File: threads.c

package info (click to toggle)
gnuastro 0.23-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 42,824 kB
  • sloc: ansic: 176,016; sh: 14,784; makefile: 1,298; cpp: 9
file content (425 lines) | stat: -rw-r--r-- 12,329 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
/*********************************************************************
Functions to facilitate using threads.
This is part of GNU Astronomy Utilities (Gnuastro) package.

Original author:
     Mohammad Akhlaghi <mohammad@akhlaghi.org>
Contributing author(s):
Copyright (C) 2015-2024 Free Software Foundation, Inc.

Gnuastro is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.

Gnuastro is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with Gnuastro. If not, see <http://www.gnu.org/licenses/>.
**********************************************************************/
#include <config.h>

#include <time.h>
#include <stdio.h>
#include <errno.h>
#include <error.h>
#include <stdlib.h>

#include <gnuastro/threads.h>
#include <gnuastro/pointer.h>

#include <nproc.h>         /* from Gnulib, in Gnuastro's source */





/*****************************************************************/
/*********    Implementation of pthread_barrier    ***************/
/*****************************************************************/
/* Re-implementation of the example code given in:
http://blog.albertarmea.com/post/47089939939/using-pthread-barrier-on-mac-os-x
 */
#if GAL_CONFIG_HAVE_PTHREAD_BARRIER == 0

/* Initialize the barrier structure. A barrier is a high-level way to wait
   until several threads have finished. */
int
pthread_barrier_init(pthread_barrier_t *b, pthread_barrierattr_t *attr,
                     unsigned int limit)
{
  int err;

  /* Sanity check: */
  if(limit==0)
    {
      errno = EINVAL;
      error(EXIT_FAILURE, errno, "%s: limit is zero", __func__);
    }

  /* Initialize the mutex: */
  err=pthread_mutex_init(&b->mutex, 0);
  if(err)
    error(EXIT_FAILURE, err, "%s: inializing mutex", __func__);

  /* Initialize the condition variable: */
  err=pthread_cond_init(&b->cond, 0);
  if(err)
    {
      pthread_mutex_destroy(&b->mutex);
      error(EXIT_FAILURE, err, "%s: inializing cond", __func__);
    }

  /* set the values: */
  b->limit=limit;
  b->condfinished=b->count=0;

  return 0;
}





/* Suspend the calling thread (tell it to wait), until the limiting number
   of barriers is reached by the other threads. When the number isn't
   reached yet (process goes into the 'else'), then we use the
   'pthread_cond_wait' function, which will wait until a broadcast is
   announced by another thread that succeeds the 'if'. After the thread no
   longer needs the condition variable, we increment 'b->condfinished' so
   'pthread_barrier_destroy' can know if it should wait (sleep) or
   continue. */
int
pthread_barrier_wait(pthread_barrier_t *b)
{
  pthread_mutex_lock(&b->mutex);
  ++b->count;
  if(b->count >= b->limit)
    {
      pthread_cond_broadcast(&b->cond);
      ++b->condfinished;
      pthread_mutex_unlock(&b->mutex);
      return 1;
    }
  else
    {
      /* Initially b->count is smaller than b->limit, otherwise control
         would never have reached here. However, when it get to
         'pthread_cond_wait', this thread goes into a suspended period and
         is only awaken when a broad-cast is made. But we only want this
         thread to finish when b->count >= b->limit, so we have this while
         loop. */
      while(b->count < b->limit)
        pthread_cond_wait(&b->cond, &b->mutex);
      ++b->condfinished;
      pthread_mutex_unlock(&b->mutex);
      return 0;
    }
}





/* Wait until all the threads that were blocked behind this barrier have
   finished (don't need the mutex and condition variable anymore. Then
   destroy the two. After this function, you can safely re-use the
   pthread_barrier_t structure. */
int
pthread_barrier_destroy(pthread_barrier_t *b)
{
  struct timespec request, remaining;

  /* Wait until no more threads need the barrier. */
  request.tv_sec=0;
  request.tv_nsec=GAL_THREADS_BARRIER_DESTROY_NANOSECS;
  while( b->condfinished < b->limit )
    nanosleep(&request, &remaining);

  /* Destroy the condition variable and mutex. */
  pthread_cond_destroy(&b->cond);
  pthread_mutex_destroy(&b->mutex);
  return 0;
}

#endif  /* GAL_CONFIG_HAVE_PTHREAD_BARRIER == 0 */




















/*******************************************************************/
/************              Thread utilities           **************/
/*******************************************************************/
size_t
gal_threads_number()
{
  return num_processors(NPROC_CURRENT);
}





/* We have 'numactions' jobs and we want their indexs to be divided between
   'numthreads' CPU threads. This function will give each index to a thread
   such that the maximum difference between the number of actions for each
   thread is 1. The results will be saved in a 2D array of 'outthrdcols'
   columns and each row will finish with a (size_t)(-1), which is the blank
   value for size_t (larger than any possible index!). */
char *
gal_threads_dist_in_threads(size_t numactions, size_t numthreads,
                            size_t minmapsize, int quietmmap,
                            size_t **outthrds, size_t *outthrdcols)
{
  size_t *sp, *fp;
  char *mmapname=NULL;
  size_t i, *thrds, thrdcols;
  *outthrdcols = thrdcols = numactions/numthreads+2;

  /* Allocate the space to keep the identifiers. */
  thrds=*outthrds=gal_pointer_allocate_ram_or_mmap(GAL_TYPE_SIZE_T,
                              numthreads*thrdcols, 0, minmapsize, &mmapname,
                              0, __func__, "thrds");

  /* Initialize all the elements to NONINDEX. */
  fp=(sp=thrds)+numthreads*thrdcols;
  do *sp=GAL_BLANK_SIZE_T; while(++sp<fp);

  /* Distribute the labels in the threads.  */
  for(i=0;i<numactions;++i)
    thrds[ (i%numthreads)*thrdcols+(i/numthreads) ] = i;

  /* In case you want to see the result:
  for(i=0;i<numthreads;++i)
    {
      size_t j;
      printf("\n\n############################\n");
      printf("THREAD %zu: \n", i);
      for(j=0;thrds[i*thrdcols+j]!=GAL_BLANK_SIZE_T;j++)
        printf("%zu, ", thrds[i*thrdcols+j]);
      printf("\b\b.\n");
    }
  exit(0); */

  /* Return the name of the possibly memory-mapped file. */
  return mmapname;
}





void
gal_threads_attr_barrier_init(pthread_attr_t *attr, pthread_barrier_t *b,
                              size_t limit)
{
  int err;

  err=pthread_attr_init(attr);
  if(err) error(EXIT_FAILURE, 0, "%s: thread attr not initialized", __func__);
  err=pthread_attr_setdetachstate(attr, PTHREAD_CREATE_DETACHED);
  if(err) error(EXIT_FAILURE, 0, "%s: thread attr not detached", __func__);
  err=pthread_barrier_init(b, NULL, limit);
  if(err) error(EXIT_FAILURE, 0, "%s: thread barrier not initialized",
                __func__);
}




















/*******************************************************************/
/************     Run a function on multiple threads  **************/
/*******************************************************************/
/* Run a given function on the given tiles. The function has to be
   link-able with your final executable and has to have only one 'void *'
   argument and return a 'void *' value. To have access to
   variables/parameters in the function, you have to define a structure and
   pass its pointer as 'caller_params'.

   Here is one simple example. At least two functions and one structure are
   necessary to use this function.

     --------- Parameters to keep values you need ---------
     struct my_params
     {
       int    value1;
       double value2;
       float  *array;
     };


     ---------    Function to run on each thread  ---------
     void *
     run_on_thread(void *in_prm)
     {
       struct gal_threads_params *tprm=(struct gal_threads_params *)in_prm;
       struct my_params *prm=(struct my_params *)(tprm->params);

       size_t i;

       for(i=0; tprm->indexs[i] != GAL_BLANK_SIZE_T; ++i)
       {

           THE INDEX OF THE TARGET IS NOW AVAILABLE AS
           'tprm->indexs[i]'. YOU CAN USE IT IN WHATEVER MANNER YOU LIKE
           ALONG WITH THE SET OF VARIABLES/ARRAYS in 'prm'.

       }

       if(tprm->b) pthread_barrier_wait(tprm->b);
       return NULL;
     }


     ---------         High-level function        ---------
     int
     higher_level_function(float *array, size_t num_in_array, int value1)
     {
        double value2;
        struct my_params;
        size_t numthreads;

        int quietmmap=1;
        size_t minmapsize=-1;

        my_params.value1=value1;
        my_params.value2=value2;
        my_params.arary=array;

        gal_threads_spin_off(run_on_thread, &my_params, num_in_array,
                             numthreads, minmapsize, quietmmap);

        return 1;
     }

  For real world applications of this function, you can also inspect the
  Gnuastro source. There are also many cases in Gnuastro where we benefit
  from this function. Please run the following command from the top source
  directory of Gnuastro to see where:

      $ grep -r gal_threads_spin_off ./
*/
void
gal_threads_spin_off(void *(*worker)(void *), void *caller_params,
                     size_t numactions, size_t numthreads,
                     size_t minmapsize, int quietmmap)
{
  int err;
  pthread_t t;          /* All thread ids saved in this, not used. */
  char *mmapname=NULL;
  pthread_attr_t attr;
  pthread_barrier_t b;
  struct gal_threads_params *prm;
  size_t i, *indexs, thrdcols, numbarriers;

  /* If there are no actions, then just return. */
  if(numactions==0) return;

  /* Sanity check. */
  if(numthreads==0)
    error(EXIT_FAILURE, 0, "%s: the number of threads ('numthreads') "
          "cannot be zero", __func__);

  /* Allocate the array of parameters structure. */
  errno=0;
  prm=malloc(numthreads*sizeof *prm);
  if(prm==NULL)
    {
      fprintf(stderr, "%zu bytes could not be allocated for prm.",
              numthreads*sizeof *prm);
      exit(EXIT_FAILURE);
    }

  /* Distribute the actions into the threads: */
  mmapname=gal_threads_dist_in_threads(numactions, numthreads, minmapsize,
                                       quietmmap, &indexs, &thrdcols);

  /* Do the job: when only one thread is necessary, there is no need to
     spin-off one thread, just call the workerfunction directly (spinning
     off threads is expensive). This is for the generic thread spinner
     function, not this simple function where 'numthreads' is a
     constant. */
  if(numthreads==1)
    {
      prm[0].id=0;
      prm[0].b=NULL;
      prm[0].indexs=indexs;
      prm[0].params=caller_params;
      worker(&prm[0]);
    }
  else
    {
      /* Initialize the attributes. Note that this running thread
         (that spins-off the nt threads) is also a thread, so the
         number the barriers should be one more than the number of
         threads spinned off. */
      numbarriers = (numactions<numthreads ? numactions : numthreads) + 1;
      gal_threads_attr_barrier_init(&attr, &b, numbarriers);

      /* Spin-off the threads: */
      for(i=0;i<numthreads;++i)
        if(indexs[i*thrdcols]!=GAL_BLANK_SIZE_T)
          {
            prm[i].id=i;
            prm[i].b=&b;
            prm[i].params=caller_params;
            prm[i].indexs=&indexs[i*thrdcols];
            err=pthread_create(&t, &attr, worker, &prm[i]);
            if(err)
              {
                fprintf(stderr, "can't create thread %zu", i);
                exit(EXIT_FAILURE);
              }
          }

      /* Wait for all threads to finish and free the spaces. */
      pthread_barrier_wait(&b);
      pthread_attr_destroy(&attr);
      pthread_barrier_destroy(&b);
    }

  /* If 'mmapname' is NULL, then 'indexs' is in RAM and we can safely
     'free' it. However, when its not NULL, then the space for 'indexs' has
     been memory-mapped (its not in RAM) so special treatment is necessary
     to delete it through the proper function. */
  if(mmapname) gal_pointer_mmap_free(&mmapname, quietmmap);
  else         free(indexs);

  /* Clean up. */
  free(prm);
}