1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
|
/*********************************************************************
Polygon related functions and macros.
This is part of GNU Astronomy Utilities (Gnuastro) package.
Original author:
Mohammad Akhlaghi <mohammad@akhlaghi.org>
Contributing author(s):
Sachin Kumar Singh <sachinkumarsingh092@gmail.com>
Pedram Ashofteh-Ardakani <pedramardakani@pm.me>
Copyright (C) 2015-2024 Free Software Foundation, Inc.
Gnuastro is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
Gnuastro is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with Gnuastro. If not, see <http://www.gnu.org/licenses/>.
**********************************************************************/
#include <config.h>
#include <math.h>
#include <errno.h>
#include <error.h>
#include <float.h>
#include <stdio.h>
#include <stdlib.h>
#include <gsl/gsl_sort.h>
#include <gnuastro/pointer.h>
#include <gnuastro/polygon.h>
#include <gnuastro/permutation.h>
/***************************************************************/
/************** MACROS ******************/
/***************************************************************/
/* The cross product of two points from the center. */
#define GAL_POLYGON_CROSS_PRODUCT(A, B) ( (A)[0]*(B)[1] - (B)[0]*(A)[1] )
/* For spherical coordinates: the RA is only in units of degrees on the
equator: as we got to higher or lower declinations, any difference in RA
should be multiplied by the cos(DEC).*/
#define GAL_POLYGON_CROSS_PRODUCT_SKY(A, B) \
( (A)[0]*(B)[1]*cos((A)[1]*M_PI/180) \
- (B)[0]*(A)[1]*cos((B)[1]*M_PI/180) )
/* Find the cross product (2*area) between three points. Each point is
assumed to be a pointer that has atleast two values within it. */
#define GAL_POLYGON_TRI_CROSS_PRODUCT(A, B, C) \
( ( (B)[0]-(A)[0] ) * ( (C)[1]-(A)[1] ) \
- ( (C)[0]-(A)[0] ) * ( (B)[1]-(A)[1] ) )
/* We have the line A-B. We want to see if C is to the left of this
line or to its right. This function will return 1 if it is to the
left. It uses the basic property of vector multiplication: If the
three points are anti-clockwise (the point is to the left), then
the vector multiplication is positive, if it is negative, then it
is clockwise (c is to the right).
Ofcourse it is very important that A be below or equal to B in both
the X and Y directions. The rounding error might give
-0.0000000000001 (I didn't count the number of zeros!!) instead of
zero for the area. Zero would indicate that they are on the same
line in this case this should give a true result.
*/
#define GAL_POLYGON_LEFT_OF_LINE(A, B, C) \
( GAL_POLYGON_TRI_CROSS_PRODUCT((A), (B), (C)) > -GAL_POLYGON_ROUND_ERR ) /* >= 0 */
/* See if the three points are collinear, similar to GAL_POLYGON_LEFT_OF_LINE
except that the result has to be exactly zero. */
#define GAL_POLYGON_COLLINEAR_WITH_LINE(A, B, C) \
(GAL_POLYGON_TRI_CROSS_PRODUCT((A), (B), (C)) > -GAL_POLYGON_ROUND_ERR \
&& GAL_POLYGON_TRI_CROSS_PRODUCT((A), (B), (C)) < GAL_POLYGON_ROUND_ERR) /* == 0 */
/* Similar to GAL_POLYGON_LEFT_OF_LINE except that if they are on the same line,
this will return 0 (so that it is not on the left). Therefore the
name is "proper left". */
#define GAL_POLYGON_PROP_LEFT_OF_LINE(A, B, C) \
( GAL_POLYGON_TRI_CROSS_PRODUCT((A), (B), (C)) > GAL_POLYGON_ROUND_ERR ) /* > 0 */
#define GAL_POLYGON_MIN_OF_TWO(A, B) ((A)<(B)+GAL_POLYGON_ROUND_ERR ? (A) : (B))
#define GAL_POLYGON_MAX_OF_TWO(A, B) ((A)>(B)-GAL_POLYGON_ROUND_ERR ? (A) : (B))
/***************************************************************/
/************** Basic operations ******************/
/***************************************************************/
/* Sort the pixels in anti clock-wise order. */
void
gal_polygon_vertices_sort_convex(double *in, size_t n, size_t *ordinds)
{
double angles[GAL_POLYGON_MAX_CORNERS];
size_t i, tmp, aindexs[GAL_POLYGON_MAX_CORNERS],
tindexs[GAL_POLYGON_MAX_CORNERS];
if(n>GAL_POLYGON_MAX_CORNERS)
error(EXIT_FAILURE, 0, "%s: most probably a bug! The number of "
"corners is more than %d. This is an internal value and "
"cannot be set from the outside. Most probably some bug "
"has caused this un-normal value. Please contact us at %s "
"so we can solve this problem", __func__,
GAL_POLYGON_MAX_CORNERS, PACKAGE_BUGREPORT);
/* For a check:
printf("\n\nBefore sorting:\n");
for(i=0;i<n;++i)
printf("%zu: %.3f, %.3f\n", i, in[i*2], in[i*2+1]);
printf("\n");
*/
/* Find the point with the smallest Y (if there is two of them, the
one with the smallest X too.). This is necessary because if the
angles are not found relative to this point, the ordering of the
corners might not be correct in non-trivial cases. */
gsl_sort_index(ordinds, in+1, 2, n);
if( in[ ordinds[0]*2+1 ] == in[ ordinds[1]*2+1 ]
&& in[ ordinds[0]*2] > in[ ordinds[1]*2 ])
{
tmp=ordinds[0];
ordinds[0]=ordinds[1];
ordinds[1]=tmp;
}
/* We only have 'n-1' more elements to sort, use the angle of the
line between the three remaining points and the first point. */
for(i=0;i<n-1;++i)
angles[i]=atan2( in[ ordinds[i+1]*2+1 ] - in[ ordinds[0]*2+1 ],
in[ ordinds[i+1]*2 ] - in[ ordinds[0]*2 ] );
/* For a check:
for(i=0;i<n-1;++i)
printf("%zu: %.3f degrees\n", ordinds[i+1], angles[i]*180/M_PI);
printf("\n");
*/
/* Sort the angles into the correct order, we need an extra array to
temporarily keep the newly angle-ordered indexs. Without it we
are going to loose half of the ordinds indexs! */
gsl_sort_index(aindexs, angles, 1, n-1);
for(i=0;i<n-1;++i) tindexs[i]=ordinds[aindexs[i]+1];
for(i=0;i<n-1;++i) ordinds[i+1]=tindexs[i];
/* For a check:
printf("\nAfter sorting:\n");
for(i=0;i<n;++i)
printf("%zu: %.3f, %.3f\n", ordinds[i], in[ordinds[i]*2],
in[ordinds[i]*2+1]);
printf("\n");
*/
}
/* This function checks if the polygon is convex or concave by testing all
3 consecutive points of the sorted polygon. If any of the test returns
false, the the polygon is concave else it is convex.
return 1: convex polygon
return 0: concave polygon
*/
int
gal_polygon_is_convex(double *v, size_t n)
{
size_t i;
int flag=1;
/* Check the first n-1 edges made by n points. */
for(i=0; i<n-2; i++)
{
if( GAL_POLYGON_LEFT_OF_LINE(&v[i*2], &v[(i+1)*2], &v[(i+2)*2]) )
continue;
else
return 0;
}
/* Check the edge between nth and 1st point. */
if(flag)
{
if( GAL_POLYGON_LEFT_OF_LINE(&v[(n-2)*2], &v[(n-1)*2], &v[0]) )
return 1;
else
return 0;
}
return 1;
}
/* The area of a polygon is the sum of the vector products of all the
vertices in a counterclockwise order. See the Wikipedia page for
Polygon for more information.
'v' points to an array of doubles which keep the positions of the
vertices such that v[0] and v[1] are the positions of the first
corner to be considered.
To optimize the process (avoid repetition): We start from the edge
connecting the last pixel to the first pixel for the first step of the
loop, for the rest, j is always going to be one less than i. */
double
gal_polygon_area_flat(double *v, size_t n)
{
double sum=0.0f;
size_t i=0, j=n-1;
while(i<n)
{
sum+=GAL_POLYGON_CROSS_PRODUCT(v+j*2, v+i*2);
j=i++;
}
return fabs(sum)/2.0f;
}
/* Spherical coordinates need special attention.*/
double
gal_polygon_area_sky(double *v, size_t n)
{
int a1b0;
size_t i=0, j=n-1;
double *a, *b, sum=0.0f;
/* Go over all the vertices of the polygon. */
while(i<n)
{
/* For easy reading. */
a=v+j*2;
b=v+i*2;
/* We need to account for passing the two points pass over the line
of RA=0 (assuming that the vertices are not larger than 180
degrees apart!) */
if( fabs(a[0]-b[0]) < 180.0f)
sum+=GAL_POLYGON_CROSS_PRODUCT_SKY(a, b);
else
{
/* Add the smaller RA by 360. */
if(a[0]<b[0]) {a1b0=1; a[0]+=360.0f;}
else {a1b0=0; b[0]+=360.0f;}
/* Add the cross product to the sum. */
sum+=GAL_POLYGON_CROSS_PRODUCT_SKY(a, b);
/* Return the changed value. */
if(a1b0) a[0]-=360.0f; else b[0]-=360.0f;
}
j=i++;
}
return fabs(sum)/2.0f;
}
/* This fuction test if a point is inside the polygon using winding number
algorithm. See its wiki here:
https://en.wikipedia.org/wiki/Point_in_polygon#Winding_number_algorithm
We have a polygon with 'n' vertices whose vertices are in the array 'v'
(with 2*n elements). Such that v[0], v[1] are the two coordinates of the
first vertice. The vertices also have to be sorted in a counter clockwise
fashion. We also have a point (with coordinates (x, y) == (p[0], p[1])
and we want to see if it is inside the polygon or not.
If point is outside the polygon, return 0.
If point is inside the polygon, return a non-zero number.
*/
int
gal_polygon_is_inside(double *v, double *p, size_t n)
{
/* The winding number(wn) keeping the count of number of times the ray
crosses the polygon. */
size_t wn=0, i=0, j=n-1;
/* Loop through all the edges of the polygon. */
while(i<n)
{
/* Edge from v[i] to v[i+1] in upward direction. */
if(v[j*2+1] <= p[1])
{
if(v[i*2+1] > p[1])
/* 'p' left of edge is an upward intersection, increase wn. */
if( GAL_POLYGON_TRI_CROSS_PRODUCT(&v[j*2], &v[i*2], p) > 0 )
wn++;
}
else{
/* Edge from v[i] to v[i+1] in downward direction. */
if(v[i*2+1] <= p[1])
/* p right of edge is a downward intersection, decrease wn. */
if( GAL_POLYGON_TRI_CROSS_PRODUCT(&v[j*2], &v[i*2], p) < 0 )
wn--;
}
/* Increment 'j'. */
j=i++;
/* For a check:
printf("winding number: %ld, %.3f\n", wn);
*/
}
return wn;
}
/* We have a polygon with 'n' vertices whose vertices are in the array
'v' (with 2*n elements). Such that v[0], v[1] are the two
coordinates of the first vertice. The vertices also have to be
sorted in a counter clockwise fashion. We also have a point (with
coordinates p[0], p[1]) and we want to see if it is inside the
polygon or not.
If the point is inside the polygon, it will always be to the left
of the edge connecting the two vertices when the vertices are
traversed in order. See the comments above 'gal_polygon_area' for an
explanation about i and j and the loop. */
int
gal_polygon_is_inside_convex(double *v, double *p, size_t n)
{
size_t i=0, j=n-1;
while(i<n)
{
if( GAL_POLYGON_LEFT_OF_LINE(&v[j*2], &v[i*2], p) )
j=i++;
else return 0;
}
return 1;
}
/* Similar to gal_polygon_is_inside_convex, except that if the point
is on one of the edges of a polygon, this will return 0. */
int
gal_polygon_ppropin(double *v, double *p, size_t n)
{
size_t i=0, j=n-1;
while(i<n)
{
/* For a check:
printf("(%.2f, %.2f), (%.2f, %.2f), (%.2f, %.2f)=%f\n",
v[j*2], v[j*2+1], v[i*2], v[i*2+1], p[0], p[1],
GAL_POLYGON_TRI_CROSS_PRODUCT(&v[j*2], &v[i*2], p));
*/
if( GAL_POLYGON_PROP_LEFT_OF_LINE(&v[j*2], &v[i*2], p) )
j=i++;
else
return 0;
}
return 1;
}
/* This function uses the concept of winding, which defines the relative
order in which the vertices of a polygon are listed to determine the
orientation of vertices. If orientation is positive vertices are in
clockwise direction, else is negative for counter-clockwise
direction. Zero sum implies a figure like 8, with equal orientation in
both direction.
See the link below for a detailed description:
"https://www.element84.com/blog/determining-the-winding-of-a-
polygon-given-as-a-set-of-ordered-points"
return 1: sorted in counter-clockwise order or equal orientation.
return 0: sorted clockwise order.
*/
int
gal_polygon_is_counterclockwise(double *v, size_t n)
{
double sum=0.0f;
size_t i=0, j=n-1;
while(i<n)
{
sum+=( (v[i*2]-v[j*2])*(v[i*2+1]+v[j*2+1]) );
j=i++;
}
return sum>0 ? 0 : 1;
}
/* This function checks if the vertices are actually sorted in the
counterclockwise. If they are do nothing, otherwise if they are
clockwise, convert them to counter-clockwise direction
return 1: success
return 0: error
*/
int
gal_polygon_to_counterclockwise(double *v, size_t n)
{
size_t i, j=0;
size_t *permutation;
gal_data_t *temp=NULL;
/* Operation only necesssary when polygon isn't counter-clockwise. */
if(gal_polygon_is_counterclockwise(v, n)==0)
{
/* Allocate space for permutation array, which stores the order of
index in which the vertices are to be ordered for a
counter-clockwise direction. */
permutation=gal_pointer_allocate(GAL_TYPE_SIZE_T, 2*n, 0,
__func__, "permutation");
for(i=0; i<=2*n-1;)
{
/* Below sequence of steps ensures that the permutation has
indexes reversed but in order (x,y). Simple reversing would
have turned it in (y,x) format. */
j++;
permutation[j] =(2*n-1-i++);
permutation[j-1]=(2*n-1-i++);
j++;
}
/* Put the vertices in the 'gal_data_t' object. */
temp=gal_data_alloc(v, GAL_TYPE_FLOAT64, 1, &n, NULL, 0,
-1, 0, NULL, NULL, NULL);
/* Apply permutations to just reverse the order of clockwise to
counter-clockwise. */
gal_permutation_apply(temp, permutation);
/* Free allocated spaces. */
temp->array=NULL;
free(permutation);
gal_data_free(temp);
}
/* Return value, so far it will always return 1. */
return 1;
}
/* Find the intersection of a line segment (Aa--Ab) and an infinite
line (Ba--Bb) and put the intersection point in the output 'o'. All
the points are assumed to be two element double arrays already
allocated outside this function.
Return values:
1: Intersection exists, value was put in the output.
0: Intersection doesn't exist, no output written.
-1: All four points are on the same line, no output written.
*/
int
seginfintersection(double *Aa, double *Ab, double *Ba, double *Bb,
double *o)
{
int Aacollinear=GAL_POLYGON_COLLINEAR_WITH_LINE(Ba, Bb, Aa);
int Abcollinear=GAL_POLYGON_COLLINEAR_WITH_LINE(Ba, Bb, Ab);
/* If all four points lie on the same line, there is infinite
intersections, so return -1. If three of the points are
collinear, then the point on the line segment that is collinear
with the infinite line is the intersection point. */
if( Aacollinear && Abcollinear)
return -1;
else if( Aacollinear || Abcollinear)
{
if(Aacollinear) { o[0]=Aa[0]; o[1]=Aa[1]; }
else { o[0]=Ab[0]; o[1]=Ab[1]; }
return 1;
}
/* None of Aa or Ab are collinear with the Ba--Bb line. They can
only have an intersection if Aa and Ab are on opposite sides of
the Ba--Bb. If they are on the same side of Ba--Bb, then there is
no intersection (atleast within the line segment range
(Aa--Ab).
The intersection of two lines is calculated from the determinant
form in the Wikipedia article of "line-line intersection" where
x1=Ba[0] x2=Bb[0] x3=Aa[0] x4=Ab[0]
y1=Ba[1] y2=Bb[1] y3=Aa[1] y4=Ab[1]
Note that the denominators and the parenthesis with the
subtraction of multiples are the same.
*/
if ( GAL_POLYGON_PROP_LEFT_OF_LINE(Ba, Bb, Aa)
^ GAL_POLYGON_PROP_LEFT_OF_LINE(Ba, Bb, Ab) )
{
/* Find the intersection point of two infinite lines (we assume
Aa-Ab is infinite in calculating this): */
o[0]=( ( (Ba[0]*Bb[1]-Ba[1]*Bb[0])*(Aa[0]-Ab[0])
- (Ba[0]-Bb[0])*(Aa[0]*Ab[1]-Aa[1]*Ab[0]) )
/ ( (Ba[0]-Bb[0])*(Aa[1]-Ab[1]) - (Ba[1]-Bb[1])*(Aa[0]-Ab[0]) )
);
o[1]=( ( (Ba[0]*Bb[1]-Ba[1]*Bb[0])*(Aa[1]-Ab[1])
- (Ba[1]-Bb[1])*(Aa[0]*Ab[1]-Aa[1]*Ab[0]) )
/ ( (Ba[0]-Bb[0])*(Aa[1]-Ab[1]) - (Ba[1]-Bb[1])*(Aa[0]-Ab[0]) )
);
/* Now check if the output is in the same range as Aa--Ab. */
if( o[0]>=GAL_POLYGON_MIN_OF_TWO(Aa[0], Ab[0])-GAL_POLYGON_ROUND_ERR
&& o[0]<=GAL_POLYGON_MAX_OF_TWO(Aa[0], Ab[0])+GAL_POLYGON_ROUND_ERR
&& o[1]>=GAL_POLYGON_MIN_OF_TWO(Aa[1], Ab[1])-GAL_POLYGON_ROUND_ERR
&& o[1]<=GAL_POLYGON_MAX_OF_TWO(Aa[1], Ab[1])+GAL_POLYGON_ROUND_ERR )
return 1;
else
return 0;
}
else
return 0;
}
/* Clip (find the overlap of) two polygons. */
void
gal_polygon_clip(double *s, size_t n, double *c, size_t m,
double *o, size_t *numcrn)
{
double in[2*GAL_POLYGON_MAX_CORNERS], *S, *E;
size_t t, ii=m-1, i=0, jj, j, outnum, innum;
/*
if(n>GAL_POLYGON_MAX_CORNERS || m>GAL_POLYGON_MAX_CORNERS)
error(EXIT_FAILURE, 0, "the two polygons given to the function "
"gal_polygon_clip in polygon.c have %zu and %zu vertices. They cannot"
" have any values larger than %zu", n, m, GAL_POLYGON_MAX_CORNERS);
*/
/* 2*outnum because for each vertice, there are two elements. */
outnum=n; for(t=0;t<2*outnum;++t) o[t]=s[t];
while(i<m) /* clipEdge: c[ii*2] -- c[i*2]. */
{
/*
printf("#################\nclipEdge %zu\n", i);
printf("(%.3f, %.3f) -- (%.3f, %.3f)\n----------------\n",
c[ii*2], c[ii*2+1], c[i*2], c[i*2+1]);
*/
innum=outnum; for(t=0;t<2*innum;++t) in[t]=o[t];
outnum=0;
j=0;
jj=innum-1;
while(j<innum)
{
S=&in[jj*2]; /* Starting point. */
E=&in[j*2]; /* Ending point. */
if( GAL_POLYGON_PROP_LEFT_OF_LINE(&c[ii*2], &c[i*2], E) )
{
if( GAL_POLYGON_PROP_LEFT_OF_LINE(&c[ii*2], &c[i*2], S)==0 )
if( seginfintersection(S, E, &c[ii*2], &c[i*2], &o[2*outnum])
>0) ++outnum;
o[2*outnum]=E[0]; o[2*outnum+1]=E[1]; ++outnum;
}
else if( GAL_POLYGON_PROP_LEFT_OF_LINE(&c[ii*2], &c[i*2], S) )
if( seginfintersection(S, E, &c[ii*2], &c[i*2], &o[2*outnum])>0 )
++outnum;
/*
{
size_t k;
printf("(%.3f, %.3f) -- (%.3f, %.3f): %zu\n",
S[0], S[1], E[0], E[1], outnum);
for(k=0;k<outnum;++k)
printf("\t (%.3f, %.3f)\n", o[k*2], o[k*2+1]);
}
*/
jj=j++;
}
ii=i++;
/*
printf("outnum: %zu\n\n\n\n", outnum);
*/
}
*numcrn=outnum;
}
/***************************************************************/
/******* Basic operations for concave-sort *************/
/***************************************************************/
/* The point structures allows storing of points in an array
like a pair. */
struct point
{
double x;
double y;
};
/* This function allows us to find the rightmost point in the given
array based on its x-coordinates. */
static void
polygon_leftmost_point(double *in, size_t n, struct point *p)
{
size_t i, min_index=-1;
double tmp_min = DBL_MAX;
/* Loop through the entire array and find the rightmost corner and
store the index of that maximum vetex. */
for(i=0; i<n; i++)
if(tmp_min > in[i*2])
{
min_index = i;
tmp_min = in[i*2];
}
p->x=in[min_index*2];
p->y=in[min_index*2+1];
/* For a check:
printf("leftmost point: %.3f \n", in[min_index*2]);
*/
}
/* This function allows us to find the leftmost point int the given
array based on x coordinates. */
static void
polygon_rightmost_point(double *in, size_t n, struct point *p)
{
size_t i, max_index=-1;
double tmp_max = DBL_MIN;
/* Loop through the entire array and find the leftmost corner and
store the index of that maximum vetex. */
for(i=0; i<n; i++)
if(tmp_max < in[i*2])
{
max_index = i;
tmp_max = in[i*2];
}
p->x=in[max_index*2];
p->y=in[max_index*2+1];
/* For a check:
printf("rightmost point: %.3f \n", in[max_index*2]);
*/
}
/* This function uses cross-product and right-hand rule
to check the position of points (x, y) w.r.t the vector joining
the leftmost and the rightmost point(the diagonal vector).
Return 1: If point lies to the left-hand side of the diagonal vector.
Return 0: If point lies in the diagonal vector
Return -1: If point lies to the right-hand side of the diagonal vector.
*/
static int
polygon_leftof_vector(double *in, size_t n, double x, double y)
{
double test;
struct point l, r;
/* Perform the cross-product test. */
polygon_leftmost_point(in, n, &l);
polygon_rightmost_point(in, n, &r);
test = (r.y-y)*(r.x-l.x) - (r.y-l.y)*(r.x-x);
/* Due to the choice of return value, we multiply 'test' by -1. */
test = -1*test;
return test?(test>0?1:-1):0;
}
/***************************************************************/
/******** Sorting and Merging for concave sort ***********/
/***************************************************************/
/* This function makes the two temporary partition of the input
array into A and B which keep the points above and below the
diagonal vector. */
static void
polygon_make_arr(double *in, size_t n, size_t *A_size, size_t *B_size,
struct point *A, struct point *B)
{
/* Here j and k are the indexes for A and B arrays respectively. */
size_t i, j = 0, k = 0;
*A_size = 0, *B_size = 0;
/* Loop through the input array and make the desired partition
and also calculate their respective sizes. */
for(i=0; i<n; i++)
{
if(polygon_leftof_vector(in, n, in[i*2], in[i*2+1]) <= 0)
{
A[j].x=in[i*2];
A[j].y=in[i*2+1];
/* For a check:
printf("A =: (%.3f, %.3f)\n", A[j].x, A[j].y);
*/
j++;
(*A_size)++;
}
else
{
B[k].x=in[i*2];
B[k].y=in[i*2+1];
/* For a check:
printf("B =: (%.3f, %.3f)\n", B[k].x, B[k].y);
*/
k++;
(*B_size)++;
}
}
/* For a check:
printf("sizes of A & B array ==> %ld, %ld \n", *A_size, *B_size);
*/
}
/* The comparator functions for qsort. CompareA arranges the array in
ascending order according to their x-coordinate. */
static int
polygon_compareA(const void *a, const void *b)
{
struct point *p1 = (struct point *)a, *p2 = (struct point *)b;
return ( p1->x==p2->x
? 0
: (p1->x<p2->x ? -1 : 1) );
}
/* The comparator functions for qsort. CompareB arranges in descending
order according to their x-coordintes. */
static int
polygon_compareB(const void *a, const void *b)
{
struct point *p1 = (struct point *)a, *p2 = (struct point *)b;
return ( p1->x==p2->x
? 0
: (p1->x<p2->x ? 1 : -1) );
}
/* This function arranges the A and B arrays and merges them
together to the output array. Hence it is the main function
which should be called when using concave sort. */
void
gal_polygon_vertices_sort(double *vertices, size_t n, size_t *ordinds)
{
size_t i, j, A_size = 0, B_size = 0;
struct point A[GAL_POLYGON_MAX_CORNERS];
struct point B[GAL_POLYGON_MAX_CORNERS];
struct point sorted[GAL_POLYGON_MAX_CORNERS];
struct point tordinds[GAL_POLYGON_MAX_CORNERS];
/* Sanity check. */
if(n>GAL_POLYGON_MAX_CORNERS)
error(EXIT_FAILURE, 0, "%s: most probably a bug! The number of corners "
"is more than %d. This is an internal value and cannot be set from "
"the outside. Most probably some bug has caused this un-normal "
"value. Please contact us at %s so we can solve this problem",
__func__, GAL_POLYGON_MAX_CORNERS, PACKAGE_BUGREPORT);
/* Make arrays A and B and store the vertices in them. Currently points
are stored in based on their position from the diagonal vector. */
polygon_make_arr(vertices, n, &A_size, &B_size, A, B);
/* Now, we put the contents of A and B in the temporary array. Firstly,
we put the contents of A and then save the last index of A (stored in
i) and continue from that index while copying from B(using j). */
for(i=0; i<A_size+B_size; i++)
{
tordinds[i].x=vertices[i*2];
tordinds[i].y=vertices[i*2+1];
}
/* Now sort the arrays A and B w.r.t their x axis, sorting A in ascending
order and B in descending order. */
qsort(A, A_size, sizeof(struct point), polygon_compareA);
qsort(B, B_size, sizeof(struct point), polygon_compareB);
/*Finally, we put the contents of A and B in a final sorted array. */
for(i=0; i<A_size; i++) sorted[i]=A[i];
for(j=0; j<B_size; j++) sorted[i++]=B[j];
/* For a check.
for(i=0; i<A_size+B_size; i++)
printf("sorted array := %lf %lf\n", sorted[i], sorted[i*2+1]);
*/
/* The temporary array is now used to find the location of points stored
in sorted array and assign index in ordinds accordingly. */
for(i=0; i<n; i++)
for(j=0; j<n; j++)
if( tordinds[i].x == sorted[j].x && tordinds[i].y == sorted[j].y )
{
ordinds[j]=i;
break;
}
/* For a check.
for(i=0;i<n;i++) printf("%ld\n", ordinds[i]);
*/
}
|