File: parse.c

package info (click to toggle)
gnuastro 0.24-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 44,360 kB
  • sloc: ansic: 185,444; sh: 15,785; makefile: 1,303; cpp: 9
file content (1557 lines) | stat: -rw-r--r-- 63,055 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
/*********************************************************************
MakeCatalog - Make a catalog from an input and labeled image.
MakeCatalog is part of GNU Astronomy Utilities (Gnuastro) package.

Original author:
     Mohammad Akhlaghi <mohammad@akhlaghi.org>
Contributing author(s):
Copyright (C) 2018-2025 Free Software Foundation, Inc.

Gnuastro is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.

Gnuastro is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with Gnuastro. If not, see <http://www.gnu.org/licenses/>.
**********************************************************************/
#include <config.h>

#include <math.h>
#include <stdio.h>
#include <errno.h>
#include <error.h>
#include <float.h>
#include <string.h>
#include <stdlib.h>

#include <gnuastro/data.h>
#include <gnuastro/pointer.h>
#include <gnuastro/dimension.h>
#include <gnuastro/statistics.h>

#include "main.h"
#include "mkcatalog.h"

#include "parse.h"









/* Both passes are going to need their starting pointers set, so we'll do
   that here. */
void
parse_initialize(struct mkcatalog_passparams *pp)
{
  struct mkcatalogparams *p=pp->p;

  gal_data_t *vec;
  size_t i, ndim=p->objects->ndim;
  size_t *start_end=pp->start_end_inc;

  /* Initialize the number of clumps in this object. */
  pp->clumpsinobj=0;

  /* Initialize the intermediate values to zero. */
  memset(pp->oi, 0, OCOL_NUMCOLS * sizeof *pp->oi);
  if(pp->vector)
    for(i=0;i<VEC_NUM;++i)
      {
        vec=&(pp->vector[i]);
        if(pp->vector[i].array)
          memset(vec->array, 0, vec->size*gal_type_sizeof(vec->type));
      }

  /* Set the shifts in every dimension to avoid round-off errors in large
     numbers for the non-linear calculations. We are using the first pixel
     of each object's tile as the shift parameter to keep the mean
     (average) reasonably near to the standard deviation. Otherwise, when
     the object is far out in the image (large x and y positions), then
     roundoff errors are going to decrease the accuracy of the second order
     calculations. */
  if(pp->shift)
    {
      /* Get the coordinates of the tile's starting point. */
      gal_dimension_index_to_coord(( (float *)(pp->tile->array)
                                     - (float *)(pp->tile->block->array) ),
                                   ndim, p->objects->dsize, pp->shift);

      /* Change their counting to start from 1, not zero, since we will be
         using them as FITS coordinates. */
      for(i=0;i<ndim;++i) ++pp->shift[i];
    }


  /* Set the starting and ending indexs of this tile/object on all (the
     possible) input arrays. */
  pp->st_o   = gal_tile_start_end_ind_inclusive(pp->tile, p->objects,
                                                start_end);
  pp->st_c   = (p->clumps
                ? (int32_t *)(p->clumps->array) + start_end[0] : NULL);
  pp->st_v   = (p->values
                ? (float *)(p->values->array)   + start_end[0] : NULL);
  pp->st_sky = ( p->sky
                 ? ( p->sky->size==p->objects->size
                     ? (float *)(p->sky->array) + start_end[0]
                     : NULL )
                 : NULL);
  pp->st_std = ( p->std
                 ? ( p->std->size==p->objects->size
                     ? (float *)(p->std->array) + start_end[0]
                     : NULL )
                 : NULL );
}





static size_t *
parse_vector_dim3_prepare(struct mkcatalog_passparams *pp,
                          size_t *start_end_inc, int32_t **st_o,
                          float **st_v, float **st_std)
{
  size_t *tsize;
  gal_data_t *spectile;
  struct mkcatalogparams *p=pp->p;
  size_t coord[3], minmax[6];

  /* Get the coordinates of the spectral tile's starting element, then make
     the tile. */
  gal_dimension_index_to_coord(gal_pointer_num_between(p->objects->array,
                                                       pp->tile->array,
                                                       p->objects->type),
                               p->objects->ndim, p->objects->dsize, coord);
  minmax[0]=0;                             /* Changed to first slice.*/
  minmax[1]=coord[1];
  minmax[2]=coord[2];
  minmax[3]=p->objects->dsize[0]-1;        /* Changed to last slice. */
  minmax[4]=coord[1]+pp->tile->dsize[1]-1;
  minmax[5]=coord[2]+pp->tile->dsize[2]-1;
  spectile=gal_tile_series_from_minmax(p->objects, minmax, 1);

  /* Find the starting (and ending) pointers on each of the datasets. */
  *st_o   = gal_tile_start_end_ind_inclusive(spectile, p->objects,
                                             start_end_inc);
  *st_v   = (float *)(p->values->array) + start_end_inc[0];
  *st_std = ( p->std
                 ? ( p->std->size==p->objects->size
                     ? (float *)(p->std->array) + start_end_inc[0]
                     : NULL )
                 : NULL );

  /* Clean up and return. */
  tsize=spectile->dsize;
  spectile->dsize=NULL;
  gal_data_free(spectile);
  return tsize;
}





static void
parse_vector_dim3(struct mkcatalog_passparams *pp, gal_data_t *xybin)
{
  struct mkcatalogparams *p=pp->p;

  double var;
  int needsvar;
  gal_data_t *vector=pp->vector;
  uint8_t vine=!p->novalinerror;
  float *std=p->std?p->std->array:NULL;
  size_t c[3], *dsize=p->objects->dsize;
  size_t sind=0, pind=0, num_increment=1;
  float sval, *st_v, *st_std, *V=NULL, *ST=NULL;
  uint8_t *xybinarr = xybin ? xybin->array : NULL;
  int32_t *st_o, *O, *OO, *objarr=p->objects->array;
  size_t tid, *tsize, increment=0, start_end_inc[2], ndim=p->objects->ndim;

  /* Pointers to necessary temporary arrays (they will be NULL if they are
     not necessary for the user). */
  double  *suminslice         = vector[ VEC_SUMINSLICE         ].array;
  double  *sumvarinslice      = vector[ VEC_SUMVARINSLICE      ].array;
  double  *sumprojinslice     = vector[ VEC_SUMPROJINSLICE     ].array;
  double  *sumprojvarinslice  = vector[ VEC_SUMPROJVARINSLICE  ].array;
  double  *sumotherinslice    = vector[ VEC_SUMOTHERINSLICE    ].array;
  double  *sumothervarinslice = vector[ VEC_SUMOTHERVARINSLICE ].array;
  int32_t *numinslice         = vector[ VEC_NUMINSLICE         ].array;
  int32_t *numallinslice      = vector[ VEC_NUMALLINSLICE      ].array;
  int32_t *numprojinslice     = vector[ VEC_NUMPROJINSLICE     ].array;
  int32_t *numotherinslice    = vector[ VEC_NUMOTHERINSLICE    ].array;
  int32_t *numallotherinslice = vector[ VEC_NUMALLOTHERINSLICE ].array;

  /* Prepare the parsing information. Also, if tile-id isn't necessary, set
     'tid' to a blank value to cause a crash with a mistake. */
  tsize=parse_vector_dim3_prepare(pp, start_end_inc, &st_o, &st_v,
                                  &st_std);
  tid = (p->std && p->std->size>1 && st_std == NULL)?0:GAL_BLANK_SIZE_T;

  /* Check if we need the variance. */
  needsvar = ( sumvarinslice || sumprojvarinslice || sumothervarinslice
               ? 1 : 0 );
  if(needsvar && p->std==NULL)
    error(EXIT_FAILURE, 0, "%s: a bug! Please contact us at '%s' to fix "
          "the problem. The requested column requires a variance "
          "estimation, but the input standard deviation image is NULL",
          __func__, PACKAGE_BUGREPORT);

  /* Parse each contiguous patch of memory covered by this object. */
  while( start_end_inc[0] + increment <= start_end_inc[1] )
    {
      /* Set the contiguous range to parse. The pixel-to-pixel counting
         along the fastest dimension will be done over the 'O' pointer. */
      if( p->values        ) V  = st_v   + increment;
      if( p->std && st_std ) ST = st_std + increment;
      OO = ( O = st_o + increment ) + pp->tile->dsize[ndim-1];

      /* Parse the "tile" for this label. */
      do
        {
          /* Counters that don't depend on value. */
          if(numallinslice) ++numallinslice[sind];
          if(*O!=pp->object && numallotherinslice)
            ++numallotherinslice[sind];

          /* Only continue if this voxel is on a label and is useful (it
             isn't NaN). */
          if( !isnan(*V) )
            {
              /* Variance of this voxel (if necessary) */
              if(needsvar)
                {
                  /* If the standard deviation is given on a tile
                     structure, estimate the tile ID. */
                  if(tid != GAL_BLANK_SIZE_T)
                    {
                      gal_dimension_index_to_coord(O-objarr, ndim, dsize,
                                                   c);
                      tid=gal_tile_full_id_from_coord(&p->cp.tl, c);
                    }

                  /* Get the error associated with this voxel. Note that if
                     we are given a variance dataset already, there is no
                     need to use 'st*st', we can directly use 'sval'. */
                  sval = st_std ? *ST : (p->std->size>1?std[tid]:std[0]);
                  var = (p->variance ? sval : sval*sval) + (vine?*V:0);
                }
              else var = NAN;

              /* Only on this label. */
              if(*O==pp->object) /* We are on this object. */
                {
                  if(numinslice)  ++numinslice[sind];
                  if(suminslice)    suminslice[sind]    += *V;
                  if(sumvarinslice) sumvarinslice[sind] += var;
                }

              /* Projected measurements: see if we have a value of '2' in
                 the 'xybin' array (showing that there is atleast one
                 non-blank element there over the whole spectrum.  */
              if(xybin && xybinarr[pind]==2)
                {
                  /* Raw measurements over the projection. */
                  if(numprojinslice)  ++numprojinslice[sind];
                  if(sumprojinslice)    sumprojinslice[sind]    += *V;
                  if(sumprojvarinslice) sumprojvarinslice[sind] += var;

                  /* Other labels over this projection. */
                  if(*O!=pp->object)
                    {
                      if(numotherinslice) ++numotherinslice[sind];
                      if(sumotherinslice)   sumotherinslice[sind]   += *V;
                      if(sumothervarinslice)sumothervarinslice[sind]+=var;
                    }
                }
            }

          /* Values used, increment the pointrs for next voxel. */
          if( xybin            ) ++pind;
          if( p->values        ) ++V;
          if( p->std && st_std ) ++ST;
        }
      while(++O<OO);

      /* Increment to the next contiguous region of this tile. */
      increment += ( gal_tile_block_increment(p->objects, tsize,
                                              num_increment++, NULL) );

      /* If we have reached the end of one slice, increment the slice index
         ('sind'), and reset the projection (2D) index 'pind' if we have
         just finished parsing a slice. Also, set all the sum values
         that didn't have any measurement to NAN. */
      if( (num_increment-1)%pp->tile->dsize[1]==0 )
        {
          /* If there was no measurement, set NaN for the values and their
             errors (zero is meaningful). */
          if(numinslice && numinslice[sind]==0)
            suminslice[sind]=NAN;
          if(numprojinslice && numprojinslice[sind]==0)
            sumprojinslice[sind]=NAN;
          if(numotherinslice && numotherinslice[sind]==0)
            sumotherinslice[sind]=NAN;

          /* Set the projection-index to zero (since it counts on each
             slice), and increment the slice-index. */
          pind=0;
          ++sind;
        }
    }

  /* Clean up and return. */
  free(tsize);
}




void
parse_objects(struct mkcatalog_passparams *pp)
{
  uint8_t *oif=pp->p->oiflag;
  struct mkcatalogparams *p=pp->p;
  size_t ndim=p->objects->ndim, *dsize=p->objects->dsize;

  double *oi=pp->oi;
  gal_data_t *xybin=NULL;
  size_t *tsize=pp->tile->dsize;
  double minima_v=FLT_MAX, maxima_v=-FLT_MAX;
  size_t d, pind=0, increment=0, num_increment=1;
  int32_t *O, *OO, *C=NULL, *objarr=p->objects->array;
  float var, sval, skyval, *V=NULL, *SK=NULL, *ST=NULL;
  uint8_t *u, *uf, goodvalue, vine=!p->novalinerror, *xybinarr=NULL;
  float *std=p->std?p->std->array:NULL, *sky=p->sky?p->sky->array:NULL;

  /* If tile processing isn't necessary, set 'tid' to a blank value. */
  size_t tid = ( ( (p->sky     && p->sky->size>1 && pp->st_sky == NULL )
                   || ( p->std && p->std->size>1 && pp->st_std == NULL ) )
                 ? 0 : GAL_BLANK_SIZE_T );

  /* Coordinate shift. */
  size_t *sc = ( pp->shift
                 ? gal_pointer_allocate(GAL_TYPE_SIZE_T, ndim, 0, __func__,
                                        "sc")
                 : NULL );

  /* If any coordinate columns are requested. */
  size_t *c = (
               /* Coordinate-related columns. */
               ( oif[    OCOL_GX      ]
                 || oif[ OCOL_GY      ]
                 || oif[ OCOL_GZ      ]
                 || oif[ OCOL_VX      ]
                 || oif[ OCOL_VY      ]
                 || oif[ OCOL_VZ      ]
                 || oif[ OCOL_C_GX    ]
                 || oif[ OCOL_C_GY    ]
                 || oif[ OCOL_C_GZ    ]
                 || oif[ OCOL_MINVX   ]
                 || oif[ OCOL_MAXVX   ]
                 || oif[ OCOL_MINVY   ]
                 || oif[ OCOL_MAXVY   ]
                 || oif[ OCOL_MINVZ   ]
                 || oif[ OCOL_MAXVZ   ]
                 || oif[ OCOL_MINVNUM ]
                 || oif[ OCOL_MAXVNUM ]
                 || sc
                 /* When the sky and its STD are tiles, we'll also need
                    the coordinate to find which tile a pixel belongs
                    to. */
                 || tid==GAL_BLANK_SIZE_T )
               ? gal_pointer_allocate(GAL_TYPE_SIZE_T, ndim, 0, __func__,
                                      "c")
               : NULL );

  /* If any of the projection measurements are necessary, we need to
     allocate an array to keep the projected space. */
  if(    oif[ OCOL_NUMALLXY           ]
      || oif[ OCOL_NUMXY              ]
      || oif[ OCOL_SUMPROJINSLICE     ]
      || oif[ OCOL_NUMPROJINSLICE     ]
      || oif[ OCOL_SUMPROJVARINSLICE  ]
      || oif[ OCOL_NUMOTHERINSLICE    ]
      || oif[ OCOL_SUMOTHERINSLICE    ]
      || oif[ OCOL_SUMOTHERVARINSLICE ]
      || oif[ OCOL_NUMALLOTHERINSLICE ] )
    {
      xybin=gal_data_alloc(NULL, GAL_TYPE_UINT8, 2, &tsize[1], NULL,
                           1, p->cp.minmapsize, p->cp.quietmmap,
                           NULL, NULL, NULL);
      xybinarr=xybin->array;
    }

  /* Parse each contiguous patch of memory covered by this object. */
  while( pp->start_end_inc[0] + increment <= pp->start_end_inc[1] )
    {
      /* Set the contiguous range to parse. The pixel-to-pixel counting
         along the fastest dimension will be done over the 'O' pointer. */
      if( p->clumps            ) C  = pp->st_c   + increment;
      if( p->values            ) V  = pp->st_v   + increment;
      if( p->sky && pp->st_sky ) SK = pp->st_sky + increment;
      if( p->std && pp->st_std ) ST = pp->st_std + increment;
      OO = ( O = pp->st_o + increment ) + tsize[ndim-1];

      /* Parse the tile. */
      do
        {
          /* If this pixel belongs to the requested object then do the
             processing.  */
          if( *O==pp->object )
            {
              /* INTERNAL: Get the number of clumps in this object: it is
                 the largest clump ID over each object. */
              if( p->clumps && *C>0 )
                pp->clumpsinobj = *C > pp->clumpsinobj?*C:pp->clumpsinobj;


              /* Add to the area of this object. */
              if(xybin) xybinarr[ pind ]=1;
              if(oif[ OCOL_NUMALL   ]) oi[ OCOL_NUMALL ]++;


              /* Geometric coordinate measurements. */
              if(c)
                {
                  /* Convert the index to coordinate. */
                  gal_dimension_index_to_coord(O-objarr, ndim, dsize, c);

                  /* If we need tile-ID, get the tile ID now. */
                  if(tid!=GAL_BLANK_SIZE_T)
                    tid=gal_tile_full_id_from_coord(&p->cp.tl, c);

                  /* Do the general geometric (independent of pixel value)
                     calculations. */
                  if(oif[ OCOL_GX ]) oi[ OCOL_GX ] += c[ ndim-1 ]+1;
                  if(oif[ OCOL_GY ]) oi[ OCOL_GY ] += c[ ndim-2 ]+1;
                  if(oif[ OCOL_GZ ]) oi[ OCOL_GZ ] += c[ ndim-3 ]+1;
                  if(pp->shift)
                    {
                      /* Calculate the shifted coordinates for second order
                         calculations. The coordinate is incremented
                         because from now on, the positions are in the FITS
                         standard (starting from one).  */
                      for(d=0;d<ndim;++d) sc[d] = c[d] + 1 - pp->shift[d];

                      /* Include the shifted values, note that the second
                         order moments are never needed independently, they
                         are used together to find the ellipticity
                         parameters. */
                      oi[ OCOL_GXX ] += sc[1] * sc[1];
                      oi[ OCOL_GYY ] += sc[0] * sc[0];
                      oi[ OCOL_GXY ] += sc[1] * sc[0];
                    }
                  if(p->clumps && *C>0)
                    {
                      if(oif[ OCOL_C_NUMALL ]) oi[ OCOL_C_NUMALL ]++;
                      if(oif[ OCOL_C_GX ]) oi[ OCOL_C_GX ] += c[ndim-1]+1;
                      if(oif[ OCOL_C_GY ]) oi[ OCOL_C_GY ] += c[ndim-2]+1;
                      if(oif[ OCOL_C_GZ ]) oi[ OCOL_C_GZ ] += c[ndim-3]+1;
                    }
                }


              /* Value related measurements. */
              goodvalue=0;
              if( p->values && !( p->hasblank && isnan(*V) ) )
                {
                  /* For the standard-deviation measurements later. */
                  goodvalue=1;

                  /* General flux summations. */
                  if(xybin) xybinarr[ pind ]=2;
                  if(oif[ OCOL_NUM ])   oi[ OCOL_NUM   ]++;
                  if(oif[ OCOL_SUM ])   oi[ OCOL_SUM   ] += *V;
                  if(oif[ OCOL_SUMP2 ]) oi[ OCOL_SUMP2 ] += *V * *V;

                  /* Get the necessary clump information. */
                  if(p->clumps && *C>0)
                    {
                      if(oif[ OCOL_C_NUM ]) oi[ OCOL_C_NUM ]++;
                      if(oif[ OCOL_C_SUM ]) oi[ OCOL_C_SUM ] += *V;
                    }

                  /* Get the extrema of the values. Note that if the minima
                     or maxima value's coordinates are requested in any
                     dimension, then 'OCOL_MINVNUM' or 'OCOL_MAXVNUM' will
                     be activated). */
                  if( oif[ OCOL_MINVNUM ] && *V<=minima_v )
                    {
                      /* If the value is smaller than the smallest found so
                         far, reset the counter to one, and reset the sum
                         of positions this one's position. */
                      if( *V<minima_v )
                        {
                          minima_v = *V;
                          oi[ OCOL_MINVNUM ]=1;
                          if(oif[OCOL_MINVX])oi[OCOL_MINVX]=c[ndim-1]+1;
                          if(oif[OCOL_MINVY])oi[OCOL_MINVY]=c[ndim-2]+1;
                          if(oif[OCOL_MINVZ])oi[OCOL_MINVZ]=c[ndim-3]+1;
                        }
                      else
                        {
                          oi[ OCOL_MINVNUM ]++;
                          if(oif[OCOL_MINVX])oi[OCOL_MINVX]+=c[ndim-1]+1;
                          if(oif[OCOL_MINVY])oi[OCOL_MINVY]+=c[ndim-2]+1;
                          if(oif[OCOL_MINVZ])oi[OCOL_MINVZ]+=c[ndim-3]+1;
                        }
                    }
                  if( oif[ OCOL_MAXVNUM ] && *V>=maxima_v )
                    {
                      if( *V>maxima_v )
                        {
                          maxima_v = *V;
                          oi[ OCOL_MAXVNUM ]=1;
                          if(oif[OCOL_MAXVX])oi[OCOL_MAXVX]=c[ndim-1]+1;
                          if(oif[OCOL_MAXVY])oi[OCOL_MAXVY]=c[ndim-2]+1;
                          if(oif[OCOL_MAXVZ])oi[OCOL_MAXVZ]=c[ndim-3]+1;
                        }
                      else
                        {
                          oi[ OCOL_MAXVNUM ]++;
                          if(oif[OCOL_MAXVX])oi[OCOL_MAXVX]+=c[ndim-1]+1;
                          if(oif[OCOL_MAXVY])oi[OCOL_MAXVY]+=c[ndim-2]+1;
                          if(oif[OCOL_MAXVZ])oi[OCOL_MAXVZ]+=c[ndim-3]+1;
                        }
                    }

                  /* For flux weighted centers, we can only use positive
                     values, so do those measurements here. */
                  if( *V > 0.0f )
                    {
                      if(oif[ OCOL_NUMWHT ]) oi[ OCOL_NUMWHT ]++;
                      if(oif[ OCOL_SUMWHT ]) oi[ OCOL_SUMWHT ] += *V;
                      if(oif[ OCOL_VX ]) oi[ OCOL_VX ] += *V*(c[ndim-1]+1);
                      if(oif[ OCOL_VY ]) oi[ OCOL_VY ] += *V*(c[ndim-2]+1);
                      if(oif[ OCOL_VZ ]) oi[ OCOL_VZ ] += *V*(c[ndim-3]+1);
                      if(pp->shift)
                        {
                          oi[ OCOL_VXX    ] += *V * sc[1] * sc[1];
                          oi[ OCOL_VYY    ] += *V * sc[0] * sc[0];
                          oi[ OCOL_VXY    ] += *V * sc[1] * sc[0];
                        }
                      if(p->clumps && *C>0)
                        {
                          if(oif[ OCOL_C_NUMWHT ]) oi[ OCOL_C_NUMWHT ]++;
                          if(oif[ OCOL_C_SUMWHT ]) oi[ OCOL_C_SUMWHT ]+=*V;
                          if(oif[ OCOL_C_VX ])
                            oi[   OCOL_C_VX ] += *V * (c[ ndim-1 ]+1);
                          if(oif[ OCOL_C_VY ])
                            oi[   OCOL_C_VY ] += *V * (c[ ndim-2 ]+1);
                          if(oif[ OCOL_C_VZ ])
                            oi[   OCOL_C_VZ ] += *V * (c[ ndim-3 ]+1);
                        }
                    }
                }


              /* Sky value based measurements. */
              if(p->sky && oif[ OCOL_SUMSKY ])
                {
                  skyval = ( pp->st_sky
                             ? (isnan(*SK)?0:*SK)        /* Full array  */
                             : ( p->sky->size>1
                                 ? (isnan(sky[tid])?0:sky[tid]) /* Tile */
                                 : sky[0] ) );           /* Single value*/
                  if(!isnan(skyval))
                    {
                      oi[ OCOL_NUMSKY  ]++;
                      oi[ OCOL_SUMSKY  ] += skyval;
                    }
                }


              /* Sky standard deviation based measurements.*/
              if(p->std)
                {
                  /* Calculate the variance and save it in the output if
                     necessary. */
                  sval=pp->st_std ? *ST : (p->std->size>1?std[tid]:std[0]);
                  var = p->variance ? sval : sval*sval;
                  if(oif[ OCOL_SUMVAR ] && (!isnan(var)))
                    {
                      oi[ OCOL_NUMVAR  ]++;
                      oi[ OCOL_SUMVAR  ] += var;
                    }

                  /* For each pixel, we have a sky contribution to the
                     counts and the signal's contribution. The standard
                     deviation in the sky is simply 'sval', but the
                     standard deviation of the signal (independent of the
                     sky) is 'sqrt(*V)'. Therefore the total variance of
                     this pixel is the variance of the sky added with the
                     absolute value of its sky-subtracted flux. */
                  if(oif[ OCOL_SUM_VAR ] && goodvalue)
                    {
                      if(!isnan(var))
                        {
                          oi[ OCOL_SUM_VAR_NUM  ]++;
                          oi[ OCOL_SUM_VAR      ] += var + (vine?*V:0);
                        }
                    }
                }
            }

          /* Increment the other pointers. */
          if( xybin                ) ++pind;
          if( p->values            ) ++V;
          if( p->clumps            ) ++C;
          if( p->sky && pp->st_sky ) ++SK;
          if( p->std && pp->st_std ) ++ST;
        }
      while(++O<OO);

      /* Increment to the next contiguous region of this tile. */
      increment += ( gal_tile_block_increment(p->objects, tsize,
                                              num_increment++, NULL) );

      /* If a 2D projection is requested, see if we should initialize (set
         to zero) the projection-index ('pind') not. */
      if(xybin && (num_increment-1)%tsize[1]==0 )
        pind=0;
    }

  /* Write the projected area columns. */
  if(xybin)
    {
      /* Any non-zero pixel must be set for NUMALLXY. */
      uf=(u=xybin->array)+xybin->size;
      do
        if(*u)
          {
            if(oif[ OCOL_NUMALLXY ]          ) oi[ OCOL_NUMALLXY ]++;
            if(oif[ OCOL_NUMXY    ] && *u==2 ) oi[ OCOL_NUMXY    ]++;
          }
      while(++u<uf);

      /* For a check on the projected 2D areas.
      if(xybin && pp->object==1)
        {
          gal_fits_img_write(xybin, "xybin.fits", NULL, NULL);
          printf("Created 'xybin.fits'\n"); exit(0);
        }
      */
    }

  /* Generate the Spectrum. */
  if(    oif[ OCOL_SUMINSLICE         ]
      || oif[ OCOL_NUMINSLICE         ]
      || oif[ OCOL_NUMALLINSLICE      ]
      || oif[ OCOL_SUMVARINSLICE      ]
      || oif[ OCOL_SUMPROJINSLICE     ]
      || oif[ OCOL_NUMOTHERINSLICE    ]
      || oif[ OCOL_SUMOTHERINSLICE    ]
      || oif[ OCOL_SUMPROJVARINSLICE  ]
      || oif[ OCOL_SUMOTHERVARINSLICE ]
      || oif[ OCOL_NUMALLOTHERINSLICE ])
    parse_vector_dim3(pp, xybin);

  /* Clean up. */
  if(c)     free(c);
  if(sc)    free(sc);
  if(xybin) gal_data_free(xybin);
}





/* To keep the main function easier to read. */
static void *
parse_init_extrema(uint8_t *cif, uint8_t type, size_t num, int max1min0)
{
  void *out;
  double *out_d;
  size_t i, *out_s;

  /* Allocate the array. */
  out=gal_pointer_allocate(type, num, 0, __func__, "out");

  /* Initialize the array. */
  switch(type)
    {
    case GAL_TYPE_FLOAT64:
      out_d=out;
      for(i=0;i<num;++i) out_d[i]= max1min0 ? -FLT_MAX : FLT_MAX;
      break;
    case GAL_TYPE_SIZE_T:
      out_s=out;
      for(i=0;i<num;++i) out_s[i]= max1min0 ? 0 : GAL_BLANK_SIZE_T;
      break;
    default:
      error(EXIT_FAILURE, 0, "%s: a bug! Please contact us at %s to fix "
            "the problem. Type code %d isn't recognized", __func__,
            PACKAGE_BUGREPORT, type);
    }

  /* Return the allocated array. */
  return out;
}






/* Macro to help in finding the minimum and maximum coordinates. */
#define CMIN(COL, DIM) ( ci[ CCOL_NUMALL ]==1.0f                        \
                         ? (c[ DIM ]+1)                                 \
                         : ( (c[ DIM ]+1) < ci[ COL ]                   \
                             ? (c[ DIM ]+1) : ci[ COL ] ) )
#define CMAX(COL, DIM) ( ci[ CCOL_NUMALL ]==1.0f                        \
                         ? (c[ DIM ]+1)                                 \
                         : ( (c[ DIM ]+1) > ci[ COL ]                   \
                             ? (c[ DIM ]+1) : ci[ COL ] ) )

/* Parse over the clumps within an object.  */
void
parse_clumps(struct mkcatalog_passparams *pp)
{
  struct mkcatalogparams *p=pp->p;
  size_t ndim=p->objects->ndim, *dsize=p->objects->dsize;

  double *ci, *cir;
  gal_data_t *xybin=NULL;
  uint8_t vine=!p->novalinerror;
  int32_t *O, *OO, *C=NULL, nlab;
  size_t cind, *tsize=pp->tile->dsize;
  double *minima_v=NULL, *maxima_v=NULL;
  uint8_t *u, *uf, goodvalue, *cif=p->ciflag;
  size_t nngb=gal_dimension_num_neighbors(ndim);
  size_t i, ii, d, pind=0, increment=0, num_increment=1;
  float var, sval, skyval, *V=NULL, *SK=NULL, *ST=NULL;
  int32_t *objects=p->objects->array, *clumps=p->clumps->array;
  float *std=p->std?p->std->array:NULL, *sky=p->sky?p->sky->array:NULL;

  /* If tile processing isn't necessary, set 'tid' to a blank value. */
  size_t tid = ( ( (p->sky     && p->sky->size>1 && pp->st_sky == NULL )
                   || ( p->std && p->std->size>1 && pp->st_std == NULL ) )
                 ? 0 : GAL_BLANK_SIZE_T );

  /* Coordinate shift. */
  size_t *sc = ( pp->shift
                 ? gal_pointer_allocate(GAL_TYPE_SIZE_T, ndim, 0,
                                        __func__, "sc")
                 : NULL );

  /* If any coordinate columns are requested. */
  size_t *c = ( ( cif[    CCOL_GX    ]
                  || cif[ CCOL_GY    ]
                  || cif[ CCOL_GZ    ]
                  || cif[ CCOL_VX    ]
                  || cif[ CCOL_VY    ]
                  || cif[ CCOL_VZ    ]
                  || cif[ CCOL_MINX  ]
                  || cif[ CCOL_MAXX  ]
                  || cif[ CCOL_MINY  ]
                  || cif[ CCOL_MAXY  ]
                  || cif[ CCOL_MINZ  ]
                  || cif[ CCOL_MAXZ  ]
                  || cif[ CCOL_MINVX ]
                  || cif[ CCOL_MAXVX ]
                  || cif[ CCOL_MINVY ]
                  || cif[ CCOL_MAXVY ]
                  || cif[ CCOL_MINVZ ]
                  || cif[ CCOL_MAXVZ ]
                  || cif[ CCOL_MINVNUM ]
                  || cif[ CCOL_MAXVNUM ]
                  || sc
                  || tid==GAL_BLANK_SIZE_T )
                ? gal_pointer_allocate(GAL_TYPE_SIZE_T, ndim, 0,
                                       __func__, "c")
                : NULL );

  /* Preparations for neighbor parsing. */
  int32_t *ngblabs=( ( cif[    CCOL_RIV_NUM     ]
                       || cif[ CCOL_RIV_SUM     ]
                       || cif[ CCOL_RIV_SUM_VAR ] )
                     ? gal_pointer_allocate(GAL_TYPE_INT32, nngb, 0,
                                             __func__, "ngblabs")
                     : NULL );
  size_t *dinc = ngblabs ? gal_dimension_increment(ndim, dsize) : NULL;

  /* If an XY projection area is requested, we'll need to allocate an array
     to keep the projected space.*/
  if( cif[    CCOL_NUMALLXY ]
      || cif[ CCOL_NUMXY    ] )
    {
      xybin=gal_data_array_calloc(pp->clumpsinobj);
      for(i=0;i<pp->clumpsinobj;++i)
        gal_data_initialize(&xybin[i], NULL, GAL_TYPE_UINT8, 2, &tsize[1],
                            NULL, 1, p->cp.minmapsize, p->cp.quietmmap,
                            NULL, NULL, NULL);
    }

  /* For the extrema columns. */
  if( cif[    CCOL_MINVNUM ] || cif[ CCOL_MINVX ]
      || cif[ CCOL_MINVY   ] || cif[ CCOL_MINVZ ] )
    minima_v=parse_init_extrema(cif, GAL_TYPE_FLOAT64, pp->clumpsinobj, 0);
  if( cif[    CCOL_MAXVNUM ] || cif[ CCOL_MAXVX ]
      || cif[ CCOL_MAXVY   ] || cif[ CCOL_MAXVZ ] )
    maxima_v=parse_init_extrema(cif, GAL_TYPE_FLOAT64, pp->clumpsinobj, 1);

  /* Parse each contiguous patch of memory covered by this object. */
  while( pp->start_end_inc[0] + increment <= pp->start_end_inc[1] )
    {
      /* Set the contiguous range to parse. The pixel-to-pixel counting
         along the fastest dimension will be done over the 'O' pointer. */
      C = pp->st_c + increment;
      if( p->values            ) V  = pp->st_v   + increment;
      if( p->sky && pp->st_sky ) SK = pp->st_sky + increment;
      if( p->std && pp->st_std ) ST = pp->st_std + increment;
      OO = ( O = pp->st_o + increment ) + tsize[ndim-1];

      /* Parse the tile */
      do
        {
          /* If this pixel belongs to the requested object then do the
             processing. */
          if( *O==pp->object )
            {
              /* We are on a clump. */
              if(p->clumps && *C>0)
                {
                  /* Pointer to make things easier. Note that the clump
                     labels start from 1, but the array indexs from 0.*/
                  cind = *C-1;
                  ci=&pp->ci[ cind * CCOL_NUMCOLS ];

                  /* Add to the area of this object. */
                  if( cif[ CCOL_NUMALL ]
                      || cif[ CCOL_MINX ] || cif[ CCOL_MAXX ]
                      || cif[ CCOL_MINY ] || cif[ CCOL_MAXY ]
                      || cif[ CCOL_MINZ ] || cif[ CCOL_MAXZ ] )
                    ci[ CCOL_NUMALL ]++;
                  if(cif[ CCOL_NUMALLXY ])
                    ((uint8_t *)(xybin[cind].array))[ pind ] = 1;

                  /* Raw-position related measurements. */
                  if(c)
                    {
                      /* Get "C" the coordinates of this point. */
                      gal_dimension_index_to_coord(O-objects, ndim,
                                                   dsize, c);

                      /* Position extrema measurements. */
                      if(cif[ CCOL_MINX ])
                        ci[CCOL_MINX]=CMIN(CCOL_MINX, ndim-1);
                      if(cif[ CCOL_MAXX ])
                        ci[CCOL_MAXX]=CMAX(CCOL_MAXX, ndim-1);
                      if(cif[ CCOL_MINY ])
                        ci[CCOL_MINY]=CMIN(CCOL_MINY, ndim-2);
                      if(cif[ CCOL_MAXY ])
                        ci[CCOL_MAXY]=CMAX(CCOL_MAXY, ndim-2);
                      if(cif[ CCOL_MINZ ])
                        ci[CCOL_MINZ]=CMIN(CCOL_MINZ, ndim-3);
                      if(cif[ CCOL_MAXZ ])
                        ci[CCOL_MAXZ]=CMAX(CCOL_MAXZ, ndim-3);

                      /* If we need tile-ID, get the tile ID now. */
                      if(tid!=GAL_BLANK_SIZE_T)
                        tid=gal_tile_full_id_from_coord(&p->cp.tl, c);

                      /* General geometric (independent of pixel value)
                         calculations. */
                      if(cif[ CCOL_GX ]) ci[ CCOL_GX ] += c[ ndim-1 ]+1;
                      if(cif[ CCOL_GY ]) ci[ CCOL_GY ] += c[ ndim-2 ]+1;
                      if(cif[ CCOL_GZ ]) ci[ CCOL_GZ ] += c[ ndim-3 ]+1;
                      if(pp->shift)
                        {
                          /* Shifted coordinates for second order moments,
                             see explanations in the first pass.*/
                          for(d=0;d<ndim;++d) sc[d] = c[d]+1-pp->shift[d];

                          /* Raw second-order measurements. */
                          ci[ CCOL_GXX ] += sc[1] * sc[1];
                          ci[ CCOL_GYY ] += sc[0] * sc[0];
                          ci[ CCOL_GXY ] += sc[1] * sc[0];
                        }
                    }

                  /* Value related measurements, see 'parse_objects' for
                     comments. */
                  goodvalue=0;
                  if( p->values && !( p->hasblank && isnan(*V) ) )
                    {
                      /* For the standard-deviation measurement. */
                      goodvalue=1;

                      /* Fill in the necessary information. */
                      if(cif[ CCOL_NUM   ]) ci[ CCOL_NUM   ]++;
                      if(cif[ CCOL_SUM   ]) ci[ CCOL_SUM   ] += *V;
                      if(cif[ CCOL_SUMP2 ]) ci[ CCOL_SUMP2 ] += *V * *V;
                      if(cif[ CCOL_NUMXY ])
                        ((uint8_t *)(xybin[cind].array))[ pind ] = 2;

                      /* Minimum/maximum pixel positions. */
                      if( cif[ CCOL_MINVNUM ] && *V<=minima_v[cind] )
                        {
                          if( *V<minima_v[cind] )
                            {
                              minima_v[cind] = *V;
                              ci[ CCOL_MINVNUM ]=1;
                              if(cif[CCOL_MINVX])
                                ci[ CCOL_MINVX ] = c[ ndim-1 ]+1;
                              if(cif[CCOL_MINVY])
                                ci[ CCOL_MINVY ] = c[ ndim-2 ]+1;
                              if(cif[CCOL_MINVZ])
                                ci[ CCOL_MINVZ ] = c[ ndim-3 ]+1;
                            }
                          else
                            {
                              ci[ CCOL_MINVNUM ]++;
                              if(cif[CCOL_MINVX])
                                ci[  CCOL_MINVX ] += c[ ndim-1 ]+1;
                              if(cif[CCOL_MINVY])
                                ci[  CCOL_MINVY ] += c[ ndim-2 ]+1;
                              if(cif[CCOL_MINVZ])
                                ci[  CCOL_MINVZ ] += c[ ndim-3 ]+1;
                            }
                        }
                      if( cif[ CCOL_MAXVNUM ] && *V>=maxima_v[cind] )
                        {
                          if( *V>maxima_v[cind] )
                            {
                              maxima_v[cind] = *V;
                              ci[ CCOL_MAXVNUM ]=1;
                              if(cif[CCOL_MAXVX])
                                ci[  CCOL_MAXVX ] = c[ ndim-1 ]+1;
                              if(cif[CCOL_MAXVY])
                                ci[  CCOL_MAXVY ] = c[ ndim-2 ]+1;
                              if(cif[CCOL_MAXVZ])
                                ci[  CCOL_MAXVZ ] = c[ ndim-3 ]+1;
                            }
                          else
                            {
                              ci[ CCOL_MAXVNUM ]++;
                              if(cif[CCOL_MAXVX])
                                ci[  CCOL_MAXVX ] += c[ ndim-1 ]+1;
                              if(cif[CCOL_MAXVY])
                                ci[  CCOL_MAXVY ] += c[ ndim-2 ]+1;
                              if(cif[CCOL_MAXVZ])
                                ci[  CCOL_MAXVZ ] += c[ ndim-3 ]+1;
                            }
                        }

                      /* Columns that need positive values. */
                      if( *V > 0.0f )
                        {
                          if(cif[ CCOL_NUMWHT ]) ci[ CCOL_NUMWHT ]++;
                          if(cif[ CCOL_SUMWHT ]) ci[ CCOL_SUMWHT ] += *V;
                          if(cif[ CCOL_VX ])
                            ci[   CCOL_VX ] += *V * (c[ ndim-1 ]+1);
                          if(cif[ CCOL_VY ])
                            ci[   CCOL_VY ] += *V * (c[ ndim-2 ]+1);
                          if(cif[ CCOL_VZ ])
                            ci[   CCOL_VZ ] += *V * (c[ ndim-3 ]+1);
                          if(pp->shift)
                            {
                              ci[ CCOL_VXX ] += *V * sc[1] * sc[1];
                              ci[ CCOL_VYY ] += *V * sc[0] * sc[0];
                              ci[ CCOL_VXY ] += *V * sc[1] * sc[0];
                            }
                        }
                    }

                  /* Sky based measurements. */
                  if(p->sky && cif[ CCOL_SUMSKY ])
                    {
                      skyval = ( pp->st_sky
                                 ? *SK             /* Full. */
                                 : ( p->sky->size>1
                                     ? sky[tid]    /* Tile. */
                                     : sky[0] ) ); /* 1 value. */
                      if(!isnan(skyval))
                        {
                          ci[ CCOL_NUMSKY  ]++;
                          ci[ CCOL_SUMSKY  ] += skyval;
                        }
                    }

                  /* Sky Standard deviation based measurements, see
                     'parse_objects' for comments. */
                  if(p->std)
                    {
                      sval = ( pp->st_std
                               ? *ST
                               : (p->std->size>1 ? std[tid] : std[0]) );
                      var = p->variance ? sval : sval*sval;
                      if(cif[ CCOL_SUMVAR  ] && (!isnan(var)))
                        {
                          ci[ CCOL_NUMVAR ]++;
                          ci[ CCOL_SUMVAR ] += var;
                        }
                      if(cif[ CCOL_SUM_VAR ] && goodvalue)
                        {
                          if(!isnan(var))
                            {
                              ci[ CCOL_SUM_VAR_NUM ]++;
                              ci[ CCOL_SUM_VAR     ] += var+(vine?*V:0);
                            }
                        }
                    }
                }

              /* This pixel is on the diffuse region (and the object
                 actually has clumps). If any river-based measurements are
                 necessary check to see if it is touching a clump or not,
                 but only if this object actually has any clumps. */
              else if(ngblabs && pp->clumpsinobj)
                {
                  /* We are on a diffuse (possibly a river) pixel. So the
                     value of this pixel has to be added to any of the
                     clumps in touches. But since it might touch a labeled
                     region more than once, we use 'ngblabs' to keep track
                     of which label we have already added its value
                     to. 'ii' is the number of different labels this river
                     pixel has already been considered for. 'ngblabs' will
                     keep the list labels. */
                  ii=0;
                  memset(ngblabs, 0, nngb*sizeof *ngblabs);

                  /* Go over the neighbors and see if this pixel is
                     touching a clump or not. */
                  GAL_DIMENSION_NEIGHBOR_OP(O-objects, ndim, dsize, ndim,
                                            dinc,
                     {
                       /* Neighbor's label (mainly for easy reading). */
                       nlab=clumps[nind];

                       /* We only want neighbors that are a clump and part
                          of this object and part of the same object. */
                       if( nlab>0 && objects[nind]==pp->object)
                         {
                           /* Go over all already checked labels and make
                              sure this clump hasn't already been
                              considered. */
                           for(i=0;i<ii;++i) if(ngblabs[i]==nlab) break;

                           /* It hasn't been considered yet: */
                           if(i==ii)
                             {
                               /* Make sure it won't be considered any
                                  more. */
                               ngblabs[ii++] = nlab;

                               /* To help in reading. */
                               cir=&pp->ci[ (nlab-1) * CCOL_NUMCOLS ];

                               /* Write in the necessary values. */
                               if(cif[ CCOL_RIV_NUM  ])
                                 cir[ CCOL_RIV_NUM ]++;

                               /* Total sum of values in river. */
                               if(cif[ CCOL_RIV_SUM  ])
                                 cir[ CCOL_RIV_SUM ] += *V;

                               /* Minimum river value. */
                               if(cif[CCOL_RIV_MIN])
                                 if(cir[CCOL_RIV_NUM]==1
                                    || *V < cir[CCOL_RIV_MIN])
                                   cir[CCOL_RIV_MIN]=*V;

                               /* Maximum river value. */
                               if(cif[CCOL_RIV_MAX])
                                 if(cir[CCOL_RIV_NUM]==1
                                    || *V > cir[CCOL_RIV_MAX])
                                   cir[CCOL_RIV_MAX]=*V;

                               /* Sum of variances within river. */
                               if(cif[ CCOL_RIV_SUM_VAR  ])
                                 {
                                   sval = ( pp->st_std
                                            ? *ST
                                            : ( p->std->size>1
                                                ? std[tid]
                                                : std[0] )     );
                                   cir[ CCOL_RIV_SUM_VAR ] +=
                                     (p->variance ? sval : sval*sval)
                                     + (vine?*V:0);
                                 }
                             }
                         }
                     });
                }
            }

          /* Increment the other pointers. */
          ++C;
          if( xybin                ) ++pind;
          if( p->values            ) ++V;
          if( p->sky && pp->st_sky ) ++SK;
          if( p->std && pp->st_std ) ++ST;
        }
      while(++O<OO);

      /* Increment to the next contiguous region of this tile. */
      increment += ( gal_tile_block_increment(p->objects, tsize,
                                              num_increment++, NULL) );

      /* If a 2D projection is requested, see if we should initialize (set
         to zero) the projection-index ('pind') not. */
      if(xybin && (num_increment-1) % tsize[1]==0 )
        pind=0;
    }


  /* Write the higher-level columns. */
  for(i=0;i<pp->clumpsinobj;++i)
    {
      /* Pointer to make things easier. */
      ci=&pp->ci[ i * CCOL_NUMCOLS ];

      /* Write the XY projection columns. */
      if(xybin)
        {
          /* Any non-zero pixel must be set for NUMALLXY. */
          uf=(u=xybin[i].array)+xybin[i].size;
          do
            if(*u)
              {
                if(cif[ CCOL_NUMALLXY ]          ) ci[ CCOL_NUMALLXY ]++;
                if(cif[ CCOL_NUMXY    ] && *u==2 ) ci[ CCOL_NUMXY    ]++;
              }
          while(++u<uf);

          /* For a check on the projected 2D areas. */
          if(xybin && pp->object==2)
            gal_fits_img_write(&xybin[i], "xybin.fits", NULL, 0);

        }
    }


  /* Clean up. */
  if(c) free(c);
  if(sc) free(sc);
  if(dinc) free(dinc);
  if(ngblabs) free(ngblabs);
  if(minima_v) free(minima_v);
  if(maxima_v) free(maxima_v);
  if(xybin) gal_data_array_free(xybin, pp->clumpsinobj, 1);
}





static size_t
parse_frac_find(gal_data_t *sorted_d, double value, double frac, int dosum)
{
  size_t i;
  double check=0.0f;
  double *sorted=sorted_d->array;

  /* Parse over the sorted array and find the index. */
  for(i=0;i<sorted_d->size;++i)
    if(dosum)
      { if( (check+=sorted[i]) > value*frac ) break; }
    else
      { if(         sorted[i]  < value*frac ) break; }

  /* Return the final value. Note that if the index is zero, we should
     actually return 1, because we are starting with the maximum. */
  return i==0 ? 1 : i;
}





static double
parse_frac_sum(gal_data_t *sorted_d, double value, double frac, int dosum)
{
  double sum=0.0f, *sorted=sorted_d->array;
  size_t i, ind=parse_frac_find(sorted_d, value, frac, 0);

  for(i=0;i<ind;++i) sum+=sorted[i];
  return sum;
}





static void
parse_area_of_frac_sum(struct mkcatalog_passparams *pp, gal_data_t *values,
                       double *outarr, int o1c0)
{
  struct mkcatalogparams *p=pp->p;

  double max, *sorted;
  gal_data_t *sorted_d;
  uint8_t *flag = o1c0 ? p->oiflag : p->ciflag;
  double *fracmax = p->fracmax ? p->fracmax->array : NULL;
  double sumlab = o1c0 ? outarr[OCOL_SUM] : outarr[CCOL_SUM];

  /* Allocate the array to use. */
  sorted_d = ( values->type==GAL_TYPE_FLOAT64
                ? values
                : gal_data_copy_to_new_type(values, GAL_TYPE_FLOAT64) );

  /* Sort the desired labels and find the number of elements where we reach
     half the total sum. */
  gal_statistics_sort_decreasing(sorted_d);

  /* Set the required fractions. */
  if(flag[ o1c0 ? OCOL_HALFSUMNUM : CCOL_HALFSUMNUM ])
    outarr[ o1c0 ? OCOL_HALFSUMNUM : CCOL_HALFSUMNUM ]
      = parse_frac_find(sorted_d, sumlab, 0.5f, 1);

  /* Values related to the maximum. */
  if( flag[    o1c0 ? OCOL_MAXIMUM     : CCOL_MAXIMUM     ]
      || flag[ o1c0 ? OCOL_HALFMAXNUM  : CCOL_HALFMAXNUM  ]
      || flag[ o1c0 ? OCOL_HALFMAXSUM  : CCOL_HALFMAXSUM  ]
      || flag[ o1c0 ? OCOL_FRACMAX1NUM : CCOL_FRACMAX1NUM ]
      || flag[ o1c0 ? OCOL_FRACMAX1SUM : CCOL_FRACMAX1SUM ]
      || flag[ o1c0 ? OCOL_FRACMAX2NUM : CCOL_FRACMAX2NUM ]
      || flag[ o1c0 ? OCOL_FRACMAX2SUM : CCOL_FRACMAX2SUM ] )
    {
      /* Set the array and maximum value. We'll use the median of the top
         three pixels for the maximum (to avoid noise) */
      sorted=sorted_d->array;
      max = ( sorted_d->size>3
              ? (sorted[0]+sorted[1]+sorted[2])/3
              : sorted[0] );

      /* If we want the maximum value, then write it in. */
      if(flag[ o1c0 ? OCOL_MAXIMUM : CCOL_MAXIMUM ])
        outarr[ o1c0 ? OCOL_MAXIMUM : CCOL_MAXIMUM ] = max;

      /* Number of pixels within half the maximum. */
      if(flag[ o1c0 ? OCOL_HALFMAXNUM : CCOL_HALFMAXNUM ])
        outarr[ o1c0 ? OCOL_HALFMAXNUM : CCOL_HALFMAXNUM ]
          = parse_frac_find(sorted_d, max, 0.5f, 0);

      /* Number of pixels within the first requested fraction of maximum */
      if(flag[ o1c0 ? OCOL_FRACMAX1NUM : CCOL_FRACMAX1NUM ])
        outarr[ o1c0 ? OCOL_FRACMAX1NUM : CCOL_FRACMAX1NUM ]
          = parse_frac_find(sorted_d, max, fracmax[0], 0);

      /* Number of pixels within the first requested fraction of maximum */
      if(flag[ o1c0 ? OCOL_FRACMAX2NUM : CCOL_FRACMAX2NUM ])
        outarr[ o1c0 ? OCOL_FRACMAX2NUM : CCOL_FRACMAX2NUM ]
          = parse_frac_find(sorted_d, max, fracmax[1], 0);

      /* Sum of the pixels within the given fraction of the maximum. */
      if( flag[ o1c0 ? OCOL_HALFMAXSUM : CCOL_HALFMAXSUM ] )
        outarr[ o1c0 ? OCOL_HALFMAXSUM : CCOL_HALFMAXSUM ]
          = parse_frac_sum(sorted_d, max, 0.5f, 0);

      /* Sum of the pixels within the 1st given fraction of the maximum. */
      if( flag[ o1c0 ? OCOL_FRACMAX1SUM : CCOL_FRACMAX1SUM ] )
        outarr[ o1c0 ? OCOL_FRACMAX1SUM : CCOL_FRACMAX1SUM ]
          = parse_frac_sum(sorted_d, max, fracmax[0], 0);

      /* Sum of the pixels within the 1st given fraction of the maximum. */
      if( flag[ o1c0 ? OCOL_FRACMAX2SUM : CCOL_FRACMAX2SUM ] )
        outarr[ o1c0 ? OCOL_FRACMAX2SUM : CCOL_FRACMAX2SUM ]
          = parse_frac_sum(sorted_d, max, fracmax[1], 0);
    }

  /* Clean up and return. */
  if(sorted_d!=values) gal_data_free(sorted_d);
}





void
parse_order_based(struct mkcatalog_passparams *pp)
{
  struct mkcatalogparams *p=pp->p;

  float *V;
  double *ci;
  float *sigcliparr;
  gal_data_t *result;
  uint8_t clipflags=0;
  int32_t *O, *OO, *C=NULL;
  size_t i, increment=0, num_increment=1;
  gal_data_t *objvals=NULL, **clumpsvals=NULL;
  size_t *tsize=pp->tile->dsize, ndim=p->objects->ndim;
  size_t counter=0, *ccounter=NULL, tmpsize=pp->oi[OCOL_NUM];

  /* It may happen that there are no usable pixels for this object (and
     thus its possible clumps). In this case `tmpsize' will be zero and we
     can just write NaN values for the necessary columns. */
  if(tmpsize==0)
    {
      if(p->oiflag[OCOL_MEDIAN       ]) pp->oi[ OCOL_MEDIAN       ] = NAN;
      if(p->oiflag[OCOL_MAXIMUM      ]) pp->oi[ OCOL_MAXIMUM      ] = NAN;
      if(p->oiflag[OCOL_HALFMAXSUM   ]) pp->oi[ OCOL_HALFMAXSUM   ] = NAN;
      if(p->oiflag[OCOL_HALFMAXNUM   ]) pp->oi[ OCOL_HALFMAXNUM   ] = 0;
      if(p->oiflag[OCOL_HALFSUMNUM   ]) pp->oi[ OCOL_HALFSUMNUM   ] = 0;
      if(p->oiflag[OCOL_FRACMAX1NUM  ]) pp->oi[ OCOL_FRACMAX1NUM  ] = 0;
      if(p->oiflag[OCOL_FRACMAX2NUM  ]) pp->oi[ OCOL_FRACMAX2NUM  ] = 0;
      if(p->oiflag[OCOL_SIGCLIPNUM   ]) pp->oi[ OCOL_SIGCLIPNUM   ] = 0;
      if(p->oiflag[OCOL_SIGCLIPSTD   ]) pp->oi[ OCOL_SIGCLIPSTD   ] = 0;
      if(p->oiflag[OCOL_SIGCLIPMEAN  ]) pp->oi[ OCOL_SIGCLIPMEAN  ] = NAN;
      if(p->oiflag[OCOL_SIGCLIPMEDIAN]) pp->oi[ OCOL_SIGCLIPMEDIAN] = NAN;
      if(p->clumps)
        for(i=0;i<pp->clumpsinobj;++i)
          {
            ci=&pp->ci[ i * CCOL_NUMCOLS ];
            if(p->ciflag[CCOL_MEDIAN     ])   ci[ CCOL_MEDIAN      ] = NAN;
            if(p->ciflag[CCOL_MAXIMUM    ])   ci[ CCOL_MAXIMUM     ] = NAN;
            if(p->ciflag[CCOL_HALFMAXSUM ])   ci[ CCOL_HALFMAXSUM  ] = NAN;
            if(p->ciflag[CCOL_HALFMAXNUM ])   ci[ CCOL_HALFMAXNUM  ] = 0;
            if(p->ciflag[CCOL_HALFSUMNUM ])   ci[ CCOL_HALFSUMNUM  ] = 0;
            if(p->ciflag[CCOL_FRACMAX1NUM])   ci[ CCOL_FRACMAX1NUM ] = 0;
            if(p->ciflag[CCOL_FRACMAX2NUM])   ci[ CCOL_FRACMAX2NUM ] = 0;
            if(p->ciflag[CCOL_SIGCLIPNUM ])   ci[ CCOL_SIGCLIPNUM  ] = 0;
            if(p->ciflag[CCOL_SIGCLIPSTD ])   ci[ CCOL_SIGCLIPSTD  ] = 0;
            if(p->ciflag[CCOL_SIGCLIPMEAN])   ci[ CCOL_SIGCLIPMEAN ] = NAN;
            if(p->ciflag[CCOL_SIGCLIPMEDIAN]) ci[ CCOL_SIGCLIPMEDIAN]=NAN;
          }
      return;
    }

  /* We know we have pixels to use, so allocate space for the values within
     the object. */
  objvals=gal_data_alloc(NULL, p->values->type, 1, &tmpsize, NULL, 0,
                         p->cp.minmapsize, p->cp.quietmmap, NULL, NULL,
                         NULL);

  /* Clump preparations. */
  if(p->clumps)
    {
      /* Allocate the necessary space. */
      errno=0;
      clumpsvals=malloc(pp->clumpsinobj * sizeof *clumpsvals);
      if(clumpsvals==NULL)
        error(EXIT_FAILURE, errno, "%s: couldn't allocate 'clumpsvals' "
              "for %zu clumps", __func__, pp->clumpsinobj);

      /* Allocate the array necessary to keep the values of each clump. */
      ccounter=gal_pointer_allocate(GAL_TYPE_SIZE_T, pp->clumpsinobj, 1,
                                    __func__, "ccounter");
      for(i=0;i<pp->clumpsinobj;++i)
        {
          tmpsize=pp->ci[ i * CCOL_NUMCOLS + CCOL_NUM ];
          clumpsvals[i] = ( tmpsize
                            ? gal_data_alloc(NULL, p->values->type, 1,
                                             &tmpsize, NULL, 0,
                                             p->cp.minmapsize,
                                             p->cp.quietmmap,
                                             NULL, NULL, NULL)
                            : NULL );
        }
    }


  /* Parse each contiguous patch of memory covered by this object. */
  while( pp->start_end_inc[0] + increment <= pp->start_end_inc[1] )
    {
      /* Set the contiguous range to parse. The pixel-to-pixel counting
         along the fastest dimension will be done over the 'O' pointer. */
      V = pp->st_v + increment;
      if(p->clumps) C = pp->st_c + increment;
      OO = ( O = pp->st_o + increment ) + tsize[ndim-1];

      /* Parse the next contiguous region of this tile. */
      do
        {
          /* If this pixel belongs to the requested object, then do the
             processing. 'hasblank' is constant, so when the values doesn't
             have any blank values, the 'isnan' will never be checked. */
          if( *O==pp->object && !( p->hasblank && isnan(*V) ) )
            {
              /* Copy the value for the whole object. */
              memcpy( gal_pointer_increment(objvals->array, counter++,
                                             p->values->type), V,
                      gal_type_sizeof(p->values->type) );

              /* We are also on a clump. */
              if(p->clumps && *C>0 && clumpsvals[*C-1]!=NULL)
                memcpy( gal_pointer_increment(clumpsvals[*C-1]->array,
                                              ccounter[*C-1]++,
                                              p->values->type), V,
                        gal_type_sizeof(p->values->type) );
            }

          /* Increment the other pointers. */
          ++V;
          if(p->clumps) ++C;
        }
      while(++O<OO);

      /* Increment to the next contiguous region of this tile. */
      increment += ( gal_tile_block_increment(p->objects, tsize,
                                              num_increment++, NULL) );
    }


  /* Calculate the necessary values for the objects. */
  if(p->oiflag[ OCOL_MEDIAN ])
    {
      result=gal_data_copy_to_new_type_free(gal_statistics_median(objvals,
                                                                  1),
                                            GAL_TYPE_FLOAT64);
      pp->oi[OCOL_MEDIAN]=*((double *)(result->array));
      gal_data_free(result);
    }
  if(p->oiflag[ OCOL_SIGCLIPNUM ]
     || p->oiflag[ OCOL_SIGCLIPSTD ]
     || p->oiflag[ OCOL_SIGCLIPMEAN ]
     || p->oiflag[ OCOL_SIGCLIPMEDIAN ])
    {
      /* See which optional clipping measurements are necessary and run the
         clipping. */
      clipflags=0;
      if(p->oiflag[ OCOL_SIGCLIPSTD ])
        clipflags |= GAL_STATISTICS_CLIP_OUTCOL_OPTIONAL_STD;
      if(p->oiflag[ OCOL_SIGCLIPMEAN ])
        clipflags |= GAL_STATISTICS_CLIP_OUTCOL_OPTIONAL_MEAN;
      result=gal_statistics_clip_sigma(objvals, p->sigmaclip[0],
                                       p->sigmaclip[1], clipflags,
                                       1, 1);
      sigcliparr=result->array;
      if(p->oiflag[ OCOL_SIGCLIPNUM ])
        pp->oi[OCOL_SIGCLIPNUM]
          = sigcliparr[GAL_STATISTICS_CLIP_OUTCOL_NUMBER_USED];
      if(p->oiflag[ OCOL_SIGCLIPSTD ])
        pp->oi[OCOL_SIGCLIPSTD]
          = sigcliparr[GAL_STATISTICS_CLIP_OUTCOL_STD];
      if(p->oiflag[ OCOL_SIGCLIPMEAN ])
        pp->oi[OCOL_SIGCLIPMEAN]
          = sigcliparr[GAL_STATISTICS_CLIP_OUTCOL_MEAN];
      if(p->oiflag[ OCOL_SIGCLIPMEDIAN ])
        pp->oi[OCOL_SIGCLIPMEDIAN]
          = sigcliparr[GAL_STATISTICS_CLIP_OUTCOL_MEDIAN];

      /* Clean up the sigma-clipped values. */
      gal_data_free(result);
    }

  /* Fractional values. */
  if( p->oiflag[    OCOL_MAXIMUM     ]
      || p->oiflag[ OCOL_HALFMAXNUM  ]
      || p->oiflag[ OCOL_HALFMAXSUM  ]
      || p->oiflag[ OCOL_HALFSUMNUM  ]
      || p->oiflag[ OCOL_FRACMAX1NUM ]
      || p->oiflag[ OCOL_FRACMAX2NUM ] )
    parse_area_of_frac_sum(pp, objvals, pp->oi, 1);

  /* Clean up the object values. */
  gal_data_free(objvals);


  /* Calculate the necessary value for clumps. */
  if(p->clumps)
    {
      for(i=0;i<pp->clumpsinobj;++i)
        {
          /* Set the main row to fill and initialize. */
          ci=&pp->ci[ i * CCOL_NUMCOLS ];

          /* Median. */
          if(p->ciflag[ CCOL_MEDIAN ])
            {
              if(clumpsvals[i])
                {
                  result=gal_statistics_median(clumpsvals[i], 1);
                  result=gal_data_copy_to_new_type_free(result,
                                                        GAL_TYPE_FLOAT64);
                  ci[ CCOL_MEDIAN ] = ( *((double *)(result->array))
                                        - (   ci[ CCOL_RIV_SUM ]
                                            / ci[ CCOL_RIV_NUM ]) );
                  gal_data_free(result);
                }
              else ci[ CCOL_MEDIAN ] = NAN;
            }

          /* Sigma-clipping measurements. */
          if(p->ciflag[ CCOL_SIGCLIPNUM ]
             || p->ciflag[ CCOL_SIGCLIPSTD ]
             || p->ciflag[ CCOL_SIGCLIPMEAN ]
             || p->ciflag[ CCOL_SIGCLIPMEDIAN ])
            {
              if(clumpsvals[i])
                {
                  clipflags=0;
                  if(p->oiflag[ OCOL_SIGCLIPSTD ])
                    clipflags |= GAL_STATISTICS_CLIP_OUTCOL_OPTIONAL_STD;
                  if(p->oiflag[ OCOL_SIGCLIPMEAN ])
                    clipflags |= GAL_STATISTICS_CLIP_OUTCOL_OPTIONAL_MEAN;
                  result=gal_statistics_clip_sigma(clumpsvals[i],
                                                   p->sigmaclip[0],
                                                   p->sigmaclip[1],
                                                   clipflags, 1, 1);
                  sigcliparr=result->array;
                  if(p->ciflag[ CCOL_SIGCLIPNUM ])
                    ci[CCOL_SIGCLIPNUM]
                      = sigcliparr[GAL_STATISTICS_CLIP_OUTCOL_NUMBER_USED];
                  if(p->ciflag[ CCOL_SIGCLIPSTD ])
                    ci[CCOL_SIGCLIPSTD]
                      = ( sigcliparr[GAL_STATISTICS_CLIP_OUTCOL_STD]
                          - (   ci[ CCOL_RIV_SUM ]
                              / ci[ CCOL_RIV_NUM ]));
                  if(p->ciflag[ CCOL_SIGCLIPMEAN ])
                    ci[CCOL_SIGCLIPMEAN]
                      = ( sigcliparr[GAL_STATISTICS_CLIP_OUTCOL_MEAN]
                          - (   ci[ CCOL_RIV_SUM ]
                              / ci[ CCOL_RIV_NUM ]));
                  if(p->ciflag[ CCOL_SIGCLIPMEDIAN ])
                    ci[CCOL_SIGCLIPMEDIAN]
                      = ( sigcliparr[GAL_STATISTICS_CLIP_OUTCOL_MEDIAN]
                          - (   ci[ CCOL_RIV_SUM ]
                              / ci[ CCOL_RIV_NUM ]));
                  gal_data_free(result);
                }
              else
                {
                  if(p->ciflag[ CCOL_SIGCLIPNUM    ])
                    ci[ CCOL_SIGCLIPNUM  ]=NAN;
                  if(p->ciflag[ CCOL_SIGCLIPSTD    ])
                    ci[ CCOL_SIGCLIPSTD  ]=NAN;
                  if(p->ciflag[ CCOL_SIGCLIPMEAN   ])
                    ci[ CCOL_SIGCLIPMEAN ]=NAN;
                  if(p->ciflag[ CCOL_SIGCLIPMEDIAN ])
                    ci[CCOL_SIGCLIPMEDIAN]=NAN;
                }
            }

          /* Estimate half of the total sum. */
          if( p->ciflag[    CCOL_MAXIMUM     ]
              || p->ciflag[ CCOL_HALFMAXNUM  ]
              || p->ciflag[ CCOL_HALFMAXSUM  ]
              || p->ciflag[ CCOL_HALFSUMNUM  ]
              || p->ciflag[ CCOL_FRACMAX1NUM ]
              || p->ciflag[ CCOL_FRACMAX1SUM ]
              || p->ciflag[ CCOL_FRACMAX2NUM ]
              || p->ciflag[ CCOL_FRACMAX2SUM ] )
            {
              if(clumpsvals[i])
                parse_area_of_frac_sum(pp, clumpsvals[i], ci, 0);
              else
                {
                  if(p->ciflag[CCOL_MAXIMUM    ]) ci[CCOL_MAXIMUM    ]=NAN;
                  if(p->ciflag[CCOL_HALFMAXNUM ]) ci[CCOL_HALFMAXNUM ]=NAN;
                  if(p->ciflag[CCOL_HALFMAXSUM ]) ci[CCOL_HALFMAXSUM ]=NAN;
                  if(p->ciflag[CCOL_HALFSUMNUM ]) ci[CCOL_HALFSUMNUM ]=NAN;
                  if(p->ciflag[CCOL_FRACMAX1NUM]) ci[CCOL_FRACMAX1NUM]=NAN;
                  if(p->ciflag[CCOL_FRACMAX1SUM]) ci[CCOL_FRACMAX1SUM]=NAN;
                  if(p->ciflag[CCOL_FRACMAX2NUM]) ci[CCOL_FRACMAX2NUM]=NAN;
                  if(p->ciflag[CCOL_FRACMAX2SUM]) ci[CCOL_FRACMAX2SUM]=NAN;
                }
            }

          /* Clean up this clump's values. */
          gal_data_free(clumpsvals[i]);
        }
      free(clumpsvals);
      free(ccounter);
    }
}