1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
|
/*********************************************************************
MakeProfiles - Create mock astronomical profiles.
MakeProfiles is part of GNU Astronomy Utilities (Gnuastro) package.
Original author:
Mohammad Akhlaghi <mohammad@akhlaghi.org>
Contributing author(s):
Copyright (C) 2015-2025 Free Software Foundation, Inc.
Gnuastro is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
Gnuastro is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with Gnuastro. If not, see <http://www.gnu.org/licenses/>.
**********************************************************************/
#include <config.h>
#include <math.h>
#include <errno.h>
#include <error.h>
#include <stdio.h>
#include <stdlib.h>
#include <gsl/gsl_sf_gamma.h> /* For total Sersic brightness. */
#include "main.h"
#include "mkprof.h" /* Needs main.h, astrthreads.h */
#include "profiles.h"
/****************************************************************
***************** Profiles: ********************
****************************************************************/
/* The distance of this pixel. */
double
profiles_radial_distance(struct mkonthread *mkp)
{
return mkp->r;
}
/* Azimuthal angle.
Assuming theta is the azimuthal angle (along a constant radius), then an
ellipse is defined by:
x=a*cos(theta)
y=b*sin(theta)
Now, let's take 'phi' to be the angle in the normal equi-distant
(non-elliptical coordinates). Therefore:
tan(phi)=y/x
So:
b*sin(theta)
tan(phi) = ------------ = b/a * tan(theta)
a*cos(theta)
Therefore we can find theta like this (where q=b/a):
theta = atan( a/b * tan(phi) )
= atan( a/b * y/x )
= atan( y / (x*q) )
However, the 'x' and 'y' above are only for the case where the ellipse
has a position angle of zero (its major axis is aligned with the
horizontal axis. When the ellipse is rotated, we first need to rotate
the 'mkp->coord' values, and then use 'x' and 'y' like above. */
double
profiles_azimuth(struct mkonthread *mkp)
{
/* We are rotating by the inverse (multiplied by -1) position angle. */
double x = mkp->coord[0]*mkp->c[0] + mkp->coord[1]*mkp->s[0];
double y = -1 * mkp->coord[0]*mkp->s[0] + mkp->coord[1]*mkp->c[0];
/* The normal 'atan' function will only return values between -90 to +90
degrees, or only two quadrants (because it only takes a single
value). However, with 'atan2' we can get the full -180 to +180 degrees
(all four quadrants). */
double d=atan2(y, x*mkp->q[0])*RADIANSTODEGREES;
/* 'atan2' returns values between -180 to 180 deg. But we want values
from 0 to 360, so we'll add the negative ones by 360. */
return d>0 ? d : d+360.0f;
}
/* Read the values based on the distance from a table. */
double
profiles_custom_table(struct mkonthread *mkp)
{
long i; /* May become negative. */
double *reg=mkp->p->customregular;
double *min=mkp->p->custom->array;
double *max=mkp->p->custom->next->array;
double *value=mkp->p->custom->next->next->array;
double out=0.0f; /* Zero means no value, user may want a NaN value! */
/* If the table isn't regular ('reg[0]' isn't NaN), then we have to parse
over the whole table. However, if its regular, we can find the proper
value much more easily. */
if( isnan(reg[0]) )
{
for(i=0;i<mkp->p->custom->size;++i)
if( mkp->r >= min[i] && mkp->r < max[i] )
{ out=value[i]; break; }
}
else
{
i=(mkp->r - reg[0])/reg[1];
if(i>=0 && i<=mkp->p->custom->size) out=value[i];
}
/* Return the output value. */
return out;
}
/* This is just a place-holder function, but will never be used. */
double
profiles_custom_image(struct mkonthread *mkp)
{
return NAN;
}
/* The integral of the Gaussian from -inf to +inf equals the square root of
PI. So from zero to +inf it equals half of that.*/
double
profiles_gaussian_total(double q)
{
return q*sqrt(M_PI)/2;
}
/* The Gaussian function at a point. */
double
profiles_gaussian(struct mkonthread *mkp)
{
return exp( mkp->gaussian_c * mkp->r * mkp->r );
}
/* This function will find the moffat function alpha value based on
the explantions here:
http://labs.adsabs.harvard.edu/adsabs/abs/2001MNRAS.328..977T/
alpha=(FWHM/2)/(2^(1.0/beta)-1)^(0.5). Then the moffat
function at r is: (1.0 + (r/alpha)^2.0)^(-1.0*beta)*/
double
profiles_moffat_alpha(double fwhm, double beta)
{
return (fwhm/2)/pow((pow(2, 1/beta)-1), 0.5f);
}
/* Find the total value of the Moffat profile. I am using equation 10
from Pengetal 2010 (Galfit). In finding the profiles, I am assuming
\Sigma_0=1. So that is what I put here too.*/
double
profiles_moffat_total(double alpha, double beta, double q)
{
return M_PI*alpha*alpha*q/(beta-1);
}
/* Find the Moffat profile for a certain radius.
rda=r/alpha and nb=-1*b.
This is done before hand to speed up the process. */
double
profiles_moffat(struct mkonthread *mkp)
{
return pow(1+mkp->r*mkp->r/mkp->moffat_alphasq, mkp->moffat_nb);
}
/* This approximation of b(n) for n>0.35 is taken from McArthur,
Courteau and Holtzman 2003:
http://adsabs.harvard.edu/abs/2003ApJ...582..689 */
double
profiles_sersic_b(double n)
{
if(n<=0.35f)
error(EXIT_FAILURE, 0, "the Sersic index cannot be smaller "
"than 0.35. It is %.3f", n);
return 2*n-(1/3)+(4/(405*n))+(46/(25515*n*n))+
(131/(1148175*n*n*n)-(2194697/(30690717750*n*n*n*n)));
}
/* Find the total brightness in a Sersic profile. From equation 4 in
Peng 2010. This assumes the surface brightness at the effective
radius is 1.*/
double
profiles_sersic_total(double n, double re, double b, double q)
{
return (2*M_PI*re*re*exp(b)*n*pow(b, -2*n)*q*
gsl_sf_gamma(2*n));
}
/* Find the Sersic profile for a certain radius. rdre=r/re, inv_n=1/n,
nb= -1*b. */
double
profiles_sersic(struct mkonthread *mkp)
{
return exp( mkp->sersic_nb
* ( pow(mkp->r/mkp->sersic_re, mkp->sersic_inv_n) -1 ) );
}
/* Make a circumference (inner to the radius). */
double
profiles_circumference(struct mkonthread *mkp)
{
return ( (mkp->r > mkp->intruncr && mkp->r <= mkp->truncr)
? mkp->fixedvalue : 0.0f );
}
/* Always returns a fixed value: */
double
profiles_flat(struct mkonthread *mkp)
{
return mkp->fixedvalue;
}
|