1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
|
/*********************************************************************
Convolve - Convolve input data with a given kernel.
Convolve is part of GNU Astronomy Utilities (Gnuastro) package.
Original author:
Mohammad Akhlaghi <mohammad@akhlaghi.org>
Contributing author(s):
Copyright (C) 2015-2025 Free Software Foundation, Inc.
Gnuastro is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
Gnuastro is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with Gnuastro. If not, see <http://www.gnu.org/licenses/>.
**********************************************************************/
#include <config.h>
#include <math.h>
#include <stdio.h>
#include <errno.h>
#include <error.h>
#include <stdlib.h>
#include <gsl/gsl_errno.h>
#include <gnuastro/wcs.h>
#include <gnuastro/tile.h>
#include <gnuastro/fits.h>
#include <gnuastro/pointer.h>
#include <gnuastro/threads.h>
#include <gnuastro/convolve.h>
#include <gnuastro-internal/timing.h>
#include "main.h"
#include "convolve.h"
/******************************************************************/
/************* Complex numbers *****************/
/******************************************************************/
/* We have a complex (R+iI) array and we want to display it. But we
can only do that either with the spectrum, or the phase:
Spectrum: sqrt(R^2+I^2)
Phase: arctan(I/R)
*/
void
complextoreal(double *c, size_t size, int action, double **output)
{
double *out, *o, *of;
/* Allocate the space for the real array. */
*output=out=gal_pointer_allocate(GAL_TYPE_FLOAT64, size, 0, __func__,
"output");
/* Fill the real array with the derived value from the complex array. */
of=(o=out)+size;
switch(action)
{
case COMPLEX_TO_REAL_SPEC:
do { *o++ = sqrt( *c**c + *(c+1)**(c+1) ); c+=2; } while(o<of);
break;
case COMPLEX_TO_REAL_PHASE:
do { *o++ = atan2( *(c+1), *c ); c+=2; } while(o<of);
break;
case COMPLEX_TO_REAL_REAL:
do { *o++ = *c; c+=2; } while(o<of);
break;
default:
error(EXIT_FAILURE, 0, "%s: a bug! Please contact us at %s so we can "
"correct it. The 'action' code %d is not recognized", __func__,
PACKAGE_BUGREPORT, action);
}
}
/* Multily two complex arrays and save the result in the first:
(a+ib)*(c+id)=ac+iad+ibc-bd=(ac-bd)+i(ad-bc)
The loop is easy to understand: we want to replace two
variables. But changing one, will affect the other. So what we do,
is to store the final value of one, then replace the second, then
finally replace the first one.
Here, we first get the real component but don't put it in the
output. Then we find and replace the imaginary component, finally,
we put the new real component in the image.
*/
void
complexarraymultiply(double *a, double *b, size_t size)
{
double r, *af;
af=a+2*size;
do
{
r = (*a * *b) - (*(a+1) * *(b+1));
*(a+1) = (*(a+1) * *b) + (*a * *(b+1));
*a++=r; /* Go onto (set) the imaginary part of a. */
b+=2;
}
while(++a<af); /* Go onto the next complex number. */
}
/* Divide the elements of the first array by the elements of the second
array and put the result into the elements of the first array.
(a+ib)/(c+id)=[(a+ib)*(c-id)]/[(c+id)*(c-id)]
=(ac-iad+ibc+bd)/(c^2+d^2)
=[(ac+bd)+i(bc-ad)]/(c^2+d^2)
See the explanations above complexarraymultiply for an explanation
on the loop.
*/
void
complexarraydivide(double *a, double *b, size_t size, double minsharpspec)
{
double r, *af;
af=a+2*size;
do
{
if (sqrt(*b**b + *(b+1)**(b+1))>minsharpspec)
{
r = ( ( (*a * *b) + (*(a+1) * *(b+1)) )
/ ( *b * *b + *(b+1) * *(b+1) ) );
*(a+1) = ( ( (*(a+1) * *b) - (*a * *(b+1)) )
/ ( *b * *b + *(b+1) * *(b+1) ) );
*a=r;
/* Just as a sanity check (the result should never be larger than
one. */
if(sqrt(*a**a + *(a+1)**(a+1))>1.00001f)
*a=*(a+1)=0.0f;
}
else
{
*a=0;
*(a+1)=0;
}
a+=2;
b+=2;
}
while(a<af); /* Go onto the next complex number. */
}
/******************************************************************/
/************* Padding and initializing *****************/
/******************************************************************/
void
frequency_make_padded_complex(struct convolveparams *p)
{
size_t i, ps0, ps1;
double *o, *op, *pimg, *pker;
size_t is0=p->input->dsize[0], is1=p->input->dsize[1];
size_t ks0=p->kernel->dsize[0], ks1=p->kernel->dsize[1];
float *f, *ff, *input=p->input->array, *kernel=p->kernel->array;
/* Find the sizes of the padded image, note that since the kernel
sizes are always odd, the extra padding on the input image is
always going to be an even number (clearly divisable). */
ps0=p->ps0 = p->makekernel ? is0 : is0 + ks0 - 1;
ps1=p->ps1 = p->makekernel ? is1 : is1 + ks1 - 1;
/* The Discrete Fourier transforms operate faster on even-sized
arrays. So if the padded sides are not even, make them so: */
if(ps0%2) ps0=p->ps0=ps0+1;
if(ps1%2) ps1=p->ps1=ps1+1;
/* Allocate the space for the padded input image and fill it. */
pimg=p->pimg=gal_pointer_allocate(GAL_TYPE_FLOAT64, 2*ps0*ps1, 0,
__func__, "pimg");
for(i=0;i<ps0;++i)
{
op=(o=pimg+i*2*ps1)+2*ps1; /* pimg is complex. */
if(i<is0)
{
ff=(f=input+i*is1)+is1;
do {*o++=*f; *o++=0.0f;} while(++f<ff);
}
do *o++=0.0f; while(o<op);
}
/* Allocate the space for the padded Kernel and fill it. */
pker=p->pker=gal_pointer_allocate(GAL_TYPE_FLOAT64, 2*ps0*ps1, 0,
__func__, "pker");
for(i=0;i<ps0;++i)
{
op=(o=pker+i*2*ps1)+2*ps1; /* pker is complex. */
if(i<ks0)
{
ff=(f=kernel+i*ks1)+ks1;
do {*o++=*f; *o++=0.0f;} while(++f<ff);
}
do *o++=0.0f; while(o<op);
}
}
/* Remove the padding from the final convolved image and also correct for
roundoff errors.
NOTE: The padding to the input image (on the first axis for example)
was 'p->kernel->dsize[0]-1'. Since 'p->kernel->dsize[0]' is
always odd, the padding will always be even. */
void
removepaddingcorrectroundoff(struct convolveparams *p)
{
size_t ps1=p->ps1;
size_t *isize=p->input->dsize;
float *o, *input=p->input->array;
double *d, *df, *start, *rpad=p->rpad;
size_t i, hi0, hi1, mkwidth=2*p->makekernel-1;
/* Set all the necessary parameters to crop the desired region. hi0 and
hi1 are the coordinates of the first pixel in the output image. In the
case of deconvolution, if the maximum radius is larger than the input
image, we will also only be using region that contains non-zero rows
and columns. */
if(p->makekernel)
{
hi0 = mkwidth < isize[0] ? p->ps0/2-p->makekernel : 0;
hi1 = mkwidth < isize[1] ? p->ps1/2-p->makekernel : 0;
isize[0] = mkwidth < isize[0] ? 2*p->makekernel-1 : isize[0];
isize[1] = mkwidth < isize[1] ? 2*p->makekernel-1 : isize[1];
}
else
{
hi0 = ( p->kernel->dsize[0] - 1 )/2;
hi1 = ( p->kernel->dsize[1] - 1 )/2;
}
/* To start with, 'start' points to the first pixel in the final
image: */
start=&rpad[hi0*ps1+hi1];
for(i=0;i<isize[0];++i)
{
o = &input[ i * isize[1] ];
df = ( d = start + i * ps1 ) + isize[1];
do
*o++ = ( *d<-CONVFLOATINGPOINTERR || *d>CONVFLOATINGPOINTERR )
? *d
: 0.0f;
while (++d<df);
}
}
/* Allocate the necessary arrays, note that we put everything in the
first element of the fftonthreadparams structure array. All the
other elements will point to this one later. This structure will be
given to threads to run two times with a fixed set of parameters,
that is why we are doing this here to facilitate the job. */
void
fftinitializer(struct convolveparams *p, struct fftonthreadparams **outfp)
{
size_t i;
struct fftonthreadparams *fp;
/* Allocate the fftonthreadparams array. */
errno=0;
*outfp=fp=malloc(p->cp.numthreads*sizeof *fp);
if(fp==NULL)
error(EXIT_FAILURE, errno, "%s: allocating %zu bytes for fp",
__func__, p->cp.numthreads*sizeof *fp);
/* Initialize the gsl_fft_wavetable structures (these are thread
safe): */
fp[0].ps0wave=gsl_fft_complex_wavetable_alloc(p->ps0);
fp[0].ps1wave=gsl_fft_complex_wavetable_alloc(p->ps1);
/* Set the values for all the other threads: */
for(i=0;i<p->cp.numthreads;++i)
{
fp[i].p=p;
fp[i].ps0wave=fp[0].ps0wave;
fp[i].ps1wave=fp[0].ps1wave;
fp[i].ps0work=gsl_fft_complex_workspace_alloc(p->ps0);
fp[i].ps1work=gsl_fft_complex_workspace_alloc(p->ps1);
}
}
void
freefp(struct fftonthreadparams *fp)
{
size_t i;
gsl_fft_complex_wavetable_free(fp[0].ps0wave);
gsl_fft_complex_wavetable_free(fp[0].ps1wave);
for(i=0;i<fp->p->cp.numthreads;++i)
{
gsl_fft_complex_workspace_free(fp[i].ps0work);
gsl_fft_complex_workspace_free(fp[i].ps1work);
}
free(fp);
}
/* Unfortunately I don't understand why the division operation in
deconvolution (makekernel) does not produce a centered image, the
image is translated by half the input size in both dimensions. So I
am correcting this in the spatial domain here. */
void
correctdeconvolve(struct convolveparams *p, double **spatial)
{
double r, *s, *n, *d, *df, sum=0.0f;
size_t i, j, ps0=p->ps0, ps1=p->ps1;
int ii, jj, ci=p->ps0/2-1, cj=p->ps1/2-1;
/* Check if the image has even sides. */
if(ps0%2 || ps1%2)
error(EXIT_FAILURE, 0, "%s: a bug! Please contact us at %s. The padded "
"image sides are not an even number", __func__, PACKAGE_BUGREPORT);
/* First convert the complex image to a real image: */
complextoreal(p->pimg, ps0*ps1, COMPLEX_TO_REAL_SPEC, &s);
/* Allocate the array to keep the new values. */
errno=0;
n=malloc(ps0*ps1*sizeof *n);
if(n==NULL)
error(EXIT_FAILURE, errno, "%s: allocating %zu bytes for 'n'",
__func__, ps0*ps1*sizeof *n);
/* Put the elements in their proper place: For example in one
dimension where the values are actually the true distances:
s[0]=0, s[1]=1, s[2]=2, s[3]=3, s[4]=4, s[5]=5
We want the value 0 to be in the 'center'. Note that 's' is
periodic, for example the next 6 elements have distances:
s[6]=0, s[7]=1, s[8]=2, s[9]=3, s[10]=4, s[11]=5
So a 'center'ed array would be like:
s[0]=4, s[1]=5, s[2]=0, s[3]=1, s[4]=2, s[5]=3
The relations between the old (i and j) and new (ii and jj) come
from something like the above line.
*/
for(i=0;i<ps0;++i)
{
ii= i>ps0/2 ? i-(ps0/2+1) : i+ps0/2-1;
for(j=0;j<ps1;++j)
{
jj = j>ps1/2 ? j-(ps1/2+1) : j+ps1/2-1;
r=sqrt( (ii-ci)*(ii-ci) + (jj-cj)*(jj-cj) );
sum += n[ii*ps1+jj] = r < p->makekernel ? s[i*ps1+j] : 0;
/*printf("(%zu, %zu) --> (%zu, %zu)\n", i, j, ii, jj); */
}
}
/* Divide all elements by the sum so the kernel is normalized: */
df=(d=n)+ps0*ps1; do *d++/=sum; while(d<df);
/* Clean up. */
free(s);
*spatial=n;
}
/******************************************************************/
/************* Frequency domain convolution *****************/
/******************************************************************/
/* The indexs array specifies the row or column numbers for this
thread to work on. If forward1backwardn1 is one, then this is the
forward transform, meaning that in convolution there are two
images. If it is -1, then this is the final backward transform and
there is only one image to run FFTW on and the values in indexs will
always be smaller than p->s0 and p->s1. When there are two images,
then the index numbers are going to be at most double p->s0 and
p->s1. In this case, those index values which are smaller than p->s0
or p->s1 belong to the input image and those which are equal or
larger than larger belong to the kernel image (after subtraction for
p->s0 or p->s1). */
void *
onedimensionfft(void *inparam)
{
struct fftonthreadparams *fp = (struct fftonthreadparams *)inparam;
struct convolveparams *p=fp->p;
double *d, *df;
size_t indmultip, maxindex;
gsl_fft_complex_workspace *work;
gsl_fft_complex_wavetable *wavetable;
double *data, *pimg=p->pimg, *pker=p->pker;
int forward1backwardn1=fp->forward1backwardn1;
size_t i, size, stride=fp->stride, *indexs=fp->indexs;
/* Set the number of points to transform,
indmultip: The value to be multiplied by the value in indexs to
specify the first pixel of the row or column.
*/
if(stride==1)
{ size=p->ps1; wavetable=fp->ps1wave; work=fp->ps1work;
maxindex=p->ps0; indmultip=p->ps1; }
else
{ size=p->ps0; wavetable=fp->ps0wave; work=fp->ps0work;
maxindex=p->ps1; indmultip=1; }
/* Go over all the rows or columns given for this thread.
NOTE: The final array (after the two FFT'd arrays are multiplied
by each other) is stored in p->pimg. So the check below works
both in the forward and the backward transformation.
*/
for(i=0; indexs[i]!=GAL_BLANK_SIZE_T; ++i)
{
data = ( indexs[i]<maxindex
? &pimg[ 2*indexs[i]*indmultip ] /* *2 because complex. */
: &pker[ 2*(indexs[i]-maxindex)*indmultip ] );
gsl_fft_complex_transform(data, stride, size, wavetable, work,
forward1backwardn1);
/* Normalize in the backward transform: */
if(forward1backwardn1==-1)
{
df=(d=data)+2*size*stride;
do {*d/=size; *(d+1)/=size; d+=2*stride;} while(d<df);
}
}
/* Wait until all other threads finish. */
if(p->cp.numthreads>1)
pthread_barrier_wait(fp->b);
return NULL;
}
/* Do the forward Fast Fourier Transform either on two input images
(the padded image and kernel) or on one image (the multiplication
of the FFT of the two). In the second case, it is assumed that we
are looking at the complex conjugate of the array so in practice
this will be a backward transform. */
void
twodimensionfft(struct convolveparams *p, struct fftonthreadparams *fp,
int forward1backwardn1)
{
int err;
pthread_t t; /* All thread ids saved in this, not used. */
char *mmapname=NULL;
pthread_attr_t attr;
pthread_barrier_t b;
size_t i, nb, *indexs, thrdcols;
size_t nt=p->cp.numthreads, multiple=0;
/* First we are going to get the 1D fourier transform on the rows of
both images. */
if(forward1backwardn1==1) multiple=2;
else if(forward1backwardn1==-1) multiple=1;
else
error(EXIT_FAILURE, 0, "%s: a bug! The value of the variable "
"'forward1backwardn1' is %d not 1 or 2. Please contact us at %s "
"so we can find the cause of the problem and fix it", __func__,
forward1backwardn1, PACKAGE_BUGREPORT);
/* ==================== */
/* 1D FFT on each row. */
/* ==================== */
mmapname=gal_threads_dist_in_threads(multiple*p->ps0, nt,
p->input->minmapsize,
p->cp.quietmmap,
&indexs, &thrdcols);
if(nt==1)
{
fp[0].stride=1;
fp[0].indexs=&indexs[0];
fp[0].forward1backwardn1=forward1backwardn1;
onedimensionfft(&fp[0]);
}
else
{
/* Initialize the attributes. Note that this running thread
(that spinns off the nt threads) is also a thread, so the
number the barrier should be one more than the number of
threads spinned off. */
if( multiple*p->ps0 < nt ) nb=multiple*p->ps0+1;
else nb=nt+1;
gal_threads_attr_barrier_init(&attr, &b, nb);
/* Spin off the threads: */
for(i=0;i<nt;++i)
if(indexs[i*thrdcols]!=GAL_BLANK_SIZE_T)
{
fp[i].id=i;
fp[i].b=&b;
fp[i].stride=1; /* On each row, stride=1 */
fp[i].indexs=&indexs[i*thrdcols];
fp[i].forward1backwardn1=forward1backwardn1;
err=pthread_create(&t, &attr, onedimensionfft, &fp[i]);
if(err)
error(EXIT_FAILURE, 0, "%s: can't create thread %zu for rows",
__func__, i);
}
/* Wait for all threads to finish and free the spaces. */
pthread_barrier_wait(&b);
pthread_attr_destroy(&attr);
pthread_barrier_destroy(&b);
}
/* Clean up. */
if(mmapname) gal_pointer_mmap_free(&mmapname, p->cp.quietmmap);
else free(indexs);
/* ====================== */
/* 1D FFT on each column. */
/* ====================== */
/* No comments, exact duplicate of above, except the p->ps1s! */
mmapname=gal_threads_dist_in_threads(multiple*p->ps1, nt,
p->input->minmapsize,
p->cp.quietmmap,
&indexs, &thrdcols);
if(nt==1)
{
fp[0].stride=p->ps1;
fp[0].indexs=indexs;
fp[0].forward1backwardn1=forward1backwardn1;
onedimensionfft(&fp[0]);
}
else
{
if( multiple*p->ps1 < nt ) nb=multiple*p->ps1+1;
else nb=nt+1;
gal_threads_attr_barrier_init(&attr, &b, nb);
for(i=0;i<nt;++i)
if(indexs[i*thrdcols]!=GAL_BLANK_SIZE_T)
{
fp[i].b=&b;
fp[i].stride=p->ps1; /* On each column, stride is p->ps1 */
fp[i].indexs=&indexs[i*thrdcols];
fp[i].forward1backwardn1=forward1backwardn1;
err=pthread_create(&t, &attr, onedimensionfft, &fp[i]);
if(err)
error(EXIT_FAILURE, 0, "%s: can't create thread %zu for columns",
__func__, i);
}
pthread_barrier_wait(&b);
pthread_attr_destroy(&attr);
pthread_barrier_destroy(&b);
}
/* Clean up, note that 'indexs' may be memory-mapped. */
if(mmapname) gal_pointer_mmap_free(&mmapname, p->cp.quietmmap);
else free(indexs);
}
void
convolve_frequency(struct convolveparams *p)
{
double *tmp;
size_t dsize[2];
struct timeval t1;
gal_data_t *data=NULL;
struct fftonthreadparams *fp;
/* Make the padded arrays. */
if(!p->cp.quiet) gettimeofday(&t1, NULL);
frequency_make_padded_complex(p);
if(!p->cp.quiet)
gal_timing_report(&t1, "Input and Kernel images padded.", 1);
if(p->checkfreqsteps)
{
/* Prepare the data structure for viewing the steps, note that we
don't need the array that is initially made. */
dsize[0]=p->ps0; dsize[1]=p->ps1;
data=gal_data_alloc(NULL, GAL_TYPE_FLOAT64, 2, dsize, NULL, 0,
p->cp.minmapsize, p->cp.quietmmap,
NULL, NULL, NULL);
free(data->array);
/* Save the padded input image. */
complextoreal(p->pimg, p->ps0*p->ps1, COMPLEX_TO_REAL_REAL, &tmp);
data->array=tmp; data->name="input padded";
gal_fits_img_write(data, p->freqstepsname, NULL, 0);
free(tmp); data->name=NULL;
/* Save the padded kernel image. */
complextoreal(p->pker, p->ps0*p->ps1, COMPLEX_TO_REAL_REAL, &tmp);
data->array=tmp; data->name="kernel padded";
gal_fits_img_write(data, p->freqstepsname, NULL, 0);
free(tmp); data->name=NULL;
}
/* Initialize the structures: */
fftinitializer(p, &fp);
/* Forward 2D FFT on each image. */
if(!p->cp.quiet) gettimeofday(&t1, NULL);
twodimensionfft(p, fp, 1);
if(!p->cp.quiet)
gal_timing_report(&t1, "Images converted to frequency domain.", 1);
if(p->checkfreqsteps)
{
complextoreal(p->pimg, p->ps0*p->ps1, COMPLEX_TO_REAL_SPEC, &tmp);
data->array=tmp; data->name="input transformed";
gal_fits_img_write(data, p->freqstepsname, NULL, 0);
free(tmp); data->name=NULL;
complextoreal(p->pker, p->ps0*p->ps1, COMPLEX_TO_REAL_SPEC, &tmp);
data->array=tmp; data->name="kernel transformed";
gal_fits_img_write(data, p->freqstepsname, NULL, 0);
free(tmp); data->name=NULL;
}
/* Multiply or divide the two arrays and save them in the output.*/
if(!p->cp.quiet) gettimeofday(&t1, NULL);
if(p->makekernel)
{
complexarraydivide(p->pimg, p->pker, p->ps0*p->ps1, p->minsharpspec);
if(!p->cp.quiet)
gal_timing_report(&t1, "Divided in the frequency domain.", 1);
}
else
{
complexarraymultiply(p->pimg, p->pker, p->ps0*p->ps1);
if(!p->cp.quiet)
gal_timing_report(&t1, "Multiplied in the frequency domain.", 1);
}
if(p->checkfreqsteps)
{
complextoreal(p->pimg, p->ps0*p->ps1, COMPLEX_TO_REAL_SPEC, &tmp);
data->array=tmp; data->name=p->makekernel ? "Divided" : "Multiplied";
gal_fits_img_write(data, p->freqstepsname, NULL, 0);
free(tmp); data->name=NULL;
}
/* Forward (in practice inverse) 2D FFT on each image. */
if(!p->cp.quiet) gettimeofday(&t1, NULL);
twodimensionfft(p, fp, -1);
if(p->makekernel)
correctdeconvolve(p, &p->rpad);
else
complextoreal(p->pimg, p->ps0*p->ps1, COMPLEX_TO_REAL_REAL, &p->rpad);
if(!p->cp.quiet)
gal_timing_report(&t1, "Converted back to the spatial domain.", 1);
if(p->checkfreqsteps)
{
data->array=p->rpad; data->name="padded output";
gal_fits_img_write(data, p->freqstepsname, NULL, 0);
data->name=NULL; data->array=NULL;
}
/* Free the padded arrays (they are no longer needed) and put the
converted array (that is real, not complex) in p->pimg. */
gal_data_free(data);
free(p->pimg);
free(p->pker);
/* Crop out the center, numbers smaller than 10^{-17} are errors,
remove them. */
if(!p->cp.quiet) gettimeofday(&t1, NULL);
removepaddingcorrectroundoff(p);
if(!p->cp.quiet) gal_timing_report(&t1, "Padded parts removed.", 1);
/* Free all the allocated space. */
freefp(fp);
}
void
convolve_spatial(struct convolveparams *p)
{
gal_data_t *out, *check;
int multidim=p->input->ndim>1;
struct gal_options_common_params *cp=&p->cp;
/* Prepare the mesh structure. */
if(multidim) gal_tile_full_two_layers(p->input, &cp->tl);
/* Save the tile IDs if they are requested. */
if(multidim && cp->tl.tilecheckname)
{
check=gal_tile_block_check_tiles(cp->tl.tiles);
gal_fits_img_write(check, cp->tl.tilecheckname, NULL, 0);
gal_data_free(check);
}
/* Do the spatial convolution. One of the main reason someone would
want to do spatial domain convolution with this Convolve program
is edge correction. So by default we assume it and will only
ignore it if the user asks. */
out=gal_convolve_spatial(multidim ? cp->tl.tiles : p->input,
p->kernel,
cp->numthreads,
multidim ? !p->noedgecorrection : 1,
multidim ? cp->tl.workoverch : 1,
p->conv_on_blank);
/* Clean up: free the actual input and replace it's pointer with the
convolved dataset to save as output. */
gal_tile_full_free_contents(&cp->tl);
gal_data_free(p->input);
p->input=out;
}
/******************************************************************/
/************* Top-level function *****************/
/******************************************************************/
void
convolve(struct convolveparams *p)
{
struct gal_options_common_params *cp=&p->cp;
/* Do the convolution. */
if(p->domain==CONVOLVE_DOMAIN_SPATIAL) convolve_spatial(p);
else convolve_frequency(p);
/* Write Convolve's parameters as keywords into the first extension of
the output. */
if( gal_fits_name_is_fits(p->cp.output) )
{
gal_fits_key_write_filename("input", p->filename, &cp->ckeys, 1,
cp->quiet);
gal_fits_key_write(cp->ckeys, cp->output, "0", "NONE", 1, 1);
}
/* Save the output (which is in p->input) array. */
if(p->input->ndim==1)
gal_table_write(p->input, NULL, NULL, p->cp.tableformat, p->cp.output,
"CONVOLVED", 0, 0);
else
gal_fits_img_write_to_type(p->input, cp->output, NULL, cp->type, 0);
/* Inform the user that the job is done. */
if(!p->cp.quiet)
printf(" - Output: %s\n", p->cp.output);
}
|