aStream,
	 printing one of the three elements of whatToPrintArray if it is
	 infinity, negative infinity, or a NaN"

	<category: 'private'>
	"First, take care of the easy cases."

	| me exponential small num weight prevWeight digit eps precision digits digitStream exponent dotPrinted |
	self isNaN 
	    ifTrue: [^aStream nextPutAll: (whatToPrintArray at: 3) % {self class}].
	self = self class infinity 
	    ifTrue: [^aStream nextPutAll: (whatToPrintArray at: 1) % {self class}].
	self = self class negativeInfinity 
	    ifTrue: [^aStream nextPutAll: (whatToPrintArray at: 2) % {self class}].

	"We deal only with positive values."
	me := self abs.
	self negative ifTrue: [aStream nextPut: $-].
	self = self zero 
	    ifTrue: 
		[aStream nextPutAll: '0.0'.
		^self].

	"Figure out some quantities and the way we'll print the number."
	exponential := me exponent abs > me class precision.
	small := me < me unity.
	exponent := (me floorLog: 10) + 1.

	"Compute the digits one by one."
	num := me asExactFraction.
	digits := 0.
	weight := 10 raisedToInteger: exponent - 1.
	me class decimalDigits timesRepeat: 
		[digit := num // weight.
		digits := digits * 10 + digit.
		num := num - (digit * weight).
		prevWeight := weight.
		weight := weight / 10].

	"Smallest number such that me + eps ~= eps"
	eps := 2 raisedToInteger: me exponent - me class precision + 1.
	"For large numbers, don't let round-to-even bite us."
	eps isInteger ifTrue: [eps := eps / 2].

         "Round the last digit if it is a better approximation, or if it
	  allows to save trailing nines while not changing the meaning."
	((num - prevWeight) abs < num or: [
	    digit = 9 and: [ num - prevWeight > (eps / -2) ]])
		ifTrue: [digits := digits + 1].
	digits := digits printString.

	"Print the non-significant zeros."
	dotPrinted := false.
	(small and: [exponential not]) 
	    ifTrue: 
		[1 - exponent timesRepeat: 
			[aStream nextPut: $0.
			dotPrinted 
			    ifFalse: 
				[dotPrinted := true.
				aStream nextPut: $.].
			exponent := exponent + 1]].

	"Make a stream with the significant digits."
	precision := digits findLast: [:ch | ch ~= $0].
	digitStream := ReadStream 
		    on: digits
		    from: 1
		    to: precision.

	"Print the integer part (only one digit if using exponential notation)."
	
	[digitStream atEnd 
	    ifTrue: [aStream nextPut: $0]
	    ifFalse: [aStream nextPut: digitStream next].
	exponent := exponent - 1.
	exponent > 0 and: [exponential not]] 
		whileTrue.

	"Print the fractional part."
	digitStream atEnd 
	    ifTrue: [dotPrinted ifFalse: [aStream nextPutAll: '.0']]
	    ifFalse: 
		[dotPrinted ifFalse: [aStream nextPut: $.].
		digitStream do: [:each | aStream nextPut: each]].

	"Finally, print the exponent if necessary."
	exponential 
	    ifTrue: 
		[aStream
		    nextPut: me exponentLetter;
		    print: exponent]
    ]

    isFloat [
	<category: 'testing functionality'>
	^true
    ]

    exp [
	"Answer 'e' (2.718281828459...) raised to the receiver"

	<category: 'built ins'>
	<primitive: VMpr_Float_exp>
	self primitiveFailed
    ]

    ln [
	"Answer the logarithm of the receiver in base 'e' (2.718281828459...)"

	<category: 'built ins'>
	<primitive: VMpr_Float_ln>
	self primitiveFailed
    ]

    raisedTo: aNumber [
	"Answer the receiver raised to its aNumber power"

	<category: 'built ins'>
	<primitive: VMpr_Float_pow>
	aNumber isFloat ifTrue: [self arithmeticError: 'invalid operands'].
	^self raisedTo: (self coerce: aNumber)
    ]

    sqrt [
	"Answer the square root of the receiver"

	<category: 'built ins'>
	<primitive: VMpr_Float_sqrt>
	self primitiveFailed
    ]

    ceiling [
	"Answer the integer part of the receiver, truncated towards +infinity"

	<category: 'built ins'>
	<primitive: VMpr_Float_ceil>
	self checkCoercion.
	^self > 0 
	    ifTrue: [self truncated + self fractionPart sign]
	    ifFalse: [self truncated]
    ]

    primHash [
	"Private - Answer an hash value for the receiver"

	<category: 'built ins'>
	<primitive: VMpr_String_hash>
	^0
    ]

    floor [
	"Answer the integer part of the receiver, truncated towards -infinity"

	<category: 'built ins'>
	<primitive: VMpr_Float_floor>
	self checkCoercion.
	^self < 0 
	    ifTrue: [self truncated + self fractionPart sign]
	    ifFalse: [self truncated]
    ]

    sin [
	"Answer the sine of the receiver"

	<category: 'built ins'>
	<primitive: VMpr_Float_sin>
	self primitiveFailed
    ]

    cos [
	"Answer the cosine of the receiver"

	<category: 'built ins'>
	<primitive: VMpr_Float_cos>
	self primitiveFailed
    ]

    tan [
	"Answer the tangent of the receiver"

	<category: 'built ins'>
	<primitive: VMpr_Float_tan>
	
    ]

    arcSin [
	"Answer the arc-sine of the receiver"

	<category: 'built ins'>
	<primitive: VMpr_Float_arcSin>
	^self arithmeticError: 'argument out of range'
    ]

    arcCos [
	"Answer the arc-cosine of the receiver"

	<category: 'built ins'>
	<primitive: VMpr_Float_arcCos>
	^self arithmeticError: 'argument out of range'
    ]

    arcTan [
	"Answer the arc-tangent of the receiver"

	<category: 'built ins'>
	<primitive: VMpr_Float_arcTan>
	
    ]
]