1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111
|
/*********************************************************************
Statistical functions.
This is part of GNU Astronomy Utilities (Gnuastro) package.
Original author:
Mohammad Akhlaghi <mohammad@akhlaghi.org>
Contributing author(s):
Copyright (C) 2015-2024 Free Software Foundation, Inc.
Gnuastro is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
Gnuastro is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with Gnuastro. If not, see <http://www.gnu.org/licenses/>.
**********************************************************************/
#include <config.h>
#include <math.h>
#include <stdio.h>
#include <errno.h>
#include <error.h>
#include <float.h>
#include <string.h>
#include <stdint.h>
#include <stdlib.h>
#include <gnuastro/data.h>
#include <gnuastro/tile.h>
#include <gnuastro/fits.h>
#include <gnuastro/blank.h>
#include <gnuastro/qsort.h>
#include <gnuastro/pointer.h>
#include <gnuastro/arithmetic.h>
#include <gnuastro/statistics.h>
#include <gnuastro-internal/checkset.h>
/****************************************************************
******** Simple statistics *******
****************************************************************/
/* Return the number of non-blank elements in an array as a single element,
'size_t' type data structure. */
gal_data_t *
gal_statistics_number(gal_data_t *input)
{
size_t counter=0, dsize=1;
gal_data_t *out=gal_data_alloc(NULL, GAL_TYPE_SIZE_T, 1, &dsize,
NULL, 1, -1, 1, NULL, NULL, NULL);
/* If there is no blank values in the input, then the total number is
just the size. */
if(gal_blank_present(input, 0)) /* '{}' necessary for 'else'. */
{ GAL_TILE_PARSE_OPERATE(input, NULL, 0, 1, {++counter;}); }
else
counter = input->size;
/* Write the value into memory. */
*((size_t *)(out->array)) = counter;
return out;
}
/* Return the minimum (non-blank) value of a dataset in the same type as
the dataset. */
gal_data_t *
gal_statistics_minimum(gal_data_t *input)
{
size_t dsize=1, n=0;
gal_data_t *out=gal_data_alloc(NULL, gal_tile_block(input)->type, 1,
&dsize, NULL, 1, -1, 1, NULL, NULL, NULL);
/* See if the input actually has any elements. */
if(input->size)
{
/* Initialize the output with the maximum possible value. */
gal_type_max(out->type, out->array);
/* Parse the full input. A NaN value will always fail a conditional
(as if it was larger); so NaNs will not cause problems here. */
GAL_TILE_PARSE_OPERATE( input, out, 0, 1,
{*o = *i < *o ? *i : *o; ++n;} );
}
/* If there were no usable elements, set the output to blank, then
return. */
if(n==0) gal_blank_write(out->array, out->type);
return out;
}
/* Return the maximum (non-blank) value of a dataset in the same type as
the dataset. */
gal_data_t *
gal_statistics_maximum(gal_data_t *input)
{
size_t dsize=1, n=0;
gal_data_t *out=gal_data_alloc(NULL, gal_tile_block(input)->type, 1,
&dsize, NULL, 1, -1, 1, NULL, NULL, NULL);
/* See if the input actually has any elements. */
if(input->size)
{
/* Initialize the output with the minimum possible value. */
gal_type_min(out->type, out->array);
/* Parse the full input. A NaN value will always fail a conditional
(as if it was smaller); so NaNs will not cause problems here. */
GAL_TILE_PARSE_OPERATE(input, out, 0, 1,
{*o = *i > *o ? *i : *o; ++n;});
}
/* If there were no usable elements, set the output to blank, then
return. */
if(n==0) gal_blank_write(out->array, out->type);
return out;
}
/* Return the sum of the input dataset as a single element dataset of type
float64. */
gal_data_t *
gal_statistics_sum(gal_data_t *input)
{
size_t dsize=1, n=0;
gal_data_t *out=gal_data_alloc(NULL, GAL_TYPE_FLOAT64, 1, &dsize,
NULL, 1, -1, 1, NULL, NULL, NULL);
/* See if the input actually has any elements. */
if(input->size)
/* Parse the dataset. Note that in 'gal_data_alloc' we set the 'clear'
flag to 1, so it will be 0.0f. */
GAL_TILE_PARSE_OPERATE(input, out, 0, 1, {++n; *o += *i;});
/* If there were no usable elements, set the output to blank, then
return. */
if(n==0) gal_blank_write(out->array, out->type);
return out;
}
/* Return the mean of the input dataset as a float64 type single-element
dataset. */
gal_data_t *
gal_statistics_mean(gal_data_t *input)
{
size_t dsize=1, n=0;
gal_data_t *out=gal_data_alloc(NULL, GAL_TYPE_FLOAT64, 1, &dsize,
NULL, 1, -1, 1, NULL, NULL, NULL);
/* See if the input actually has any elements. */
if(input->size)
/* Parse the dataset. Note that in 'gal_data_alloc' we set the 'clear'
flag to 1, so it will be 0.0f. */
GAL_TILE_PARSE_OPERATE(input, out, 0, 1, {++n; *o += *i;});
/* Above, we calculated the sum and number, so if there were any elements
in the dataset ('n!=0'), divide the sum by the number, otherwise, put
a blank value in the output. */
if(n) *((double *)(out->array)) /= n;
else gal_blank_write(out->array, out->type);
return out;
}
/* Calculate the standard deviation from the already measured (after
parsing) sum and the sum of squares. */
double
gal_statistics_std_from_sums(double sum, double sump2, size_t num)
{
double ss;
switch(num)
{
case 0: return NAN; /* No elements: STD: NaN */
case 1: return 0.0f; /* Single element, STD: 0.0 */
default:
/* 'ss' should never be bigger than 'sump2' unless the values are so
similar that it happens due to the floating-point error. Since
they are so close that their difference has caused this impossible
condition, their standard deviation is 0. */
ss=sum*sum/num;
if(ss>sump2) return 0.0f;
else return sqrt( (sump2-ss)/num );
}
/* Control should not reach this point. */
error(EXIT_FAILURE, 0, "%s: a bug! Please contact us at '%s' to find "
"and fix the problem. Control should not reach this part of "
"the function", __func__, PACKAGE_BUGREPORT);
return NAN;
}
/* Return the standard deviation of the input dataset as a single element
dataset of type float64. */
gal_data_t *
gal_statistics_std(gal_data_t *input)
{
size_t dsize=1, n=0;
double v, *o, s=0.0f, s2=0.0f;
gal_data_t *out=gal_data_alloc(NULL, GAL_TYPE_FLOAT64, 1, &dsize,
NULL, 1, -1, 1, NULL, NULL, NULL);
/* See if the input actually has any elements. */
o=out->array;
switch(input->size)
{
/* No inputs. */
case 0: o[0]=GAL_BLANK_FLOAT64; break;
/* When we only have a single element, theoretically the standard
deviation should be 0. But due to floating-point errors, it will
probably not be. So we'll manually set it to zero. */
case 1: o[0]=0; break;
/* More than one element. */
default:
/* Parse the data to measure 's' and 's2'. Its important to put each
value into a 'double' type variable ('v') before multiplying (for
's2') because the multiplication of integer types close to their
limits will cause overflow and thus an unreasonable output). */
GAL_TILE_PARSE_OPERATE(input, out, 0, 1,
{++n; v=*i; s+=v; s2+=v*v;});
/* Write the standard deviation. */
o[0] = gal_statistics_std_from_sums(s, s2, n);
break;
}
/* Return the output dataset. */
return out;
}
/* Return the mean and standard deviation of a dataset in one run in type
float64. The output is a two element data structure, with the first
value being the mean and the second value the standard deviation. */
gal_data_t *
gal_statistics_mean_std(gal_data_t *input)
{
size_t dsize=2, n=0;
double v, *o, s=0.0f, s2=0.0f;
gal_data_t *out=gal_data_alloc(NULL, GAL_TYPE_FLOAT64, 1, &dsize,
NULL, 1, -1, 1, NULL, NULL, NULL);
/* See if the input actually has any elements. */
o=out->array;
switch(input->size)
{
/* No inputs. */
case 0: o[0]=o[1]=GAL_BLANK_FLOAT64; break;
/* When we only have a single element, theoretically the standard
deviation should be 0. But due to floating-point errors, it will
probably not be. So we'll manually set it to zero. */
case 1:
GAL_TILE_PARSE_OPERATE(input, out, 0, 1, {s+=*i;});
o[0]=s; o[1]=0;
break;
/* More than one element. */
default:
/* Parse the data. Its important to put each value into a 'double'
type variable ('v') before multiplying (for 's2') because the
multiplication of integer types close to their limits will cause
overflow and thus an unreasonable output). */
GAL_TILE_PARSE_OPERATE(input, out, 0, 1,
{++n; v=*i; s+=v; s2+=v*v;});
/* Write the mean. */
o[0]=s/n;
/* Write the standard deviation. If the square of the average value
is bigger than the average of the squares of the values, we have a
floating-point error (due to all the points having an identical
value, within floating point erros). So we should just set the
standard deviation to zero. */
o[1] = gal_statistics_std_from_sums(s, s2, n);
break;
}
/* Return the output dataset. */
return out;
}
/* The input is a sorted array with no blank values, we want the median
value to be put inside the already allocated space which is pointed to
by 'median'. It is in the same type as the input. */
#define MED_IN_SORTED(IT) { \
IT *a=sorted->array; \
*(IT *)median = n%2 ? a[n/2] : (a[n/2]+a[n/2-1])/2; \
}
static void
statistics_median_in_sorted_no_blank(gal_data_t *sorted, void *median)
{
size_t n=sorted->size;
/* Do the processing if there are actually any elements. */
if(sorted->size)
switch(sorted->type)
{
case GAL_TYPE_UINT8: MED_IN_SORTED( uint8_t ); break;
case GAL_TYPE_INT8: MED_IN_SORTED( int8_t ); break;
case GAL_TYPE_UINT16: MED_IN_SORTED( uint16_t ); break;
case GAL_TYPE_INT16: MED_IN_SORTED( int16_t ); break;
case GAL_TYPE_UINT32: MED_IN_SORTED( uint32_t ); break;
case GAL_TYPE_INT32: MED_IN_SORTED( int32_t ); break;
case GAL_TYPE_UINT64: MED_IN_SORTED( uint64_t ); break;
case GAL_TYPE_INT64: MED_IN_SORTED( int64_t ); break;
case GAL_TYPE_FLOAT32: MED_IN_SORTED( float ); break;
case GAL_TYPE_FLOAT64: MED_IN_SORTED( double ); break;
default:
error(EXIT_FAILURE, 0, "%s: type code %d not recognized",
__func__, sorted->type);
}
else
gal_blank_write(median, sorted->type);
}
/* Return the median value of the dataset in the same type as the input as
a one element dataset. If the 'inplace' flag is set, the input data
structure will be modified: it will have no blank values and will be
sorted (increasing). */
gal_data_t *
gal_statistics_median(gal_data_t *input, int inplace)
{
size_t dsize=1;
gal_data_t *nbs=gal_statistics_no_blank_sorted(input, inplace);
gal_data_t *out=gal_data_alloc(NULL, nbs->type, 1, &dsize, NULL, 1, -1,
1, NULL, NULL, NULL);
/* Write the median. */
if(nbs->size)
statistics_median_in_sorted_no_blank(nbs, out->array);
else
gal_blank_write(out->array, out->type);
/* Clean up (if necessary), then return the output. */
if(nbs!=input) gal_data_free(nbs);
return out;
}
static void
statistics_mad_in_sorted_no_blank(gal_data_t *sorted, gal_data_t *med,
void *mad_o)
{
uint8_t type;
gal_data_t *use, *mad;
int flags=GAL_ARITHMETIC_FLAG_INPLACE | GAL_ARITHMETIC_FLAG_NUMOK;
/* Sanity check. */
if(med->type!=sorted->type)
error(EXIT_FAILURE, 0, "%s: the input 'sorted' and 'med' arrays "
"do not have the same type; they are respectively '%s' and '%s'",
__func__, gal_type_name(sorted->type, 1),
gal_type_name(med->type, 1));
/* After subtracting, we will need to sort the array, so a copy is
necessary (the input should not be touched). Furthermore, if the input
is an un-signed integer, convert it to a signed integer of the next
larger size. This is necessary, because half of the values will become
negative after subtracting the median. */
switch(sorted->type)
{
case GAL_TYPE_UINT8: type=GAL_TYPE_INT16; break;
case GAL_TYPE_UINT16: type=GAL_TYPE_INT32; break;
case GAL_TYPE_UINT32: type=GAL_TYPE_INT64; break;
case GAL_TYPE_UINT64: type=GAL_TYPE_INT64; break;
default: type=GAL_TYPE_INVALID; /* Not necessary. */
}
use=gal_data_copy_to_new_type(sorted, ( type==GAL_TYPE_INVALID
? sorted->type : type ) );
/* Subtract the median from the input. */
use=gal_arithmetic(GAL_ARITHMETIC_OP_MINUS, 1, flags, use, med);
/* Get the absolute value of the differences from the median. The
absolute values of the differences can fit into the original input
type, so to make things consistent, we'll take it back to the original
type. */
use=gal_arithmetic(GAL_ARITHMETIC_OP_ABS, 1, flags, use);
use=gal_data_copy_to_new_type_free(use, sorted->type);
use->flag=0;/* Necessary before new median to re-sort. */
mad = gal_statistics_median(use, 1);
/* For a check:
{
size_t i;
double *u=use->array;
double *ma=med->array, *Ma=mad->array, *s=sorted->array;
for(i=0;i<sorted->size;++i)
printf("%-15g %-15g\n", s[i], u[i]);
printf("Median: %g\n", ma[0]);
printf("MAD: %g\n", Ma[0]);
exit(0);
} */
/* Copy the MAD value into the output pointer. */
memcpy(mad_o, mad->array, gal_type_sizeof(mad->type));
/* Clean up. */
gal_data_free(mad);
gal_data_free(use);
}
/* Return the median and median absolute deviation. */
static gal_data_t *
statistics_median_mad(gal_data_t *input, int inplace, int onlymad)
{
size_t one=1, two=2;
gal_data_t *in, *med;
gal_data_t *mad, *out;
/* If the caller only wants the MAD, then the output should only have one
element (which is the actual 'mad' that is calculated). */
mad = gal_data_alloc(NULL, input->type, 1, &one, NULL, 1,
-1, 1, NULL, NULL, NULL);
out = ( onlymad
? mad
: gal_data_alloc(NULL, input->type, 1, &two, NULL, 1,
-1, 1, NULL, NULL, NULL) );
/* Allocate the input array if we should not work in-place. */
in = inplace ? input : gal_data_copy(input);
/* Calculate the median. */
med = gal_statistics_median(in, 1);
/* Write the MAD into the allocated space. */
statistics_mad_in_sorted_no_blank(in, med, mad->array);
/* If the caller wanted both the median and the MAD, write the median and
MAD into the output dataset. */
if(onlymad==0)
{
memcpy(out->array, med->array, gal_type_sizeof(med->type));
memcpy(gal_pointer_increment(out->array, 1, out->type), mad->array,
gal_type_sizeof(out->type));
gal_data_free(mad);
}
/* Clean up and return. */
gal_data_free(med);
return out;
}
gal_data_t *
gal_statistics_mad(gal_data_t *input, int inplace)
{
return statistics_median_mad(input, inplace, 1);
}
gal_data_t *
gal_statistics_median_mad(gal_data_t *input, int inplace)
{
return statistics_median_mad(input, inplace, 0);
}
/* For a given size, return the index (starting from zero) that is at the
given quantile. */
size_t
gal_statistics_quantile_index(size_t size, double quantile)
{
double floatindex;
/* Some sanity checks. */
if(size==0)
{
error(0, 0, "%s: 'size' is 0. The quantile is not defined for "
"a zero-sized array\n", __func__);
return GAL_BLANK_SIZE_T;
}
if(quantile<0.0f || quantile>1.0f)
error(EXIT_FAILURE, 0, "%s: the input quantile should be between 0.0 "
"and 1.0 (inclusive). You have asked for %g", __func__, quantile);
/* Find the index of the quantile. */
floatindex=(double)(size-1)*quantile;
/*
printf("quantile: %f, size: %zu, findex: %f\n", quantile, size, floatindex);
*/
/* Note that in the conversion from float to size_t, the floor
integer value of the float will be used. */
if( floatindex - (int)floatindex > 0.5 )
return floatindex+1;
else
return floatindex;
}
/* Return a single element dataset of the same type as input keeping the
value that has the given quantile. */
gal_data_t *
gal_statistics_quantile(gal_data_t *input, double quantile, int inplace)
{
void *blank;
int increasing;
size_t dsize=1, index;
gal_data_t *nbs=gal_statistics_no_blank_sorted(input, inplace);
gal_data_t *out=gal_data_alloc(NULL, nbs->type, 1, &dsize,
NULL, 1, -1, 1, NULL, NULL, NULL);
/* Only continue processing if there are non-blank elements. */
if(nbs->size)
{
/* Set the increasing value. */
increasing = nbs->flag & GAL_DATA_FLAG_SORTED_I;
/* Find the index of the quantile, note that if it sorted in
decreasing order, then we'll need to get the index of the inverse
quantile. */
index=gal_statistics_quantile_index(nbs->size,
( increasing
? quantile
: (1.0f - quantile) ) );
/* Write the value at this index into the output. */
if(index==GAL_BLANK_SIZE_T)
{
blank=gal_pointer_allocate(nbs->type, 1, 0, __func__, "blank");
memcpy(out->array, blank, gal_type_sizeof(nbs->type));
free(blank);
}
else
memcpy(out->array,
gal_pointer_increment(nbs->array, index, nbs->type),
gal_type_sizeof(nbs->type));
}
else
gal_blank_write(out->array, out->type);
/* Clean up and return. */
if(nbs!=input) gal_data_free(nbs);
return out;
}
/* Return the index of the (first) point in the sorted dataset that has the
closest value to 'value' (which has to be the same type as the 'input'
dataset). */
#define STATS_QFUNC_IND(IT) { \
IT *r, *a=nbs->array, *af=a+nbs->size, v=*((IT *)(value->array)); \
\
/* For a reference. Since we are comparing with the previous */ \
/* element, we need to start with the second element.*/ \
r=a++; \
\
/* Increasing array: */ \
if( nbs->flag & GAL_DATA_FLAG_SORTED_I ) \
{ \
if( v>=*r ) \
{ \
do if(*a>v) { if( v - *(a-1) < *a - v ) --a; break; } \
while(++a<af); \
parsed=1; \
} \
} \
\
/* Decreasing array. */ \
else \
{ \
if(v<=*r) \
{ \
do if(*a<v) { if( *(a-1) - v < v - *a ) --a; break; } \
while(++a<af); \
parsed=1; \
} \
} \
\
/* Set the difference if the value is actually in the range. */ \
if(parsed && a<af) index = a-r; \
}
size_t
gal_statistics_quantile_function_index(gal_data_t *input,
gal_data_t *invalue, int inplace)
{
int parsed=0;
gal_data_t *value;
size_t index=GAL_BLANK_SIZE_T;
gal_data_t *nbs=gal_statistics_no_blank_sorted(input, inplace);
/* Make sure the value has the same type. */
if(invalue->size>1)
error(EXIT_FAILURE, 0, "%s: the 'value' argument must only have "
"one element", __func__);
value = ( (nbs->type==invalue->type)
? invalue
: gal_data_copy_to_new_type(invalue, nbs->type) );
/* Only continue processing if we have non-blank elements. */
if(nbs->size)
/* Find the result: */
switch(nbs->type)
{
case GAL_TYPE_UINT8: STATS_QFUNC_IND( uint8_t ); break;
case GAL_TYPE_INT8: STATS_QFUNC_IND( int8_t ); break;
case GAL_TYPE_UINT16: STATS_QFUNC_IND( uint16_t ); break;
case GAL_TYPE_INT16: STATS_QFUNC_IND( int16_t ); break;
case GAL_TYPE_UINT32: STATS_QFUNC_IND( uint32_t ); break;
case GAL_TYPE_INT32: STATS_QFUNC_IND( int32_t ); break;
case GAL_TYPE_UINT64: STATS_QFUNC_IND( uint64_t ); break;
case GAL_TYPE_INT64: STATS_QFUNC_IND( int64_t ); break;
case GAL_TYPE_FLOAT32: STATS_QFUNC_IND( float ); break;
case GAL_TYPE_FLOAT64: STATS_QFUNC_IND( double ); break;
default:
error(EXIT_FAILURE, 0, "%s: type code %d not recognized",
__func__, nbs->type);
}
else
{
error(0, 0, "%s: no non-blank elements. The quantile function is not "
"defined for a zero-sized array\n", __func__);
index=GAL_BLANK_SIZE_T;
}
/* Clean up and return. */
if(value!=invalue) gal_data_free(value);
if(nbs!=input) gal_data_free(nbs);
return index;
}
/* Return the quantile function of the given value as float64. */
#define STATS_QFUNC(IT) { \
IT *a=nbs->array, v=*((IT *)(value->array)); \
\
/* Increasing array: */ \
if( *a < *(a+1) ) \
d[0] = v<*a ? -INFINITY : INFINITY; \
\
/* Decreasing array. */ \
else \
d[0] = v>*a ? INFINITY : -INFINITY; \
}
gal_data_t *
gal_statistics_quantile_function(gal_data_t *input, gal_data_t *value,
int inplace)
{
double *d;
size_t ind, dsize=1;
gal_data_t *nbs=gal_statistics_no_blank_sorted(input, inplace);
gal_data_t *out=gal_data_alloc(NULL, GAL_TYPE_FLOAT64, 1, &dsize,
NULL, 1, -1, 1, NULL, NULL, NULL);
/* Sanity checks. */
if(value->size>1)
error(EXIT_FAILURE, 0, "%s: the 'value' argument must only have "
"one element", __func__);
/* Calculate the index of the value. */
ind=gal_statistics_quantile_function_index(input, value, inplace);
//printf("ind: %zu (%zu)\n", ind, input->size);
/* Only continue processing if there are non-blank values. */
if(nbs->size)
{
/* Note that counting of the index starts from 0, so for the quantile
we should divided by (size - 1). */
d=out->array;
if(ind==GAL_BLANK_SIZE_T)
{
/* See if the value is larger or smaller than the input's minimum
or maximum. */
switch(nbs->type)
{
case GAL_TYPE_UINT8: STATS_QFUNC( uint8_t ); break;
case GAL_TYPE_INT8: STATS_QFUNC( int8_t ); break;
case GAL_TYPE_UINT16: STATS_QFUNC( uint16_t ); break;
case GAL_TYPE_INT16: STATS_QFUNC( int16_t ); break;
case GAL_TYPE_UINT32: STATS_QFUNC( uint32_t ); break;
case GAL_TYPE_INT32: STATS_QFUNC( int32_t ); break;
case GAL_TYPE_UINT64: STATS_QFUNC( uint64_t ); break;
case GAL_TYPE_INT64: STATS_QFUNC( int64_t ); break;
case GAL_TYPE_FLOAT32: STATS_QFUNC( float ); break;
case GAL_TYPE_FLOAT64: STATS_QFUNC( double ); break;
default:
error(EXIT_FAILURE, 0, "%s: type code %d not recognized",
__func__, nbs->type);
}
}
else
d[0] = (double)ind / ((double)(nbs->size - 1));
}
else
gal_blank_write(out->array, out->type);
/* Clean up and return. */
if(nbs!=input) gal_data_free(nbs);
return out;
}
/* Pull out unique elements. */
#define UNIQUE_BYTYPE(TYPE) { \
size_t i, j; \
TYPE *a=out->array, b; \
\
/* Write the blank value for this type into 'b'. */ \
gal_blank_write(&b, out->type); \
\
/* Go over the elements, and set the duplicates to blank. */ \
/* Note that for integers and floats, the behavior of blank/NaN */ \
/* differs: for floats (NaN), we can identify a blank using the */ \
/* fact that by definition, NaN!=NaN. */ \
if(b==b) \
for(i=0;i<out->size;++i) \
{ if(a[i]!=b) for(j=i+1;j<out->size;++j) if(a[i]==a[j]) a[j]=b;} \
else \
for(i=0;i<out->size;++i) \
{ if(a[i]==a[i]) for(j=i+1;j<out->size;++j) if(a[i]==a[j]) a[j]=b;} \
}
gal_data_t *
gal_statistics_unique(gal_data_t *input, int inplace)
{
gal_data_t *out = inplace ? input : gal_data_copy(input);
/* Since we are replacing the repeated elements with blank, re-set the
blank flags. */
out->flag &= ~GAL_DATA_FLAG_BLANK_CH; /* Set bit to 0. */
out->flag &= ~GAL_DATA_FLAG_HASBLANK; /* Set bit to 0. */
/* Set all non-unique elements to blank. */
switch(out->type)
{
case GAL_TYPE_UINT8: UNIQUE_BYTYPE( uint8_t ); break;
case GAL_TYPE_INT8: UNIQUE_BYTYPE( int8_t ); break;
case GAL_TYPE_UINT16: UNIQUE_BYTYPE( uint16_t ); break;
case GAL_TYPE_INT16: UNIQUE_BYTYPE( int16_t ); break;
case GAL_TYPE_UINT32: UNIQUE_BYTYPE( uint32_t ); break;
case GAL_TYPE_INT32: UNIQUE_BYTYPE( int32_t ); break;
case GAL_TYPE_UINT64: UNIQUE_BYTYPE( uint64_t ); break;
case GAL_TYPE_INT64: UNIQUE_BYTYPE( int64_t ); break;
case GAL_TYPE_FLOAT32: UNIQUE_BYTYPE( float ); break;
case GAL_TYPE_FLOAT64: UNIQUE_BYTYPE( double ); break;
default:
error(EXIT_FAILURE, 0, "the 'unique' operator doesn't support type "
"code '%u'", out->type);
}
/* Remove all blank elements (note that 'gal_blank_remove' also corrects
the size of the dataset and sets it to 1D). */
gal_blank_remove_realloc(out);
return out;
}
#define HAS_NEGATIVE(IT) { \
IT b, *a=input->array, *af=a+input->size, *start; \
gal_blank_write(&b, input->type); \
\
/* If this is a tile, not a full block. */ \
if(input!=block) \
start=gal_tile_start_end_ind_inclusive(input, block, start_end_inc); \
\
/* Go over all the elements. */ \
while( start_end_inc[0] + increment <= start_end_inc[1] ) \
{ \
/* Necessary when we are on a tile. */ \
if(input!=block) \
af = ( a = start + increment ) + input->dsize[input->ndim-1]; \
\
/* Check for blank values (only for integers: b==b). */ \
if(b==b) do if(*a!=b && *a<0) { hasneg=1; break; } while(++a<af); \
else do if(*a==*a && *a<0) { hasneg=1; break; } while(++a<af); \
\
/* Necessary when we are on a tile. */ \
if(input!=block) \
increment += gal_tile_block_increment(block, input->dsize, \
num_increment++, NULL); \
else break; \
} \
}
int
gal_statistics_has_negative(gal_data_t *input)
{
int hasneg=0;
size_t increment=0, num_increment=1;
gal_data_t *block=gal_tile_block(input);
size_t start_end_inc[2]={0,block->size-1}; /* -1: this is INCLUSIVE. */
/* An empty dataset doesn't have any negative values! */
if(input->size==0) return 0;
/* The operation depends on the type of the input. */
switch(input->type)
{
/* Unsigned integer types are always positive. */
case GAL_TYPE_UINT8:
case GAL_TYPE_UINT16:
case GAL_TYPE_UINT32:
case GAL_TYPE_UINT64:
hasneg=0; break;
/* Types that can have negative values. */
case GAL_TYPE_INT8: HAS_NEGATIVE(int8_t); break;
case GAL_TYPE_INT16: HAS_NEGATIVE(int16_t); break;
case GAL_TYPE_INT32: HAS_NEGATIVE(int32_t); break;
case GAL_TYPE_INT64: HAS_NEGATIVE(int64_t); break;
case GAL_TYPE_FLOAT32: HAS_NEGATIVE(float); break;
case GAL_TYPE_FLOAT64: HAS_NEGATIVE(double); break;
/* Non-numeric types. */
default:
error(EXIT_FAILURE, 0, "%s: type code '%d' not recognized",
__func__, input->type);
}
/* Return the result. */
return hasneg;
}
/*********************************************************************/
/***************** Mode ***********************/
/*********************************************************************/
/* Main structure to keep mode parameters. */
struct statistics_mode_params
{
gal_data_t *data; /* Sorted input dataset with no blank values. */
size_t lowi; /* Lower quantile of interval. */
size_t midi; /* Index of the mid-interval point. */
size_t midd; /* Maximum CDF distance at the middle point. */
size_t highi; /* Higher quantile of interval. */
float tolerance; /* Tolerance level to terminate search. */
size_t numcheck; /* Number of pixels after mode to check. */
size_t interval; /* Interval to check pixels. */
float mirrordist; /* Distance after mirror to check ( x STD). */
};
/* Macros for the mode finding algorithm. */
#define MODE_MIN_Q 0.01f /* Mode search lower interval quantile. */
#define MODE_MAX_Q 0.55f /* Mode search higher interval quantile. */
#define MODE_GOOD_LQ 0.02f /* Least acceptable mode quantile. */
#define MODE_SYM_LOW_Q 0.01f /* Lower quantile to get symmetricity. */
#define MODE_GOLDEN_RATIO 1.618034f /* Golden ratio: (1+sqrt(5))/2. */
#define MODE_TWO_TAKE_GR 0.38197f /* 2 - Golden ratio. */
#define MODE_MIRROR_ABOVE (size_t)(-1) /* Mirror is above the result. */
/*
Given a mirror point ('m'), return the maximum distance between the
mirror distribution and the original distribution.
The basic idea behind finding the mode is comparing the mirrored CDF
(where the mirror is a test for the mode) with the original CDF for a
given point. The job of this function is to return the maximum distance,
given a mirror point. It takes the index of the mirror that is to be
checked, it then finds the maximum difference between the mirrored CDF
about the given point and the input CDF.
'zf' keeps the value at the mirror (zero) point. 'i' is used to count
the pixels after the mirror in the mirror distribution. So 'm+i' is the
index of the mirrored distribution and mf=zf+(zf-a[m-i])=2*zf-a[m-i] is
the mirrored flux at this point. Having found 'mf', we find the 'j' such
that a[m+j] has the nearest flux to 'mf'.
The desired difference between the input CDF and the mirrored one
for each 'i' is then simply: 'j-i'.
Once 'i' is incremented, 'mf' will increase, so to find the new 'j' we
don't need to begin looking from 'j=0'. Remember that the array is
sorted, so the desired 'j' is definitely larger than the previous
'j'. So, if we keep the previous 'j' in 'prevj' then, all we have to do
is to start incrementing 'j' from 'prevj'. This will really help in
speeding up the job :-D. Only for the first element, 'prevj=0'. */
#define MIRR_MAX_DIFF(IT) { \
IT *a=p->data->array, zf=a[m], mf=2*zf-a[m-i]; \
\
/* When a[m+j]>mf, we have reached the last pixel to check. Now, */ \
/* we just have to see which one of a[m+j-1] or a[m+j] is closer */ \
/* to 'mf'. We then change 'j' accordingly and break out of the */ \
/* 'j' loop. */ \
for(j=prevj;j<size-m;++j) \
if(a[m+j]>mf) \
{ \
if( a[m+j]-mf < mf-a[m+j-1] ) \
break; \
else \
{ \
j--; \
break; \
} \
} \
}
static size_t
mode_mirror_max_index_diff(struct statistics_mode_params *p, size_t m)
{
/* The variables:
i: Index on mirror distribution.
j: Index on input distribution.
prevj: Index of previously checked point in the actual array.
mf: (in macro) Value that is approximately equal in both
distributions. */
size_t i, j, absdiff, prevj=0, size=p->data->size;
size_t maxdiff=0, errordiff=p->mirrordist*sqrt(m);
/*
printf("###############\n###############\n");
printf("### Mirror pixel: %zu (mirrordist: %f, sqrt(m): %f)\n", m,
p->mirrordist, sqrt(m));
printf("###############\n###############\n");
*/
/* Go over the mirrored points. */
for(i=1; i<p->numcheck && i<=m && m+i<size ;i+=p->interval)
{
/* Find 'j': the index of the closest point in the original
distribution that has a value similar to the mirror
distribution. */
switch(p->data->type)
{
case GAL_TYPE_UINT8: MIRR_MAX_DIFF( uint8_t ); break;
case GAL_TYPE_INT8: MIRR_MAX_DIFF( int8_t ); break;
case GAL_TYPE_UINT16: MIRR_MAX_DIFF( uint16_t ); break;
case GAL_TYPE_INT16: MIRR_MAX_DIFF( int16_t ); break;
case GAL_TYPE_UINT32: MIRR_MAX_DIFF( uint32_t ); break;
case GAL_TYPE_INT32: MIRR_MAX_DIFF( int32_t ); break;
case GAL_TYPE_UINT64: MIRR_MAX_DIFF( uint64_t ); break;
case GAL_TYPE_INT64: MIRR_MAX_DIFF( int64_t ); break;
case GAL_TYPE_FLOAT32: MIRR_MAX_DIFF( float ); break;
case GAL_TYPE_FLOAT64: MIRR_MAX_DIFF( double ); break;
default:
error(EXIT_FAILURE, 0, "%s: type code %d not recognized",
__func__, p->data->type);
}
/*
printf("i:%-5zu j:%-5zu diff:%-5d maxdiff: %zu\n",
i, j, (int)j-(int)i, maxdiff);
*/
/* The index of the actual CDF corresponding the the mirrored flux
has been found. We want the mirrored distribution to be within the
actual distribution, not beyond it, so the only acceptable results
are when i<j. But we also have noise, so we can't simply use that
as the criterion, small 'j's with 'i>j' are acceptable. So, only
when 'i>j+errordiff' the result is not acceptable! */
if(i>j+errordiff)
{
maxdiff = MODE_MIRROR_ABOVE;
break;
}
absdiff = i>j ? i-j : j-i;
if(absdiff>maxdiff) maxdiff=absdiff;
prevj=j;
}
/* Return the maximum difference. */
return maxdiff;
}
/* Find the mode through the Golden-section search. It is assumed that
'mode_mirror_max_index_diff' has one minimum (within the statistical
errors) in the function. To find that minimum, the golden section search
algorithm is going to used. Read the Wikipedia article for a very nice
introduction.
In summary we will constantly be finding middle points in the given
interval and thus decreasing the interval until a certain tolerance is
reached.
If the input interval is on points 'a' and 'b', then the middle point
(lets call it 'c', where c>a and c<b) to test should be positioned such
that (b-c)/(c-a)=MODE_GOLDEN_RATIO. Once we open up this relation, we
can find c using:
c = ( b + MODE_GOLDEN_RATIO * a ) / ( 1 + MODE_GOLDEN_RATIO )
We need a fourth point to be placed between. With this configuration,
the probing point is located at: */
static size_t
mode_golden_section(struct statistics_mode_params *p)
{
size_t di, dd;
/* Find the probing point in the larger interval. */
if(p->highi-p->midi > p->midi-p->lowi)
di = p->midi + MODE_TWO_TAKE_GR * (float)(p->highi-p->midi);
else
di = p->midi - MODE_TWO_TAKE_GR * (float)(p->midi-p->lowi);
/* Since these are all indexs (and positive) we don't need an absolute
value, highi is also always larger than lowi! In some cases, the first
(standard) condition might be satisfied, while highi-lowi<=2. In such
cases, also jump out! */
if( (p->highi - p->lowi) < p->tolerance*(p->midi+di)
|| (p->highi - p->lowi) <= 3)
return (p->highi+p->lowi)/2;
/* Find the maximum difference for this mirror point. */
dd = mode_mirror_max_index_diff(p, di);
/*------------------------------------------------------------------
{
static int counter=1;
char outname[500], command[1000];
char histsname[500], cfpsname[500];
sprintf(outname, "%dcmp.pdf", counter);
sprintf(cfpsname, "%dcfps.txt", counter);
sprintf(histsname, "%dhists.txt", counter);
gal_mode_make_mirror_plots(p->sorted, p->size, di, histsname, cfpsname);
sprintf(command, "./plot.py %s %s %s", histsname, cfpsname, outname);
system(command);
}
-------------------------------------------------------------------*/
/*
printf("lowi:%-5zu\tmidi:%-5zu(midd: %d)\thighi:%-5zu ----> "
"dq: %-5zu di: %d\n",
p->lowi, p->midi, (int)p->midd, p->highi,
di, (int)dd);
*/
/* +++++++++++++ Start of addition to the golden section search.
The mirrored distribution's cumulative frequency plot has be lower
than the actual's cfp. If it isn't, 'di' will be MODE_MIRROR_ABOVE. In
this case, the normal golden section minimization is not going to give
us what we want. So we have this modification. In such cases, we want
the search to go to the lower interval. */
if(dd==MODE_MIRROR_ABOVE)
{
if( p->midi < di )
{
p->highi=di;
return mode_golden_section(p);
}
else
{
p->highi=p->midi;
p->midi=di;
p->midd=dd;
return mode_golden_section(p);
}
}
/* End of addition to the golden section search. +++++++++++++*/
/* This is the standard golden section search: */
if(dd<p->midd)
{
if(p->highi-p->midi > p->midi-p->lowi)
{
p->lowi = p->midi;
p->midi = di;
p->midd = dd;
return mode_golden_section(p);
}
else
{
p->highi = p->midi;
p->midi = di;
p->midd = dd;
return mode_golden_section(p);
}
}
else
{
if(p->highi-p->midi > p->midi-p->lowi)
{
p->highi = di;
return mode_golden_section(p);
}
else
{
p->lowi = di;
return mode_golden_section(p);
}
}
}
/* Once the mode is found, we need to do a quality control. This quality
control is the measure of its symmetricity. Let's assume the mode index
is at 'm', since an index is just a count, from the Poisson
distribution, the error in 'm' is sqrt(m).
Now, let's take 'b' to be the first point that the difference between
the cumulative distribution of the mirror and actual data deviate more
than sqrt(m). For a scale parameter, lets assume that the index of 5% of
'm' is 'a'. We could have taken the distribution minimum, but the
scatter in the minimum can be too high!
Now, the "symmetricity" of the mode can be defined as: (b-m)/(m-a). For
a completly symmetric mode, this should be 1. Note that the search for
'b' only goes to the 95% of the distribution. */
#define MODE_SYM(IT) { \
IT *a=p->data->array, af=0, bf=0, mf=0, fi; \
\
/* Set the values at the mirror and at 'a' (see above). */ \
mf=a[m]; \
af=a[ gal_statistics_quantile_index(2*m+1, MODE_SYM_LOW_Q) ]; \
if(mf<=af) return 0; \
\
/* This loop is very similar to that of */ \
/* 'mode_mirror_max_index_diff'. It will find the index where the */\
/* difference between the two cumulative frequency plots exceeds */ \
/* that of the error in the mirror index.*/ \
for(i=1; i<topi-m ;i+=1) \
{ \
fi=2*mf-a[m-i]; \
\
for(j=prevj;j<size-m;++j) \
if(a[m+j]>fi) \
{ \
if( a[m+j]-fi < fi-a[m+j-1] ) \
break; \
else \
{ \
j--; \
break; \
} \
} \
\
if(i>j+errdiff || j>i+errdiff) \
{ \
bi=m+i; \
break; \
} \
prevj=j; \
} \
\
/* bi==0 shows that no point with a larger difference could be */ \
/* found. So bi should be set to the end of the search region. */ \
if(bi==0) bi=topi; \
\
bf = *(IT *)b_val = a[bi]; \
/*printf("%zu: %f,%f,%f\n", m, (double)af, (double)mf, (double)bf);*/ \
\
/* For a bad result, return 0 (which will not output any mode). */ \
return bf==af ? 0 : (double)(bf-mf)/(double)(mf-af); \
}
static double
mode_symmetricity(struct statistics_mode_params *p, size_t m, void *b_val)
{
size_t i, j, bi=0, topi, errdiff, prevj=0, size=p->data->size;
/* Set the basic constants. */
topi = 2*m>size-1 ? size-1 : 2*m;
errdiff = p->mirrordist * sqrt(m);
/* Do the process. */
switch(p->data->type)
{
case GAL_TYPE_UINT8: MODE_SYM( uint8_t ); break;
case GAL_TYPE_INT8: MODE_SYM( int8_t ); break;
case GAL_TYPE_UINT16: MODE_SYM( uint16_t ); break;
case GAL_TYPE_INT16: MODE_SYM( int16_t ); break;
case GAL_TYPE_UINT32: MODE_SYM( uint32_t ); break;
case GAL_TYPE_INT32: MODE_SYM( int32_t ); break;
case GAL_TYPE_UINT64: MODE_SYM( uint64_t ); break;
case GAL_TYPE_INT64: MODE_SYM( int64_t ); break;
case GAL_TYPE_FLOAT32: MODE_SYM( float ); break;
case GAL_TYPE_FLOAT64: MODE_SYM( double ); break;
default:
error(EXIT_FAILURE, 0, "%s: type code %d not recognized",
__func__, p->data->type);
}
/* Control shouldn't reach here! */
error(EXIT_FAILURE, 0, "%s: a bug! please contact us at %s so we can "
"address the problem. Control must not have reached the end of this "
"function", __func__, PACKAGE_BUGREPORT);
return NAN;
}
/* Return the mode and related parameters in a float64 'gal_data_t' with
the following elements in its array, the array:
array[0]: mode
array[1]: mode quantile.
array[2]: symmetricity.
array[3]: value at the end of symmetricity.
The inputs are:
- 'input' is the input dataset, it doesn't have to be sorted and can
have blank values.
- 'mirrordist' is the maximum distance after the mirror point to check
as a multiple of sigma.
- 'inplace' is either 0 or 1. If it is 1 and the input array has blank
values and is not sorted, then the removal of blank values and
sorting will occur in-place (input will be modified): all blank
elements in the input array will be removed and it will be sorted. */
gal_data_t *
gal_statistics_mode(gal_data_t *input, float mirrordist, int inplace)
{
double *oa;
size_t modeindex;
size_t dsize=4, mdsize=1;
struct statistics_mode_params p;
int type=gal_tile_block(input)->type;
gal_data_t *tmptype=gal_data_alloc(NULL, type, 1, &mdsize, NULL, 1, -1, 1,
NULL, NULL, NULL);
gal_data_t *b_val=gal_data_alloc(NULL, type, 1, &mdsize, NULL, 1, -1, 1,
NULL, NULL, NULL);
gal_data_t *out=gal_data_alloc(NULL, GAL_TYPE_FLOAT64, 1, &dsize,
NULL, 1, -1, 1, NULL, NULL, NULL);
/* A small sanity check. */
if(mirrordist<=0)
error(EXIT_FAILURE, 0, "%s: %f not acceptable as a value to "
"'mirrordist'. Only positive values can be given to it",
__func__, mirrordist);
/* Make sure the input doesn't have blank values and is sorted. */
p.data=gal_statistics_no_blank_sorted(input, inplace);
/* It can happen that the whole array is blank. In such cases,
'p.data->size==0', so set all output elements to NaN and return. */
oa=out->array;
if(p.data->size==0) { oa[0]=oa[1]=oa[2]=oa[3]=NAN; return out; }
/* Basic constants. */
p.tolerance = 0.01;
p.mirrordist = mirrordist;
p.numcheck = p.data->size/2;
/* Fill in the interval: Checking every single element is over-kill, so
if the dataset is large enough, we'll set an interval to only check
elements at an interval (so only 1000 elements are checked). */
p.interval = p.numcheck>1000 ? p.numcheck/1000 : 1;
/* Set the lower and higher acceptable indexes for the mode based on
quantiles. */
p.lowi = gal_statistics_quantile_index(p.data->size, MODE_MIN_Q);
p.highi = gal_statistics_quantile_index(p.data->size, MODE_MAX_Q);
/* Having set the low and higher interval values, we will set the first
middle point and also the maximum distance on that point. This is
necessary to start the iteration. */
p.midi = ( ( (float)p.highi + MODE_GOLDEN_RATIO * (float)p.lowi )
/ ( 1 + MODE_GOLDEN_RATIO ) );
p.midd = mode_mirror_max_index_diff(&p, p.midi);
/* Do the golden-section search iteration, read the mode value from the
input array and save it in the 'tmptype' data structure that has the
same type as the input. */
modeindex = mode_golden_section(&p);
memcpy( tmptype->array,
gal_pointer_increment(p.data->array, modeindex, p.data->type),
gal_type_sizeof(p.data->type) );
/* Convert the mode (which is in the same type as the input at this
stage) to float64. */
tmptype=gal_data_copy_to_new_type_free(tmptype, GAL_TYPE_FLOAT64);
/* Put the first three values into the output structure. */
oa[0] = *((double *)(tmptype->array));
oa[1] = ((double)modeindex) / ((double)(p.data->size-1));
oa[2] = mode_symmetricity(&p, modeindex, b_val->array);
/* If the symmetricity is good, put it in the output, otherwise set all
output values to NaN. */
if(oa[2]>GAL_STATISTICS_MODE_GOOD_SYM)
{
b_val=gal_data_copy_to_new_type_free(b_val, GAL_TYPE_FLOAT64);
oa[3] = *((double *)(b_val->array));
}
else oa[0]=oa[1]=oa[2]=oa[3]=NAN;
/* For a check:
printf("mode: %g\nquantile: %g\nsymmetricity: %g\nsym value: %g\n",
oa[0], oa[1], oa[2], oa[3]);
*/
/* Clean up (if necessary), then return the output. */
if(p.data!=input) gal_data_free(p.data);
gal_data_free(tmptype);
gal_data_free(b_val);
return out;
}
/* Make the mirror array. */
#define STATS_MKMIRROR(IT) { \
IT *a=noblank_sorted->array, *m=mirror->array; \
IT zf=a[index]; \
*mirror_val=zf; \
for(i=0;i<=index;++i) m[i] = a[i]; \
for(i=1;i<=index;++i) m[index+i] = 2 * zf - m[index - i]; \
}
static gal_data_t *
statistics_make_mirror(gal_data_t *noblank_sorted, size_t index,
double *mirror_val)
{
size_t i, dsize = 2*index+1;
gal_data_t *mirror=gal_data_alloc(NULL, noblank_sorted->type, 1, &dsize,
NULL, 1, -1, 1, NULL, NULL, NULL);
/* Make sure the index is less than or equal to the number of
elements. */
if( index >= noblank_sorted->size )
error(EXIT_FAILURE, 0, "%s: the index value must be less than or equal "
"to the number of elements in the input, but it isn't: index: "
"%zu, size of input: %zu", __func__, index, noblank_sorted->size);
/* Fill in the mirror array. */
switch(noblank_sorted->type)
{
case GAL_TYPE_UINT8: STATS_MKMIRROR( uint8_t ); break;
case GAL_TYPE_INT8: STATS_MKMIRROR( int8_t ); break;
case GAL_TYPE_UINT16: STATS_MKMIRROR( uint16_t ); break;
case GAL_TYPE_INT16: STATS_MKMIRROR( int16_t ); break;
case GAL_TYPE_UINT32: STATS_MKMIRROR( uint32_t ); break;
case GAL_TYPE_INT32: STATS_MKMIRROR( int32_t ); break;
case GAL_TYPE_UINT64: STATS_MKMIRROR( uint64_t ); break;
case GAL_TYPE_INT64: STATS_MKMIRROR( int64_t ); break;
case GAL_TYPE_FLOAT32: STATS_MKMIRROR( float ); break;
case GAL_TYPE_FLOAT64: STATS_MKMIRROR( double ); break;
}
/* Return the mirrored distribution. */
return mirror;
}
/* Make a mirrored histogram and cumulative frequency plot with the mirror
distribution of the input with a value at 'value'.
The output is a linked list of data structures: the first is the bins
with one bin at the mirror point, the second is the histogram with a
maximum of one and the third is the cumulative frequency plot. */
gal_data_t *
gal_statistics_mode_mirror_plots(gal_data_t *input, gal_data_t *value,
size_t numbins, int inplace,
double *mirror_val)
{
gal_data_t *mirror, *bins, *hist, *cfp;
gal_data_t *nbs=gal_statistics_no_blank_sorted(input, inplace);
size_t ind=gal_statistics_quantile_function_index(nbs, value, inplace);
/* Only continue if we actually have non-blank elements. */
if(nbs->size==0) return NULL;
/* If the given mirror was outside the range of the input, then index
will be 0 (below the range) or -1 (above the range), in that case, we
should return NULL. */
if(ind==-1 || ind==0)
return NULL;
/* Make the mirror array. */
mirror=statistics_make_mirror(nbs, ind, mirror_val);
/* Set the bins for histogram and cdf. */
bins=gal_statistics_regular_bins(mirror, NULL, numbins, *mirror_val);
/* Make the histogram: set it's maximum value to 1 for a nice comparison
with the CDF. */
hist=gal_statistics_histogram(mirror, bins, 0, 1);
/* Make the cumulative frequency plot. */
cfp=gal_statistics_cfp(mirror, bins, 1);
/* Set the pointers to make a table and return. */
bins->next=hist;
hist->next=cfp;
return bins;
}
/****************************************************************
******** Sort *******
****************************************************************/
/* Check if the given dataset is sorted. */
enum is_sorted_return
{
STATISTICS_IS_SORTED_NOT, /* ==0: by C standard. */
STATISTICS_IS_SORTED_INCREASING,
STATISTICS_IS_SORTED_DECREASING,
};
#define IS_SORTED(IT) { \
IT *aa=input->array, *a=input->array, *af=a+input->size-1; \
if(a[1]>=a[0]) do if( *(a+1) < *a ) break; while(++a<af); \
else do if( *(a+1) > *a ) break; while(++a<af); \
out=( a==af /* It reached the end of the array. */ \
? ( aa[1]>=aa[0] \
? STATISTICS_IS_SORTED_INCREASING \
: STATISTICS_IS_SORTED_DECREASING ) \
: STATISTICS_IS_SORTED_NOT ); \
}
int
gal_statistics_is_sorted(gal_data_t *input, int updateflags)
{
int out=GAL_BLANK_INT16; /* On some systems, int may be 16-bits wide. */
/* If the flags are already set, don't bother going over the dataset. */
if( input->flag & GAL_DATA_FLAG_SORT_CH )
return ( input->flag & GAL_DATA_FLAG_SORTED_I
? STATISTICS_IS_SORTED_INCREASING
: ( input->flag & GAL_DATA_FLAG_SORTED_D
? STATISTICS_IS_SORTED_DECREASING
: STATISTICS_IS_SORTED_NOT ) );
/* Parse the array (if necessary). */
switch(input->size)
{
/* A 0 or one-element dataset can be considered, sorted, so we'll say
its increasing. */
case 0:
case 1:
out=STATISTICS_IS_SORTED_INCREASING;
break;
/* Do the check when there is more than one element. */
default:
switch(input->type)
{
case GAL_TYPE_UINT8: IS_SORTED( uint8_t ); break;
case GAL_TYPE_INT8: IS_SORTED( int8_t ); break;
case GAL_TYPE_UINT16: IS_SORTED( uint16_t ); break;
case GAL_TYPE_INT16: IS_SORTED( int16_t ); break;
case GAL_TYPE_UINT32: IS_SORTED( uint32_t ); break;
case GAL_TYPE_INT32: IS_SORTED( int32_t ); break;
case GAL_TYPE_UINT64: IS_SORTED( uint64_t ); break;
case GAL_TYPE_INT64: IS_SORTED( int64_t ); break;
case GAL_TYPE_FLOAT32: IS_SORTED( float ); break;
case GAL_TYPE_FLOAT64: IS_SORTED( double ); break;
default:
error(EXIT_FAILURE, 0, "%s: type code %d not recognized",
__func__, input->type);
}
}
/* Update the flags, if required. */
if(updateflags)
{
input->flag |= GAL_DATA_FLAG_SORT_CH;
switch(out)
{
case STATISTICS_IS_SORTED_NOT:
input->flag &= ~GAL_DATA_FLAG_SORTED_I;
input->flag &= ~GAL_DATA_FLAG_SORTED_D;
break;
case STATISTICS_IS_SORTED_INCREASING:
input->flag |= GAL_DATA_FLAG_SORTED_I;
input->flag &= ~GAL_DATA_FLAG_SORTED_D;
break;
case STATISTICS_IS_SORTED_DECREASING:
input->flag &= ~GAL_DATA_FLAG_SORTED_I;
input->flag |= GAL_DATA_FLAG_SORTED_D;
break;
default:
error(EXIT_FAILURE, 0, "%s: a bug! Please contact us at %s to fix "
"the problem. The value %d is not recognized for 'out'",
__func__, PACKAGE_BUGREPORT, out);
}
}
return out;
}
/* This function is ignorant to blank values, if you want to make sure
there is no blank values, you can call 'gal_blank_remove' first. */
#define STATISTICS_SORT(QSORT_F) { \
qsort(input->array, input->size, gal_type_sizeof(input->type), QSORT_F); \
}
void
gal_statistics_sort_increasing(gal_data_t *input)
{
/* Do the sorting. */
if(input->size)
switch(input->type)
{
case GAL_TYPE_UINT8:
STATISTICS_SORT(gal_qsort_uint8_i); break;
case GAL_TYPE_INT8:
STATISTICS_SORT(gal_qsort_int8_i); break;
case GAL_TYPE_UINT16:
STATISTICS_SORT(gal_qsort_uint16_i); break;
case GAL_TYPE_INT16:
STATISTICS_SORT(gal_qsort_int16_i); break;
case GAL_TYPE_UINT32:
STATISTICS_SORT(gal_qsort_uint32_i); break;
case GAL_TYPE_INT32:
STATISTICS_SORT(gal_qsort_int32_i); break;
case GAL_TYPE_UINT64:
STATISTICS_SORT(gal_qsort_uint64_i); break;
case GAL_TYPE_INT64:
STATISTICS_SORT(gal_qsort_int64_i); break;
case GAL_TYPE_FLOAT32:
STATISTICS_SORT(gal_qsort_float32_i); break;
case GAL_TYPE_FLOAT64:
STATISTICS_SORT(gal_qsort_float64_i); break;
default:
error(EXIT_FAILURE, 0, "%s: type code %d not recognized",
__func__, input->type);
}
/* Set the flags. */
input->flag |= GAL_DATA_FLAG_SORT_CH;
input->flag |= GAL_DATA_FLAG_SORTED_I;
input->flag &= ~GAL_DATA_FLAG_SORTED_D;
}
/* See explanations above 'gal_statistics_sort_increasing'. */
void
gal_statistics_sort_decreasing(gal_data_t *input)
{
/* Do the sorting. */
if(input->size)
switch(input->type)
{
case GAL_TYPE_UINT8:
STATISTICS_SORT(gal_qsort_uint8_d); break;
case GAL_TYPE_INT8:
STATISTICS_SORT(gal_qsort_int8_d); break;
case GAL_TYPE_UINT16:
STATISTICS_SORT(gal_qsort_uint16_d); break;
case GAL_TYPE_INT16:
STATISTICS_SORT(gal_qsort_int16_d); break;
case GAL_TYPE_UINT32:
STATISTICS_SORT(gal_qsort_uint32_d); break;
case GAL_TYPE_INT32:
STATISTICS_SORT(gal_qsort_int32_d); break;
case GAL_TYPE_UINT64:
STATISTICS_SORT(gal_qsort_uint64_d); break;
case GAL_TYPE_INT64:
STATISTICS_SORT(gal_qsort_int64_d); break;
case GAL_TYPE_FLOAT32:
STATISTICS_SORT(gal_qsort_float32_d); break;
case GAL_TYPE_FLOAT64:
STATISTICS_SORT(gal_qsort_float64_d); break;
default:
error(EXIT_FAILURE, 0, "%s: type code %d not recognized",
__func__, input->type);
}
/* Set the flags. */
input->flag |= GAL_DATA_FLAG_SORT_CH;
input->flag |= GAL_DATA_FLAG_SORTED_D;
input->flag &= ~GAL_DATA_FLAG_SORTED_I;
}
/* Return a dataset that doesn't have blank values and is sorted. If the
'inplace' value is set to 1, then the input array will be modified,
otherwise, a new array will be allocated with the desired properties. So
if it is already sorted and has blank values, the 'inplace' variable is
irrelevant.
This function can also work on tiles, in that case, 'inplace' is
useless, because a tile doesn't own its dataset and the dataset is not
contiguous. */
gal_data_t *
gal_statistics_no_blank_sorted(gal_data_t *input, int inplace)
{
gal_data_t *contig, *noblank, *sorted;
/* We need to account for the case that there are no elements in the
input. */
if(input->size)
{
/* If this is a tile, then first we have to copy it into a contiguous
piece of memory. After this step, we will only be dealing with
'contig' (for a contiguous patch of memory). */
if(input->block)
{
/* Copy the input into a contiguous patch of memory. */
contig=gal_data_copy(input);
/* When the data was a tile, we have already copied the array
into a separate allocated space. So to avoid any further
copying, we will just set the 'inplace' variable to 1. */
inplace=1;
}
else contig=input;
/* Make sure there are no blanks in the array that will be
used. After this step, we won't be dealing with 'input' any more,
but with 'noblank'. */
if( gal_blank_present(contig, 1) )
{
/* See if we should allocate a new dataset to remove blanks or if
we can use the actual contiguous patch of memory. */
noblank = inplace ? contig : gal_data_copy(contig);
gal_blank_remove(noblank);
}
else noblank=contig;
/* Make sure the array is sorted. After this step, we won't be
dealing with 'noblank' any more but with 'sorted'. */
if(noblank->size)
{
if( gal_statistics_is_sorted(noblank, 1) )
sorted = inplace ? noblank : gal_data_copy(noblank);
else
{
if(inplace) sorted=noblank;
else
{
if(noblank!=input) /* no-blank is already allocated. */
sorted=noblank;
else
sorted=gal_data_copy(noblank);
}
gal_statistics_sort_increasing(sorted);
}
}
else
sorted=noblank;
}
/* Input's size was zero. Note that we cannot simply copy the zero-sized
input dataset, we'll have to allocate it here. */
else
sorted = ( inplace
? input
: gal_data_alloc(NULL, input->type, 0, NULL, input->wcs, 0,
input->minmapsize, input->quietmmap,
NULL, NULL, NULL) );
/* Set the blank and sorted flags if the dataset has zero-elements. Even
if having blank values or being sorted is not defined on a
zero-element dataset, it is up to different functions to choose what
they will do with a zero-element dataset. The flags have to be set
after this function any way. */
if(sorted->size==0)
{
sorted->flag |= GAL_DATA_FLAG_SORT_CH;
sorted->flag |= GAL_DATA_FLAG_BLANK_CH;
sorted->flag |= GAL_DATA_FLAG_SORTED_I;
sorted->flag &= ~GAL_DATA_FLAG_HASBLANK;
sorted->flag &= ~GAL_DATA_FLAG_SORTED_D;
}
/* Return final array. */
return sorted;
}
/****************************************************************
******** Histogram and Cumulative Frequency Plot *******
****************************************************************/
/* Generate an array of regularly spaced elements.
Input arguments:
* The 'input' set you want to apply the bins to. This is only
necessary if the range argument is not complete, see below. If
'range' has all the necessary information, you can pass a NULL
pointer for 'input'.
* The 'inrange' data structure keeps the desired range along each
dimension of the input data structure, it has to be in float32
type. Note these points:
- If you want the full range of the dataset (in any dimensions,
then just set 'range' to NULL and the range will be specified
from the minimum and maximum value of the dataset.
- If there is one element for each dimension in range, then it is
viewed as a quantile (Q), and the range will be: 'Q to 1-Q'.
- If there are two elements for each dimension in range, then they
are assumed to be your desired minimum and maximum values. When
either of the two are NaN, the minimum and maximum will be
calculated for it.
* The number of bins: must be larger than 0.
* 'onebinstart' A desired value for onebinstart. Note that with this
option, the bins won't start and end exactly on the given range
values, it will be slightly shifted to accommodate this
request.
The output is a 1D array (column) of type double, it has to be double to
account for small differences on the bin edges.
*/
gal_data_t *
gal_statistics_regular_bins(gal_data_t *input, gal_data_t *inrange,
size_t numbins, double onebinstart)
{
size_t i;
gal_data_t *bins, *tmp, *range;
double *b, *ra, min=NAN, max=NAN, hbw, diff, binwidth;
/* Some sanity checks. */
if(numbins==0)
error(EXIT_FAILURE, 0, "%s: 'numbins' cannot be given a value of 0",
__func__);
if(input->size==0) return NULL;
/* Set the minimum and maximum values. */
if(inrange && inrange->size)
{
/* Make sure we are dealing with a double type range. */
if(inrange->type==GAL_TYPE_FLOAT64)
range=inrange;
else
range=gal_data_copy_to_new_type(inrange, GAL_TYPE_FLOAT64);
/* Set the minimum and maximum of the bins. */
ra=range->array;
if( (range->size)%2 )
error(EXIT_FAILURE, 0, "%s: quantile ranges are not "
"implemented yet", __func__);
else
{
/* If the minimum isn't set (is blank), find it. */
if( isnan(ra[0]) )
{
tmp=gal_data_copy_to_new_type_free(
gal_statistics_minimum(input), GAL_TYPE_FLOAT64);
min=*((double *)(tmp->array));
gal_data_free(tmp);
}
else min=ra[0];
/* For the maximum, when it isn't set, we'll add a very small
value, so all points are included. */
if( isnan(ra[1]) )
{
tmp=gal_data_copy_to_new_type_free(gal_statistics_maximum(input),
GAL_TYPE_FLOAT64);
max=*((double *)(tmp->array));
/* Clean up. */
gal_data_free(tmp);
}
else max=ra[1];
}
/* Clean up: if 'range' was allocated within this function. */
if(range!=inrange) gal_data_free(range);
}
/* No range was given, find the minimum and maximum. */
else
{
tmp=gal_data_copy_to_new_type_free(gal_statistics_minimum(input),
GAL_TYPE_FLOAT64);
min=*((double *)(tmp->array));
gal_data_free(tmp);
tmp=gal_data_copy_to_new_type_free(gal_statistics_maximum(input),
GAL_TYPE_FLOAT64);
max=*((double *)(tmp->array));
/* Clean up. */
gal_data_free(tmp);
}
/* Allocate the space for the bins. */
bins=gal_data_alloc(NULL, GAL_TYPE_FLOAT64, 1, &numbins, NULL,
0, input->minmapsize, input->quietmmap, "bin_center",
input->unit, "Center value of each bin.");
/* Set central bin values. */
b=bins->array;
hbw = ( binwidth=(max-min)/numbins )/2;
for(i=0;i<numbins;++i) b[i] = min + i*binwidth + hbw;
/* Go over all the bins and stop when the sign of the two sides
of one bin are different. */
if( !isnan(onebinstart) )
{
for(i=0;i<numbins-1;++i)
if( (b[i]-hbw) < onebinstart && (b[i+1]-hbw) > onebinstart) break;
if( i != numbins-1 )
{
diff = onebinstart - (b[i]-hbw);
for(i=0;i<numbins;++i)
b[i] += diff;
}
}
/* For a check:
printf("min: %g\n", min);
printf("max: %g\n", max);
printf("onebinstart: %.10f\n", onebinstart);
printf("binwidth: %g\n", binwidth);
for(i=0;i<numbins;++i)
printf("%zu: %.4g\t(%g, %g)\n", i, b[i], b[i]-hbw, b[i]+hbw);
*/
/* Set the status of the bins to regular and return. */
bins->status=GAL_STATISTICS_BINS_REGULAR;
return bins;
}
/* Make a histogram of all the elements in the given dataset with bin
values that are defined in the 'inbins' structure (see
'gal_statistics_regular_bins'). 'inbins' is not mandatory, if you pass a
NULL pointer, the bins structure will be built within this function
based on the 'numbins' input. As a result, when you have already defined
the bins, 'numbins' is not used. */
#define HISTOGRAM_TYPESET(IT) { \
IT *a=input->array, *af=a+input->size; \
do \
if(*a>=min && *a<=max) \
{ \
h_i=(*a-min)/binwidth; \
/* When '*a' is the largest element (within floating point */ \
/* errors), 'h_i' can be one element larger than the */ \
/* number of bins. But since its in the dataset, we need */ \
/* to count it. So we'll put it in the last bin. */ \
++h[ h_i - (h_i==hist->size ? 1 : 0) ]; \
} \
while(++a<af); \
}
gal_data_t *
gal_statistics_histogram(gal_data_t *input, gal_data_t *bins, int normalize,
int maxone)
{
float *f, *ff;
size_t *h, h_i;
gal_data_t *hist;
double *d, min, max, ref=NAN, binwidth;
/* Check if the bins are regular or not. For irregular bins, we can
either use the old implementation, or GSL's histogram
functionality. */
if(bins==NULL)
error(EXIT_FAILURE, 0, "%s: 'bins' is NULL", __func__);
if(bins->size==1)
error(EXIT_FAILURE, 0, "%s: 'bins' has to have more than "
"one element", __func__);
if(bins->status!=GAL_STATISTICS_BINS_REGULAR)
error(EXIT_FAILURE, 0, "%s: the input bins are not regular. Currently "
"it is only implemented for regular bins", __func__);
if(input->size==0)
error(EXIT_FAILURE, 0, "%s: input's size is 0", __func__);
/* Check if normalize and 'maxone' are not called together. */
if(normalize && maxone)
error(EXIT_FAILURE, 0, "%s: only one of 'normalize' and 'maxone' may "
"be given", __func__);
/* Allocate the histogram (note that we are clearning it so all values
are zero. */
hist=gal_data_alloc(NULL, GAL_TYPE_SIZE_T, bins->ndim, bins->dsize,
NULL, 1, input->minmapsize, input->quietmmap,
"hist_number", "counts",
"Number of data points within each bin.");
/* Set the minimum and maximum range of the histogram from the bins. */
d=bins->array;
binwidth=d[1]-d[0];
min = d[ 0 ] - binwidth/2;
max = d[ bins->size-1 ] + binwidth/2;
/* Go through all the elements and find out which bin they belong to. */
h=hist->array;
switch(input->type)
{
case GAL_TYPE_UINT8: HISTOGRAM_TYPESET(uint8_t); break;
case GAL_TYPE_INT8: HISTOGRAM_TYPESET(int8_t); break;
case GAL_TYPE_UINT16: HISTOGRAM_TYPESET(uint16_t); break;
case GAL_TYPE_INT16: HISTOGRAM_TYPESET(int16_t); break;
case GAL_TYPE_UINT32: HISTOGRAM_TYPESET(uint32_t); break;
case GAL_TYPE_INT32: HISTOGRAM_TYPESET(int32_t); break;
case GAL_TYPE_UINT64: HISTOGRAM_TYPESET(uint64_t); break;
case GAL_TYPE_INT64: HISTOGRAM_TYPESET(int64_t); break;
case GAL_TYPE_FLOAT32: HISTOGRAM_TYPESET(float); break;
case GAL_TYPE_FLOAT64: HISTOGRAM_TYPESET(double); break;
default:
error(EXIT_FAILURE, 0, "%s: type code %d not recognized",
__func__, input->type);
}
/* For a check:
{
size_t i, *hh=hist->array;
for(i=0;i<hist->size;++i) printf("%-10.4f%zu\n", f[i], hh[i]);
}
*/
/* Find the reference to correct the histogram if necessary. */
if(normalize)
{
/* Set the reference. */
ref=0.0f;
hist=gal_data_copy_to_new_type_free(hist, GAL_TYPE_FLOAT32);
ff=(f=hist->array)+hist->size; do ref += *f++; while(f<ff);
/* Correct the name, units and comments. */
free(hist->name); free(hist->unit); free(hist->comment);
gal_checkset_allocate_copy("hist_normalized", &hist->name);
gal_checkset_allocate_copy("frac", &hist->unit);
gal_checkset_allocate_copy("Normalized histogram value for this bin.",
&hist->comment);
}
if(maxone)
{
/* Calculate the reference. */
ref=-FLT_MAX;
hist=gal_data_copy_to_new_type_free(hist, GAL_TYPE_FLOAT32);
ff=(f=hist->array)+hist->size;
do ref = *f>ref ? *f : ref; while(++f<ff);
/* Correct the name, units and comments. */
free(hist->name); free(hist->unit); free(hist->comment);
gal_checkset_allocate_copy("hist_maxone", &hist->name);
gal_checkset_allocate_copy("frac", &hist->unit);
gal_checkset_allocate_copy("Fractional histogram value for this bin "
"when maximum bin value is 1.0.",
&hist->comment);
}
/* Correct the histogram if necessary. */
if( !isnan(ref) )
{ ff=(f=hist->array)+hist->size; do *f++ /= ref; while(f<ff); }
/* Return the histogram. */
return hist;
}
/* Build a 2D histogram from the two input columns (a list) and two bins
(also a list). */
#define HISTOGRAM2D_TYPESET(AT, BT) { \
BT *b=input->next->array; \
AT *a=input->array, *af=a+input->size; \
do \
{ \
if(*a>=mina && *a<=maxa && *b>=minb && *b<=maxb) \
{ \
i=(*a-mina)/binwidtha; \
j=(*b-minb)/binwidthb; \
/* When '*a' is the largest element (within floating */ \
/* point errors), 'ii' can be one element larger than */ \
/* the number of bins. But since its in the dataset, we */ \
/* need to count it. So we'll put it in the last bin. */ \
if(i==bsizea) --i; \
if(j==bsizeb) --j; \
++h[ i*bsizeb+j ]; \
} \
++b; \
} \
while(++a<af); \
}
#define HISTOGRAM2D_TYPESET_A(AT) { \
switch(input->next->type) \
{ \
case GAL_TYPE_UINT8: HISTOGRAM2D_TYPESET(AT, uint8_t); break; \
case GAL_TYPE_INT8: HISTOGRAM2D_TYPESET(AT, int8_t); break; \
case GAL_TYPE_UINT16: HISTOGRAM2D_TYPESET(AT, uint16_t); break; \
case GAL_TYPE_INT16: HISTOGRAM2D_TYPESET(AT, int16_t); break; \
case GAL_TYPE_UINT32: HISTOGRAM2D_TYPESET(AT, uint32_t); break; \
case GAL_TYPE_INT32: HISTOGRAM2D_TYPESET(AT, int32_t); break; \
case GAL_TYPE_UINT64: HISTOGRAM2D_TYPESET(AT, uint64_t); break; \
case GAL_TYPE_INT64: HISTOGRAM2D_TYPESET(AT, int64_t); break; \
case GAL_TYPE_FLOAT32: HISTOGRAM2D_TYPESET(AT, float); break; \
case GAL_TYPE_FLOAT64: HISTOGRAM2D_TYPESET(AT, double); break; \
default: \
error(EXIT_FAILURE, 0, "%s: type code %d not recognized", \
__func__, input->type); \
} \
}
gal_data_t *
gal_statistics_histogram2d(gal_data_t *input, gal_data_t *bins)
{
uint32_t *h;
double *o1, *o2;
gal_data_t *tmp, *out;
size_t i, j, bsizea, bsizeb, outsize;
double *da, *db, binwidtha, binwidthb, mina, minb, maxa, maxb;
/* Basic sanity checks. */
if(input->next==NULL)
error(EXIT_FAILURE, 0, "%s: 'input' has to be a list of two datasets",
__func__);
if(bins->next==NULL)
error(EXIT_FAILURE, 0, "%s: 'bins' has to be a list of two datasets",
__func__);
if(input->next->next)
error(EXIT_FAILURE, 0, "%s: 'input' should only contain two datasets, "
"not more", __func__);
if(bins->next->next)
error(EXIT_FAILURE, 0, "%s: 'bins' should only contain two datasets, "
"not more", __func__);
if(input->size != input->next->size)
error(EXIT_FAILURE, 0, "the two input datasets have to have the "
"same size");
if(bins->status!=GAL_STATISTICS_BINS_REGULAR
|| bins->next->status!=GAL_STATISTICS_BINS_REGULAR)
error(EXIT_FAILURE, 0, "%s: the input bins are not regular. Currently "
"it is only implemented for regular bins", __func__);
/* For easy reading of bin sizes. */
da=bins->array;
bsizea=bins->size;
db=bins->next->array;
bsizeb=bins->next->size;
/* Allocate the output. */
outsize=bsizea*bsizeb;
out=gal_data_alloc(NULL, GAL_TYPE_FLOAT64, 1, &outsize,
NULL, 1, input->minmapsize, input->quietmmap,
"bin_dim1", input->unit,
"Bin centers along first axis.");
tmp=gal_data_alloc(NULL, GAL_TYPE_FLOAT64, 1, &outsize,
NULL, 1, input->minmapsize, input->quietmmap,
"bin_dim2", input->next->unit,
"Bin centers along second axis.");
out->next=tmp;
tmp=gal_data_alloc(NULL, GAL_TYPE_UINT32, 1, &outsize,
NULL, 1, input->minmapsize, input->quietmmap,
"hist_number", "counts",
"Number of data points within each 2D-bin (box).");
out->next->next=tmp;
/* Fill in the first two output columns and set the histogram pointer. */
o1=out->array;
o2=out->next->array;
h=out->next->next->array;
for(i=0;i<bsizea;++i)
for(j=0;j<bsizeb;++j)
{
o1[i*bsizeb+j]=da[i];
o2[i*bsizeb+j]=db[j];
}
/* Set the minimum and maximum range of the histogram from the bins. */
binwidtha=da[1]-da[0];
binwidthb=db[1]-db[0];
mina=da[0]-binwidtha/2;
minb=db[0]-binwidthb/2;
maxa=da[ bins->size - 1 ] + binwidtha/2;
maxb=db[ bins->next->size - 1] + binwidthb/2;
/* Fill the histogram column. */
switch(input->type)
{
case GAL_TYPE_UINT8: HISTOGRAM2D_TYPESET_A(uint8_t); break;
case GAL_TYPE_INT8: HISTOGRAM2D_TYPESET_A(int8_t); break;
case GAL_TYPE_UINT16: HISTOGRAM2D_TYPESET_A(uint16_t); break;
case GAL_TYPE_INT16: HISTOGRAM2D_TYPESET_A(int16_t); break;
case GAL_TYPE_UINT32: HISTOGRAM2D_TYPESET_A(uint32_t); break;
case GAL_TYPE_INT32: HISTOGRAM2D_TYPESET_A(int32_t); break;
case GAL_TYPE_UINT64: HISTOGRAM2D_TYPESET_A(uint64_t); break;
case GAL_TYPE_INT64: HISTOGRAM2D_TYPESET_A(int64_t); break;
case GAL_TYPE_FLOAT32: HISTOGRAM2D_TYPESET_A(float); break;
case GAL_TYPE_FLOAT64: HISTOGRAM2D_TYPESET_A(double); break;
default:
error(EXIT_FAILURE, 0, "%s: type code %d not recognized",
__func__, input->type);
}
/* Return the final output. */
return out;
}
/* Make a cumulative frequency plot (CFP) of all the elements in the given
dataset with bin values that are defined in the 'bins' structure (see
'gal_statistics_regular_bins').
The CFP is built from the histogram: in each bin, the value is the sum
of all previous bins in the histogram. Thus, if you have already
calculated the histogram before calling this function, you can pass it
onto this function as the data structure in 'bins->next'. If
'bin->next!=NULL', then it is assumed to be the histogram. If it is
NULL, then the histogram will be calculated internally and freed after
the job is finished.
When a histogram is given and it is normalized, the CFP will also be
normalized (even if the normalized flag is not set here): note that a
normalized CFP's maximum value is 1. */
gal_data_t *
gal_statistics_cfp(gal_data_t *input, gal_data_t *bins, int normalize)
{
double sum;
float *f, *ff, *hf;
gal_data_t *hist, *cfp;
size_t *s, *sf, *hs, sums;
/* Check if the bins are regular or not. For irregular bins, we can
either use the old implementation, or GSL's histogram
functionality. */
if(bins->status!=GAL_STATISTICS_BINS_REGULAR)
error(EXIT_FAILURE, 0, "%s: the input bins are not regular. Currently "
"it is only implemented for regular bins", __func__);
if(input->size==0)
error(EXIT_FAILURE, 0, "%s: input's size is 0", __func__);
/* Prepare the histogram. */
hist = ( bins->next
? bins->next
: gal_statistics_histogram(input, bins, 0, 0) );
/* If the histogram has float32 type it was given by the user and is
either normalized or its maximum was set to 1. We can only use it if
it was normalized. If it isn't normalized, then we must ignore it and
build the histogram here. */
if(hist->type==GAL_TYPE_FLOAT32)
{
sum=0.0f;
ff=(f=hist->array)+hist->size; do sum += *f++; while(f<ff);
if(sum!=1.0f)
hist=gal_statistics_histogram(input, bins, 0, 0);
}
/* Allocate the cumulative frequency plot's necessary space. */
cfp=gal_data_alloc( NULL, hist->type, bins->ndim, bins->dsize,
NULL, 1, input->minmapsize, input->quietmmap,
( hist->type==GAL_TYPE_FLOAT32
? "cfp_normalized" : "cfp_number" ),
( hist->type==GAL_TYPE_FLOAT32
? "frac" : "count" ),
( hist->type==GAL_TYPE_FLOAT32
? "Fraction of data elements from the start to "
"this bin (inclusive)."
: "Number of data elements from the start to "
"this bin (inclusive).") );
/* Fill in the cumulative frequency plot. */
switch(hist->type)
{
case GAL_TYPE_SIZE_T:
sums=0; hs=hist->array; sf=(s=cfp->array)+cfp->size;
do sums = (*s += *hs++ + sums); while(++s<sf);
break;
case GAL_TYPE_FLOAT32:
sum=0.0f; hf=hist->array; ff=(f=cfp->array)+cfp->size;
do sum = (*f += *hf++ + sum); while(++f<ff);
break;
default:
error(EXIT_FAILURE, 0, "%s: type code %d not recognized",
__func__, cfp->type);
}
/* Normalize the CFP if the user asked for it and it wasn't normalized
until now. */
if(normalize && cfp->type==GAL_TYPE_SIZE_T)
{
/* Find the sum, then divide the plot by it. Note that the sum must
come from the histogram, not the CFP! */
sums=0;
cfp=gal_data_copy_to_new_type_free(cfp, GAL_TYPE_FLOAT32);
sf=(s=hist->array)+hist->size; do sums += *s++; while(s<sf);
ff=(f=cfp->array)+cfp->size; do *f++ /= sums; while(f<ff);
/* Correct the name, units and comments. */
free(cfp->name); free(cfp->unit); free(cfp->comment);
gal_checkset_allocate_copy("cfp_normalized", &cfp->name);
gal_checkset_allocate_copy("frac", &cfp->unit);
gal_checkset_allocate_copy("Fraction of data elements from the start "
"to this bin (inclusive).", &cfp->comment);
}
/* If the histogram was allocated here, free it. */
if(hist!=bins->next) gal_data_free(hist);
return cfp;
}
/****************************************************************
***************** Distribution shape ********************
****************************************************************/
#define STATISTICS_CONCENTRATION_OP(TYPE) { \
size_t i; \
TYPE *a=nbs->array; /* The raw min and max */ \
TYPE min=a[1], max=a[nbs->size-2]; /* have too much scatter. */ \
\
/* Put the values in a range of 0 to 1 and get the values on the */ \
/* desired quantiles. */ \
for(i=0;i<nbs->size;++i) a[i]=(a[i]-min)/(max-min); \
vhigh=a[ihigh]; \
vlow=a[ilow]; \
\
/* If this operation was done in-place, undo the scaling because */ \
/* the caller may need to do other operations on the sorted */ \
/* dataset without any blanks. */ \
if(nbs==input) for(i=0;i<nbs->size;++i) a[i]=a[i]*(max-min)+min; \
}
gal_data_t *
gal_statistics_concentration(gal_data_t *input, double q_width,
int inplace)
{
double vlow, vhigh;
gal_data_t *out, *nbs;
size_t one=1, ilow, ihigh;
/* Allocate the output. */
out=gal_data_alloc(NULL, GAL_TYPE_FLOAT64, 1, &one, NULL, 0, -1, 1,
NULL, NULL, NULL);
/* Remove the blanks and sort the input; then convert the data to the
desired floating point precision. In case there are no non-blank
elements, return with a NaN. */
nbs=gal_statistics_no_blank_sorted(input, inplace);
if(nbs==NULL || nbs->size<=1)
{ ((double *)(out->array))[0]=NAN; return out; }
/* If the input is not floating point, we cannot do the operation
in-place because we will be changing all the values into a range of
0.0 to 1.0. Integers are converted to 32-bit floats because by
definition, we are dealing with large quantile differences so even if
32-bit floats cannot fully preserve the integer differences, it should
not make any statistical significance, but it makes a large difference
in RAM and CPU usage.*/
if(input->type!=GAL_TYPE_FLOAT32 || input->type!=GAL_TYPE_FLOAT64)
{
if(nbs==input) /* Was in-place. */
nbs=gal_data_copy_to_new_type(nbs, GAL_TYPE_FLOAT32);
else /* Not in-place: free the old 'nbs'. */
nbs=gal_data_copy_to_new_type_free(nbs, GAL_TYPE_FLOAT32);
}
/* Get the index of the desired quantile indexs. */
ilow=gal_statistics_quantile_index(nbs->size, 0.5-(q_width/2));
ihigh=gal_statistics_quantile_index(nbs->size, 0.5+(q_width/2));
/* Find the values at the low and high quantiles and write the output
value. */
switch(nbs->type)
{
case GAL_TYPE_FLOAT32: STATISTICS_CONCENTRATION_OP(float) break;
case GAL_TYPE_FLOAT64: STATISTICS_CONCENTRATION_OP(double) break;
default:
error(EXIT_FAILURE, 0, "%s: a bug! Please contact us at '%s' to "
"fix this problem. 'nbs->type' of '%s' is not expected "
"at this point of the function", __func__,
PACKAGE_BUGREPORT, gal_type_name(nbs->type, 1));
}
((double *)(out->array))[0]=q_width/(vhigh-vlow);
/* Clean up and return the output. */
if(nbs!=input) gal_data_free(nbs);
return out;
}
/****************************************************************
***************** Outliers ********************
****************************************************************/
static gal_data_t *
statistics_clip_prepare(gal_data_t *input, gal_data_t *nbs, float multip,
float param, int quiet, int sig1_mad0,
gal_data_t **center, gal_data_t **spread,
char **colnames)
{
float *oa;
gal_data_t *out;
uint8_t type=gal_tile_block(input)->type;
size_t i, one=1, osize=GAL_STATISTICS_CLIP_OUT_SIZE;
/* Some sanity checks. */
if( multip<=0 )
error(EXIT_FAILURE, 0, "%s: 'multip', must be greater than zero. The "
"given value was %g", __func__, multip);
if( param<=0 )
error(EXIT_FAILURE, 0, "%s: 'param', must be greater than zero. The "
"given value was %g", __func__, param);
if( param >= 1.0f && ceil(param) != param )
error(EXIT_FAILURE, 0, "%s: when 'param' is larger than 1.0, it is "
"interpretted as an absolute number of clips. So it must be an "
"integer. However, your given value %g", __func__, param);
if( (nbs->flag & GAL_DATA_FLAG_SORT_CH)==0 )
error(EXIT_FAILURE, 0, "%s: a bug! Please contact us at %s to fix the "
"problem. 'nbs->flag', doesn't have the 'GAL_DATA_FLAG_SORT_CH' "
"bit activated", __func__, PACKAGE_BUGREPORT);
if( (nbs->flag & GAL_DATA_FLAG_SORTED_I)==0
&& (nbs->flag & GAL_DATA_FLAG_SORTED_D)==0 )
error(EXIT_FAILURE, 0, "%s: a bug! Please contact us at %s to fix the "
"problem. 'nbs' isn't sorted", __func__, PACKAGE_BUGREPORT);
/* Allocate the necessary spaces (spread is only necessary for MAD). */
out=gal_data_alloc(NULL, GAL_TYPE_FLOAT32, 1, &osize, NULL, 0,
input->minmapsize, input->quietmmap, NULL, NULL, NULL);
*center=gal_data_alloc(NULL, type, 1, &one, NULL, 0, input->minmapsize,
input->quietmmap, NULL, NULL, NULL);
*spread = ( sig1_mad0
? NULL
: gal_data_alloc(NULL, type, 1, &one, NULL, 0,
input->minmapsize, input->quietmmap,
NULL, NULL, NULL) );
/* Set all the output values to NaN to start with. */
oa=out->array;
for(i=0;i<GAL_STATISTICS_CLIP_OUT_SIZE;++i) oa[i]=NAN;
/* Prepare the column names if the user gave quiet=0. */
if(quiet==0)
{
if(sig1_mad0)
{
if( asprintf(colnames, "%-5s %-10s %-12s %-12s",
"round", "number", "median", "STD")<0 )
error(EXIT_FAILURE, 0, "%s: asprintf allocation1 error",
__func__);
}
else
{
if(asprintf(colnames, "%-5s %-10s %-12s %-12s",
"round", "number", "median", "MAD")<0)
error(EXIT_FAILURE, 0, "%s: asprintf allocation2 error",
__func__);
}
}
/* Return the allocated space for the output. */
return out;
}
/* Calculate all the extra statistics that are usually useful with
sigma-clipping. */
static void
statistics_clip_stats_extra(gal_data_t *nbs, float *oa, uint8_t extrastats)
{
gal_data_t *tmp;
uint8_t istd = extrastats & GAL_STATISTICS_CLIP_OUTCOL_OPTIONAL_STD;
uint8_t imad = extrastats & GAL_STATISTICS_CLIP_OUTCOL_OPTIONAL_MAD;
uint8_t imean = extrastats & GAL_STATISTICS_CLIP_OUTCOL_OPTIONAL_MEAN;
/* If the "extra" stats are already calculated (for example MAD in
MAD-clipping), then there is no need to re-calculate it, so set its
conditional variable to 0. Note the '!' at the start of the
condition. */
if( !(isnan(oa[GAL_STATISTICS_CLIP_OUTCOL_MEAN]) && imean) ) imean=0;
if( !(isnan(oa[GAL_STATISTICS_CLIP_OUTCOL_STD]) && istd) ) istd=0;
if( !(isnan(oa[GAL_STATISTICS_CLIP_OUTCOL_MAD]) && imad) ) imad=0;
/* Mean and Standard deviation. */
if(imean && istd)
{
tmp=gal_statistics_mean_std(nbs);
oa[ GAL_STATISTICS_CLIP_OUTCOL_STD ] = ((double *)(tmp->array))[1];
oa[ GAL_STATISTICS_CLIP_OUTCOL_MEAN ] = ((double *)(tmp->array))[0];
gal_data_free(tmp);
}
else /* Only one of the mean or STD was requested */
{
if(imean)
{
tmp=gal_statistics_mean(nbs);
oa[ GAL_STATISTICS_CLIP_OUTCOL_MEAN ]
= ((double *)(tmp->array))[0];
gal_data_free(tmp);
}
if(istd)
{
tmp=gal_statistics_std(nbs);
oa[ GAL_STATISTICS_CLIP_OUTCOL_STD ]
= ((double *)(tmp->array))[0];
gal_data_free(tmp);
}
}
/* MAD. */
if(imad)
{
tmp=gal_statistics_mad(nbs, 1);
tmp=gal_data_copy_to_new_type_free(tmp, GAL_TYPE_FLOAT32);
oa[ GAL_STATISTICS_CLIP_OUTCOL_MAD ] = ((float *)(tmp->array))[0];
gal_data_free(tmp);
}
}
/* Sigma-cilp a given distribution. The way this function works is very
simple: first it will sort the input (if it isn't sorted). Afterwards,
it will recursively change the starting point of the array and its size,
calcluating the basic statistics in each round to define the new
starting point and size. */
#define CLIPALL(IT) { \
IT *a = nbs->array, *af = a + nbs->size; \
IT *bf = nbs->array, *b = bf + nbs->size - 1; \
\
/* Remove all out-of-range elements from the start of the array. */ \
if( nbs->flag & GAL_DATA_FLAG_SORTED_I ) \
do if( *a > (center - (multip * spread)) ) \
{ start=a; break; } \
while(++a<af); \
else \
do if( *a < (center + (multip * spread)) ) \
{ start=a; break; } \
while(++a<af); \
\
/* Remove all out-of-range elements from the end of the array. */ \
if( nbs->flag & GAL_DATA_FLAG_SORTED_I ) \
do if( *b < (center + (multip * spread)) ) \
{ size=b-a+1; break; } \
while(--b>=bf); \
else \
do if( *b > (center - (multip * spread)) ) \
{ size=b-a+1; break; } \
while(--b>=bf); \
}
static gal_data_t *
statistics_clip(gal_data_t *input, float multip, float param,
uint8_t extrastats, int inplace, int quiet, int sig1_mad0)
{
float *oa;
char *colnames;
gal_data_t *spread_d;
void *start, *nbs_array;
size_t i, num=0, size, oldsize;
uint8_t type=gal_tile_block(input)->type;
uint8_t bytolerance = param>=1.0f ? 0 : 1;
double center=NAN, spread=NAN, oldspread=NAN;
gal_data_t *fcopy, *center_i, *center_d, *spread_i, *out;
gal_data_t *nbs=gal_statistics_no_blank_sorted(input, inplace);
size_t maxnum = param>=1.0f?param:GAL_STATISTICS_CLIP_MAX_CONVERGE;
/* Do sanity checks and allocate space for the output. */
out=statistics_clip_prepare(input, nbs, multip, param, quiet, sig1_mad0,
¢er_i, &spread_i, &colnames);
/* If we have more than one element, and the user wants to see the
progress, then print the column information. */
if(!quiet && nbs->size>1) { printf("%s\n", colnames); free(colnames); }
/* Only continue processing if we have non-blank elements. */
oa=out->array;
nbs_array=nbs->array;
switch(nbs->size)
{
/* There was nothing in the input! */
case 0:
if(!quiet)
error(EXIT_SUCCESS, 0, "NO %s-CLIPPING: all input elements "
"are blank or input's size is zero",
sig1_mad0 ? "SIGMA" : "MAD");
for(i=0;i<GAL_STATISTICS_CLIP_OUT_SIZE;++i) oa[i]=NAN;
break;
/* Only one element, convert it to floating point and put it as the
mean and median (the standard deviation will be zero by
definition). */
case 1:
/* Write the values in the output array. */
fcopy=gal_data_copy_to_new_type(nbs, GAL_TYPE_FLOAT32);
center=*((float *)(fcopy->array));
gal_data_free(fcopy);
spread=0;
size=1;
oa[ GAL_STATISTICS_CLIP_OUTCOL_MEDIAN ] = center;
oa[ GAL_STATISTICS_CLIP_OUTCOL_NUMBER_USED ] = size;
oa[ GAL_STATISTICS_CLIP_OUTCOL_MAD ] = sig1_mad0 ? NAN : spread;
oa[ GAL_STATISTICS_CLIP_OUTCOL_STD ] = sig1_mad0 ? spread : NAN;
/* Print the comments (if requested). */
if(!quiet)
printf("%-5d %-10d %-12.5e %-12.5e\n", 1, 1,
oa[ GAL_STATISTICS_CLIP_OUTCOL_MEAN ], 0.0f);
break;
/* More than one element. */
default:
/* Do the clipping, but first initialize the values that will be
changed during the clipping: the start of the array and the
array's size. */
size=nbs->size;
start=nbs->array;
while(num<maxnum && size)
{
/* 'start' and 'size' will be different in the next round
(updated within 'CLIPALL'). We are also setting 'dsize[0]'
because the 'nbs' dataset is one dimensional and for future
steps (like writing values in a table); dsize[0] is
important.*/
nbs->array = start;
nbs->dsize[0] = nbs->size = oldsize = size;
/* For a detailed check, just correct the type).
if(!quiet)
{
size_t iii;
printf("nbs->size: %zu\n", nbs->size);
for(iii=0;iii<nbs->size;++iii)
printf("%f\n", ((float *)(nbs->array))[iii]);
}
*/
/* Find the center and disperson. */
statistics_median_in_sorted_no_blank(nbs, center_i->array);
if(sig1_mad0) spread_i=gal_statistics_std(nbs);
else statistics_mad_in_sorted_no_blank(nbs, center_i,
spread_i->array);
center_d=gal_data_copy_to_new_type(center_i, GAL_TYPE_FLOAT64);
spread_d=gal_data_copy_to_new_type(spread_i, GAL_TYPE_FLOAT64);
if(sig1_mad0) { gal_data_free(spread_i); spread_i=NULL; }
/* Put them in usable (with a type) pointers. */
center = ((double *)(center_d->array))[0];
spread = ((double *)(spread_d->array))[0];
/* If the user wanted to view the steps, show it to them. */
if(!quiet)
printf("%-5zu %-10zu %-12.5e %-12.5e\n", num+1, size, center,
spread);
/* See if we should break out of the loop:
- When the spread is zero we should break out in any case (if
it is by tolerance or number of clips): this can happen in
two situtaions: when all the elements are identical after
the clip (resulting in both MAD and STD to be zero), or when
we have three numbers (for example) and two of them are the
same (resulting in a MAD of zero).
- If we are working by tolerance, normally, 'oldspread' should
be larger than 'spread', because the possible outliers have
been removed. If it is not, it means that we have clipped
too much and must stop anyway, so we don't need an absolute
value on the difference! */
if( spread==0 || (bytolerance && num>0) )
if( spread==0 || ((oldspread - spread) / spread) < param )
{
if(spread==0) oldspread=spread;
gal_data_free(spread_d); gal_data_free(center_d);
break;
}
/* Clip all the elements outside of the desired range: since the
array is sorted, this means to just change the starting
pointer and size of the array. */
switch(type)
{
case GAL_TYPE_UINT8: CLIPALL( uint8_t ); break;
case GAL_TYPE_INT8: CLIPALL( int8_t ); break;
case GAL_TYPE_UINT16: CLIPALL( uint16_t ); break;
case GAL_TYPE_INT16: CLIPALL( int16_t ); break;
case GAL_TYPE_UINT32: CLIPALL( uint32_t ); break;
case GAL_TYPE_INT32: CLIPALL( int32_t ); break;
case GAL_TYPE_UINT64: CLIPALL( uint64_t ); break;
case GAL_TYPE_INT64: CLIPALL( int64_t ); break;
case GAL_TYPE_FLOAT32: CLIPALL( float ); break;
case GAL_TYPE_FLOAT64: CLIPALL( double ); break;
default:
error(EXIT_FAILURE, 0, "%s: type code %d not recognized",
__func__, type);
}
/* Set the values from this round in the old elements, so the
next round can compare with, and return then if necessary. */
oldspread = spread;
++num;
/* Clean up: */
gal_data_free(spread_d);
gal_data_free(center_d);
}
/* If we were in tolerance mode and 'num' and 'maxnum' are equal (the
loop didn't stop by tolerance), so the outputs should be NaN. Note
that they may have been filled in previous rounds compared to the
initialization (where they were all NaN). */
out->status=num;
oa[GAL_STATISTICS_CLIP_OUTCOL_NUMBER_CLIPS]=num;
if( size==0 || (bytolerance && num==maxnum) )
{ for(i=0;i<GAL_STATISTICS_CLIP_OUT_SIZE;++i) oa[i]=NAN; }
else
{
oa[ GAL_STATISTICS_CLIP_OUTCOL_MEDIAN ] = center;
oa[ GAL_STATISTICS_CLIP_OUTCOL_NUMBER_USED ] = size;
oa[ GAL_STATISTICS_CLIP_OUTCOL_MAD ] = sig1_mad0 ? NAN : spread;
oa[ GAL_STATISTICS_CLIP_OUTCOL_STD ] = sig1_mad0 ? spread : NAN;
}
}
/* Measure and report the remaining elements if requested. */
if(extrastats) statistics_clip_stats_extra(nbs, oa, extrastats);
/* Fix the 'array' pointer, clean up and return. */
nbs->array=nbs_array;
gal_data_free(center_i);
gal_data_free(spread_i);
if(nbs==input) input->array=nbs->array;
else gal_data_free(nbs);
return out;
}
gal_data_t *
gal_statistics_clip_sigma(gal_data_t *input, float multip, float param,
uint8_t extrastats, int inplace, int quiet)
{
return statistics_clip(input, multip, param, extrastats,
inplace, quiet, 1);
}
gal_data_t *
gal_statistics_clip_mad(gal_data_t *input, float multip, float param,
uint8_t extrastats, int inplace, int quiet)
{
return statistics_clip(input, multip, param, extrastats,
inplace, quiet, 0);
}
/* Find the first outlier in a distribution. */
#define OUTLIER_BYTYPE(IT) { \
IT *arr=nbs->array; \
for(i=window_size; i<nbs->size && i!=0; pos1_neg0 ? ++i : --i) \
{ \
/* Fill in the distance array. */ \
if(pos1_neg0) \
for(j=0; j<wtakeone; ++j) \
darr[j] = arr[i-window_size+j+1] - arr[i-window_size+j]; \
else \
for(j=0; j<wtakeone; ++j) \
darr[j] = arr[i+window_size-j+1] - arr[i+window_size-j]; \
\
/* Get the sigma-clipped information. */ \
sclip=gal_statistics_clip_mad(dist, sigclip_multip, \
sigclip_param, clipflags, 0, 1); \
sarr=sclip->array; \
\
/* For a check. */ \
if(quiet==0) \
printf("%f [%zu]: %f (%f, %f) %f\n", (float)(arr[i]), i, \
(float)(arr[i]-arr[i-1]), \
sarr[GAL_STATISTICS_CLIP_OUTCOL_NUMBER_USED], \
sarr[GAL_STATISTICS_CLIP_OUTCOL_STD], \
(((double)(arr[i]-arr[i-1])) \
- sarr[GAL_STATISTICS_CLIP_OUTCOL_MEDIAN]) \
/sarr[GAL_STATISTICS_CLIP_OUTCOL_STD]); \
\
/* Terminate the loop if the dist is larger than requested. */ \
/* This shows we have reached the first outlier's position. */ \
if( (((double)(arr[i]-arr[i-1])) \
- sarr[GAL_STATISTICS_CLIP_OUTCOL_MEDIAN]) \
> sigma*sarr[GAL_STATISTICS_CLIP_OUTCOL_STD] ) \
{ \
/* Allocate the output dataset. */ \
out=gal_data_alloc(NULL, input->type, 1, &one, NULL, 0, -1, \
1, NULL, NULL, NULL); \
\
/* Write the outlier, clean up and break. */ \
*(IT *)(out->array)=arr[i-1]; \
gal_data_free(sclip); \
break; \
} \
\
/* Clean up (if we get here). */ \
gal_data_free(sclip); \
} \
}
gal_data_t *
gal_statistics_outlier_bydistance(int pos1_neg0, gal_data_t *input,
size_t window_size, float sigma,
float sigclip_multip, float sigclip_param,
int inplace, int quiet)
{
float *sarr;
double *darr;
size_t i, j, one=1, wtakeone;
gal_data_t *dist, *sclip, *nbs, *out=NULL;
uint8_t clipflags=GAL_STATISTICS_CLIP_OUTCOL_STD;
/* Remove all blanks and sort the dataset. */
nbs=gal_statistics_no_blank_sorted(input, inplace);
/* If all elements are blank, simply return the default (NULL) output. */
if(nbs->size==0) return out;
/* Only continue if the window size is more than 2 elements (out
"outlier" is hard to define on smaller datasets). */
if(window_size>2)
{
/* For a check.
if(nbs->type==GAL_TYPE_FLOAT32)
{
float *n=nbs->array;
for(i=0;i<nbs->size;++i)
printf("%f\n", n[i]);
exit(0);
}
*/
/* Allocate space to keep the distances. */
wtakeone=window_size-1;
dist=gal_data_alloc(NULL, GAL_TYPE_FLOAT64, 1, &wtakeone, NULL,
0, -1, 1, NULL, NULL, NULL);
darr=dist->array;
/* Find the outlier based on the type of the input dataset. */
switch(input->type)
{
case GAL_TYPE_UINT8: OUTLIER_BYTYPE( uint8_t ); break;
case GAL_TYPE_INT8: OUTLIER_BYTYPE( int8_t ); break;
case GAL_TYPE_UINT16: OUTLIER_BYTYPE( uint16_t ); break;
case GAL_TYPE_INT16: OUTLIER_BYTYPE( int16_t ); break;
case GAL_TYPE_UINT32: OUTLIER_BYTYPE( uint32_t ); break;
case GAL_TYPE_INT32: OUTLIER_BYTYPE( int32_t ); break;
case GAL_TYPE_UINT64: OUTLIER_BYTYPE( uint64_t ); break;
case GAL_TYPE_INT64: OUTLIER_BYTYPE( int64_t ); break;
case GAL_TYPE_FLOAT32: OUTLIER_BYTYPE( float ); break;
case GAL_TYPE_FLOAT64: OUTLIER_BYTYPE( double ); break;
default:
error(EXIT_FAILURE, 0, "%s: type code %d not recognized",
__func__, input->type);
}
/* Clean up. */
gal_data_free(dist);
}
/* Clean up and return. */
if(nbs!=input) gal_data_free(nbs);
return out;
}
/* Find the outliers using the average distance of the neighboring
points. */
#define OUTLIER_FLAT_CFP_BYTYPE(IT) { \
IT diff, *pr=prev->array; \
IT *a=nbs->array, *p=a+d, *pp=a+nbs->size-d; \
\
do \
{ \
diff=*(p+d)-*(p-d); \
if(p-a-d<numprev) \
{ \
pr[p-a-d]=diff; \
if(!quiet) printf("%-6zu%-15g%-15g\n", p-a, (float)(*p), \
(float)diff); \
} \
else \
{ \
/* Sigma-clipped median and std for a check. */ \
prev->flag=0; \
prev->size=prev->dsize[0]=numprev; \
sclip=gal_statistics_clip_mad(prev, sigclip_multip, \
sigclip_param, clipflags, \
1, 1); \
\
sarr=sclip->array; \
check = ( (diff - sarr[GAL_STATISTICS_CLIP_OUTCOL_MEDIAN]) \
/ sarr[GAL_STATISTICS_CLIP_OUTCOL_STD] ); \
\
/* If requested, print the values. */ \
if(!quiet) printf("%-6zu%-15g%-15g%-15g (%g,%g)\n", p-a, \
(float)(*p), (float)diff, check, \
sarr[GAL_STATISTICS_CLIP_OUTCOL_MEDIAN], \
sarr[GAL_STATISTICS_CLIP_OUTCOL_STD]); \
\
/* When values are equal, std will be roughly zero */ \
if(sarr[GAL_STATISTICS_CLIP_OUTCOL_STD]>1e-6 && check>thresh) \
{ \
if(flatind==GAL_BLANK_SIZE_T) \
{ \
++counter; \
flatind=p-a; \
} \
else \
{ \
if(flatind==p-a-counter) \
{ /* First element above thresh is 0, so for */ \
/* counting, when counting the number of */ \
/* contiguous elements, we have to add 1. */ \
if(counter+1==numcontig) \
{gal_data_free(sclip); break;} \
else ++counter; \
} \
else { flatind=GAL_BLANK_SIZE_T; counter=0; } \
} \
} \
else { flatind=GAL_BLANK_SIZE_T; counter=0; } \
pr[(p-a-d)%numprev]=diff; \
gal_data_free(sclip); \
} \
} \
while(++p<pp); \
if(counter+1!=numcontig) flatind=GAL_BLANK_SIZE_T; \
}
gal_data_t *
gal_statistics_outlier_flat_cfp(gal_data_t *input, size_t numprev,
float sigclip_multip, float sigclip_param,
float thresh, size_t numcontig, int inplace,
int quiet, size_t *index)
{
float *sarr;
double check;
gal_data_t *nbs, *prev, *out=NULL, *sclip;
uint8_t clipflags=GAL_STATISTICS_CLIP_OUTCOL_STD;
size_t d=2, counter=0, one=1, flatind=GAL_BLANK_SIZE_T;
/* Sanity checks. */
if(thresh<=0)
error(EXIT_FAILURE, 0, "%s: the value of 'thresh' (%g) must be "
"positive", __func__, thresh);
if(numprev==0)
error(EXIT_FAILURE, 0, "%s: 'numprev' (%zu) cannot be zero", __func__,
numprev);
/* Remove all blanks and sort the dataset. */
nbs=gal_statistics_no_blank_sorted(input, inplace);
/* Keep previous slopes. */
prev=gal_data_alloc(NULL, GAL_TYPE_FLOAT64, 1, &numprev, NULL, 0, -1,
1, NULL, NULL, NULL);
/* Find the index where the distribution becomes sufficiently flat. */
switch(nbs->type)
{
case GAL_TYPE_UINT8: OUTLIER_FLAT_CFP_BYTYPE( uint8_t ); break;
case GAL_TYPE_INT8: OUTLIER_FLAT_CFP_BYTYPE( int8_t ); break;
case GAL_TYPE_UINT16: OUTLIER_FLAT_CFP_BYTYPE( uint16_t ); break;
case GAL_TYPE_INT16: OUTLIER_FLAT_CFP_BYTYPE( int16_t ); break;
case GAL_TYPE_UINT32: OUTLIER_FLAT_CFP_BYTYPE( uint32_t ); break;
case GAL_TYPE_INT32: OUTLIER_FLAT_CFP_BYTYPE( int32_t ); break;
case GAL_TYPE_UINT64: OUTLIER_FLAT_CFP_BYTYPE( uint64_t ); break;
case GAL_TYPE_INT64: OUTLIER_FLAT_CFP_BYTYPE( int64_t ); break;
case GAL_TYPE_FLOAT32: OUTLIER_FLAT_CFP_BYTYPE( float ); break;
case GAL_TYPE_FLOAT64: OUTLIER_FLAT_CFP_BYTYPE( double ); break;
default:
error(EXIT_FAILURE, 0, "%s: type code %d not recognized",
__func__, nbs->type);
}
/* Write the output dataset: if no point flat part was found, return
NULL. */
if(flatind!=GAL_BLANK_SIZE_T)
{
out=gal_data_alloc(NULL, input->type, 1, &one, NULL, 0, -1, 1,
NULL, NULL, NULL);
memcpy(out->array,
gal_pointer_increment(nbs->array, flatind, nbs->type),
gal_type_sizeof(nbs->type));
}
/* Clean up and return. */
if(nbs!=input) gal_data_free(nbs);
if(index) *index=flatind;
gal_data_free(prev);
return out;
}
|