1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
|
/*********************************************************************
Permutation -- Work on permutations (arrays of indexs).
This is part of GNU Astronomy Utilities (Gnuastro) package.
Original author:
Mohammad Akhlaghi <mohammad@akhlaghi.org>
Contributing author(s):
Copyright (C) 2017-2024 Free Software Foundation, Inc.
Gnuastro is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
Gnuastro is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with Gnuastro. If not, see <http://www.gnu.org/licenses/>.
**********************************************************************/
#include <config.h>
#include <stdio.h>
#include <errno.h>
#include <error.h>
#include <string.h>
#include <stdlib.h>
#include <gnuastro/pointer.h>
#include <gnuastro/permutation.h>
/*********************************************************************/
/*************** Permutation info *******************/
/*********************************************************************/
void
gal_permutation_check(size_t *permutation, size_t size)
{
size_t i;
for(i=0; i<size; ++i)
printf("after[ %-5zu ] = before [ %-5zu ]\n", i, permutation[i]);
}
/*********************************************************************/
/*************** Apply permutation *******************/
/*********************************************************************/
/* Re-order the input dataset based on the given permutation. If
'permutation' is NULL, then the input won't be touched (no re-ordering).
This is a re-implementation of GSL's 'gsl_permute' function (from its
'permutation/permute_source.c'). The reason we didn't use that function
was that it uses system-specific types (like 'long' and 'int') which are
not easily convertable to Gnuastro's width-based types. There is also a
separate function for each type, heavily using macros to allow a "base"
function to work on all the types. Thus it is hard to
read/understand. Since we use fixed-width types, we can easily use
'memcpy' and have a type-agnostic implementation (only needing the width
of the type).
As described in GSL's source code and manual, this implementation comes
from Knuth's "Art of computer programmin" book, the "Sorting and
Searching" chapter of Volume 3 (3rd ed). Section 5.2 Exercise 10
(answers), p 617. See there fore more explanations. The algorithm is a
little too abstract, but memory and CPU efficient.
Definition of permutations:
permute: OUT[ i ] = IN[ perm[i] ] i = 0 .. N-1
inverse: OUT[ perm[i] ] = IN[ i ] i = 0 .. N-1
*/
static void
permutation_apply_raw(gal_data_t *input, size_t *permutation,
int onlydim0)
{
void *tmp;
uint8_t *array=input->array;
size_t i, k, pk, winc, width, size, increment;
/* If 'onlydim0' is given and the input has more than one dimension, we
need to permute less (only along the 0th dimension). */
if(onlydim0 && input->ndim>1)
{ size=input->dsize[0]; increment=input->size/size; }
else { size=input->size; increment=1; }
/* If permutation is NULL, then it is assumed that the data doesn't need
to be re-ordered. */
if(permutation)
{
/* Necessary initializations. */
width=gal_type_sizeof(input->type);
tmp=gal_pointer_allocate(input->type, increment, 0, __func__, "tmp");
/* Do the permutation. */
winc=width*increment;
for(i=0;i<size;++i)
{
k=permutation[i];
while(k>i) k=permutation[k];
if(k>=i)
{
pk = permutation[k];
if( pk != i )
{
memcpy(tmp, &array[i*winc], winc);
while(pk!=i)
{
memcpy(&array[k*winc], &array[pk*winc], winc);
k = pk;
pk = permutation[k];
}
memcpy(&array[k*winc], tmp, winc);
}
}
}
/* Clean up. */
free(tmp);
}
}
/* Apply the inverse of given permutation on the input dataset, see
'gal_permutation_apply_inverse'. */
void
gal_permutation_apply_inverse(gal_data_t *input, size_t *permutation)
{
void *tmp, *ttmp;
size_t i, k, pk, width;
uint8_t *array=input->array;
if(permutation)
{
/* Initializations. */
width=gal_type_sizeof(input->type);
tmp=gal_pointer_allocate(input->type, 1, 0, __func__, "tmp");
ttmp=gal_pointer_allocate(input->type, 1, 0, __func__, "ttmp");
/* Re-order the values. */
for(i=0;i<input->size;++i)
{
k=permutation[i];
while(k>i) k=permutation[k];
if(k>=i)
{
pk = permutation[k];
if(pk!=i)
{
memcpy(tmp, &array[k*width], width);
while(pk!=i)
{
memcpy(ttmp, &array[pk*width], width);
memcpy(&array[pk*width], tmp, width);
memcpy(tmp, ttmp, width);
k = pk;
pk = permutation[k];
}
memcpy(&array[pk*width], tmp, width);
}
}
}
/* Clean up. */
free(tmp);
free(ttmp);
}
}
void
gal_permutation_apply(gal_data_t *input, size_t *permutation)
{ permutation_apply_raw(input, permutation, 0); }
void
gal_permutation_apply_onlydim0(gal_data_t *input, size_t *permutation)
{ permutation_apply_raw(input, permutation, 1); }
/* Transpose square (2d) input. */
static void
permutation_transpose_2d_square(gal_data_t *input)
{
void *a, *b, *swap;
size_t width=input->dsize[0];
size_t i, j, nbytes=gal_type_sizeof(input->type);
/* Allocate the SWAP space, we are just allocating an 64-bit integer for
its storage. */
swap=gal_pointer_allocate(GAL_TYPE_UINT64, 1, 0, __func__, "swap");
/* Go over the elements. */
for(i=0;i<width;++i)
for(j=i+1;j<width;++j)
{
/* For easy reading. */
a=gal_pointer_increment(input->array, i*width+j, input->type);
b=gal_pointer_increment(input->array, j*width+i, input->type);
/* Copy the "to" value into the swap, then copy the "from" value
into "to" and finally copy swap into "from". */
memcpy(swap, a, nbytes);
memcpy(a, b, nbytes);
memcpy(b, swap, nbytes);
}
/* Clean up. */
free(swap);
}
/* Transpose square (2d) input. */
static void
permutation_transpose_2d_rectangle(gal_data_t *input)
{
void *a, *b;
size_t i, j, nbytes;
gal_data_t *out=NULL;
size_t *id=input->dsize, od[2]={id[1], id[0]};
/* Moving values in memory is only necessary when the 0-th dimension has
more than one element. */
if(input->dsize[0]>1)
{
/* Allocate the output array. */
out=gal_data_alloc(NULL, input->type, 2, od, NULL, 0,
input->minmapsize, input->quietmmap,
NULL, NULL, NULL);
/* Go over the elements and put them in the proper place of the
output. */
nbytes=gal_type_sizeof(input->type);
for(i=0;i<id[0];++i)
for(j=0;j<id[1];++j)
{
/* For easy reading. */
a=gal_pointer_increment(input->array, i*id[1]+j, input->type);
b=gal_pointer_increment(out->array, j*od[1]+i, input->type);
/* Copy the input ('a' pointer) to output ('b') pointer. */
memcpy(b, a, nbytes);
}
/* Free the original input pointer and replace it with the output
array, then free the output. */
free(input->array);
input->array=out->array;
out->array=NULL;
gal_data_free(out);
}
/* Update the dimesions. */
input->dsize[0]=od[0];
input->dsize[1]=od[1];
}
/* Transpose a 2D dataset. */
void
gal_permutation_transpose_2d(gal_data_t *input)
{
uint8_t type;
size_t nbytes;
/* Sanity checks, see the comment below. */
type=input->type;
nbytes=gal_type_sizeof(type);
if(nbytes>8)
error(EXIT_FAILURE, 0, "%s: a bug! Please contact us at '%s' to "
"find the cause and fix this problem. This function currently "
"assumes the largest possible type size is 8 bytes, but the "
"requested '%s' type needs %zu bytes", __func__,
PACKAGE_BUGREPORT, gal_type_name(type, 1), nbytes);
if(input->ndim!=2)
error(EXIT_FAILURE, 0, "%s: only 2D inputs are supported", __func__);
/* A square array can be transposed much more easier and faster than a
non-square array. */
if(input->dsize[0]==input->dsize[1])
permutation_transpose_2d_square(input);
else
permutation_transpose_2d_rectangle(input);
}
|