1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
|
/*********************************************************************
Convolve -- Convolve a dataset with a given kernel.
This is part of GNU Astronomy Utilities (Gnuastro) package.
Original author:
Mohammad Akhlaghi <mohammad@akhlaghi.org>
Contributing author(s):
Copyright (C) 2017-2024 Free Software Foundation, Inc.
Gnuastro is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
Gnuastro is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with Gnuastro. If not, see <http://www.gnu.org/licenses/>.
**********************************************************************/
#include <config.h>
#include <stdio.h>
#include <errno.h>
#include <error.h>
#include <string.h>
#include <stdlib.h>
#include <gnuastro/list.h>
#include <gnuastro/tile.h>
#include <gnuastro/threads.h>
#include <gnuastro/pointer.h>
#include <gnuastro/convolve.h>
#include <gnuastro/dimension.h>
#include <gnuastro-internal/checkset.h>
/*********************************************************************/
/******************** Utilities ********************/
/*********************************************************************/
/* See if the tile is on the edge of the hosted region or not. It doesn't
matter if the host is the allocated block of memory or a region in it (a
channel). */
static int
convolve_tile_is_on_edge(size_t *h, size_t *start_end_coord, size_t *k,
size_t ndim)
{
size_t *s=start_end_coord, *e=start_end_coord+ndim, *kf=k+ndim;
/* If the starting point of the tile is smaller than the half-kernel
length along that dimension, then the tile is on the edge.
If the end of the tile in this dimension added with the half-kernel
length along that dimension is equal to or larger than the host's
size, then the tile is on the edge. */
do if( (*s++ < *k/2) || (*e++ + *k/2 >= *h++) ) return 1; while(++k<kf);
/* If control reaches here, then this is a central tile. */
return 0;
}
/*********************************************************************/
/******************** Spatial convolution ********************/
/*********************************************************************/
/* Each thread needs one of these structures. */
struct per_thread_spatial_prm
{
/* Internally stored/used values. */
size_t id; /* ID of tile being operatred on. */
gal_data_t *tile; /* Tile this thread is working on. */
gal_data_t *i_overlap; /* Overlap tile over input dataset. */
gal_data_t *k_overlap; /* Overlap tile over kernel dataset. */
size_t *overlap_start; /* Starting coordinate of kernel overlap. */
size_t *kernel_start; /* Kernel starting point. */
size_t *host_start; /* Starting coordinate of host. */
size_t *pix; /* 2*ndim: starting and ending of tile, */
/* Later, just the pixel being convolved. */
int on_edge; /* If the tile is on the edge or not. */
gal_data_t *host; /* Size of host (channel or block). */
struct spatial_params *cprm; /* Link to main structure for all threads. */
};
/* This is for the full list. */
struct spatial_params
{
/* Main input/output parameters. */
gal_data_t *out; /* Output data structure. */
gal_data_t *tiles; /* Tiles over the input image. */
gal_data_t *block; /* Pointer to block for this tile. */
gal_data_t *kernel; /* Kernel to convolve with input. */
gal_data_t *tocorrect; /* (possible) convolved image to correct. */
int convoverch; /* Ignore channel edges in convolution. */
int edgecorrection; /* Correct convolution's edge effects. */
uint8_t conv_on_blank; /* Do convolution over blank pixels also. */
struct per_thread_spatial_prm *pprm; /* Array of per-thread parameters. */
};
/* Define the overlap of the kernel and image over this part of the image,
the necessary input image parameters are stored in 'overlap' (its
'array' and 'dsize' elements). */
static int
convolve_spatial_overlap(struct per_thread_spatial_prm *pprm, int tocorrect)
{
struct spatial_params *cprm=pprm->cprm;
gal_data_t *block=cprm->block, *kernel=cprm->kernel;
size_t *dsize = tocorrect ? block->dsize : pprm->host->dsize;
size_t ndim=block->ndim;
size_t *kd=pprm->k_overlap->dsize;
size_t *pp, *ppf, *hs, increment, size=1;
size_t *h=dsize, *os=pprm->overlap_start;
size_t *p, *pf, *od=pprm->i_overlap->dsize;
size_t *k=kernel->dsize, *ks=pprm->kernel_start;
int full_overlap=1, dim_full_overlap, is_start, is_end;
/* In to-correct mode, the pix position needs to be relative to the
block. */
if(tocorrect)
{
hs=pprm->host_start;
ppf=(pp=pprm->pix)+ndim; do *pp += *hs++; while(++pp<ppf);
}
/* Coordinate to start convolution for this pixel. */
pf = (p=pprm->pix) + ndim;
do
{
/* Initialize the overlap for this dimension (we'll assume it
overlaps because this is the most common case usually). */
dim_full_overlap=1;
/* When the tile is on the edge, some pixels in it can have full
overlap. So using the 'dim_full_overlap', we will do the same
thing we do for the tiles that don't overlap for them. When
'tocorrect!=0', then only pixels that are on the edge of the tile
will get to this point, so it must always be checked. */
if( tocorrect ? 1 : pprm->on_edge )
{
/* See if this pixel is on the start and/or end of the dimension
relative to the kernel. */
is_start = *p < *k/2;
is_end = (*p + *k/2) >= *h;
if( is_start || is_end )
{
/* Overlapping with the outside.
With the start: assume that in this dimension, the pixel
is at position 2, while the kernel is 11 pixels wide (or 5
pixels in half-width). As seen below, the kernel should
start from pixel '5-2=3' in this dimension and the overlap
size should decrease by the same amount.
image: 0 1 2 3 4 5 6 7 8 9 ...
pixel: p
kernel: 0 1 2 3 4 5 6 7 8 9 10
With the end: Similar to above, but assume the pixel is
two pixels away from the edge of a 100-pixel image. We are
no longer worried about the overlap or kernel starting
point, it is the width that we need to decrease it by:
97 + 5 - 100 + 1 : The '1' is because we want the pixel
immediately after the end.
image: ... 92 93 94 95 96 97 98 99 | 100 101 102
pixel: p
kernel: 0 1 2 3 4 5 6 7 8 | 9 10 */
*ks++ = is_start ? *k/2 - *p : 0;
*os++ = is_start ? 0 : *p - *k/2;
/* We will start with the full kernel width, then decrease it
if the pixel is too close to the start or end along this
dimension. Note that the host array/image might actually
be smaller than kernel, so both cases might occur. */
*od = *k;
if(is_start) *od -= *k/2 - *p;
if(is_end) *od -= *p + *k/2 - *h + 1;
/* Put the overlap size into the kernel's overlap 'dsize'
also and then use it to update the total size of the
overlap. */
*kd++ = *od;
size *= *od;
/* Increment and finalize. */
++h;
++k;
++od;
full_overlap=0;
dim_full_overlap=0;
}
}
/* There is full overlap for this pixel or tile over this
dimension. */
if(dim_full_overlap)
{
/* Set the values. */
*ks++ = 0;
size *= *k;
*kd++ = *od = *k;
*os++ = *p - *k/2;
/* Increment. */
++h;
++k;
++od;
}
}
while(++p<pf);
/* Update the 'size' element of both overlap datasets. */
pprm->i_overlap->size = pprm->k_overlap->size = size;
/* Make correction.
Normal mode (when 'tocorrect==0'): add the host's starting location
(necessary when convolution over the host/channel is treated
independently). In this mode, until now we were working as if the
the host/channel is the full image so the edges don't get
mixed. But from now on we will be working over the allocated block
to look at pixel values, so we need to convert the location to the
proper place within the allocated array.
To-correct mode: The boundaries were calculated with respect to the
block, so we don't need to correct 'overlap_start'. But we need to
correct the pixel position back to its original state (relative to
the channel). */
hs=pprm->host_start;
if(tocorrect)
{ ppf=(pp=pprm->pix) + ndim; do *pp -= *hs++; while(++pp<ppf); }
else
{ ppf=(pp=pprm->overlap_start) + ndim; do *pp += *hs++; while(++pp<ppf); }
/* Set the starting point of the dataset overlap tile. */
increment=gal_dimension_coord_to_index(ndim, block->dsize,
pprm->overlap_start);
pprm->i_overlap->array=gal_pointer_increment(block->array, increment,
block->type);
/* Set the starting point of the kernel overlap tile. */
increment = ( full_overlap
? 0
: gal_dimension_coord_to_index(ndim,
kernel->dsize,
pprm->kernel_start) );
pprm->k_overlap->array=gal_pointer_increment(kernel->array, increment,
kernel->type);
return full_overlap;
}
/* Convolve over one tile that is not touching the edge. */
static void
convolve_spatial_tile(struct per_thread_spatial_prm *pprm)
{
gal_data_t *tile=pprm->tile;
int full_overlap;
double sum, ksum;
struct spatial_params *cprm=pprm->cprm;
gal_data_t *block=cprm->block, *kernel=cprm->kernel;
size_t j, ndim=block->ndim, csize=tile->dsize[ndim-1];
gal_data_t *i_overlap=pprm->i_overlap, *k_overlap=pprm->k_overlap;
/* Variables for scanning a tile ('i_*') and the region around every
pixel of a tile ('o_*'). */
size_t start_fastdim;
size_t i_inc, i_ninc, i_st_en[2];
/* These variables depend on the type of the input. */
float *i_start;
float *in_v, *in=block->array, *out=cprm->out->array;
/* Starting pixel for the host of this tile. Note that when we are in
'convoverch' mode, 'host' refers to the fully allocated block of
memory. */
pprm->host=cprm->convoverch ? block : tile->block;
gal_tile_start_coord(pprm->host, pprm->host_start);
/* Set the starting and ending coordinates of this tile (recall that the
space for the start and end coordinates is stored in 'p->pix'). When
'convoverch' is set, we want to convolve over the whole allocated
block, not just one channel. So in effect, it is the same as
'rel_block' in 'gal_tile_start_end_coord'. */
gal_tile_start_end_coord(tile, pprm->pix, cprm->convoverch);
start_fastdim = pprm->pix[ndim-1];
/* See if this tile is on the edge or not. */
pprm->on_edge=convolve_tile_is_on_edge(pprm->host->dsize, pprm->pix,
kernel->dsize, ndim);
/* If it isn't on the edge and we are correcting an already convolved
image ('tocorrect!=NULL'), then this tile can be ignored. */
if(cprm->tocorrect && pprm->on_edge==0) return;
/* Parse over all the tile elements. */
i_inc=0; i_ninc=1;
i_start=gal_tile_start_end_ind_inclusive(tile, block, i_st_en);
while( i_st_en[0] + i_inc <= i_st_en[1] )
{
/* Initialize the value along the fastest dimension (it is not
incremented during 'gal_tile_block_increment'). */
pprm->pix[ndim-1]=start_fastdim;
/* Go over each pixel to convolve. */
for(j=0;j<csize;++j)
{
/* Pointer to the pixel under consideration. */
in_v = i_start + i_inc + j;
/* If the input on this pixel is a NaN, then just set the output
to NaN too and go onto the next pixel. 'in_v' is the pointer
on this pixel. */
if( isnan(*in_v) && cprm->conv_on_blank==0 )
out[ in_v - in ]=NAN;
else
{
/* Define the overlap region. */
full_overlap=convolve_spatial_overlap(pprm, 0);
/* If tocorrect has been given and we have full overlap, then
just ignore this pixel. */
if( !(cprm->tocorrect && full_overlap) )
{
/* If we are in correct mode, then re-calculate the
full-overlap and all the other necessary paramters as
if the channels didn't exist. */
if(cprm->tocorrect)
full_overlap=convolve_spatial_overlap(pprm, 1);
/* Initialize the necessary values. */
sum = 0.0L;
ksum = cprm->edgecorrection ? 0.0L : 1.0L;
/* Parse over both the overlap tiles. */
GAL_TILE_PO_OISET(float, float, i_overlap, k_overlap, 1, 0, {
if( !isnan(*i) )
{
sum += *i * *o;
if(cprm->edgecorrection) ksum += *o;
}
});
/* Set the output value. */
out[ in_v - in ] = ksum==0.0L ? NAN : sum/ksum;
}
}
/* Increment the last coordinate. */
pprm->pix[ndim-1]++;
}
/* Increase the increment from the start of the tile for the next
contiguous patch. */
i_inc += gal_tile_block_increment(block, tile->dsize, i_ninc++,
pprm->pix);
}
/*
if(pprm->id==2053)
printf("... done.\n");
*/
}
/* Do spatial convolution on each mesh. */
static void *
convolve_spatial_on_thread(void *inparam)
{
struct gal_threads_params *tprm=(struct gal_threads_params *)inparam;
struct spatial_params *cprm=(struct spatial_params *)(tprm->params);
gal_data_t *block=cprm->block;
size_t i;
size_t ndim=block->ndim;
struct per_thread_spatial_prm *pprm=&cprm->pprm[tprm->id];
size_t *dsize=gal_pointer_allocate(GAL_TYPE_SIZE_T, ndim, 0, __func__,
"dsize");
/* Set all dsize values to 1 (the values within 'overlap->dsize' will be
changed during convolution). */
for(i=0;i<ndim;++i) dsize[i]=1;
/* Initialize/Allocate necessary items for this thread. */
pprm->cprm = cprm;
pprm->pix = gal_pointer_allocate(GAL_TYPE_SIZE_T, 2*ndim, 0,
__func__, "pprm->pix");
pprm->host_start = gal_pointer_allocate(GAL_TYPE_SIZE_T, ndim, 0,
__func__, "pprm->host_start");
pprm->kernel_start = gal_pointer_allocate(GAL_TYPE_SIZE_T, ndim, 0,
__func__, "pprm->kernel_start");
pprm->overlap_start = gal_pointer_allocate(GAL_TYPE_SIZE_T, ndim, 0,
__func__, "pprm->overlap_start");
pprm->i_overlap = gal_data_alloc(NULL, block->type, ndim, dsize,
NULL, 0, -1, 1, NULL, NULL, NULL);
pprm->k_overlap = gal_data_alloc(NULL, cprm->kernel->type, ndim, dsize,
NULL, 0, -1, 1, NULL, NULL, NULL);
free(dsize);
free(pprm->i_overlap->array);
free(pprm->k_overlap->array);
pprm->i_overlap->block = cprm->block;
pprm->k_overlap->block = cprm->kernel;
/* Go over all the tiles given to this thread. */
for(i=0; tprm->indexs[i] != GAL_BLANK_SIZE_T; ++i)
{
/* Set this tile's pointer into this thread's parameters. */
pprm->id = tprm->indexs[i];
pprm->tile = &cprm->tiles[ pprm->id ];
/* Do the convolution on this tile. */
convolve_spatial_tile(pprm);
}
/* Clean up, wait until all other threads finish, then return. In a
single thread situation, 'tprm->b==NULL'. */
free(pprm->pix);
free(pprm->host_start);
free(pprm->kernel_start);
free(pprm->overlap_start);
gal_data_free(pprm->i_overlap);
gal_data_free(pprm->k_overlap);
if(tprm->b) pthread_barrier_wait(tprm->b);
return NULL;
}
/* General spatial convolve function. This function is called by both
'gal_convolve_spatial' and 'gal_convolve_spatial_correct_ch_edge'. */
static gal_data_t *
gal_convolve_spatial_general(gal_data_t *tiles, gal_data_t *kernel,
size_t numthreads, int edgecorrection,
int convoverch, uint8_t conv_on_blank,
gal_data_t *tocorrect)
{
struct spatial_params params;
gal_data_t *out, *block=gal_tile_block(tiles);
/* Small sanity checks. */
if(tiles->ndim!=kernel->ndim)
error(EXIT_FAILURE, 0, "%s: The number of dimensions between the kernel "
"and input should be the same", __func__);
if( block->type!=GAL_TYPE_FLOAT32 || kernel->type!=GAL_TYPE_FLOAT32 )
error(EXIT_FAILURE, 0, "%s: only accepts 'float32' type input and "
"kernel currently", __func__);
/* It may happen that an input dataset is part of a linked list, but it
is not actually a tile structure (the user wants to convolve the whole
dataset without using tiles)! In that case, this function should break
beacuse a linked list is interpretted as a tile structure here. */
if( tiles->block==NULL && tiles->next && tiles->next->block==NULL )
error(EXIT_FAILURE, 0, "%s: the input is a linked list but not a "
"tessellation (a list of tiles). This function is optimized to "
"work on a list of tiles. Please (temporarily) set the 'next' "
"element of the input to 'NULL' and call this function again",
__func__);
/* Set the output datastructure. */
if(tocorrect) out=tocorrect;
else
{
/* Allocate the space for the convolved image. */
out=gal_data_alloc(NULL, GAL_TYPE_FLOAT32, block->ndim, block->dsize,
block->wcs, 0, block->minmapsize, block->quietmmap,
NULL, block->unit, NULL);
/* Spatial convolution won't change the blank bit-flag, so use the
block structure's blank bit flag. */
out->flag = ( block->flag
| ( GAL_DATA_FLAG_BLANK_CH | GAL_DATA_FLAG_HASBLANK ) );
}
/* Set the pointers in the parameters structure. */
params.out=out;
params.tiles=tiles;
params.block=block;
params.kernel=kernel;
params.tocorrect=tocorrect;
params.convoverch=convoverch;
params.conv_on_blank=conv_on_blank;
params.edgecorrection=edgecorrection;
/* Allocate the per-thread parameters. */
errno=0;
params.pprm=malloc(numthreads * sizeof *params.pprm);
if(params.pprm==NULL)
error(EXIT_FAILURE, 0, "%s: %zu bytes for 'params.pprm'",
__func__, numthreads * sizeof *params.pprm);
/* Do the spatial convolution on threads. */
gal_threads_spin_off(convolve_spatial_on_thread, ¶ms,
gal_list_data_number(tiles), numthreads,
tiles->minmapsize, tiles->quietmmap);
/* Clean up and return the output array. */
free(params.pprm);
return out;
}
/* Convolve a dataset with a given kernel in the spatial domain. Spatial
convolution can be greatly sped up if it is done on separate tiles over
the image (on multiple threads). So as input, you can either give tile
values or one full array. Just note that if you give a single array as
input, the 'next' element has to be 'NULL'. */
gal_data_t *
gal_convolve_spatial(gal_data_t *tiles, gal_data_t *kernel,
size_t numthreads, int edgecorrection, int convoverch,
int conv_on_blank)
{
/* When there isn't any tile structure, 'convoverch' must be set to
one. Recall that the input can be a single full dataset also. */
if(tiles->block==NULL) convoverch=1;
/* Call the general function. */
return gal_convolve_spatial_general(tiles, kernel, numthreads,
edgecorrection, convoverch,
conv_on_blank, NULL);
}
/* Correct the edges of channels in an already convolved image when it was
initially convolved with 'gal_convolve_spatial' with 'convoverch==0'. In
that case, strong boundaries exist on the tile edges. So if you later
need to remove those boundaries, you can call this function, it will
only do convolution on the tiles that are near the edge, not the full
area, so it is much faster. */
void
gal_convolve_spatial_correct_ch_edge(gal_data_t *tiles, gal_data_t *kernel,
size_t numthreads, int edgecorrection,
int conv_on_blank, gal_data_t *tocorrect)
{
gal_data_t *block=gal_tile_block(tiles);
/* Some small sanity checks. */
if( gal_dimension_is_different(block, tocorrect) )
error(EXIT_FAILURE, 0, "%s: the 'tocorrect' dataset has to have the "
"same dimensions/size as the block of the 'tiles' input", __func__);
if( block->type != tocorrect->type )
error(EXIT_FAILURE, 0, "%s: the 'tocorrect' dataset has to have the same "
"type as the block of the 'tiles' input. The given types are '%s' "
"and '%s' respectively", __func__,
gal_type_name(tocorrect->type, 1), gal_type_name(block->type, 1));
/* Call the general function, which will do the correction. */
gal_convolve_spatial_general(tiles, kernel, numthreads,
edgecorrection, 0, conv_on_blank,
tocorrect);
}
|