1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
|
/*********************************************************************
tile -- work with tesselations over a host dataset.
This is part of GNU Astronomy Utilities (Gnuastro) package.
Original author:
Mohammad Akhlaghi <mohammad@akhlaghi.org>
Contributing author(s):
Copyright (C) 2017-2024 Free Software Foundation, Inc.
Gnuastro is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
Gnuastro is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with Gnuastro. If not, see <http://www.gnu.org/licenses/>.
**********************************************************************/
#include <config.h>
#include <stdio.h>
#include <errno.h>
#include <error.h>
#include <stdlib.h>
#include <string.h>
#include <gnuastro/fits.h>
#include <gnuastro/tile.h>
#include <gnuastro/blank.h>
#include <gnuastro/threads.h>
#include <gnuastro/pointer.h>
#include <gnuastro/convolve.h>
#include <gnuastro/dimension.h>
#include <gnuastro/interpolate.h>
#include <gnuastro/permutation.h>
#include <gnuastro-internal/checkset.h>
/***********************************************************************/
/************** Single tile ******************/
/***********************************************************************/
/* Calculate the starting coordinates of a tile in the allocated block of
memory. */
void
gal_tile_start_coord(gal_data_t *tile, size_t *start_coord)
{
size_t ind, ndim=tile->ndim;
gal_data_t *block=gal_tile_block(tile);
/* If the input tile is actually the same as the block, then the start is
at 0 (in all dimensions). */
if(block==tile)
memset(start_coord, 0, ndim*gal_type_sizeof(GAL_TYPE_SIZE_T));
else
{
/* Calculate the coordinates of the first pixel of the tile. */
ind = gal_pointer_num_between(block->array, tile->array, block->type);
gal_dimension_index_to_coord(ind, ndim, block->dsize, start_coord);
}
}
/* Put the starting and ending (end point is not inclusive) coordinates of
a tile into the 'start_end' array. It is assumed that a space of
'2*tile->ndim' has been already allocated (static or dynamic) before
this function is called.
'rel_block' (or relative-to-block) is only relevant when the tile has an
intermediate tile between it and the allocated space (like a channel,
see 'gal_tile_full_two_layers'). If it doesn't ('tile->block' points the
allocated dataset), then the value to 'rel_block' is irrelevant.
However, when 'tile->block' is its self a larger block and 'rel_block'
is set to 0, then the starting and ending positions will be based on the
position within 'tile->block', not the allocated space. */
void
gal_tile_start_end_coord(gal_data_t *tile, size_t *start_end, int rel_block)
{
size_t *s, *sf, *h;
gal_data_t *block=gal_tile_block(tile);
gal_data_t *host=rel_block ? block : tile->block;
size_t *hcoord, start_ind, ndim=tile->ndim, *end=start_end+ndim;
/* Get the starting index. Note that for the type we need the allocated
block dataset and can't rely on the tiles. */
start_ind=gal_pointer_num_between(block->array, tile->array, block->type);
/* Get the coordinates of the starting point relative to the allocated
block. */
gal_dimension_index_to_coord(start_ind, ndim, block->dsize, start_end);
/* When the host is different from the block, the tile's starting
position needs to be corrected. */
if(host!=block)
{
/* Get the host's starting coordinates. */
start_ind=gal_pointer_num_between(block->array, host->array,
block->type);
/* Temporarily put the host's coordinates in the place held for the
ending coordinates. */
hcoord=end;
gal_dimension_index_to_coord(start_ind, ndim, block->dsize, hcoord);
sf=(s=start_end)+ndim; h=hcoord; do *s++ -= *h++; while(s<sf);
}
/* Add the dimensions of the tile to the starting coordinate. Note that
the ending coordinates are stored immediately after the start. */
gal_dimension_add_coords(start_end, tile->dsize, end, ndim);
}
/* Put the indexs of the first/start and last/end pixels (inclusive) in a
tile into the 'start_end' array (that has two elements). It will then
return the pointer to the start of the tile in the 'work' data
structure. */
void *
gal_tile_start_end_ind_inclusive(gal_data_t *tile, gal_data_t *work,
size_t *start_end_inc)
{
gal_data_t *block=gal_tile_block(tile);
size_t ndim=tile->ndim, *s, *e, *l, *sf;
size_t *start_coord = gal_pointer_allocate(GAL_TYPE_SIZE_T, ndim, 0,
__func__, "start_coord");
size_t *end_coord = gal_pointer_allocate(GAL_TYPE_SIZE_T, ndim, 0,
__func__, "end_coord");
/* The starting index can be found from the distance of the 'tile->array'
pointer and 'block->array' pointer. IMPORTANT: with the type of the
block array. */
start_end_inc[0]=gal_pointer_num_between(block->array, tile->array,
block->type);
/* To find the end index, we need to know the coordinates of the starting
point in the allocated block. */
gal_dimension_index_to_coord(start_end_inc[0], ndim, block->dsize,
start_coord);
/* 'end_coord' is one unit ahead of the last element in the tile in every
dimension. To have less potential for bugs, we will remove that extra
value, so we get the coordinates of the last pixel in the tile
(inclusive). We will finally, increment that value by one to get to
the pixel immediately outside of the tile. */
e=end_coord;
l=tile->dsize;
sf=(s=start_coord)+ndim; do *e++ = *s + *l++ - 1; while(++s<sf);
/* Convert the (inclusive) ending point's coordinates into an index. */
start_end_inc[1]=gal_dimension_coord_to_index(ndim, block->dsize,
end_coord);
/* For a check:
printf("\ntile_dsize: %zu, %zu, %zu\n", tile->dsize[0], tile->dsize[1],
tile->dsize[2]);
printf("start_coord: %zu, %zu, %zu\n", start_coord[0], start_coord[1],
start_coord[2]);
printf("end_coord: %zu, %zu, %zu\n", end_coord[0], end_coord[1],
end_coord[2]);
printf("start_index: %zu\n", start_end_inc[0]);
printf("end_index: %zu\n", start_end_inc[1]);
exit(1);
*/
/* Clean up and return the pointer in the work array that the tile starts
from. */
free(end_coord);
free(start_coord);
return gal_pointer_increment(work->array, start_end_inc[0], work->type);
}
/***********************************************************************/
/************** Series of tiles ******************/
/***********************************************************************/
/* Construct a list of tile(s) given positional minimum(s) and maximum(s).
The output is an allocated an allocated array that can later be freed
with 'gal_data_array_free'. The minimum and maximums are assumed to be
inclusive.
The array keeping the minmium and maximum coordinates for each label
will have the following format:
| min0_d0 | min0_d1 | max0_d0 | max0_d1 | ...
... | minN_d0 | minN_d1 | maxN_d0 | maxN_d1 | */
gal_data_t *
gal_tile_series_from_minmax(gal_data_t *block, size_t *minmax, size_t number)
{
size_t ndim=block->ndim;
size_t *min, *max;
size_t i, d, ind, size, width=2*ndim;
gal_data_t *tiles=gal_data_array_calloc(number);
/* Fill the tile information. */
for(i=0;i<number;++i)
{
/* To make things more readable. */
min = &minmax[ i * width ];
max = &minmax[ i * width + ndim ];
/* Tile types should be invalid (we shouldn't use tiles directly),
also se the other simple values. */
tiles[i].flag = 0;
tiles[i].block = block;
tiles[i].type = GAL_TYPE_INVALID;
tiles[i].next = i==number-1 ? NULL : &tiles[i+1];
/* Set the size related constants. */
size = 1;
tiles[i].ndim = ndim;
tiles[i].dsize = gal_pointer_allocate(GAL_TYPE_SIZE_T, ndim, 0,
__func__, "tiles[i].dsize");
for(d=0;d<ndim;++d) size *= tiles[i].dsize[d] = max[d] - min[d] + 1;
tiles[i].size = size;
/* Tile's array pointer. */
ind=gal_dimension_coord_to_index(ndim, block->dsize, min);
tiles[i].array = gal_pointer_increment(block->array, ind, block->type);
}
/* For a check (put all the objects in an extension of a test file).
{
gal_data_t *copy;
for(i=0;i<number;++i)
{
copy=gal_data_copy(&tiles[i]);
gal_fits_img_write(copy, "tiles.fits", NULL, NULL);
}
}
*/
/* Return the final pointer. */
return tiles;
}
/***********************************************************************/
/************** Allocated block of memory ******************/
/***********************************************************************/
/* When you are working on an array, it important to know the size of the
allocated space in each dimension. This simple function will just follow
the block pointer and return the 'dsize' element of lowest-level
structure. */
gal_data_t *
gal_tile_block(gal_data_t *tile)
{
while(tile->block!=NULL) tile=tile->block;
return tile;
}
/* Return the increment necessary to start at the next series of contiguous
memory (fastest dimension) associated with a tile.
1D and 2D cases are simple and need no extra explanation, but the case
for higher dimensions can be alittle more complicated, So we will go
over some examples. The notations below are:
'n' number of dimensions (same in tile and block).
't[]' size of the tile in each dimension.
'b[]' size of the allocated block in each dimension.
It is just important to see the output of this function as an increment
from the the last patch of contiguous memory associated with the
tile. So when the increment number is 't[n-1]' (the first 2D slice of
the tile has been parsed), simply incrementing by 'b[n-2] * b[n-1]' will
take us to the last row of
num_increment coord increment
------------- ----- ---------
1 (...0,0,0) b[n-1]: fastest dimension of the block.
2 (...0,1,0) Similar to previous
. . .
. . .
t[n-2] (...1,0,0) (b[n-2] * b[n-1]) - ( (t[n-2]-1) * b[n-1] )
t[n-2] + 1 (...1,1,0) b[n-1]
. . .
. . .
2 * t[n-2] (...2,0,0) b[n-2] * b[n-1]
t[n-2]+1 (...2,1,0) b[n-1]
. . .
. . .
t[n-3] * t[n-2] (..1,0,0,0) b[n-3] * b[n-2] * b[n-1]
*/
size_t
gal_tile_block_increment(gal_data_t *block, size_t *tsize,
size_t num_increment, size_t *coord)
{
size_t n=block->ndim;
size_t *b=block->dsize, *t=tsize;
size_t increment=GAL_BLANK_SIZE_T;
if(n>3)
error(EXIT_FAILURE, 0, "%s: currently only implemented for at most 3 "
"dimensions", __func__);
switch(n)
{
/* A zero-dimensional dataset is not defined. */
case 0:
error(EXIT_FAILURE, 0, "%s: zero dimensional input is not acceptable",
__func__);
/* 1D: the increment is just the tile size. */
case 1:
increment=t[0];
if(coord) coord[0]+=increment;
break;
/* 2D: the increment is the block's number of fastest axis pixels. */
case 2:
increment=b[1];
if(coord) ++coord[0];
break;
/* 3D: The increment depends on which dimension we are reaching. */
case 3:
if(num_increment % t[1])
{
increment = b[2];
if(coord) ++coord[1];
}
else
{
increment=(b[1] * b[2]) - ( (t[1]-1) * b[2] );
if(coord) { ++coord[0]; coord[1] -= t[1]-1; coord[2]=0; }
}
break;
}
/* Return the final increment value. */
return increment;
}
/* Write a constant value for each tile into each pixel covered by the
input tiles in an array the size of the block and return it.
Arguments
---------
'tilevalues': This must be an array that has the same number of
elements as that in 'tilesll' and in the same order that 'tilesll'
elements are parsed (from first to last). As a result the
dimensionality of this array is irrelevant. Note that unlike
'tiles', 'tilevalues' must be an array.
'tilesll': This will be parsed as a linked list (using the 'next'
element). Internally, it might be stored as an array, but this
function doesn't care! The position of the tile over its block will
be determined according to the 'block' element and the pointer of
its 'array' as fully described in 'gnuastro/data.h'. This function
will not pop/free the list, it will only parse it from start to
end.
'initialize': Initialize the allocated space with blank values before
writing in the constant values. This can be useful when the tiles
don't cover the full allocated block. */
gal_data_t *
gal_tile_block_write_const_value(gal_data_t *tilevalues, gal_data_t *tilesll,
int withblank, int initialize)
{
void *in;
int type=tilevalues->type;
size_t tile_ind, nt=0, nv=tilevalues->size;
gal_data_t *tofill, *tile, *block=gal_tile_block(tilesll);
/* A small sanity check. */
for(tile=tilesll; tile!=NULL; tile=tile->next) ++nt;
if(nt!=nv)
error(EXIT_FAILURE, 0, "%s: the number of elements in 'tilevalues' (%zu) "
"and 'tilesll' (%zu) must be the same", __func__, nv, nt);
/* Allocate the output array. */
tofill=gal_data_alloc(NULL, type, block->ndim, block->dsize, block->wcs,
0, block->minmapsize, block->quietmmap,
tilevalues->name, tilevalues->unit,
tilevalues->comment);
/* If requested, initialize 'tofill', otherwise it is assumed that the
full area of the output is covered by the tiles. */
if(withblank || initialize) gal_blank_initialize(tofill);
else
{
/* Copy the flags. */
tofill->flag=tilevalues->flag;
/* If we have more than one dimension, then remove the possibly
sorted flags. */
if(block->ndim>1)
{
tofill->flag &= ~GAL_DATA_FLAG_SORTED_I;
tofill->flag &= ~GAL_DATA_FLAG_SORTED_D;
}
}
/* Go over the tiles and write the values in. Recall that 'tofill' has
the same type as 'tilevalues'. So we are using memcopy. */
tile_ind=0;
for(tile=tilesll; tile!=NULL; tile=tile->next)
{
/* Set the pointer to use as input. The 'if(o)' statement is set
because GCC 7.1.1 complained about the possiblity of the first
argument of 'memcpy' being NULL. Recall that 'o' is a pointer. */
in=gal_pointer_increment(tilevalues->array, tile_ind++, type);
GAL_TILE_PARSE_OPERATE( tile, tofill, 1, withblank, {
if(o) memcpy(o, in, gal_type_sizeof(type));
} );
}
return tofill;
}
/* Make a copy of the memory block and fill it with the index of each tile
in 'tilesll' (counting from 0). The non-filled areas will have blank
values. The output dataset will have a type of 'GAL_TYPE_INT32'. */
gal_data_t *
gal_tile_block_check_tiles(gal_data_t *tilesll)
{
int32_t *arr;
size_t i, dsize=gal_list_data_number(tilesll);
gal_data_t *ids, *out, *block=gal_tile_block(tilesll);
/* Allocate the array to keep the IDs of each tile. */
ids=gal_data_alloc(NULL, GAL_TYPE_INT32, 1, &dsize,
NULL, 0, block->minmapsize, block->quietmmap,
NULL, NULL, NULL);
/* Put the IDs into the array. */
arr=ids->array; for(i=0;i<dsize;++i) arr[i]=i;
/* Make the output. */
out=gal_tile_block_write_const_value(ids, tilesll, 0, 1);
/* Clean up and return. */
gal_data_free(ids);
return out;
}
/* Return the pointer corresponding to the tile in another data
structure (can have another type). */
void *
gal_tile_block_relative_to_other(gal_data_t *tile, gal_data_t *other)
{
gal_data_t *block=gal_tile_block(tile);
return gal_pointer_increment(other->array,
gal_pointer_num_between(block->array,
tile->array,
block->type),
other->type);
}
/* To use within 'gal_tile_full_blank_flag'. */
static void *
tile_block_blank_flag(void *in_prm)
{
struct gal_threads_params *tprm=(struct gal_threads_params *)in_prm;
gal_data_t *tile_ll=(gal_data_t *)(tprm->params);
size_t i;
gal_data_t *tile;
/* Check all the tiles given to this thread. */
for(i=0; tprm->indexs[i] != GAL_BLANK_SIZE_T; ++i)
{
tile=&tile_ll[ tprm->indexs[i] ];
gal_blank_present(tile, 1);
}
/* Wait for all the other threads to finish. */
if(tprm->b) pthread_barrier_wait(tprm->b);
return NULL;
}
/* Update the blank flag on the tiles within the list of input tiles. */
void
gal_tile_block_blank_flag(gal_data_t *tile_ll, size_t numthreads)
{
/* Go over all the tiles and update their blank flag. */
gal_threads_spin_off(tile_block_blank_flag, tile_ll,
gal_list_data_number(tile_ll), numthreads,
tile_ll->minmapsize, tile_ll->quietmmap);
}
/***********************************************************************/
/************** Tile full dataset ********************/
/***********************************************************************/
/* The user's specified tile size might not be an exact multiple of the
parent's size. This function is useful in such cases. It will give the
starting tile's size along each dimension.
The most simplistic way to manage the tiles is to put the regular tiles
at the start. The line below can be the length along any dimension, and
the tile size along that dimension.
| tile size | tile size | tile size | tile size | remainder
| | | | | |
---------------------------------------------------------
The remainder of the scenario above will always be smaller than 'tile
size' (can be even 1-pixel wide). So, we will merge the first tile size
with the remainder. In this way, the size of the first tile will always
be between between one and two times the size of the regular tile:
| first tile | tile size | tile size | tile size |
| | | | |
---------------------------------------------------------
When there is only a small remainder (for example one or two pixels),
then this layout is fine. But when the remainder is significant compared
to the regular tile size (like the example above), then it will make
more sense to cut the first tile into two halfs ('f-half' and 'l-half')
and put them at the start and end of the full length:
| f-half | tile size | tile size | tile size | l-half |
| | | | | |
---------------------------------------------------------
So in any case, knowing the size of the first tile, will allow us to
parse all the tiles. We just have to make sure we don't go over the full
input's length. */
static void
gal_tile_full_regular_first(gal_data_t *parent, size_t *regular,
float remainderfrac, size_t *first, size_t *last,
size_t *tsize)
{
size_t i, remainder, *dsize=parent->dsize;;
/* For each dimension, set the size of the first tile. */
for(i=0;i<parent->ndim;++i)
{
/* It might happen that the tile size is bigger than the parent size
in a dimension, in that case the analysis in the comments above
are useless and only one tile should cover this dimension with the
size of the parent. */
if( regular[i] >= dsize[i] )
{
tsize[i]=1;
first[i]=last[i]=dsize[i];
}
else
{
/* Calculate the remainder in this dimension. */
remainder=dsize[i] % regular[i];
/* Depending on the remainder, set the first tile size and
number. */
if(remainder)
{
if( remainder > remainderfrac * regular[i] )
{
first[i] = ( remainder + regular[i] )/2;
tsize[i] = dsize[i]/regular[i] + 1 ;
/* If we only have one tile along the dimension, then
'first[i]==dsize[i]'. In this case, the first and last
tiles are the same and must have the same size. */
last[i] = ( first[i]==dsize[i]
? first[i]
: ( dsize[i]
- ( first[i] + regular[i]*(tsize[i]-2) ) ) );
}
else
{
first[i] = remainder + regular[i];
tsize[i] = dsize[i]/regular[i];
last[i] = first[i]==dsize[i] ? first[i] : regular[i];
}
}
else
{
first[i] = last[i] = regular[i];
tsize[i] = dsize[i]/regular[i];
}
}
}
/* For a check:
printf("%s: first: %zu, %zu\n", __func__, first[0], first[1]);
printf("%s: last: %zu, %zu\n", __func__, last[0], last[1]);
*/
}
/* Cover the full dataset with (mostly) identical tiles. The regular tile
size is determined from the 'size' array. If the input data's size is
not an exact multiple of 'size' for each dimension, then the tiles
touching the edges in that dimension will have a different size to fully
cover every element of the input. For a full description of tiling in
'gal_data_t', please see 'data.h'.
Inputs
------
'input' is the gal_data_t which you want to tile (only used for its
sizes).
'regular' is the size of the regular tiles along each of the input's
dimensions. So it must have the same number of elements as the
dimensions of 'input'.
'remainderfrac' is the significant fraction of the remainder space if
the width of the input isn't an exact multiple of the tile size
along a dimension, see 'gal_tile_full_regular_first'.
'out' is the pointer to the array of data structures that is to keep
the tile parameters. If '*out==NULL', then the necessary space will
be allocated. If it is not NULL, then all the tile information will
be filled from the given element, see 'multiple' for more.
'multiple': When the '*out' array is to be allocated, allocate
'multiple' times the necessary space. This can be very useful when
you have several more identically sized 'inputs', and you want all
their tiles to be allocated (and thus indexed) together, even
though they have different 'block' datasets (that then link to one
allocated space). See the 'gal_tile_full_two_layers' below.
'firsttsize': The size of the first tile along every dimension. This
is only different from the regular tile size when 'regular' is not
an exact multiple of 'input''s length along every dimension. This
array is allocated internally by this function.
Output
------
The returned output is an array of numbers (the same size as the input
data structure's dimensions) keeping the number of tiles along each
dimension.
Implementation
--------------
In the most general case, to set the starting pointers for each tile
we need the following sizes. If the input array has no parent/block,
then both these sizes are equal to it's own size:
1. block-size (or 'bsize'), which is the size of the allocated
block in each dimension.
2. parent-size (or 'psize') which is the size of the parent in each
dimension (we don't want to go out of the paren't range). */
size_t *
gal_tile_full(gal_data_t *input, size_t *regular,
float remainderfrac, gal_data_t **out, size_t multiple,
size_t **firsttsize)
{
size_t i, d, tind, numtiles, *start=NULL;
gal_data_t *tiles, *block=gal_tile_block(input);
size_t *last = gal_pointer_allocate(GAL_TYPE_SIZE_T, input->ndim, 0,
__func__, "last");
size_t *first = gal_pointer_allocate(GAL_TYPE_SIZE_T, input->ndim, 0,
__func__, "first");
size_t *coord = gal_pointer_allocate(GAL_TYPE_SIZE_T, input->ndim, 0,
__func__, "coord");
size_t *tcoord = gal_pointer_allocate(GAL_TYPE_SIZE_T, input->ndim, 0,
__func__, "tcoord");
size_t *tsize = gal_pointer_allocate(GAL_TYPE_SIZE_T, input->ndim+1, 0,
__func__, "tsize");
/* Set the first tile size and total number of tiles along each
dimension, then allocate the array of tiles. */
gal_tile_full_regular_first(input, regular, remainderfrac,
first, last, tsize);
numtiles=gal_dimension_total_size(input->ndim, tsize);
/* Allocate the necessary space for all the tiles (if necessary). */
if(*out) tiles = *out;
else *out = tiles = gal_data_array_calloc(numtiles*multiple);
/* It is possible that the 'input' dataset is its-self a larger tile over
a region of the allocated block. In that case, we need to account for
the block's dimensions when calculating the position of this block. */
if(input->block)
{
start=gal_pointer_allocate(GAL_TYPE_SIZE_T, input->ndim, 0, __func__,
"start");
gal_tile_start_coord(input, start);
}
/* Initialize each tile. */
for(i=0;i<numtiles;++i)
{
/* Specify the coordinates of the tile between the other tiles. Note
that we are dealing with tiles here, not pixels. */
gal_dimension_index_to_coord(i, input->ndim, tsize, tcoord);
/* The coordinates are currently in units of tiles, not
pixels. Convert them to the coordinates of the first pixel in each
tile. */
for(d=0;d<input->ndim;++d)
{
/* Convert the tile coordinates to pixel coordinates within
'input'. See the comments above 'gal_tile_full_regular_first':
The first tile in every dimension can be different from the
regular tile size. */
coord[d] = tcoord[d] ? first[d] + (tcoord[d]-1)*regular[d] : 0;
/* When the 'input' data structure (that is to be tiled here) was
itself a tile over a larger allocated array, a 'start' array
has been allocated to correct the coordinates so they refer to
a physical position on the allocated block of memory. */
if(start)
coord[d] += start[d];
}
/* Convert the coordinates (that are now in element/pixel units on
the allocated block of memory) into an index. */
tind=gal_dimension_coord_to_index(block->ndim, block->dsize, coord);
/* Now that we have the index of this tile's starting point compared
to the allocated block, put it in to the tile's 'array'
pointer. */
tiles[i].array=gal_pointer_increment(block->array, tind, block->type);
/* Set the sizes of the tile. */
tiles[i].size=1; /* Just an initializer, will be changed. */
tiles[i].ndim=input->ndim;
tiles[i].minmapsize=input->minmapsize;
tiles[i].dsize=gal_pointer_allocate(GAL_TYPE_SIZE_T,input->ndim, 0,
__func__, "tiles[i].dsize");
for(d=0;d<input->ndim;++d)
{
/* The size of the first and last tiles can be different from the
majority of the 'regular' tiles that have the same size. When
a tile is on the edge in one of the dimensions, then its
'tcoord[d]' will be either 0 or the last. */
if( first[d] != regular[d]
&& ( tcoord[d]==0 || tcoord[d]==tsize[d]-1 ) )
{
if( tcoord[d] == 0 ) tiles[i].dsize[d] = first[d];
if( tcoord[d] == tsize[d]-1 ) tiles[i].dsize[d] = last[d];
}
else
tiles[i].dsize[d]=regular[d];
/* Set the size value. */
tiles[i].size *= tiles[i].dsize[d];
}
/* Set the block structure for this tile to the 'input', and set the
next pointer as the next tile. Note that only when we are dealing
with the last tile should the 'next' pointer be set to NULL. */
tiles[i].flag = 0;
tiles[i].block = input;
tiles[i].next = i==numtiles-1 ? NULL : &tiles[i+1];
/* For a check:
printf("%zu:\n\tStart index: %zu\n\tsize: %zu x %zu\n", i, tind,
tiles[i].dsize[1], tiles[i].dsize[0]);
exit(0);
*/
}
/* Clean up and return. */
free(last);
free(coord);
free(tcoord);
*firsttsize=first;
if(start) free(start);
tsize[input->ndim]=-1; /* 'tsize' had ndim+1 values, we will mark the */
return tsize; /* extra space with the largest possible value: */
} /* -1, see 'gal_tile_full_sanity_check'. */
/* Make sure that the input parameters (in 'tl', short for two-layer) fit
with the input dataset. The filename and HDU are only required for error
messages. Also, allocate and fill the 'channelsize' array. */
void
gal_tile_full_sanity_check(char *filename, char *hdu, gal_data_t *input,
struct gal_tile_two_layer_params *tl)
{
double d;
size_t i, ndim=input->ndim;
/* Check the tile's dimensions. */
for(i=0;tl->tilesize[i]!=-1;++i)
{
/* Not equal to zero. */
if(tl->tilesize[i]==0)
error(EXIT_FAILURE, 0, "'--tilesize' must be larger than zero, "
"the given value for dimension %zu was zero", ndim-i);
/* If the tile size is larger than the dataset size in this
dimension, then quietly change the tile size to the dataset size
along that dimension. */
if( tl->tilesize[i] > input->dsize[i] )
tl->tilesize[i] = input->dsize[i];
}
/* Make sure the number of tile sizes (tile dimensions) are the same as
the dataset's dimensions). */
if(i!=ndim)
error(EXIT_FAILURE, 0, "%s (hdu: %s): has %zu dimensions, but only %zu "
"value(s) given for the tile size ('--tilesize' option).",
filename, hdu, ndim, i);
/* Check the channel's dimensions. */
for(i=0; tl->numchannels[i]!=-1; ++i)
if(tl->numchannels[i]==0)
error(EXIT_FAILURE, 0, "the number of channels in all dimensions must "
"be larger than zero. The number for dimension %zu was zero",
i+1);
if(i!=ndim)
error(EXIT_FAILURE, 0, "%s (hdu: %s): has %zu dimensions, but only %zu "
"value(s) given for the number of channels", filename, hdu, ndim,
i);
/* Allocate space for the channel sizes. */
tl->channelsize=gal_pointer_allocate(GAL_TYPE_SIZE_T, ndim, 0, __func__,
"tl->channelsize");
/* Check if the channels are exactly divisible by the input's size along
each dimension and set the correct size. */
for(i=0;i<ndim;++i)
{
/* Check if the number of channels is not more than the size of the
image. Note that the reported dimension must be in FITS format. */
if( input->dsize[i] < tl->numchannels[i] )
error(EXIT_FAILURE, 0, "the number of channels in dimension %zu "
"(%zu) is more than the size of the '%s' (hdu: %s) in that "
"dimension", ndim-i, tl->numchannels[i], filename, hdu);
/* Also check the tile size. */
if( input->dsize[i] < tl->tilesize[i] )
error(EXIT_FAILURE, 0, "the tile size in dimension %zu (%zu) is "
"more than the size of the '%s' (hdu: %su) in that dimension",
ndim-i, tl->tilesize[i], filename, hdu);
/* First check. */
d=(double)input->dsize[i]/(double)(tl->numchannels[i]);
if(ceil(d)!=d)
error(EXIT_FAILURE, 0, "%zu (number of channels along dimension "
"%zu) is not exactly divisible by %zu (the length of '%s' "
"(hdu: %s) that dimension). The channels cover the input "
"dataset, hence, they must be identical", tl->numchannels[i],
ndim-i, input->dsize[i], filename, hdu);
/* Put the channel size into the output. */
tl->channelsize[i]=d;
}
}
/* A dataset can be tiled with two layers that are related:
Channels: A tesselation of larger tile sizes that all have the same
size ('channel_size' must be an exact multiple of 'input's size
along every dimension. In astronomy images, this can be seen as
CCD amplifiers, that cover large parts of the image. If
'*channels!=NULL' then it is assumed to be already present and
will not be allocated.
Tiles: A combined tesselation of each channel with smaller
tiles. These tiles can be used to calculate things like
gradients over each channel and thus over the whole image. */
void
gal_tile_full_two_layers(gal_data_t *input,
struct gal_tile_two_layer_params *tl)
{
gal_data_t *t;
size_t i, *junk, *junk2, ndim=tl->ndim=input->ndim;
/* Initialize. */
tl->channels=tl->tiles=NULL;
/* Initialize necessary values and do the channels tessellation. */
junk = gal_tile_full(input, tl->channelsize, tl->remainderfrac,
&tl->channels, 1, &junk2);
tl->totchannels = gal_dimension_total_size(ndim, tl->numchannels);
for(i=0;i<ndim;++i)
if(junk[i]!=tl->numchannels[i])
error(EXIT_FAILURE, 0, "%s: the input and output number of channels "
"don't match in dimension %zu: %zu and %zu respectively.",
__func__, ndim-i, tl->numchannels[i], junk[i]);
free(junk);
free(junk2);
/* Tile each channel. While tiling the first channel, we are also going
to allocate the space for the other channels. Then pass those pointers
when we want to fill in each tile of the other channels. */
tl->numtilesinch = gal_tile_full(tl->channels, tl->tilesize,
tl->remainderfrac, &tl->tiles,
tl->totchannels, &tl->firsttsize);
tl->tottilesinch = gal_dimension_total_size(ndim, tl->numtilesinch);
for(i=1; i<tl->totchannels; ++i)
{
/* Set the first tile in this channel. Then use it it fill the 'next'
pointer of the previous channel's tiles. Note that 'gal_tile_full'
set this 'next' element to NULL. */
t = tl->tiles + i * tl->tottilesinch;
tl->tiles[ i * tl->tottilesinch - 1 ].next = t;
/* Fill in the information for all the tiles in this channel. Note
that we already have the returned value, so it isn't important. */
junk=gal_tile_full(&tl->channels[i], tl->tilesize, tl->remainderfrac,
&t, 1, &junk2);
free(junk);
free(junk2);
}
/* Multiply the number of tiles along each dimension OF ONE CHANNEL by
the number of channels in each dimension to get the dimensionality of
the full tile structure. */
tl->numtiles = gal_pointer_allocate(GAL_TYPE_SIZE_T, ndim, 0, __func__,
"tl->numtiles");
for(i=0;i<ndim;++i)
tl->numtiles[i] = tl->numtilesinch[i] * tl->numchannels[i];
tl->tottiles = gal_dimension_total_size(ndim, tl->numtiles);
}
/* Usage
-----
Make a permutation to allow the conversion of tile location in memory to
its location in the full input dataset and put it in the input's
'permutation' element. If a permutation has already been defined for the
tessellation, this function will not do anythin. If permutation won't be
necessary, then this function will just return (the permutation must
have been initialized to NULL). */
void
gal_tile_full_permutation(struct gal_tile_two_layer_params *tl)
{
size_t *ch_coord, *tinch_coord;
size_t i, p=0, t, ch, ind_in_all, ndim=tl->ndim;
/* If the permutation has already been defined for this tessellation,
then there is no need to do it again here. */
if(tl->permutation) return;
/* If there is only one channel or one dimension, return NULL. The
permutation functions know that the input and output indexs are the
same when the permutation is NULL. */
if( ndim==1 || tl->totchannels==1) return;
/* Allocate the space for the permutation and coordinates. */
ch_coord=gal_pointer_allocate(GAL_TYPE_SIZE_T, ndim, 0, __func__,
"ch_coord");
tinch_coord=gal_pointer_allocate(GAL_TYPE_SIZE_T, ndim, 0, __func__,
"tinch_coord");
tl->permutation=gal_pointer_allocate(GAL_TYPE_SIZE_T, tl->tottiles, 0,
__func__, "tl->permutation");
/* Fill in the permutation, we use the fact that the tiles are filled
from the first channel to the last. */
for(ch=0;ch<tl->totchannels;++ch)
{
/* Get the coordinates of this channel's first tile. */
gal_dimension_index_to_coord(ch, ndim, tl->numchannels, ch_coord);
for(i=0;i<ndim;++i) ch_coord[i] *= tl->numtilesinch[i];
/* Go over all the tiles in this channel. */
for(t=0;t<tl->tottilesinch;++t)
{
/* Convert its index to coordinates and add them to the channel's
starting coordinates. */
gal_dimension_index_to_coord(t, ndim, tl->numtilesinch,
tinch_coord);
for(i=0;i<ndim;++i) tinch_coord[i] += ch_coord[i];
/* Convert the coordinates into an index. */
ind_in_all = gal_dimension_coord_to_index(ndim, tl->numtiles,
tinch_coord);
tl->permutation[ind_in_all] = p++;
}
}
/* Clean up and return. */
free(tinch_coord);
free(ch_coord);
}
/* Write one value for each tile into a file.
IMPORTANT: it is assumed that the values are in the same order as the
tiles.
tile[i] --> tilevalues[i] */
void
gal_tile_full_values_write(gal_data_t *tilevalues,
struct gal_tile_two_layer_params *tl,
int withblank, char *filename,
gal_fits_list_key_t *keys, int freekeys)
{
gal_data_t *disp;
/* Make the dataset to be displayed. */
if(tl->oneelempertile)
{
if(tl->ndim>1 && tl->totchannels>1)
{
/* A small sanity check. */
if(tl->permutation==NULL)
error(EXIT_FAILURE, 0, "%s: no permutation defined for the "
"input tessellation", __func__);
/* Writing tile values to disk is not done for checking, not for
efficiency. So to be safe (allow the caller to work on
multiple threads), we will copy the tile values, then permute
those. */
disp = gal_data_copy(tilevalues);
gal_permutation_apply(disp, tl->permutation);
}
else disp = tilevalues;
}
else
disp=gal_tile_block_write_const_value(tilevalues, tl->tiles,
withblank, 0);
/* Write the array as a file and then clean up (if necessary). */
gal_fits_img_write(disp, filename, keys, freekeys);
if(disp!=tilevalues) gal_data_free(disp);
}
/* Smooth the given values with a flat kernel of the given width. */
gal_data_t *
gal_tile_full_values_smooth(gal_data_t *tilevalues,
struct gal_tile_two_layer_params *tl,
size_t width, size_t numthreads)
{
size_t *kdsize, knum, i;
gal_data_t *kernel, *smoothed;
struct gal_tile_two_layer_params ttl={0};
int permute=tl->ndim>1 && tl->totchannels>1;
/* Check if the width is odd. */
if(width%2==0)
error(EXIT_FAILURE, 0, "%s: %zu not acceptable as width. It has to be "
"an odd number", __func__, width);
/* Prepare the kernel size along every dimension. */
kdsize=gal_pointer_allocate(GAL_TYPE_SIZE_T, tl->ndim, 0, __func__,
"kdsize");
for(i=0;i<tl->ndim;++i) kdsize[i]=width;
/* Make the kernel. */
kernel=gal_data_alloc(NULL, GAL_TYPE_FLOAT32, tilevalues->ndim,
kdsize, NULL, 0, -1, 1, NULL, NULL, NULL);
knum=gal_dimension_total_size(tl->ndim, kernel->dsize);
for(i=0;i<knum;++i) ((float *)(kernel->array))[i]=1/((double)knum);
/* Permute (if necessary). */
if(permute)
{
gal_tile_full_permutation(tl);
gal_permutation_apply(tilevalues, tl->permutation);
}
/* Do the smoothing. */
if(tl->workoverch)
smoothed=gal_convolve_spatial(tilevalues, kernel, numthreads, 1, 1, 0);
else
{
/* Create the tile structure. */
ttl.tilesize=tl->numtilesinch;
ttl.numchannels=tl->numchannels;
gal_tile_full_sanity_check("IMPOSSIBLE", "IMP_HDU", tilevalues, &ttl);
gal_tile_full_two_layers(tilevalues, &ttl);
/* Do the convolution separately on each channel. */
smoothed=gal_convolve_spatial(ttl.tiles, kernel, numthreads, 1, 0, 0);
/* Clean up. */
ttl.tilesize=ttl.numchannels=NULL;
gal_tile_full_free_contents(&ttl);
}
/* Reverse the permutation. */
if(permute) gal_permutation_apply_inverse(smoothed, tl->permutation);
/* Clean up and return. */
free(kdsize);
gal_data_free(kernel);
return smoothed;
}
size_t
gal_tile_full_id_from_coord(struct gal_tile_two_layer_params *tl,
size_t *coord)
{
/* This function only works for 10 dimensions. */
size_t i, tr, chid, tile[10];
/* Host channel's ID. */
for(i=0;i<tl->ndim;++i)
tile[i] = tl->totchannels == 1 ? 0 : coord[i] / tl->channelsize[i];
chid=gal_dimension_coord_to_index(tl->ndim, tl->numchannels, tile);
/* Find the tile within the channel. */
for(i=0;i<tl->ndim;++i)
{
tr=coord[i] % tl->channelsize[i];
if( tl->firsttsize[i] != tl->tilesize[i] )
tile[i] = ( tr <= tl->firsttsize[i]
? 0
: 1 + (tr - tl->firsttsize[i]) / tl->tilesize[i] );
else
tile[i] = tr / tl->tilesize[i];
}
/* Return the tile ID. */
return ( chid * tl->tottilesinch
+ gal_dimension_coord_to_index(tl->ndim, tl->numtilesinch, tile) );
}
/* Clean up the allocated spaces in the parameters. */
void
gal_tile_full_free_contents(struct gal_tile_two_layer_params *tl)
{
/* Free the simply allocated spaces. */
if(tl->tilesize) free(tl->tilesize);
if(tl->numchannels) free(tl->numchannels);
if(tl->channelsize) free(tl->channelsize);
if(tl->numtiles) free(tl->numtiles);
if(tl->numtilesinch) free(tl->numtilesinch);
if(tl->tilecheckname) free(tl->tilecheckname);
if(tl->permutation) free(tl->permutation);
if(tl->firsttsize) free(tl->firsttsize);
/* Free the arrays of 'gal_data_t' for each tile and channel. */
if(tl->tiles) gal_data_array_free(tl->tiles, tl->tottiles, 0);
if(tl->channels) gal_data_array_free(tl->channels, tl->totchannels, 0);
}
|