File: kdtree.c

package info (click to toggle)
gnuastro 0.23-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 42,824 kB
  • sloc: ansic: 176,016; sh: 14,784; makefile: 1,298; cpp: 9
file content (597 lines) | stat: -rw-r--r-- 17,470 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
/*********************************************************************
kdtree -- Create k-d tree and nearest neighbour searches.
This is part of GNU Astronomy Utilities (Gnuastro) package.

Original author:
     Sachin Kumar Singh <sachinkumarsingh092@gmail.com>
Contributing author(s):
     Mohammad Akhlaghi <mohammad@akhlaghi.org>
Copyright (C) 2020-2024 Free Software Foundation, Inc.

Gnuastro is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.

Gnuastro is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with Gnuastro. If not, see <http://www.gnu.org/licenses/>.
**********************************************************************/
#include <config.h>

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <error.h>
#include <float.h>

#include <gnuastro/data.h>
#include <gnuastro/table.h>
#include <gnuastro/blank.h>
#include <gnuastro/pointer.h>
#include <gnuastro/permutation.h>




















/****************************************************************
 ********                  Utilities                      *******
 ****************************************************************/
/* Main structure to keep kd-tree parameters. */
struct kdtree_params
{
  size_t ndim;            /* Number of dimentions in the nodes. */
  size_t *input_row;      /* The indexes of the input table. */
  gal_data_t **coords;    /* The input coordinates array. */
  uint32_t *left, *right; /* The indexes of the left and right nodes. */

  /* The values of the left and right columns. */
  gal_data_t *left_col, *right_col;
};





/* Swap 2 nodes of the tree. Instead of physically swaping all the values
   we swap just the indexes of the node. */
static void
kdtree_node_swap(struct kdtree_params *p, size_t node1, size_t node2)
{
  uint32_t tmp_left=p->left[node1];
  uint32_t tmp_right=p->right[node1];
  size_t tmp_input_row=p->input_row[node1];

  /* No need to swap same node. */
  if(node1==node2) return;

  p->left[node1]=p->left[node2];
  p->right[node1]=p->right[node2];
  p->input_row[node1]=p->input_row[node2];

  p->left[node2]=tmp_left;
  p->right[node2]=tmp_right;
  p->input_row[node2]=tmp_input_row;
}





/* Return the distance between 2 given nodes. The distance is equivalent
   to the radius of the hypersphere having node as its center.

   Return: Radial distace from given point to the node.
*/
static double
kdtree_distance_find(struct kdtree_params *p, size_t node,
                     double *point)
{
  size_t i;
  double *carr;
  double t_distance, node_distance=0;

  /* For all dimensions. */
  for(i=0; i<p->ndim; ++i)
    {
      carr=p->coords[i]->array;
      t_distance=carr[node]-point[i];

      node_distance += t_distance*t_distance;
    }

  return node_distance;
}




















/****************************************************************
 ********           Preperations and Cleanup              *******
 ****************************************************************/
/* Initialise the kdtree_params structure and do sanity checks. */
static void
kdtree_prepare(struct kdtree_params *p, gal_data_t *coords_raw)
{
  size_t i;
  gal_data_t *tmp;
  p->ndim=gal_list_data_number(coords_raw);

  /* Allocate the coordinate array. */
  errno=0;
  p->coords=malloc(p->ndim*sizeof(**(p->coords)));
  if(p->coords==NULL)
    error(EXIT_FAILURE, errno, "%s: couldn't allocate %zu bytes "
	  "for 'coords'", __func__, p->ndim*sizeof(**(p->coords)));

  /* Convert input to double type. */
  tmp=coords_raw;
  for(i=0; i<p->ndim; ++i)
    {
      if(tmp->type == GAL_TYPE_FLOAT64)
      	p->coords[i]=tmp;
      else
        p->coords[i]=gal_data_copy_to_new_type(tmp, GAL_TYPE_FLOAT64);

      /* Go to the next column list. */
      tmp=tmp->next;
    }

  /* If the 'left_col' is already defined, then we just need to do
     some sanity checks. */
  if(p->left_col)
    {
      /* Make sure there is more than one column. */
      if(p->left_col->next==NULL)
        error(EXIT_FAILURE, 0, "%s: the input kd-tree should be 2 columns",
              __func__);

      /* Set the right column and check if there aren't any
         more columns. */
      p->right_col=p->left_col->next;
      if(p->right_col->next)
        error(EXIT_FAILURE, 0, "%s: the input kd-tree shoudn't be more "
              "than 2 columns", __func__);

      /* Make sure they are the same size. */
      if(p->left_col->size!=p->right_col->size)
        error(EXIT_FAILURE, 0, "%s: left and right columns should have "
              "same size", __func__);

      /* Make sure left is 'uint32_t'. */
      if(p->left_col->type!=GAL_TYPE_UINT32)
        error(EXIT_FAILURE, 0, "%s: left kd-tree column should be uint32_t",
              __func__);

      /* Make sure right is 'uint32_t'. */
      if(p->right_col->type!=GAL_TYPE_UINT32)
        error(EXIT_FAILURE, 0, "%s: right kd-tree column should be uint32_t",
              __func__);

      /* Initailise left and right arrays. */
      p->left=p->left_col->array;
      p->right=p->right_col->array;
    }
  else
    {
      /* Allocate and initialise the kd-tree input_row. */
      p->input_row=gal_pointer_allocate(GAL_TYPE_SIZE_T, coords_raw->size, 0,
                                        __func__, "p->input_row");
      for(i=0; i<coords_raw->size; ++i)	p->input_row[i]=i;

      /* Allocate output and initialize them. */
      p->left_col=gal_data_alloc(NULL, GAL_TYPE_UINT32, 1,
                                 coords_raw->dsize, NULL, 0,
                                 coords_raw->minmapsize,
                                 coords_raw->quietmmap, "left",
                                 "index",
                                 "index of left subtree in the kd-tree");
      p->right_col=gal_data_alloc(NULL, GAL_TYPE_UINT32, 1,
                                  coords_raw->dsize, NULL, 0,
                                  coords_raw->minmapsize,
                                  coords_raw->quietmmap, "right",
                                  "index",
                                  "index of right subtree in the kd-tree");

      /* Fill the elements of the params structure. */
      p->left_col->next=p->right_col;

      /* Initialise the left and right arrays. */
      p->left=p->left_col->array;
      p->right=p->right_col->array;
      for(i=0;i<coords_raw->size;++i)
        { p->left[i]=p->right[i]=GAL_BLANK_UINT32; }
    }
}





/* Cleanup the data and free the memory used by the structure after use. */
static void
kdtree_cleanup(struct kdtree_params *p, gal_data_t *coords_raw)
{
  size_t i;
  gal_data_t *tmp;

  /* Clean up. */
  tmp = coords_raw;
  for(i = 0; i<p->ndim; ++i)
    {
      if(p->coords[i]!=tmp) gal_data_free(p->coords[i]);
      tmp=tmp->next;
    }

  /* Free memory. */
  free(p->coords);
  free(p->input_row);
}




















/****************************************************************
 ********                Create KD-Tree                   *******
 ****************************************************************/
/* Divide the array into two parts, values more than that of k'th node
   and values less than k'th node.

   Return: Index of the node whose value is greater than all
           the nodes before it.
*/
static size_t
kdtree_make_partition(struct kdtree_params *p, size_t node_left,
                      size_t node_right, size_t node_k,
                      double *coordinate)
{
  /* store_index is the index before which all values are smaller than
     the value of k'th node. */
  size_t i, store_index;
  double k_node_value = coordinate[p->input_row[node_k]];

  /* Move the k'th node to the right. */
  kdtree_node_swap(p, node_k, node_right);

  /* Move all nodes smaller than k'th node to its left and check
     the number of elements smaller than the value present at the
     k'th index. */
  store_index = node_left;
  for(i = node_left; i < node_right; ++i)
    if(coordinate[p->input_row[i]] < k_node_value)
      {
        /* Move i'th node to the left side of the k'th index. */
        kdtree_node_swap(p, store_index, i);

        /* Prepare the place of next smaller node. */
        store_index++;
      }

  /* Place k'th node after all the nodes that have lesser value
     than it, as it was moved to the right initially. */
  kdtree_node_swap(p, node_right, store_index);

  /* Return the store_index. */
  return store_index;
}





/* Find the median node of the current axis. Instead of randomly
   choosing the median node, we use `quickselect alogorithm` to
   find median node in linear time between the left and right node.
   This also makes the values in the current axis partially sorted.

   See `https://en.wikipedia.org/wiki/Quickselect`
   for pseudocode and more details of the algorithm.

   Return: Median node between the given left and right nodes.
*/
static size_t
kdtree_median_find(struct kdtree_params *p, size_t node_left,
                   size_t node_right, double *coordinate)
{
  size_t node_pivot, node_median;

  /* False state, this is a programming error. */
  if(node_right < node_left)
    error(EXIT_FAILURE, 0, "%s: a bug! Please contact us to fix "
          "the problem! For some reason, the node_right (%zu) is "
          "smaller than node_left (%zu)", __func__, node_right,
          node_left);

  /* If the two nodes are the same, just return the node. */
  if(node_right == node_left)
    error(EXIT_FAILURE, 0, "%s: a bug! Please contact us to fix "
          "the problem! For some reason, the node_right (%zu) is "
          "equal to node_left (%zu)", __func__, node_right, node_left);

  /* The required median node between left and right node. */
  node_median = node_left+(node_right-node_left)/2;

  /* Loop until the median of the current axis is returned. */
  while(1)
    {
      /* Pivot node acts as a reference for the distance from the desired
        (here median) node. */
      node_pivot = kdtree_make_partition(p, node_left, node_right,
                                         node_median, coordinate);
      /* If median is found, break the loop and return median node. */
      if(node_median == node_pivot) break;

      /* Change the left or right node based on the position of
         the pivot node with respect to the required median node. */
      if(node_median < node_pivot)  node_right = node_pivot - 1;
      else                          node_left  = node_pivot + 1;
    }
  /* Return the median node. */
  return node_median;
}





/* Make a kd-tree from a given set of points. For tree construction, a
   median point is selected for each axis and the left and right branches
   are recursively created by comparing points in that axis.

   Return : Indexes of the nodes in the kd-tree.
*/
static uint32_t
kdtree_fill_subtrees(struct kdtree_params *p, size_t node_left,
                     size_t node_right, size_t depth)
{
  /* Set the working axis. */
  size_t axis=depth % p->ndim;

  /* node_median is a counter over the `input_row` array.
     `input_row` array has the input_row(row number). */
  size_t node_median;

  /* Recursion terminates when the left and right nodes are the
     same. */
  if(node_left==node_right) return p->input_row[node_left];

  /* Find the median node. */
  node_median = kdtree_median_find(p, node_left, node_right,
                                   p->coords[axis]->array);

  /* node_median == 0 : We are in the lowest node (leaf) so no need
     When we only have 2 nodes and the median is equal to the left,
     its the end of the subtree.
  */
  if(node_median)
    p->left[node_median] = ( (node_median == node_left)
                             ? GAL_BLANK_UINT32
                             : kdtree_fill_subtrees(p, node_left,
                                                    node_median-1,
                                                    depth+1) );

  /* Right and left nodes are non-symytrical. Node left can be equal
     to node median when there are only 2 points and at this point,
     there can never be a single point (node left == node right).
     But node right can never be equal to node median.
     So we don't check for it. */
  p->right[node_median] = kdtree_fill_subtrees(p, node_median+1,
                                               node_right,
                                               depth+1);

  /* All subtrees have been parsed, return the node. */
  return p->input_row[node_median];
}





/* High level function to construct the kd-tree. This function initilises
   and creates the tree in top-down manner. Returns a list containing the
   indexes of left and right subtrees. */
gal_data_t *
gal_kdtree_create(gal_data_t *coords_raw, size_t *root)
{
  struct kdtree_params p={0};

  /* If there are no coordinates, just return NULL. */
  if(coords_raw->size==0) return NULL;

  /* Initialise the params structure. */
  kdtree_prepare(&p, coords_raw);

  /* Fill the kd-tree. */
  *root=kdtree_fill_subtrees(&p, 0, coords_raw->size-1, 0);

  /* For a check
  size_t i;
  for(i=0;i<coords_raw->size;++i)
    printf("%-15zu%-15u%-15u\n", p.input_row[i], p.left[i], p.right[i]);
  */

  /* Do a reverse permutation to sort the indexes
     back in the input order. */
  gal_permutation_apply_inverse(p.left_col, p.input_row);
  gal_permutation_apply_inverse(p.right_col, p.input_row);

  /* Free and clean up. */
  kdtree_cleanup(&p, coords_raw);

  /* Return results. */
  return p.left_col;
}




















/****************************************************************
 ********          Nearest-Neighbour Search               *******
 ****************************************************************/
/* This is a helper function which finds the nearest neighbour of
   the given point in a kdtree. It calculates the least distance
   from the point, and the index of that nearest node (out_nn).

   See `https://en.wikipedia.org/wiki/K-d_tree#Nearest_neighbour_search`
   for more information.
*/
static void
kdtree_nearest_neighbour(struct kdtree_params *p, uint32_t node_current,
                         double *point, double *least_dist,
                         size_t *out_nn, size_t depth)
{
  double d, dx, dx2;
  size_t axis=depth % p->ndim;    /* Set the working axis. */
  double *coordinates=p->coords[axis]->array;

  /* If no subtree present, don't search further. */
  if(node_current==GAL_BLANK_UINT32) return;

  /* The distance between search point to the current node. */
  d = kdtree_distance_find(p, node_current, point);

  /* Distance between the splitting coordinate of the search
     point and current node. */
  dx = coordinates[node_current]-point[axis];

  /* Check if the current node is nearer than the previous
     nearest node. */
  if(d < *least_dist)
    {
      *least_dist = d;
      *out_nn = node_current;
    }

  /* If exact match found (least distance 0), return it. */
  if(*least_dist==0.0f) return;

  /* Recursively search in subtrees. */
  kdtree_nearest_neighbour(p, dx > 0
                              ? p->left[node_current]
                              : p->right[node_current],
                           point, least_dist, out_nn, depth+1);

  /* Since the hyperplanes are all axis-aligned, to check if there is a
     node in other branch which is nearer to the current node is done by a
     simple comparison to see whether the distance between the splitting
     coordinate (median node) of the search point and current node is
     lesser (i.e on same side of hyperplane) than the distance (overall
     coordinates) from the search point to the current nearest. */
  dx2 = dx*dx;
  if(dx2 >= *least_dist) return;

  /* Recursively search other subtrees. */
  kdtree_nearest_neighbour(p, dx > 0
                              ? p->right[node_current]
                              : p->left[node_current],
                           point, least_dist, out_nn, depth+1);
}





/* High-level function used to find the nearest neighbour of a given
   point in a kd-tree. It calculates the least distance of the point
   from the nearest node and returns the index of that node.

   Return: The index of the nearest neighbour node in the kd-tree.
*/
size_t
gal_kdtree_nearest_neighbour(gal_data_t *coords_raw, gal_data_t *kdtree,
                             size_t root, double *point,
                             double *least_dist)
{
  struct kdtree_params p={0};
  size_t out_nn=GAL_BLANK_SIZE_T;

  /* Initialisation. */
  p.left_col=kdtree;
  *least_dist=DBL_MAX;
  kdtree_prepare(&p, coords_raw);

  /* Use the low-level function to find th nearest neighbour. */
  kdtree_nearest_neighbour(&p, root, point, least_dist, &out_nn, 0);

  /* least_dist is the square of the distance between the nearest
     neighbour and the point (used to improve processing).
     Square root of that is the actual distance. */
  *least_dist = sqrt(*least_dist);

  /* For a check
  printf("%s: root=%zu, out_nn=%zu, least_dis=%f\n",
         __func__, root, out_nn, least_dist);
  */

  /* Clean up and return. */
  kdtree_cleanup(&p, coords_raw);
  return out_nn;
}