1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
|
/*********************************************************************
MakeCatalog - Make a catalog from an input and labeled image.
MakeCatalog is part of GNU Astronomy Utilities (Gnuastro) package.
Original author:
Mohammad Akhlaghi <mohammad@akhlaghi.org>
Contributing author(s):
Copyright (C) 2015-2025 Free Software Foundation, Inc.
Gnuastro is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
Gnuastro is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with Gnuastro. If not, see <http://www.gnu.org/licenses/>.
**********************************************************************/
#include <config.h>
#include <stdio.h>
#include <errno.h>
#include <error.h>
#include <float.h>
#include <stdlib.h>
#include <inttypes.h>
#include <gnuastro/tile.h>
#include <gnuastro/threads.h>
#include <gnuastro/pointer.h>
#include <gnuastro/dimension.h>
#include <gnuastro/statistics.h>
#include <gnuastro-internal/checkset.h>
#include "main.h"
#include "ui.h"
#include "mkcatalog.h"
/*********************************************************************/
/******************* Tiles for clumps ********************/
/*********************************************************************/
static gal_data_t *
upperlimit_make_clump_tiles(struct mkcatalog_passparams *pp)
{
gal_data_t *objects=pp->p->objects;
size_t ndim=objects->ndim, *tsize=pp->tile->dsize;
gal_data_t *tiles=NULL;
size_t increment=0, num_increment=1;
size_t i, d, *min, *max, width=2*ndim;
int32_t *O, *OO, *C, *start=objects->array;
size_t *coord=gal_pointer_allocate(GAL_TYPE_SIZE_T, ndim, 0, __func__,
"coord");
size_t *minmax=gal_pointer_allocate(GAL_TYPE_SIZE_T,
width*pp->clumpsinobj, 0, __func__,
"minmax");
/* Initialize the minimum and maximum position for each tile/clump. So,
we'll initialize the minimum coordinates to the maximum possible
'size_t' value (in 'GAL_BLANK_SIZE_T') and the maximums to zero. */
for(i=0;i<pp->clumpsinobj;++i)
for(d=0;d<ndim;++d)
{
minmax[ i * width + d ] = GAL_BLANK_SIZE_T; /* Minimum. */
minmax[ i * width + ndim + d ] = 0; /* Maximum. */
}
/* Parse over the object and get the clump's minimum and maximum
positions.*/
while( pp->start_end_inc[0] + increment <= pp->start_end_inc[1] )
{
/* Set the pointers for this tile. */
C = pp->st_c + increment;
OO = ( O = pp->st_o + increment ) + tsize[ndim-1];
/* Go over the contiguous region. */
do
{
/* Only consider clumps. */
if( *O==pp->object && *C>0 )
{
/* Get the coordinates of this pixel. */
gal_dimension_index_to_coord(O-start, ndim, objects->dsize,
coord);
/* Check to see if this coordinate is the smallest/largest
found so far for this label. Note that labels start from
1, while indexs here start from zero. */
min = &minmax[ (*C-1) * width ];
max = &minmax[ (*C-1) * width + ndim ];
for(d=0;d<ndim;++d)
{
if( coord[d] < min[d] ) min[d] = coord[d];
if( coord[d] > max[d] ) max[d] = coord[d];
}
}
/* Increment the other pointers. */
++C;
}
while(++O<OO);
/* Increment to the next contiguous region. */
increment += ( gal_tile_block_increment(objects, tsize, num_increment++,
NULL) );
}
/* For a check.
for(i=0;i<pp->clumpsinobj;++i)
printf("%zu: (%zu, %zu) --> (%zu, %zu)\n", i+1, minmax[i*width],
minmax[i*width+1], minmax[i*width+2], minmax[i*width+3]);
*/
/* Make the tiles. */
tiles=gal_tile_series_from_minmax(objects, minmax, pp->clumpsinobj);
/* Cleanup and return. */
free(coord);
free(minmax);
return tiles;
}
/*********************************************************************/
/******************* For one tile ********************/
/*********************************************************************/
/* Set the minimum and maximum possible range to place the FIRST pixel of
the object/clump tile over the dataset. */
static void
upperlimit_random_range(struct mkcatalog_passparams *pp, gal_data_t *tile,
size_t *min, size_t *max, int32_t clumplab)
{
struct mkcatalogparams *p=pp->p;
size_t d, tstart, minext, maxext, coord[]={0,0};
size_t ndim=p->objects->ndim, *dsize=p->objects->dsize;
/* Set the minimum and maximum acceptable value for the range. */
if(p->uprange)
{
tstart=gal_pointer_num_between(tile->block->array, tile->array,
p->objects->type);
gal_dimension_index_to_coord(tstart, ndim, dsize, coord);
}
/* Go over the dimensions and set the range along each dimension. */
for(d=0;d<ndim;++d)
{
/* If uprange is given and it is not zero, then use it, otherwise,
just use the full possible range. */
if( p->uprange && p->uprange[d] )
{
/* Set the minimum of the random range. Since 'size_t' is always
positive, to make sure the difference isn't negative, we need
to convert them to integer first. */
if( (int)coord[d] - ((int)p->uprange[d])/2 > 0 )
{
min[d] = coord[d]-p->uprange[d]/2;
maxext = 0;
}
else
{
min[d] = 0;
maxext = -1 * ((int)coord[d] - ((int)p->uprange[d])/2);
}
/* Set the maximum of the random range. */
if( coord[d] + p->uprange[d]/2 < dsize[d] - tile->dsize[d] )
{
max[d] = coord[d] + p->uprange[d]/2;
minext = 0;
}
else
{
max[d] = dsize[d] - tile->dsize[d] - 1;
minext = ( (coord[d] + p->uprange[d]/2)
- (dsize[d] - tile->dsize[d]) );
}
/* 'minadd' and 'maxadd' were defined to account for the removed
smaller range when an object is on the edge. Their role is to
add to the other side of the range as much as possible when
one side is decreased on an edge. */
if(minext)
min[d] = ((int)(min[d]) - (int)minext >= 0) ? (min[d]-minext) : 0;
if(maxext)
max[d] = ( (max[d] + maxext < dsize[d] - tile->dsize[d])
? (max[d] + maxext) : (dsize[d]-tile->dsize[d]-1) );
}
else
{
/* We are positioning the FIRST pixel of the tile, not the
center. So, the minimum possible value is zero, and in order
to not push out of the image, the maximum is the
'tile->dsize[d]' away from the edge. */
min[d]=0;
max[d]=dsize[d]-tile->dsize[d]-1;
}
/* A small warning to the user if the range isn't large enough. */
if( max[d]-min[d] < 2*tile->dsize[d] )
{
p->uprangewarning=1;
if(clumplab)
fprintf(stderr, "WARNING-UPPERLIMIT: object %d clump %d, "
"dimension %zu: range (%zu) < 2*size (%zu).\n",
pp->object, clumplab, ndim-d, max[d]-min[d],
2*tile->dsize[d]);
else
fprintf(stderr, "WARNING-UPPERLIMIT: object %d, dimension %zu: "
"range (%zu) < 2*size (%zu).\n", pp->object, ndim-d,
max[d]-min[d], 2*tile->dsize[d]);
}
}
}
/* Return a random position in the requested dimension. */
static size_t
upperlimit_random_position(struct mkcatalog_passparams *pp, gal_data_t *tile,
size_t dim, size_t *min, size_t *max)
{
size_t r;
struct mkcatalogparams *p=pp->p;
/* 'gsl_rng_get' returns an inclusive value between the minimum and
maximum of the particular generator. It may happen that the labeled
region extends the full range of a dimension. In that case, the only
possible starting point would be 0. */
if( (int)(p->objects->dsize[dim]) - (int)(tile->dsize[dim]) > 0 )
{
r=gsl_rng_get(pp->rng); /* For easy reading. */
return lrint( (float)(min[dim])
+ ( (float)(r-p->rngmin)/(float)(p->rngdiff)
* (float)(max[dim] - min[dim]) ) );
}
else
return 0;
}
/* Write the values into a table for the user */
static void
upperlimit_write_check(struct mkcatalogparams *p,
gal_list_sizet_t *check_x,
gal_list_sizet_t *check_y,
gal_list_sizet_t *check_z,
gal_list_f32_t *check_s)
{
float *sarr;
struct gal_options_common_params *cp=&p->cp;
size_t *xarr, *yarr, *zarr=NULL, tnum, ttnum, num;
gal_data_t *x=NULL, *y=NULL, *z=NULL, *s=NULL; /* To avoid warnings. */
/* Convert the lists to an array. */
xarr=gal_list_sizet_to_array(check_x, 1, &num);
yarr=gal_list_sizet_to_array(check_y, 1, &tnum);
if(check_z) zarr=gal_list_sizet_to_array(check_z, 1, &ttnum);
if(tnum!=num || (check_z && ttnum!=num) )
error(EXIT_FAILURE, 0, "%s: a bug! Please contact us at %s to fix the "
"problem. For some reason the size of the input lists don't "
"match (%zu, %zu)", __func__, PACKAGE_BUGREPORT, tnum, num);
sarr=gal_list_f32_to_array(check_s, 1, &tnum);
if(tnum!=num)
error(EXIT_FAILURE, 0, "%s: a bug! Please contact us at %s to fix the "
"problem. For some reason the size of the input lists don't "
"match (%zu, %zu)", __func__, PACKAGE_BUGREPORT, tnum, num);
/* Put the arrays into a data container. */
x=gal_data_alloc(xarr, GAL_TYPE_SIZE_T, 1, &num, NULL, 0,
cp->minmapsize, cp->quietmmap, "RANDOM_X", "pixel",
"X-axis position of random footprint's first pixel.");
y=gal_data_alloc(yarr, GAL_TYPE_SIZE_T, 1, &num, NULL, 0,
cp->minmapsize, cp->quietmmap, "RANDOM_Y", "pixel",
"Y-axis position of random footprint's first pixel.");
if(check_z)
z=gal_data_alloc(zarr, GAL_TYPE_SIZE_T, 1, &num, NULL, 0,
cp->minmapsize, cp->quietmmap, "RANDOM_Z",
"pixel", "Z-axis position of random footprint's "
"first pixel.");
s=gal_data_alloc(sarr, GAL_TYPE_FLOAT32, 1, &num, NULL, 0,
cp->minmapsize, cp->quietmmap, "RANDOM_SUM",
p->values->unit ? p->values->unit : MKCATALOG_NO_UNIT,
"Sum of pixel values over random footprint.");
/* If 'size_t' isn't 32-bit on this system, then convert the unsigned
64-bit values to 32-bit because the FITS table format doesn't
recognize 64-bit integers.*/
if( GAL_TYPE_SIZE_T != GAL_TYPE_UINT32 )
{
x=gal_data_copy_to_new_type_free( x, GAL_TYPE_UINT32);
y=gal_data_copy_to_new_type_free( y, GAL_TYPE_UINT32);
if(check_z)
z=gal_data_copy_to_new_type_free( z, GAL_TYPE_UINT32);
}
/* Define a list from the containers and write them into a table. */
x->next=y;
if(check_z) { y->next=z; z->next=s; }
else { y->next=s; }
/* Write the array into the main data structure (note that only one label
may be checked in each run, so this will not cause any race issues).*/
p->upcheck=x;
}
/* Given the distribution of values, do the upper-limit calculations. */
static void
upperlimit_measure(struct mkcatalog_passparams *pp, int32_t clumplab,
int do_measurement)
{
gal_data_t *column;
float *mcarr, mcstd;
size_t init_size, col, one=1;
struct mkcatalogparams *p=pp->p;
gal_data_t *sum, *qfunc=NULL, *madclip=NULL;
double *o = ( clumplab
? &pp->ci[ (clumplab-1) * CCOL_NUMCOLS ]
: pp->oi );
uint8_t clipflags = ( GAL_STATISTICS_CLIP_OUTCOL_OPTIONAL_MEAN \
| GAL_STATISTICS_CLIP_OUTCOL_OPTIONAL_STD \
| GAL_STATISTICS_CLIP_OUTCOL_OPTIONAL_MAD );
/* If the random distribution exsits, then fill it in. */
if(do_measurement)
{
/* These columns are for both objects and clumps, so if they are
requested in objects, they will also be written for clumps here
(the order is irrelevant here). */
for(column=p->objectcols; column!=NULL; column=column->next)
{
switch(column->status)
{
/* Quantile column. */
case UI_KEY_UPPERLIMITQUANTILE:
/* Also only necessary once (if requested multiple times). */
if(qfunc==NULL)
{
/* Similar to the case for sigma-clipping, we'll need to
keep the size here also. */
init_size=pp->up_vals->size;
sum=gal_data_alloc(NULL, GAL_TYPE_FLOAT32, 1, &one, NULL,
0, -1, 1, NULL, NULL, NULL);
((float *)(sum->array))[0]=o[clumplab?CCOL_SUM:OCOL_SUM];
qfunc=gal_statistics_quantile_function(pp->up_vals,
sum, 1);
/* Fill in the column. */
col = clumplab ? CCOL_UPPERLIMIT_Q : OCOL_UPPERLIMIT_Q;
pp->up_vals->size=pp->up_vals->dsize[0]=init_size;
o[col] = ((double *)(qfunc->array))[0];
/* Clean up. */
gal_data_free(sum);
gal_data_free(qfunc);
}
break;
/* Columns that depend on the sigma of the distribution. */
default:
/* We only need to do this once, but the columns can be
requested in any order. */
if(madclip==NULL)
{
/* Calculate the sigma-clipped standard deviation. Since
it is done in place, the size will change, so we'll
keep the size here and put it back after we are
done. */
init_size=pp->up_vals->size;
madclip=gal_statistics_clip_sigma(pp->up_vals,
p->upsigmaclip[0],
p->upsigmaclip[1],
clipflags, 1, 1);
pp->up_vals->size=pp->up_vals->dsize[0]=init_size;
mcarr=madclip->array;
/* 1-sigma. */
mcstd=mcarr[GAL_STATISTICS_CLIP_OUTCOL_STD];
col = clumplab ? CCOL_UPPERLIMIT_S : OCOL_UPPERLIMIT_S;
o[col] = mcstd;
/* sigma multiplied by 'upnsigma'. */
col = clumplab ? CCOL_UPPERLIMIT_B : OCOL_UPPERLIMIT_B;
o[col] = mcstd * p->upnsigma;
/* Nonparametric skewness [ (Mean-Median)/STD ]. */
col = clumplab?CCOL_UPPERLIMIT_SKEW:OCOL_UPPERLIMIT_SKEW;
o[col] = ( ( mcarr[GAL_STATISTICS_CLIP_OUTCOL_MEAN]
- mcarr[GAL_STATISTICS_CLIP_OUTCOL_MEDIAN] )
/ mcstd );
}
break;
}
}
/* Clean up. */
gal_data_free(madclip);
}
else
{
o[ clumplab ? CCOL_UPPERLIMIT_B : OCOL_UPPERLIMIT_B ] = NAN;
o[ clumplab ? CCOL_UPPERLIMIT_S : OCOL_UPPERLIMIT_S ] = NAN;
o[ clumplab ? CCOL_UPPERLIMIT_Q : OCOL_UPPERLIMIT_Q ] = NAN;
}
}
static void
upperlimit_one_tile(struct mkcatalog_passparams *pp, gal_data_t *tile,
unsigned long seed, int32_t clumplab)
{
struct mkcatalogparams *p=pp->p;
size_t ndim=p->objects->ndim, *dsize=p->objects->dsize;
double sum;
void *tarray;
uint8_t *M=NULL, *st_m=NULL;
int continueparse, writecheck=0;
struct gal_list_f32_t *check_s=NULL;
size_t d, counter=0, se_inc[2], nfailed=0;
float *V, *st_v, *uparr=pp->up_vals->array;
size_t min[3], max[3], increment, num_increment;
int32_t *O, *OO, *oO, *st_o, *st_oo, *st_oc, *oC=NULL;
size_t hw2, hw0=tile->dsize[0]/2, hw1=tile->dsize[1]/2;
size_t maxfails = p->upnum * MKCATALOG_UPPERLIMIT_MAXFAILS_MULTIP;
struct gal_list_sizet_t *check_x=NULL, *check_y=NULL, *check_z=NULL;
size_t *rcoord=gal_pointer_allocate(GAL_TYPE_SIZE_T, ndim, 0, __func__,
"rcoord");
/* See if a check table must be created for this distribution. */
if( p->checkuplim[0]==pp->object )
{
/* We are on a clump */
if( clumplab )
{
if( p->checkuplim[1]==clumplab )
writecheck=1;
}
else
if( p->checkuplim[1]==GAL_BLANK_INT32 )
writecheck=1;
}
/* Initializations. */
tarray=tile->array;
gsl_rng_set(pp->rng, seed);
pp->up_vals->flag &= ~GAL_DATA_FLAG_SORT_CH;
hw2 = tile->ndim==3 ? tile->dsize[2]/2 : GAL_BLANK_SIZE_T;
/* Set the range of random values for this tile. */
upperlimit_random_range(pp, tile, min, max, clumplab);
/* 'se_inc' is just used temporarily, the important thing here is
'st_oo'. */
st_oo = ( clumplab
? gal_tile_start_end_ind_inclusive(tile, p->objects, se_inc)
: pp->st_o );
st_oc = clumplab ? (int32_t *)(p->clumps->array) + se_inc[0] : NULL;
/* Continue measuring randomly until we get the desired total number. */
while(nfailed<maxfails && counter<p->upnum)
{
/* Get the random coordinates. */
for(d=0;d<ndim;++d)
rcoord[d] = upperlimit_random_position(pp, tile, d, min, max);
/* Set the tile's new starting pointer. */
tile->array = gal_pointer_increment(p->objects->array,
gal_dimension_coord_to_index(ndim, dsize, rcoord),
p->objects->type);
/* Starting and ending coordinates for this random position, note
that in 'pp' we have the starting and ending coordinates of the
actual tile. */
increment = 0;
num_increment = 1;
continueparse = 1;
sum = 0.0f;
/* Starting pointers for the random tile. */
st_v = gal_tile_start_end_ind_inclusive(tile, p->values, se_inc);
st_o = (int32_t *)(p->objects->array) + se_inc[0];
if(p->upmask) st_m = (uint8_t *)(p->upmask->array) + se_inc[0];
/* Parse over this object/clump. */
while( se_inc[0] + increment <= se_inc[1] )
{
/* Set the pointers. */
V = st_v + increment; /* Random tile. */
O = st_o + increment; /* Random tile. */
if(st_m) M = st_m + increment; /* Random tile. */
oO = st_oo + increment; /* Original tile. */
if(clumplab) oC = st_oc + increment; /* Original tile. */
/* Parse over this contiguous region, similar to the first and
second pass functions. */
OO = O + tile->dsize[ndim-1];
do
{
/* Only use pixels over this object/clump. */
if( *oO==pp->object && ( oC==NULL || *oC==clumplab ) )
{
/* If this pixel is a non-zero object code, or is masked,
or has a blank value, then stop parsing. */
if( *O || (M && *M) || ( p->hasblank && isnan(*V) ) )
continueparse=0;
else
sum += *V;
}
/* Increment the other pointers. */
++V;
++oO;
if(M) ++M;
if(oC) ++oC;
}
while(continueparse && ++O<OO);
/* Increment to the next contiguous region of this tile. */
if(continueparse)
increment += ( gal_tile_block_increment(p->objects, dsize,
num_increment++, NULL) );
else break;
}
/* Further processing is only necessary if this random tile was fully
parsed. If it was, we must reset 'nfailed' to zero again. */
if(continueparse)
{
nfailed=0;
uparr[ counter++ ] = sum;
}
else ++nfailed;
/* If a check is necessary, put the center of the tile independent of
the values/labels (in FITS coordinates). Note that 'rcoord' is the
position of the first pixel of the tile, so we need to add half
the width of the tile (the 'hw*' variables). */
if(writecheck)
{
switch(ndim)
{
case 2:
gal_list_sizet_add(&check_x, rcoord[1]+1 + hw1);
gal_list_sizet_add(&check_y, rcoord[0]+1 + hw0);
break;
case 3:
gal_list_sizet_add(&check_x, rcoord[2]+1 + hw2);
gal_list_sizet_add(&check_y, rcoord[1]+1 + hw1);
gal_list_sizet_add(&check_z, rcoord[0]+1 + hw0);
break;
default:
error(EXIT_FAILURE, 0, "%s: a bug! Please contact us at %s "
"to fix the problem. 'ndim' value of %zu is not "
"recognized", __func__, PACKAGE_BUGREPORT, ndim);
}
gal_list_f32_add(&check_s, continueparse ? sum : NAN);
}
}
/* If a check is necessary, then write the values. */
if(writecheck)
upperlimit_write_check(p, check_x, check_y, check_z, check_s);
/* Do the measurement on the random distribution. */
upperlimit_measure(pp, clumplab, counter==p->upnum);
/* Reset the tile's array pointer, clean up and return. */
free(rcoord);
tile->array=tarray;
gal_list_f32_free(check_s);
gal_list_sizet_free(check_x);
gal_list_sizet_free(check_y);
}
/*********************************************************************/
/******************* High level function ********************/
/*********************************************************************/
void
upperlimit_calculate(struct mkcatalog_passparams *pp)
{
size_t i;
unsigned long seed;
gal_data_t *clumptiles;
struct mkcatalogparams *p=pp->p;
/* First find the upper limit magnitude for this object. */
upperlimit_one_tile(pp, pp->tile, p->rng_seed+pp->object, 0);
/* If a clumps image is present (a clump catalog is requested) and this
object has clumps, then find the upper limit magnitude for the clumps
within this object. */
if(p->clumps && pp->clumpsinobj)
{
/* If an upper-limit check image is requested, then make sure that
the clump label is not more than the number of clumps in this
object. */
if( p->checkuplim[0] == pp->object
&& p->checkuplim[1] != GAL_BLANK_INT32
&& p->checkuplim[1] > pp->clumpsinobj )
error(EXIT_FAILURE, 0, "object %d has %zu clumps, but an "
"upperlimit check table (using the '--checkuplim' "
"option) has been requested for clump %d", pp->object,
pp->clumpsinobj, p->checkuplim[1]);
/* Make tiles covering the clumps. */
clumptiles=upperlimit_make_clump_tiles(pp);
/* Go over all the clumps. The random number generator seed for each
clump/object has to be unique, but also reproducible (given the
intial seed and identical inputs). So we have defined it based on
the total number of objects and clumps and this object and clump's
IDs. */
for(i=0;i<pp->clumpsinobj;++i)
{
seed = p->rng_seed + p->numtiles + p->numclumps * pp->object + i;
upperlimit_one_tile(pp, &clumptiles[i], seed, i+1);
}
/* Clean up the clump tiles. */
gal_data_array_free(clumptiles, pp->clumpsinobj, 0);
}
}
|