1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
|
/*********************************************************************
Interpolate - Fill blank values in a dataset
This is part of GNU Astronomy Utilities (Gnuastro) package.
Original author:
Mohammad Akhlaghi <mohammad@akhlaghi.org>
Contributing author(s):
Copyright (C) 2017-2024 Free Software Foundation, Inc.
Gnuastro is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
Gnuastro is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with Gnuastro. If not, see <http://www.gnu.org/licenses/>.
**********************************************************************/
#include <config.h>
#include <stdio.h>
#include <errno.h>
#include <error.h>
#include <stdlib.h>
#include <string.h>
#include <gnuastro/list.h>
#include <gnuastro/fits.h>
#include <gnuastro/blank.h>
#include <gnuastro/pointer.h>
#include <gnuastro/threads.h>
#include <gnuastro/dimension.h>
#include <gnuastro/statistics.h>
#include <gnuastro/interpolate.h>
#include <gnuastro/permutation.h>
#include <gnuastro-internal/checkset.h>
/*********************************************************************/
/******************** Nearest neighbor ********************/
/*************** (Dimension agnostic) ****************/
/*********************************************************************/
/* These are bit-flags, so we're using hexadecimal notation. */
#define INTERPOLATE_FLAGS_NO 0
#define INTERPOLATE_FLAGS_NGB_CHECKED 0x1
#define INTERPOLATE_FLAGS_BLANK 0x2
/* Parameters for interpolation on threads. */
struct interpolate_ngb_params
{
int function;
gal_data_t *input;
size_t num;
gal_data_t *out;
gal_data_t *blanks;
size_t numneighbors;
uint8_t *thread_flags;
int onlyblank;
gal_list_void_t *ngb_vals;
float (*metric)(size_t *, size_t *, size_t );
struct gal_tile_two_layer_params *tl;
};
/* Run the interpolation on many threads. */
static void *
interpolate_neighbors_on_thread(void *in_prm)
{
/* Low-level variables that others depend on. */
struct gal_threads_params *tprm=(struct gal_threads_params *)in_prm;
struct interpolate_ngb_params *prm=
(struct interpolate_ngb_params *)(tprm->params);
/* Higher-level variables. */
struct gal_tile_two_layer_params *tl=prm->tl;
int correct_index=(tl && tl->totchannels>1 && !tl->workoverch);
gal_data_t *input=prm->input;
/* Rest of variables. */
void *nv;
float dist, pdist;
uint8_t *b, *bf, *bb;
gal_list_void_t *tvll;
size_t ngb_counter, pind;
gal_list_dosizet_t *lQ, *sQ;
size_t i, index, fullind, chstart=0, ndim=input->ndim;
gal_data_t *tin, *tout, *tnear, *value=NULL, *nearest=NULL;
size_t size = (correct_index ? tl->tottilesinch : input->size);
size_t *dsize = (correct_index ? tl->numtilesinch : input->dsize);
size_t *icoord=gal_pointer_allocate(GAL_TYPE_SIZE_T, ndim, 0, __func__,
"icoord");
size_t *ncoord=gal_pointer_allocate(GAL_TYPE_SIZE_T, ndim, 0, __func__,
"ncoord");
uint8_t *flag, *fullflag=&prm->thread_flags[tprm->id*input->size];
/* Based on the above. */
size_t *dinc=gal_dimension_increment(ndim, dsize);
/* Initialize the flags array. We need two flags during this processing:
1) to see if there are blanks. 2) to see if a neighbor has been
checked. These are both binary (0 or 1). So to avoid wasting space, we
will use bits to store them. We start with only setting the blank flag
once for the whole thread. Then for each interpolated pixel, we reset
the neighbor-check flag. */
flag=fullflag;
bb=prm->blanks->array;
bf=(b=fullflag)+input->size;
do *b = *bb++ ? INTERPOLATE_FLAGS_BLANK : 0; while(++b<bf);
/* Put the allocated space to keep the neighbor values into a structure
for easy processing. */
tin=input;
for(tvll=prm->ngb_vals; tvll!=NULL; tvll=tvll->next)
{
nv=gal_pointer_increment(tvll->v, tprm->id*prm->numneighbors,
input->type);
gal_list_data_add_alloc(&nearest, nv, tin->type, 1,
&prm->numneighbors, NULL, 0, -1, 1,
NULL, NULL, NULL);
tin=tin->next;
}
gal_list_data_reverse(&nearest);
/* Go over all the points given to this thread. */
for(i=0; tprm->indexs[i] != GAL_BLANK_SIZE_T; ++i)
{
/* For easy reading. */
fullind=tprm->indexs[i];
/* If the caller only wanted to interpolate over blank values and
this value is not blank (we know from the flags), then just set
the output value at this element to the input value and go to the
next element. */
if(prm->onlyblank && !(fullflag[fullind] & INTERPOLATE_FLAGS_BLANK) )
{
tin=input;
for(tout=prm->out; tout!=NULL; tout=tout->next)
{
memcpy(gal_pointer_increment(tout->array, fullind, tin->type),
gal_pointer_increment(tin->array, fullind, tin->type),
gal_type_sizeof(tin->type));
tin=tin->next;
}
continue;
}
/* Correct the index (if necessary). When the values come from a
tiled dataset, the caller might want to interpolate the values of
each channel separately (not mix values from different
channels). In such a case, the tiles of each channel (and their
values in 'input' are contiguous. So we need to correct
'tprm->indexs[i]' (which is the index over the whole tessellation,
including all channels). */
if(correct_index)
{
/* Index of this tile in its channel. */
index = fullind % tl->tottilesinch;
/* Index of the first tile in this channel. */
chstart = (fullind / tl->tottilesinch) * tl->tottilesinch;
/* Set the channel's starting pointer for the flags. */
flag = gal_pointer_increment(fullflag, chstart, GAL_TYPE_UINT8);
}
else
{
chstart=0;
index=fullind;
}
/* Reset all checked bits in the flags array to 0. */
ngb_counter=0;
bf=(b=flag)+size;
do *b &= ~(INTERPOLATE_FLAGS_NGB_CHECKED); while(++b<bf);
/* Get the coordinates of this pixel (to be interpolated). */
gal_dimension_index_to_coord(index, ndim, dsize, icoord);
/* Start parsing the neighbors. We will use a two-way ordered linked
list structure. To start from the nearest and go out to the
farthest. */
lQ=sQ=NULL;
gal_list_dosizet_add(&lQ, &sQ, index, 0.0f);
while(sQ)
{
/* Pop-out (p) an index from the queue: */
pind=gal_list_dosizet_pop_smallest(&lQ, &sQ, &pdist);
/* If this isn't a blank value then add its values to the list of
neighbor values. Note that we didn't check whether the values
were blank or not when adding this pixel to the queue. */
if( !(flag[pind] & INTERPOLATE_FLAGS_BLANK) )
{
tin=input;
for(tnear=nearest; tnear!=NULL; tnear=tnear->next)
{
memcpy(gal_pointer_increment(tnear->array, ngb_counter,
tin->type),
gal_pointer_increment(tin->array, chstart+pind,
tin->type),
gal_type_sizeof(tin->type));
tin=tin->next;
}
/* If we have filled all the elements clean up the linked
list and break out. */
if(++ngb_counter>=prm->numneighbors)
{
if(lQ) gal_list_dosizet_free(lQ);
break;
}
}
/* Go over all the neighbors of this popped pixel and add them to
the list of neighbors to be checked. */
GAL_DIMENSION_NEIGHBOR_OP(pind, ndim, dsize, 1, dinc,
{
/* Only look at neighbors that have not been checked. VERY
IMPORTANT: we must not check for blank values here,
otherwise we won't be able to parse over extended blank
regions. */
if( !(flag[nind] & INTERPOLATE_FLAGS_NGB_CHECKED) )
{
/* Get the coordinates of this neighbor. */
gal_dimension_index_to_coord(nind, ndim, dsize, ncoord);
/* Distance of this neighbor to the one to be filled. */
dist=prm->metric(icoord, ncoord, ndim);
/* Add this neighbor to the list. */
gal_list_dosizet_add(&lQ, &sQ, nind, dist);
/* Flag this neighbor as checked. */
flag[nind] |= INTERPOLATE_FLAGS_NGB_CHECKED;
}
} );
/* If there are no more meshes to add to the queue, then this
shows, there were not enough points for
interpolation. Normally, this loop should only be exited
through the 'currentnum>=numnearest' check above. */
if(sQ==NULL)
error(EXIT_FAILURE, 0, "%s: only %zu neighbors found while "
"you had asked to use %zu neighbors for close neighbor "
"interpolation", __func__, ngb_counter,
prm->numneighbors);
}
/* Calculate the desired statistic, and write it in the output. */
tout=prm->out;
for(tnear=nearest; tnear!=NULL; tnear=tnear->next)
{
/* Find the desired statistic and copy it, but first, reset the
flags (which remain from the last time). */
tnear->flag &= ~(GAL_DATA_FLAG_SORT_CH | GAL_DATA_FLAG_BLANK_CH);
switch(prm->function)
{
case GAL_INTERPOLATE_NEIGHBORS_FUNC_MIN:
value=gal_statistics_minimum(tnear); break;
break;
case GAL_INTERPOLATE_NEIGHBORS_FUNC_MAX:
value=gal_statistics_maximum(tnear); break;
break;
case GAL_INTERPOLATE_NEIGHBORS_FUNC_MEAN:
value=gal_statistics_mean(tnear); /* Out can be a diff. type */
value=gal_data_copy_to_new_type_free(value, tnear->type);
break;
case GAL_INTERPOLATE_NEIGHBORS_FUNC_MEDIAN:
value=gal_statistics_median(tnear, 1); break;
default:
error(EXIT_FAILURE, 0, "%s: a bug! Please contact us at %s "
"to fix the problem. The value %d is not a recognized "
"interpolation function identifier", __func__,
PACKAGE_BUGREPORT, prm->function);
}
memcpy(gal_pointer_increment(tout->array, fullind, tout->type),
value->array, gal_type_sizeof(tout->type));
/* Clean up and go to next array. */
gal_data_free(value);
tout=tout->next;
}
}
/* Clean up. */
for(tnear=nearest; tnear!=NULL; tnear=tnear->next) tnear->array=NULL;
gal_list_data_free(nearest);
free(icoord);
free(ncoord);
free(dinc);
/* Wait for all the other threads to finish and return. */
if(tprm->b) pthread_barrier_wait(tprm->b);
return NULL;
}
/* When no interpolation is needed, then we can just copy the input into
the output. */
static gal_data_t *
interpolate_copy_input(gal_data_t *input, int aslinkedlist)
{
gal_data_t *tin, *tout;
/* Make a copy of the first input. */
tout=gal_data_copy(input);
tout->next=NULL;
/* If we have a linked list, copy each element. */
if(aslinkedlist)
{
/* Note that we have already copied the first input. */
for(tin=input->next; tin!=NULL; tin=tin->next)
{
/* Copy this dataset (will also copy flags). */
tout->next=gal_data_copy(tin);
tout=tout->next;
}
/* Output is the reverse of the input, so reverse it. */
gal_list_data_reverse(&tout);
}
/* Return the copied list. */
return tout;
}
/* Interpolate blank values in an array. If the 'tl!=NULL', then it is
assumed that the tile values correspond to given tessellation. Such that
'input[i]' corresponds to 'tiles[i]' in the tessellation. */
gal_data_t *
gal_interpolate_neighbors(gal_data_t *input,
struct gal_tile_two_layer_params *tl,
uint8_t metric, size_t numneighbors,
size_t numthreads, int onlyblank,
int aslinkedlist, int function)
{
gal_data_t *tin, *tout;
struct interpolate_ngb_params prm;
size_t ngbvnum=numthreads*numneighbors;
int permute=(tl && tl->totchannels>1 && tl->workoverch);
/* If there are no blank values in the array, AND we should only fill
blank values, then simply copy the input and abort. */
if( (input->flag | GAL_DATA_FLAG_BLANK_CH) /* Zero bit is meaningful.*/
&& !(input->flag | GAL_DATA_FLAG_HASBLANK)/* There are no blanks. */
&& onlyblank ) /* Only interpolate blank.*/
return interpolate_copy_input(input, aslinkedlist);
/* Initialize the constant parameters. */
prm.tl = tl;
prm.ngb_vals = NULL;
prm.input = input;
prm.function = function;
prm.onlyblank = onlyblank;
prm.numneighbors = numneighbors;
prm.num = aslinkedlist ? gal_list_data_number(input) : 1;
/* Set the metric. */
switch(metric)
{
case GAL_INTERPOLATE_NEIGHBORS_METRIC_RADIAL:
prm.metric=gal_dimension_dist_radial;
break;
case GAL_INTERPOLATE_NEIGHBORS_METRIC_MANHATTAN:
prm.metric=gal_dimension_dist_manhattan;
break;
default:
error(EXIT_FAILURE, 0, "%s: %d is not a valid metric identifier",
__func__, metric);
}
/* Flag the blank values. */
prm.blanks=gal_blank_flag(input);
/* If the input is from a tile structure and the user has asked to ignore
channels, then re-order the values. */
if(permute)
{
/* Prepare the permutation (if necessary/not already defined). */
gal_tile_full_permutation(tl);
/* Re-order values to ignore channels (if necessary). */
gal_permutation_apply(input, tl->permutation);
gal_permutation_apply(prm.blanks, tl->permutation);
/* If this is a linked list, then permute remaining nodes. */
if(aslinkedlist)
for(tin=input->next; tin!=NULL; tin=tin->next)
gal_permutation_apply(tin, tl->permutation);
}
/* Allocate space for the (first) output. */
prm.out=gal_data_alloc(NULL, input->type, input->ndim, input->dsize,
input->wcs, 0, input->minmapsize,
input->quietmmap, NULL, input->unit, NULL);
gal_list_void_add(&prm.ngb_vals,
gal_pointer_allocate(input->type, ngbvnum, 0, __func__,
"prm.ngb_vals"));
/* If we are given a list of datasets, make the necessary
allocations. The reason we are doing this after a check of
'aslinkedlist' is that the 'input' might have a 'next' element, but
the caller might not have called 'aslinkedlist'. */
prm.out->next=NULL;
if(aslinkedlist)
for(tin=input->next; tin!=NULL; tin=tin->next)
{
/* A small sanity check. */
if( gal_dimension_is_different(input, tin) )
error(EXIT_FAILURE, 0, "%s: all datasets in the list must have "
"the same dimension and size", __func__);
/* Allocate the output array for this node. */
gal_list_data_add_alloc(&prm.out, NULL, tin->type, tin->ndim,
tin->dsize, tin->wcs, 0, tin->minmapsize,
tin->quietmmap, NULL, tin->unit, NULL);
/* Allocate the space for the neighbor values of this input. */
gal_list_void_add(&prm.ngb_vals,
gal_pointer_allocate(tin->type, ngbvnum, 0,
__func__, "prm.ngb_vals"));
}
gal_list_data_reverse(&prm.out);
gal_list_void_reverse(&prm.ngb_vals);
/* Allocate space for all the flag values of all the threads here (memory
in each thread is limited) and this is cleaner. */
prm.thread_flags=gal_pointer_allocate(GAL_TYPE_UINT8,
numthreads*input->size, 0, __func__,
"prm.thread_flags");
/* Spin-off the threads. */
gal_threads_spin_off(interpolate_neighbors_on_thread, &prm,
input->size, numthreads, input->minmapsize,
input->quietmmap);
/* If the values were permuted for the interpolation, then re-order the
values back to their original location (so they correspond to their
tile indexs. */
if(permute)
{
gal_permutation_apply_inverse(input, tl->permutation);
for(tout=prm.out; tout!=NULL; tout=tout->next)
gal_permutation_apply_inverse(tout, tl->permutation);
}
/* The interpolated array doesn't have blank values. So set the blank
flag to 0 and set the use-zero to 1. */
for(tout=prm.out; tout!=NULL; tout=tout->next)
{
tout->flag |= GAL_DATA_FLAG_BLANK_CH;
tout->flag &= ~GAL_DATA_FLAG_HASBLANK;
}
/* Clean up and return. */
free(prm.thread_flags);
gal_data_free(prm.blanks);
gal_list_void_free(prm.ngb_vals, 1);
return prm.out;
}
/*********************************************************************/
/******************** 1D on grid ********************/
/*********************************************************************/
gsl_spline *
gal_interpolate_1d_make_gsl_spline(gal_data_t *X, gal_data_t *Y, int type_1d)
{
size_t i, c;
double *x, *y;
gal_data_t *Xd, *Yd;
gsl_spline *spline=NULL;
const gsl_interp_type *itype=NULL;
int Yhasblank=gal_blank_present(Y, 0);
/* A small sanity check. */
if(Y->ndim!=1)
error(EXIT_FAILURE, 0, "%s: input dataset is not 1D (it is %zuD)",
__func__, Y->ndim);
if(X)
{
if( gal_dimension_is_different(X, Y) )
error(EXIT_FAILURE, 0, "%s: when two inputs are given, they must "
"have the same dimensions. X has %zu elements, while Y has "
"%zu", __func__, X->size, Y->size);
if(gal_blank_present(X, 0))
error(EXIT_FAILURE, 0, "%s: the X dataset has blank elements",
__func__);
}
/* Set the interpolation type. */
switch(type_1d)
{
case GAL_INTERPOLATE_1D_LINEAR:
itype=gsl_interp_linear; break;
case GAL_INTERPOLATE_1D_POLYNOMIAL:
itype=gsl_interp_polynomial; break;
case GAL_INTERPOLATE_1D_CSPLINE:
itype=gsl_interp_cspline; break;
case GAL_INTERPOLATE_1D_CSPLINE_PERIODIC:
itype=gsl_interp_cspline_periodic; break;
case GAL_INTERPOLATE_1D_AKIMA:
itype=gsl_interp_akima; break;
case GAL_INTERPOLATE_1D_AKIMA_PERIODIC:
itype=gsl_interp_akima_periodic; break;
case GAL_INTERPOLATE_1D_STEFFEN:
#if GAL_CONFIG_HAVE_GSL_INTERP_STEFFEN
itype=gsl_interp_steffen; break;
#else
error(EXIT_FAILURE, 0, "%s: Steffen interpolation isn't available "
"in the system's GNU Scientific Library (GSL). Please install "
"a more recent GSL (version >= 2.0, released in October 2015) "
"and rebuild Gnuastro", __func__);
#endif
default:
error(EXIT_FAILURE, 0, "%s: code %d not recognizable for the GSL "
"interpolation type", __func__, type_1d);
}
/* Initializations. Note that if Y doesn't have any blank elements and is
already in 'double' type, then we don't need to make a copy. */
Yd = ( (Yhasblank || Y->type!=GAL_TYPE_FLOAT64)
? gal_data_copy_to_new_type(Y, GAL_TYPE_FLOAT64)
: Y );
Xd = ( X
/* Has to be 'Yhasblank', we KNOW X doesn't have blank values. */
? ( (Yhasblank || X->type!=GAL_TYPE_FLOAT64)
? gal_data_copy_to_new_type(X, GAL_TYPE_FLOAT64)
: X )
: gal_data_alloc(NULL, GAL_TYPE_FLOAT64, 1, Y->dsize, NULL,
0, -1, 1, NULL, NULL, NULL) );
/* Fill in the X axis values while also removing NaN/blank elements. */
c=0;
x=Xd->array;
y=Yd->array;
for(i=0;i<Yd->size;++i)
if( !isnan(y[i]) )
{
y[ c ] = y[i];
x[ c++ ] = X ? x[i] : i;
}
/* Make sure we have enough valid points for interpolation. */
if( c>=gsl_interp_type_min_size(itype) )
{
spline=gsl_spline_alloc(itype, c);
gsl_spline_init(spline, x, y, c);
}
else
spline=NULL;
/* Clean up and return. */
if(Xd!=X) gal_data_free(Xd);
if(Yd!=Y) gal_data_free(Yd);
return spline;
}
/* Return 0 if all blanks were filled. */
static int
interpolate_1d_blank_write(gal_data_t *in, gsl_spline *spline,
gsl_interp_accel *acc)
{
double tmp;
int hasblank=0;
uint8_t *su8 =in->array, *u8 =in->array, *u8f =u8 +in->size;
int8_t *si8 =in->array, *i8 =in->array, *i8f =i8 +in->size;
uint16_t *su16=in->array, *u16=in->array, *u16f=u16+in->size;
int16_t *si16=in->array, *i16=in->array, *i16f=i16+in->size;
uint32_t *su32=in->array, *u32=in->array, *u32f=u32+in->size;
int32_t *si32=in->array, *i32=in->array, *i32f=i32+in->size;
uint64_t *su64=in->array, *u64=in->array, *u64f=u64+in->size;
int64_t *si64=in->array, *i64=in->array, *i64f=i64+in->size;
float *sf32=in->array, *f32=in->array, *f32f=f32+in->size;
double *sf64=in->array, *f64=in->array, *f64f=f64+in->size;
switch(in->type)
{
case GAL_TYPE_UINT8:
do
if(*u8==GAL_BLANK_UINT8)
{
/* If the evaluation is good, this function will return 0. */
if( gsl_spline_eval_e(spline, u8-su8, acc, &tmp)==0 )
*u8=tmp;
else hasblank=1;
}
while(++u8<u8f);
break;
case GAL_TYPE_INT8:
do
if(*i8==GAL_BLANK_INT8)
{
if( gsl_spline_eval_e(spline, i8-si8, acc, &tmp)==0 )
*u16=tmp;
else hasblank=1;
}
while(++i8<i8f);
break;
case GAL_TYPE_UINT16:
do
if(*u16==GAL_BLANK_UINT16)
{
if( gsl_spline_eval_e(spline, u16-su16, acc, &tmp)==0 )
*u16=tmp;
else hasblank=1;
}
while(++u16<u16f);
break;
case GAL_TYPE_INT16:
do
if(*i16==GAL_BLANK_INT16)
{
if( gsl_spline_eval_e(spline, i16-si16, acc, &tmp)==0 )
*i16=tmp;
else hasblank=1;
}
while(++i16<i16f);
break;
case GAL_TYPE_UINT32:
do
if(*u32==GAL_BLANK_UINT32)
{
if( gsl_spline_eval_e(spline, u32-su32, acc, &tmp)==0 )
*u32=tmp;
else hasblank=1;
}
while(++u32<u32f);
break;
case GAL_TYPE_INT32:
do
if(*i32==GAL_BLANK_INT32)
{
if( gsl_spline_eval_e(spline, i32-si32, acc, &tmp)==0 )
*i32=tmp;
else hasblank=1;
}
while(++i32<i32f);
break;
case GAL_TYPE_UINT64:
do
if(*u64==GAL_BLANK_UINT64)
{
if( gsl_spline_eval_e(spline, u64-su64, acc, &tmp)==0 )
*u64=tmp;
else hasblank=1;
}
while(++u64<u64f);
break;
case GAL_TYPE_INT64:
do
if(*i64==GAL_BLANK_INT64)
{
if( gsl_spline_eval_e(spline, i64-si64, acc, &tmp)==0 )
*i64=tmp;
else hasblank=1;
}
while(++i64<i64f);
break;
case GAL_TYPE_FLOAT32:
do
if(isnan(*f32))
{
if( gsl_spline_eval_e(spline, f32-sf32, acc, &tmp)==0 )
*f32=tmp;
else hasblank=1;
}
while(++f32<f32f);
break;
case GAL_TYPE_FLOAT64:
do
if(isnan(*f64))
{
if( gsl_spline_eval_e(spline, f64-sf64, acc, f64) )
hasblank=1;
}
while(++f64<f64f);
break;
default:
error(EXIT_FAILURE, 0, "%s: code %d is not a recognized data type",
__func__, in->type);
}
return hasblank;
}
void
gal_interpolate_1d_blank(gal_data_t *in, int type_1d)
{
int hasblank;
gsl_spline *spline;
gsl_interp_accel *acc;
/* If there are no blank elements, just return. */
if(!gal_blank_present(in, 1)) return;
/* Initialize the necessary structures. */
spline=gal_interpolate_1d_make_gsl_spline(NULL, in, type_1d);
/* If any interpolation structure was actually made. */
if(spline)
{
/* Write the values in the blank elements. */
acc=gsl_interp_accel_alloc();
hasblank=interpolate_1d_blank_write(in, spline, acc);
/* For a check.
{
size_t i;
double *d;
gal_data_t *check=gal_data_copy_to_new_type(in, GAL_TYPE_FLOAT64);
d=check->array;
for(i=0;i<check->size;++i)
printf("%-10zu%f\n", i, d[i]);
gal_data_free(check);
}
*/
/* Set the blank flags, note that 'GAL_DATA_FLAG_BLANK_CH' is already set
by the top call to 'gal_blank_present'. */
if(hasblank)
in->flag |= GAL_DATA_FLAG_HASBLANK;
else
in->flag &= ~GAL_DATA_FLAG_HASBLANK;
/* Clean up. */
gsl_spline_free(spline);
gsl_interp_accel_free(acc);
}
}
|