1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382
|
/*********************************************************************
match -- Functions to match catalogs and WCS.
This is part of GNU Astronomy Utilities (Gnuastro) package.
Original author:
Mohammad Akhlaghi <mohammad@akhlaghi.org>
Contributing author(s):
Sachin Kumar Singh <sachinkumarsingh092@gmail.com>
Copyright (C) 2017-2024 Free Software Foundation, Inc.
Gnuastro is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
Gnuastro is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with Gnuastro. If not, see <http://www.gnu.org/licenses/>.
**********************************************************************/
#include <config.h>
#include <stdio.h>
#include <errno.h>
#include <error.h>
#include <float.h>
#include <stdlib.h>
#include <gsl/gsl_sort.h>
#include <gnuastro/box.h>
#include <gnuastro/list.h>
#include <gnuastro/blank.h>
#include <gnuastro/binary.h>
#include <gnuastro/kdtree.h>
#include <gnuastro/pointer.h>
#include <gnuastro/threads.h>
#include <gnuastro/statistics.h>
#include <gnuastro/permutation.h>
/**********************************************************************/
/***************** Sort-Based match custom list *******************/
/**********************************************************************/
struct match_sfll
{
float f;
size_t v;
struct match_sfll *next;
};
static void
match_add_to_sfll(struct match_sfll **list, size_t value,
float fvalue)
{
struct match_sfll *newnode;
errno=0;
newnode=malloc(sizeof *newnode);
if(newnode==NULL)
error(EXIT_FAILURE, errno, "%s: new node couldn't be allocated",
__func__);
newnode->v=value;
newnode->f=fvalue;
newnode->next=*list;
*list=newnode;
}
static void
match_pop_from_sfll(struct match_sfll **list,
size_t *value, float *fvalue)
{
struct match_sfll *tmp;
tmp=*list;
*value=tmp->v;
*fvalue=tmp->f;
*list=tmp->next;
free(tmp);
}
/**********************************************************************/
/******** Generic functions (for any type of matching) ********/
/**********************************************************************/
/* Preparations for the desired matching aperture. */
static void
match_aperture_prepare(gal_data_t *A, gal_data_t *B,
double *aperture, size_t ndim,
double **a, double **b, double *dist,
double *c, double *s, int *iscircle)
{
double semiaxes[3];
/* These two are common for all dimensions. */
a[0]=A->array;
b[0]=B->array;
/* See if the aperture is a circle or not. */
switch(ndim)
{
case 1:
*iscircle = 0; /* Irrelevant for 1D. */
dist[0]=aperture[0];
break;
case 2:
/* Set the main coordinate arrays. */
a[1]=A->next->array;
b[1]=B->next->array;
/* See if the aperture is circular. */
if( ( *iscircle=(aperture[1]==1)?1:0 )==0 )
{
/* Using the box that encloses the aperture, calculate the
distance along each axis. */
gal_box_bound_ellipse_extent(aperture[0], aperture[0]*aperture[1],
aperture[2], dist);
/* Calculate the sin and cos of the given ellipse if necessary
for ease of processing later. */
c[0] = cos( aperture[2] * M_PI/180.0 );
s[0] = sin( aperture[2] * M_PI/180.0 );
}
else
dist[0]=dist[1]=aperture[0];
break;
case 3:
/* Set the main coordinate arrays. */
a[1]=A->next->array;
b[1]=B->next->array;
a[2]=A->next->next->array;
b[2]=B->next->next->array;
if( (*iscircle=(aperture[1]==1 && aperture[2]==1)?1:0)==0 )
{
/* Using the box that encloses the aperture, calculate the
distance along each axis. */
semiaxes[0]=aperture[0];
semiaxes[1]=aperture[1]*aperture[0];
semiaxes[2]=aperture[2]*aperture[0];
gal_box_bound_ellipsoid_extent(semiaxes, &aperture[3], dist);
/* Calculate the sin and cos of the given ellipse if necessary
for ease of processing later. */
c[0] = cos( aperture[3] * M_PI/180.0 );
s[0] = sin( aperture[3] * M_PI/180.0 );
c[1] = cos( aperture[4] * M_PI/180.0 );
s[1] = sin( aperture[4] * M_PI/180.0 );
c[2] = cos( aperture[5] * M_PI/180.0 );
s[2] = sin( aperture[5] * M_PI/180.0 );
}
else
dist[0]=dist[1]=dist[2]=aperture[0];
break;
default:
error(EXIT_FAILURE, 0, "%s: a bug! Please contact us at %s to fix "
"the problem. The value %zu is not recognized for ndim",
__func__, PACKAGE_BUGREPORT, ndim);
}
}
static double
match_elliptical_r_2d(double d1, double d2, double *ellipse,
double c, double s)
{
double Xr = d1 * ( c ) + d2 * ( s );
double Yr = d1 * ( -1.0f*s ) + d2 * ( c );
return sqrt( Xr*Xr + Yr*Yr/ellipse[1]/ellipse[1] );
}
static double
match_elliptical_r_3d(double *delta, double *ellipsoid,
double *c, double *s)
{
double Xr, Yr, Zr;
double c1=c[0], s1=s[0];
double c2=c[1], s2=s[1];
double c3=c[2], s3=s[2];
double q1=ellipsoid[1], q2=ellipsoid[2];
double x=delta[0], y=delta[1], z=delta[2];
Xr = x*( c3*c1 - s3*c2*s1 ) + y*( c3*s1 + s3*c2*c1) + z*( s3*s2 );
Yr = x*( -1*s3*c1 - c3*c2*s1 ) + y*(-1*s3*s1 + c3*c2*c1) + z*( c3*s2 );
Zr = x*( s1*s2 ) + y*(-1*s2*c1 ) + z*( c2 );
return sqrt( Xr*Xr + Yr*Yr/q1/q1 + Zr*Zr/q2/q2 );
}
static double
match_distance(double *delta, int iscircle, size_t ndim,
double *aperture, double *c, double *s)
{
/* For more than one dimension, we'll need to calculate the distance from
the deltas (differences) in each dimension. */
switch(ndim)
{
case 1:
return fabs(delta[0]);
case 2:
return ( iscircle
? sqrt( delta[0]*delta[0] + delta[1]*delta[1] )
: match_elliptical_r_2d(delta[0], delta[1],
aperture, c[0], s[0]) );
case 3:
return ( iscircle
? sqrt( delta[0]*delta[0]
+ delta[1]*delta[1]
+ delta[2]*delta[2] )
: match_elliptical_r_3d(delta, aperture, c, s) );
default:
error(EXIT_FAILURE, 0, "%s: a bug! Please contact us at %s to fix "
"the problem. The value %zu is not recognized for ndim",
__func__, PACKAGE_BUGREPORT, ndim);
}
/* Control should not reach this point. */
error(EXIT_FAILURE, 0, "%s: a bug! Please contact us at %s to fix the "
"problem. Control should not reach the end of this function",
__func__, PACKAGE_BUGREPORT);
return NAN;
}
/* In the 'match_XXXX_second_in_first' functions, we made an array of
lists, here we want to reverse that list to fix the second two issues
that were discussed there. */
void
match_rearrange(gal_data_t *A, gal_data_t *B, struct match_sfll **bina)
{
size_t bi;
float *fp, *fpf, r, *ainb;
size_t ai, ar=A->size, br=B->size;
/* Allocate the space for 'ainb' and initialize it to NaN (since zero is
meaningful in this context; both for indexs and also for floats). This
is a two column array that will keep the distance and index of the
closest element in catalog 'a' for each element in catalog b. */
errno=0; ainb=calloc(2*br, sizeof *ainb);
if(ainb==NULL)
error(EXIT_FAILURE, errno, "%s: %zu bytes for 'ainb'", __func__,
br*sizeof *ainb);
fpf=(fp=ainb)+2*br; do *fp++=NAN; while(fp<fpf);
/* Go over each object in catalog 'a' and re-distribute the near objects,
to find which ones in catalog 'a' are within the search radius of
catalog b in a sorted manner. Note that we only need the 'ai' with the
minimum distance to 'bi', the rest are junk. */
for( ai=0; ai<ar; ++ai )
while( bina[ai] ) /* As long as its not NULL. */
{
/* Pop out a 'bi' and its distance to this 'ai' from 'bina' (this
is the nearest B item to this A element). */
match_pop_from_sfll(&bina[ai], &bi, &r);
/* If nothing has been put here (the 'isnan' condition below is
true), or something exists (the isnan is false, and so it will
check the second OR test) with a distance that is larger than
this distance then just put this value in. */
if( isnan(ainb[bi*2]) || r<ainb[bi*2+1] )
{
ainb[bi*2 ] = ai;
ainb[bi*2+1] = r;
}
}
/* For checking the status of affairs uncomment this block
{
printf("\n\nFilled ainb:\n");
for(bi=0;bi<br;++bi)
if( !isnan(ainb[bi*2]) )
printf("bi: %lu: %.0f, %f\n", bi, ainb[bi*2], ainb[bi*2+1]);
}
*/
/* Re-fill the bina array, but this time only with the 'bi' that is
closest to it. Note that bina was fully set to NULL after popping all
the elements in the loop above. */
for( bi=0; bi<br; ++bi )
if( !isnan(ainb[bi*2]) )
{
/* Just to keep the same terminology as before and easier
reading. */
r=ainb[bi*2+1];
ai=(size_t)(ainb[bi*2]);
/* Check if this is the first time we are associating a 'bi' to
this 'ai'. If so, then just allocate a single element
list. Otherwise, see if the distance is closer or not. If so,
replace the values in the single node. */
if( bina[ai] )
{
/* If the distance of this record is smaller than the existing
entry, then replace the values. */
if( r < bina[ai]->f )
{
bina[ai]->f=r;
bina[ai]->v=bi;
}
}
else
match_add_to_sfll(&bina[ai], bi, r);
}
/* For checking the status of affairs uncomment this block
{
size_t bi, counter=0;
double *a[2]={A->array, A->next->array};
double *b[2]={B->array, B->next->array};
printf("\n\nRearranged bina:\n");
for(ai=0;ai<ar;++ai)
if(bina[ai])
{
++counter;
bi=bina[ai]->v;
printf("A_%lu (%.8f, %.8f) <--> B_%lu (%.8f, %.8f):\n\t%f\n",
ai, a[0][ai], a[1][ai], bi, b[0][bi], b[1][bi],
bina[ai]->f);
}
printf("\n-----------\nMatched: %zu\n", counter);
}
exit(0);
*/
/* Clean up. */
free(ainb);
}
/* The matching has been done, write the output. */
static gal_data_t *
match_output(gal_data_t *A, gal_data_t *B, size_t *A_perm, size_t *B_perm,
struct match_sfll **bina, size_t minmapsize, int quietmmap)
{
float r;
double *rval;
gal_data_t *out;
uint8_t *Bmatched;
size_t ai, bi, nummatched=0;
size_t *aind, *bind, match_i, nomatch_i;
/* Find how many matches there were in total. */
for(ai=0;ai<A->size;++ai) if(bina[ai]) ++nummatched;
/* If there aren't any matches, return NULL. */
if(nummatched==0) return NULL;
/* Allocate the output list. */
out=gal_data_alloc(NULL, GAL_TYPE_SIZE_T, 1, &A->size, NULL, 0,
minmapsize, quietmmap, "CAT1_ROW", "counter",
"Row index in first catalog (counting from 0).");
out->next=gal_data_alloc(NULL, GAL_TYPE_SIZE_T, 1, &B->size, NULL, 0,
minmapsize, quietmmap, "CAT2_ROW", "counter",
"Row index in second catalog (counting "
"from 0).");
out->next->next=gal_data_alloc(NULL, GAL_TYPE_FLOAT64, 1, &nummatched,
NULL, 0, minmapsize, quietmmap,
"MATCH_DIST", NULL,
"Distance between the match.");
/* Allocate the 'Bmatched' array which is a flag for which rows of the
second catalog were matched. The columns that had a match will get a
value of one while we are parsing them below. */
Bmatched=gal_pointer_allocate(GAL_TYPE_UINT8, B->size, 1, __func__,
"Bmatched");
/* Initialize the indexs. We want the first 'nummatched' indexs in both
outputs to be the matching rows. The non-matched rows should start to
be indexed after the matched ones. So the first non-matched index is
at the index 'nummatched'. */
match_i = 0;
nomatch_i = nummatched;
/* Fill in the output arrays. */
aind = out->array;
bind = out->next->array;
rval = out->next->next->array;
for(ai=0;ai<A->size;++ai)
{
/* A match was found. */
if(bina[ai])
{
/* Note that the permutation keeps the original indexs. */
match_pop_from_sfll(&bina[ai], &bi, &r);
rval[ match_i ] = r;
aind[ match_i ] = A_perm ? A_perm[ai] : ai;
bind[ match_i++ ] = B_perm ? B_perm[bi] : bi;
/* Set a '1' for this object in the second catalog. This will
later be used to find which rows didn't match to fill in the
output. */
Bmatched[ B_perm ? B_perm[bi] : bi ] = 1;
}
/* No match found. At this stage, we can only fill the indexs of the
first input. The second input needs to be matched afterwards. */
else aind[ nomatch_i++ ] = A_perm ? A_perm[ai] : ai;
}
/* Complete the second input's permutation. */
nomatch_i=nummatched;
for(bi=0;bi<B->size;++bi)
if( Bmatched[bi] == 0 )
bind[ nomatch_i++ ] = bi;
/* For a check
printf("\nFirst input's permutation (starred items not matched):\n");
for(ai=0;ai<A->size;++ai)
printf("%s%zu\n", ai<nummatched?" ":"* ", aind[ai]+1);
printf("\nSecond input's permutation (starred items not matched):\n");
for(bi=0;bi<B->size;++bi)
printf("%s%zu\n", bi<nummatched?" ":"* ", bind[bi]+1);
exit(0);
*/
/* Clean up and return. */
free(Bmatched);
return out;
}
/********************************************************************/
/************* Sort-Based matching *************/
/********************************************************************/
/* Since these checks are repetative, its easier to have a separate
function for both inputs. */
static void
match_sort_based_sanity_check_columns(gal_data_t *coord, char *info,
int inplace, int *allf64)
{
gal_data_t *tmp;
for(tmp=coord; tmp!=NULL; tmp=tmp->next)
{
if(tmp->type!=GAL_TYPE_FLOAT64)
{
if(inplace)
error(EXIT_FAILURE, 0, "%s: when 'inplace' is activated, "
"the input coordinates must have 'float64' type. At "
"least one node of the %s list has type of '%s'",
__func__, info, gal_type_name(tmp->type, 1));
else
*allf64=0;
}
if(tmp->ndim!=1)
error(EXIT_FAILURE, 0, "%s: each input coordinate column must "
"have a single dimension (be a single column). Atleast "
"one node of the %s list has %zu dimensions", __func__,
info, tmp->ndim);
if(tmp->size!=coord->size)
error(EXIT_FAILURE, 0, "%s: the nodes of each list of "
"coordinates must have the same number of elements. "
"At least one node of the %s list has %zu elements "
"while the first has %zu elements", __func__, info,
tmp->size, coord->size);
}
}
/* To keep the main function clean, we'll do the sanity checks here. */
static void
match_sort_based_sanity_check(gal_data_t *coord1, gal_data_t *coord2,
double *aperture, int inplace, int *allf64)
{
size_t ncoord1=gal_list_data_number(coord1);
/* Make sure both lists have the same number of datasets. NOTE: they
don't need to have the same number of elements. */
if( ncoord1!=gal_list_data_number(coord2) )
error(EXIT_FAILURE, 0, "%s: the two inputs have different "
"numbers of datasets (%zu and %zu respectively)",
__func__, ncoord1, gal_list_data_number(coord2));
/* This function currently only works for less than 4 dimensions. */
if(ncoord1>3)
error(EXIT_FAILURE, 0, "%s: %zu dimension matching requested, "
"this function currently only matches datasets with a "
"maximum of 3 dimensions", __func__, ncoord1);
/* Check the column properties. */
match_sort_based_sanity_check_columns(coord1, "first", inplace, allf64);
match_sort_based_sanity_check_columns(coord2, "second", inplace, allf64);
/* Check the aperture values. */
if(aperture[0]<=0)
error(EXIT_FAILURE, 0, "%s: the first value in the aperture (%g) "
"cannot be zero or negative", __func__, aperture[0]);
switch(ncoord1)
{
case 1: /* We don't need any checks in a 1D match. */
break;
case 2:
if( (aperture[1]<=0 || aperture[1]>1))
error(EXIT_FAILURE, 0, "%s: the second value in the aperture "
"(%g) is the axis ratio, so it must be larger than zero "
"and less than 1", __func__, aperture[1]);
break;
case 3:
if(aperture[1]<=0 || aperture[1]>1 || aperture[2]<=0 || aperture[2]>1)
error(EXIT_FAILURE, 0, "%s: at least one of the second or "
"third values in the aperture (%g and %g respectively) "
"is smaller than zero or larger than one. In a 3D match, "
"these are the axis ratios, so they must be larger than "
"zero and less than 1", __func__, aperture[1], aperture[2]);
break;
default:
error(EXIT_FAILURE, 0, "%s: a bug! Please contact us at %s to "
"fix the issue. The value %zu not recognized for 'ndim'",
__func__, PACKAGE_BUGREPORT, ncoord1);
}
}
/* To keep things clean, the sorting of each input array will be done in
this function. */
static size_t *
match_sort_based_prepare_sort(gal_data_t *coords, size_t minmapsize)
{
size_t i;
double *darr;
gal_data_t *tmp;
size_t *permutation=gal_pointer_allocate(GAL_TYPE_SIZE_T, coords->size,
0, __func__, "permutation");
/* Unfortunately 'gsl_sort_index' doesn't account for NaN elements. So we
need to set them to the maximum possible floating point value. */
if( gal_blank_present(coords, 1) )
{
darr=coords->array;
for(i=0;i<coords->size;++i)
if( isnan(darr[i]) ) darr[i]=FLT_MAX;
}
/* Get the permutation necessary to sort all the columns (based on the
first column). */
gsl_sort_index(permutation, coords->array, 1, coords->size);
/* For a check.
if(coords->size>1)
for(size_t i=0; i<coords->size; ++i) printf("%zu\n", permutation[i]);
*/
/* Sort all the coordinates. */
for(tmp=coords; tmp!=NULL; tmp=tmp->next)
gal_permutation_apply(tmp, permutation);
/* For a check.
if(coords->size>1)
{
for(i=0;i<coords->size;++i)
{
for(tmp=coords; tmp!=NULL; tmp=tmp->next)
{
printf("%f ", ((double *)(tmp->array))[i]);
}
printf("\n");
}
exit(0);
}
*/
/* Return the permutation. */
return permutation;
}
/* Do the preparations for matching of coordinates. */
static void
match_sort_based_prepare(gal_data_t *coord1, gal_data_t *coord2,
int sorted_by_first, int inplace, int allf64,
gal_data_t **A_out, gal_data_t **B_out,
size_t **A_perm, size_t **B_perm,
size_t minmapsize)
{
gal_data_t *c, *tmp, *A=NULL, *B=NULL;
/* Sort the datasets if they aren't sorted. If the dataset is already
sorted, then 'inplace' is irrelevant. */
if(sorted_by_first && allf64)
{
*A_out=coord1;
*B_out=coord2;
}
else
{
/* Allocating a new list is only necessary when 'inplace==0' or all
the columns are double. */
if( inplace && allf64 )
{
*A_out=coord1;
*B_out=coord2;
}
else
{
/* Copy the first list. */
for(tmp=coord1; tmp!=NULL; tmp=tmp->next)
{
c=gal_data_copy(tmp);
c->next=NULL;
gal_list_data_add(&A, c);
}
/* Copy the second list. */
for(tmp=coord2; tmp!=NULL; tmp=tmp->next)
{
c=gal_data_copy(tmp);
c->next=NULL;
gal_list_data_add(&B, c);
}
/* Reverse both lists: the copying process reversed the order. */
gal_list_data_reverse(&A);
gal_list_data_reverse(&B);
/* Set the output pointers. */
*A_out=A;
*B_out=B;
}
/* Sort each dataset by the first coordinate. */
*A_perm = match_sort_based_prepare_sort(*A_out, minmapsize);
*B_perm = match_sort_based_prepare_sort(*B_out, minmapsize);
}
}
/* Go through both catalogs and find which records/rows in the second
catalog (catalog b) are within the acceptable distance of each record in
the first (a). */
static void
match_sort_based_second_in_first(gal_data_t *A, gal_data_t *B,
double *aperture,
struct match_sfll **bina)
{
/* To keep things easy to read, all variables related to catalog 1 start
with an 'a' and things related to catalog 2 are marked with a 'b'. The
redundant variables (those that equal a previous value) are only
defined to make it easy to read the code.*/
int iscircle=0;
size_t i, ar=A->size, br=B->size;
size_t ai, bi, blow=0, prevblow=0;
size_t ndim=gal_list_data_number(A);
double r, c[3]={NAN, NAN, NAN}, s[3]={NAN, NAN, NAN};
double dist[3]={NAN, NAN, NAN}, delta[3]={NAN, NAN, NAN};
double *a[3]={NULL, NULL, NULL}, *b[3]={NULL, NULL, NULL};
/* Necessary preperations. */
match_aperture_prepare(A, B, aperture, ndim, a, b, dist,
c, s, &iscircle);
/* For each row/record of catalog 'a', make a list of the nearest records
in catalog b within the maximum distance. Note that both catalogs are
sorted by their first axis coordinate.*/
for(ai=0;ai<ar;++ai)
if( !isnan(a[0][ai]) && blow<br)
{
/* Initialize 'bina'. */
bina[ai]=NULL;
/* Find the first (lowest first axis value) row/record in catalog
'b' that is within the search radius for this record of catalog
'a'. 'blow' is the index of the first element to start searching
in the catalog 'b' for a match to 'a[][ai]' (the record in
catalog a that is currently being searched). 'blow' is only
based on the first coordinate, not the second.
Both catalogs are sorted by their first coordinate, so the
'blow' to search for the next record in catalog 'a' will be
larger or equal to that of the previous catalog 'a' record. To
account for possibly large distances between the records, we do
a search here to change 'blow' if necessary before doing further
searching.*/
for( blow=prevblow; blow<br && b[0][blow] < a[0][ai]-dist[0];
++blow)
{ /* This can be blank, the 'for' does all we need :-). */ }
/* 'blow' is now found for this 'ai' and will be used unchanged to
the end of the loop. So keep its value to help the search for
the next entry in catalog 'a'. */
prevblow=blow;
/* Go through catalog 'b' (starting at 'blow') with a first axis
value smaller than the maximum acceptable range for 'si'. */
for( bi=blow; bi<br && b[0][bi] <= a[0][ai] + dist[0]; ++bi )
{
/* Only consider records with a second axis value in the
correct range, note that unlike the first axis, the second
axis is no longer sorted. so we have to do both lower and
higher limit checks for each item.
Positions can have an accuracy to a much higher order of
magnitude than the search radius. Therefore, it is
meaning-less to sort the second axis (after having sorted
the first). In other words, very rarely can two first axis
coordinates have EXACTLY the same floating point value as
each other to easily define an independent sorting in the
second axis. */
if( ndim<2
|| ( b[1][bi] >= a[1][ai]-dist[1]
&& b[1][bi] <= a[1][ai]+dist[1] ) )
{
/* Now, 'bi' is within the rectangular range of 'ai'. But
this is not enough to consider the two objects matched
for the following reasons:
1) Until now we have avoided calculations other than
larger or smaller on double precision floating point
variables for efficiency. So the 'bi' is within a square
of side 'dist[0]*dist[1]' around 'ai' (not within a
fixed radius).
2) Other objects in the 'b' catalog may be closer to
'ai' than this 'bi'.
3) The closest 'bi' to 'ai' might be closer to another
catalog 'a' record.
To address these problems, we will use a linked list to
keep the indexes of the 'b's near 'ai', along with their
distance. We only add the 'bi's to this list that are
within the acceptable distance.
Since we are dealing with much fewer objects at this
stage, it is justified to do complex mathematical
operations like square root and multiplication. This
fixes the first problem.
The next two problems will be solved with the list after
parsing of the whole catalog is complete.*/
if( ndim<3
|| ( b[2][bi] >= a[2][ai]-dist[2]
&& b[2][bi] <= a[2][ai]+dist[2] ) )
{
for(i=0;i<ndim;++i) delta[i]=b[i][bi]-a[i][ai];
r=match_distance(delta, iscircle, ndim, aperture,
c, s);
if(r<aperture[0])
match_add_to_sfll(&bina[ai], bi, r);
}
}
}
/* If there was no objects within the acceptable distance, then the
linked list pointer will be NULL, so go on to the next 'ai'. */
if(bina[ai]==NULL)
continue;
/* For checking the status of affairs uncomment this block
{
struct match_sfll *tmp;
printf("\n\nai: %lu:\n", ai);
printf("ax: %f (%f -- %f)\n", a[0][ai], a[0][ai]-dist[0],
a[0][ai]+dist[0]);
printf("ay: %f (%f -- %f)\n", a[1][ai], a[1][ai]-dist[1],
a[1][ai]+dist[1]);
for(tmp=bina[ai];tmp!=NULL;tmp=tmp->next)
printf("%lu: %f\n", tmp->v, tmp->f);
}
*/
}
}
/* Match two positions: the two inputs ('coord1' and 'coord2') should be
lists of coordinates (each is a list of datasets). To speed up the
search, this function will sort the inputs by their first column. If
both are already sorted, give a non-zero value to
'sorted_by_first'. When sorting is necessary and 'inplace' is non-zero,
the actual inputs will be sorted. Otherwise, an internal copy of the
inputs will be made which will be used (sorted) and later
freed. Therefore when 'inplace==0', the input's won't be changed.
IMPORTANT NOTE: the output permutations will correspond to the initial
inputs. Therefore, even when 'inplace' is non-zero (and this function
changes the inputs' order), the output permutation will correspond to
original inputs.
The output is a list of 'gal_data_t's with the following columns:
Node 1: First catalog index (counting from zero).
Node 2: Second catalog index (counting from zero).
Node 3: Distance between the match. */
gal_data_t *
gal_match_sort_based(gal_data_t *coord1, gal_data_t *coord2,
double *aperture, int sorted_by_first,
int inplace, size_t minmapsize, int quietmmap,
size_t *nummatched)
{
int allf64=1;
gal_data_t *A, *B, *out;
size_t *A_perm=NULL, *B_perm=NULL;
struct match_sfll **bina;
/* Do a small sanity check and make the preparations. After this point,
we'll call the two arrays 'a' and 'b'.*/
match_sort_based_sanity_check(coord1, coord2, aperture, inplace,
&allf64);
match_sort_based_prepare(coord1, coord2, sorted_by_first, inplace,
allf64, &A, &B, &A_perm, &B_perm,
minmapsize);
/* Allocate the 'bina' array (an array of lists). Let's call the first
catalog 'a' and the second 'b'. This array has 'a->size' elements
(pointers) and for each, it keeps a list of 'b' elements that are
nearest to it. */
errno=0;
bina=calloc(A->size, sizeof *bina);
if(bina==NULL)
error(EXIT_FAILURE, errno, "%s: %zu bytes for 'bina'", __func__,
A->size*sizeof *bina);
/* All records in 'b' that match each 'a' (possibly duplicate). */
match_sort_based_second_in_first(A, B, aperture, bina);
/* Two re-arrangings will fix the issue. */
match_rearrange(A, B, bina);
/* The match is done, write the output. */
out=match_output(A, B, A_perm, B_perm, bina, minmapsize, quietmmap);
/* Clean up. */
free(bina);
if(A!=coord1)
{
gal_list_data_free(A);
gal_list_data_free(B);
}
if(A_perm) free(A_perm);
if(B_perm) free(B_perm);
/* Set 'nummatched' and return output. */
*nummatched = out ? out->next->next->size : 0;
return out;
}
/********************************************************************/
/************* k-d tree matching *************/
/********************************************************************/
struct match_kdtree_params
{
/* Input arguments. */
gal_data_t *A; /* 1st coordinate list of 'gal_data_t's */
gal_data_t *B; /* 2nd coordinate list of 'gal_data_t's */
size_t ndim; /* The number of dimensions. */
double *aperture; /* Acceptable aperture for match. */
size_t kdtree_root; /* Index (counting from 0) of root. */
gal_data_t *A_kdtree; /* k-d tree of first coordinate. */
/* Internal parameters for easy aperture checking. For example there is
no need to calculate the fixed 'cos()' and 'sin()' functions every
time. So we calculate them once and store the results here to just use
their values for every check. */
int iscircle; /* If the aperture is circular. */
double c[3]; /* Fixed cos(), for elliptical dist. */
double s[3]; /* Fixed sin(), for elliptical dist. */
/* Internal items. */
double *a[3]; /* Direct pointers to column arrays. */
double *b[3]; /* Direct pointers to column arrays. */
struct match_sfll **bina; /* Second cat. items in first. */
gal_data_t *Aexist; /* If any element of A exists in bins. */
double *Abinwidth; /* Width of bins along each dimension. */
double *Amin; /* Minimum value of A along each dim. */
double *Amax; /* Maximum value of A along each dim. */
};
/* Find the "coverage" of A along each dimension to help in rejecting
non-matches without even calling the k-d tree function.
The 'MATCH_KDTREE_COVERAGE_MAXBINS' is currently just a place-holder to
get the other parts of the algorithm going. But most probably there is a
way to optimally select the maximum number automatically. */
#define MATCH_KDTREE_COVERAGE_MAXBINS 10000
static void
match_kdtree_A_coverage(struct match_kdtree_params *p)
{
double *d, min, max;
size_t *s, *sf, dim, two=2, numbins;
gal_data_t *tmp, *stat, *hist, *range=NULL, *bins=NULL;
/* Allocate the space to keep the range of first input dimensions. */
p->Amin=gal_pointer_allocate(GAL_TYPE_FLOAT64, p->ndim, 0,
__func__, "p->Amin");
p->Amax=gal_pointer_allocate(GAL_TYPE_FLOAT64, p->ndim, 0,
__func__, "p->Amax");
p->Abinwidth=gal_pointer_allocate(GAL_TYPE_FLOAT64, p->ndim, 0,
__func__, "p->Abinwidth");
/* Set the coverage along each dimension. */
dim=0;
p->Aexist=NULL;
for(tmp=p->A; tmp!=NULL; tmp=tmp->next)
{
/* Find the number of bins based on the range and aperture size. */
stat=gal_statistics_minimum(tmp);
min=((double *)(stat->array))[0];
gal_data_free(stat);
stat=gal_statistics_maximum(tmp);
max=((double *)(stat->array))[0];
gal_data_free(stat);
/* Set the generic constants. */
p->Amin[dim] = min - p->aperture[0];
p->Amax[dim] = max + p->aperture[0];
numbins=(p->Amax[dim] - p->Amin[dim])/p->aperture[0];
if(numbins>MATCH_KDTREE_COVERAGE_MAXBINS)
numbins=MATCH_KDTREE_COVERAGE_MAXBINS;
if(numbins==0) numbins=1;
/*************************/
//numbins=1;
/*************************/
/* Generate the 'Aexist' list for this dimension. Note that if we
have a single bin in this dimension, we can just set everything
automatically. */
if(numbins==1)
{
/* We only have one bin, so set the width and a single-element
histogram. */
p->Abinwidth[dim] = p->Amax[dim] - p->Amin[dim];
hist=gal_data_alloc(NULL, GAL_TYPE_UINT8, 1, &numbins, NULL,
0, -1, 1, NULL, NULL, NULL);
((uint8_t *)(hist->array))[0]=1;
}
else
{
/* Set the 'range' for the bins. */
range=gal_data_alloc(NULL, GAL_TYPE_FLOAT64, 1, &two, NULL,
0, -1, 1, NULL, NULL, NULL);
d=range->array;
d[0]=p->Amin[dim];
d[1]=p->Amax[dim];
/* Generate the histogram of elements in this dimension. */
bins=gal_statistics_regular_bins(tmp, range, numbins, NAN);
hist=gal_statistics_histogram(tmp, bins, 0, 0);
/* Set all histograms with atleast one element to 1 and convert
it to 8-bit unsigned integer. */
sf = (s=hist->array) + hist->size; do *s=*s>0; while(++s<sf);
hist=gal_data_copy_to_new_type_free(hist, GAL_TYPE_UINT8);
/* Dilate the binary histogram to avoid bin-edge-effect (missing
a match because the two points are on opposite sides of the
bin boundary). Note that we know that the bins are
equal/larger than ther user's given aperture and that these
bins are only for rejecting points before the k-d tree (they
aren't used within the k-d tree matching). */
gal_binary_dilate(hist, 1, 1, 1);
/* Set the general bin properties along this dimension. */
d=bins->array;
p->Abinwidth[dim] = d[1]-d[0];
p->Amin[dim] = d[ 0 ] - p->Abinwidth[dim]/2;
p->Amax[dim] = d[ bins->size-1 ] + p->Abinwidth[dim]/2;
}
/* For a check.
{
size_t i;
double *d;
uint8_t *u=hist->array;
printf("\ndim: %zu\n", dim);
printf("min: %g\n", p->Amin[dim]);
printf("max: %g\n", p->Amax[dim]);
printf("binwidth: %g\n", p->Abinwidth[dim]);
printf("----------------\n");
if(bins)
{
d=bins->array;
for(i=0;i<bins->size;++i)
printf("%zu: %-15.8f%-15.8f%u\n", i, d[i]-p->Abinwidth[dim]/2,
d[i]+p->Abinwidth[dim]/2, u[i]);
}
else
printf("0: %-15.8f%-15.8f%u\n", p->Amin[dim],
p->Amax[dim], u[0]);
printf("----------------\n");
} */
/* Add the histogram to the list and increment the dimensionality. */
gal_list_data_add(&p->Aexist, hist);
++dim;
/* Clean up (these are done here in case the 'For a check' is
uncommented, and we want to debug things). */
if(bins) { gal_data_free(bins); bins=NULL; }
if(range) { gal_data_free(range); range=NULL; }
}
//printf("%s: Good!\n", __func__); exit(0);
/* Reverse the list to be in the proper dimensional order. */
gal_list_data_reverse(&p->Aexist);
}
static void
match_kdtree_sanity_check(struct match_kdtree_params *p)
{
gal_data_t *tmp;
/* Make sure all coordinates and the k-d tree have the same number of
rows. */
p->ndim=gal_list_data_number(p->A);
if( p->ndim != gal_list_data_number(p->B) )
error(EXIT_FAILURE, 0, "%s: the 'coord1' and 'coord2' arguments "
"should have the same number of nodes/columns (elements "
"in a simply linked list). But they each respectively "
"have %zu, %zu and %zu nodes/columns", __func__, p->ndim,
gal_list_data_number(p->B),
gal_list_data_number(p->A_kdtree));
/* Make sure that the k-d tree only has two columns. */
if( gal_list_data_number(p->A_kdtree)!=2 )
error(EXIT_FAILURE, 0, "%s: the 'kdtree' argument should only "
"two nodes/columns (elements in a simply linked list), "
"but it has %zu nodes/columns", __func__,
gal_list_data_number(p->A_kdtree));
/* Make sure the coordinates have a 'double' type and that the k-d tree
has an unsigned 32-bit integer type.*/
for(tmp=p->A; tmp!=NULL; tmp=tmp->next)
if( tmp->type!=GAL_TYPE_FLOAT64 )
error(EXIT_FAILURE, 0, "%s: the type of all columns in 'coord1' "
"should be 'double', but at least one of them is '%s'",
__func__, gal_type_name(tmp->type, 1));
for(tmp=p->B; tmp!=NULL; tmp=tmp->next)
if( tmp->type!=GAL_TYPE_FLOAT64 )
error(EXIT_FAILURE, 0, "%s: the type of all columns in 'coord2' "
"should be 'double', but at least one of them is '%s'",
__func__, gal_type_name(tmp->type, 1));
for(tmp=p->A_kdtree; tmp!=NULL; tmp=tmp->next)
if( tmp->type!=GAL_TYPE_UINT32 )
error(EXIT_FAILURE, 0, "%s: the type of both columns in "
"'coord1_kdtree' should be 'uint32', but it is '%s'",
__func__, gal_type_name(tmp->type, 1));
/* Allocate and initialize the 'bina' array (an array of lists). Let's
call the first catalog 'a' and the second 'b'. This array has
'a->size' elements (pointers) and for each, it keeps a list of 'b'
elements that are nearest to it. */
errno=0;
p->bina=calloc(p->A->size, sizeof *p->bina);
if(p->bina==NULL)
error(EXIT_FAILURE, errno, "%s: %zu bytes for 'bina'",
__func__, p->A->size*sizeof *p->bina);
/* Pointers to the input column arrays for easy parsing later. */
p->a[0]=p->A->array;
p->b[0]=p->B->array;
if( p->A->next )
{
p->a[1]=p->A->next->array;
if( p->A->next->next ) p->a[2]=p->A->next->next->array;
}
if( p->B->next )
{
p->b[1]=p->B->next->array;
if( p->B->next->next ) p->b[2]=p->B->next->next->array;
}
/* Find the bins of the first input along all its dimensions and select
those that contain data. This is very important in optimal k-d tree
based matching because confirming a non-match in a k-d tree is very
computationally expensive. */
match_kdtree_A_coverage(p);
}
/* Main k-d tree matching function. */
static void *
match_kdtree_worker(void *in_prm)
{
/* Low-level definitions to be done first. */
struct gal_threads_params *tprm=(struct gal_threads_params *)in_prm;
struct match_kdtree_params *p=(struct match_kdtree_params *)tprm->params;
/* High level definitions. */
int iscovered;
uint8_t *existA;
double r, delta[3];
size_t i, j, ai, bi, h_i;
gal_data_t *ccol, *Aexist;
double po, *point=NULL, least_dist;
/* Allocate space for all the matching points (based on the number of
dimensions). */
point=gal_pointer_allocate(GAL_TYPE_FLOAT64, p->ndim, 0, __func__,
"point");
/* Go over all the rows in the second catalog that were assigned to this
thread. */
for(i=0; tprm->indexs[i] != GAL_BLANK_SIZE_T; ++i)
{
/* Set the easy-to-read indexs: this is the index in the second
catalog, hence 'bi'. */
bi = tprm->indexs[i];
/* Fill the 'point' for this thread. But first, check if each of its
dimensions fall within the coverage of A. */
j=0;
iscovered=1;
Aexist=p->Aexist;
for(ccol=p->B; ccol!=NULL; ccol=ccol->next)
{
if(iscovered)
{
/* Fill the point location in this dimension and set the
pointer. */
existA=Aexist->array;
po = point[j] = ((double *)(ccol->array))[ bi ];
/* Make sure it covers the range of A (following the same set
of tests as in 'gal_statistics_histogram'). */
if( po >= p->Amin[j] && po <= p->Amax[j] )
{
h_i=(po-p->Amin[j])/p->Abinwidth[j];
if( existA[ h_i - (h_i==p->Aexist->size ? 1 : 0) ] == 0 )
iscovered=0;
}
else
iscovered=0;
}
/* Increment the dimensionality counter. */
++j;
Aexist=Aexist->next;
}
/* Continue with the match if the point is in-range. */
if(iscovered)
{
/* Find the index of the nearest neighbor in the first catalog to
this point in the second catalog. */
ai = gal_kdtree_nearest_neighbour(p->A, p->A_kdtree,
p->kdtree_root, point,
&least_dist);
/* If nothing was found within the least distance, then the 'ai'
will be 'GAL_BLANK_SIZE_T'. */
if(ai!=GAL_BLANK_SIZE_T)
{
/* Make sure the matched point is within the given aperture
(which may be elliptical). */
for(j=0;j<p->ndim;++j)
delta[j]=p->b[j][bi] - p->a[j][ai];
r=match_distance(delta, p->iscircle, p->ndim, p->aperture,
p->c, p->s);
/* If the radial distance is smaller than the radial measure,
then add this item to a match with 'ai'. */
if(r<p->aperture[0])
match_add_to_sfll(&p->bina[ai], bi, r);
}
/* For a check:
if(ai==GAL_BLANK_SIZE_T)
printf("second[%zu] matched with first[%zu].\n", bi);
else
printf("second[%zu] DIDN'T match with first.\n", bi, bi);
*/
}
}
/* Clean up. */
free(point);
/* Wait for all the other threads to finish, then return. */
if(tprm->b) pthread_barrier_wait(tprm->b);
return NULL;
}
static void
match_kdtree_second_in_first(struct match_kdtree_params *p,
size_t numthreads, size_t minmapsize,
int quietmmap)
{
double dist[3]; /* Just a place-holder in 'aperture_prepare'. */
/* Prepare the aperture-related checks. */
match_aperture_prepare(p->A, p->B, p->aperture,
p->ndim, p->a, p->b, dist, p->c,
p->s, &p->iscircle);
/* Distribute the jobs in multiple threads. */
gal_threads_spin_off(match_kdtree_worker, p, p->B->size,
numthreads, minmapsize, quietmmap);
}
gal_data_t *
gal_match_kdtree(gal_data_t *coord1, gal_data_t *coord2,
gal_data_t *coord1_kdtree, size_t kdtree_root,
double *aperture, size_t numthreads, size_t minmapsize,
int quietmmap, size_t *nummatched)
{
gal_data_t *out=NULL;
struct match_kdtree_params p;
/* In case the 'k-d' tree is empty, just return a NULL pointer and the
number of matches to zero. */
if(coord1_kdtree==NULL) { *nummatched=0; return NULL; }
/* Write the parameters into the structure. */
p.A=coord1;
p.B=coord2;
p.aperture=aperture;
p.A_kdtree=coord1_kdtree;
p.kdtree_root=kdtree_root;
/* Basic sanity checks. */
match_kdtree_sanity_check(&p);
/* Find all of the second catalog points that are within the acceptable
radius of the first. */
match_kdtree_second_in_first(&p, numthreads, minmapsize, quietmmap);
/* Find the best match for each item (from possibly multiple matches). */
match_rearrange(p.A, p.B, p.bina);
/* The match is done, write the output. */
out=match_output(p.A, p.B, NULL, NULL, p.bina, minmapsize, quietmmap);
/* Set 'nummatched' and return output. */
*nummatched = out ? out->next->next->size : 0;
/* Clean up and return. */
free(p.bina);
free(p.Amin);
free(p.Amax);
free(p.Abinwidth);
gal_list_data_free(p.Aexist);
return out;
}
|