File: clumps.c

package info (click to toggle)
gnuastro 0.24-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 44,360 kB
  • sloc: ansic: 185,444; sh: 15,785; makefile: 1,303; cpp: 9
file content (879 lines) | stat: -rw-r--r-- 31,905 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
/*********************************************************************
Segment - Segment initial labels based on signal structure.
Segment is part of GNU Astronomy Utilities (Gnuastro) package.

Original author:
     Mohammad Akhlaghi <mohammad@akhlaghi.org>
Contributing author(s):
Copyright (C) 2015-2025 Free Software Foundation, Inc.

Gnuastro is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.

Gnuastro is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with Gnuastro. If not, see <http://www.gnu.org/licenses/>.
**********************************************************************/
#include <config.h>

#include <stdio.h>
#include <errno.h>
#include <error.h>
#include <stdlib.h>
#include <string.h>

#include <gnuastro/fits.h>
#include <gnuastro/blank.h>
#include <gnuastro/label.h>
#include <gnuastro/threads.h>
#include <gnuastro/pointer.h>
#include <gnuastro/dimension.h>
#include <gnuastro/statistics.h>

#include <gnuastro-internal/timing.h>

#include "main.h"

#include "ui.h"
#include "clumps.h"










/**********************************************************************/
/*****************              Grow clumps           *****************/
/**********************************************************************/
/* Make the preparations for the intiial growing the clumps to identify
   objects: a single standard deviation for the whole object and preparing
   the labels (because the growth is going to happen on the 'olabel'
   image. */
void
clumps_grow_prepare_initial(struct clumps_thread_params *cltprm)
{
  gal_data_t *indexs=cltprm->indexs;
  gal_data_t *input=cltprm->clprm->p->input;
  struct segmentparams *p=cltprm->clprm->p;

  double wcoord[3]={0.0f,0.0f,0.0f}, sum=0.0f;
  size_t ndiffuse=0, coord[3], tcoord[3], *dindexs;
  size_t *s, *sf, *dsize=input->dsize, ndim=input->ndim;
  float glimit, *imgss=input->array, *std=p->std->array;
  int32_t *olabel=p->olabel->array, *clabel=p->clabel->array;


  /* Find the flux weighted center (meaningful only for positive valued
     pixels). */
  sf=(s=indexs->array)+indexs->size;
  do
    if( imgss[ *s ] > 0.0f )
      {
        gal_dimension_index_to_coord(*s, ndim, dsize, tcoord);
        sum         += imgss[ *s ];
        wcoord[0]   += imgss[ *s ] * tcoord[0];
        wcoord[1]   += imgss[ *s ] * tcoord[1];
        if(ndim==3)
          wcoord[1] += imgss[ *s ] * tcoord[2];
      }
  while(++s<sf);


  /* Calculate the center, if no pixels were positive, use the
     geometric center (irrespective of flux). */
  if(sum==0.0f)
    {
      sf=(s=indexs->array)+indexs->size;
      do
        {
          gal_dimension_index_to_coord(*s, ndim, dsize, tcoord);
          wcoord[0]   += tcoord[0];
          wcoord[1]   += tcoord[1];
          if(ndim==3)
            wcoord[2] += tcoord[2];
        }
      while(++s<sf);
      sum = indexs->size;
    }


  /* Convert floating point coordinates to integers. */
  coord[0] = GAL_DIMENSION_FLT_TO_INT(wcoord[0]/sum);
  coord[1] = GAL_DIMENSION_FLT_TO_INT(wcoord[1]/sum);
  if(ndim==3)
    coord[2] = GAL_DIMENSION_FLT_TO_INT(wcoord[2]/sum);


  /* Find the growth limit. Note that the STD may be a value, or a dataset
     (which may be a full sized image or a tessellation). If its not a
     single value, we'll check through the number of elements to see what
     kind of dataset it is (if its a tile or full image). */
  cltprm->std = ( p->std->size>1
                  ? ( p->std->size==p->input->size
                      ? std[gal_dimension_coord_to_index(ndim, dsize, coord)]
                      : std[gal_tile_full_id_from_coord(&p->cp.tl, coord)] )
                  : std[0] );
  if(p->variance) cltprm->std = sqrt(cltprm->std);


  /* From the standard deviation, find the growth limit. */
  glimit = p->gthresh * cltprm->std;


  /* Allocate space to keep the diffuse indexs over this detection. We need
     to keep the actual indexs since it is our only connection to the
     object at this stage: we are also going to re-label the pixels to
     grow. For most astronomical objects, the major part of the detection
     area is going to be diffuse flux, so we will just allocate the same
     size as 'indexs' array (the 'dsize' will be corrected after getting
     the exact number.

     Also note that since 'indexs' is already sorted, therefore
     'diffuseindexs' will also be already sorted. */
  cltprm->diffuseindexs=gal_data_alloc(NULL, GAL_TYPE_SIZE_T, 1,
                                       cltprm->indexs->dsize, NULL, 0,
                                       p->cp.minmapsize, p->cp.quietmmap,
                                       NULL, NULL, NULL);
  dindexs=cltprm->diffuseindexs->array;
  sf=(s=indexs->array)+indexs->size;
  do
    {
      olabel[*s] = clabel[*s];
      if( clabel[*s]==GAL_LABEL_INIT )
        if( imgss[*s]>glimit ) dindexs[ ndiffuse++ ] = *s;
    }
  while(++s<sf);


  /* Correct the sizes of the 'diffuseindexs' data structure. */
  cltprm->diffuseindexs->size = cltprm->diffuseindexs->dsize[0] = ndiffuse;
}





/* Add all the remaining pixels in the detection (below the growth
   threshold, or those that were not touching). Note that initially
   'diffuseindexs' was filled with the pixels that are above the growth
   threshold. That was necessary for identifying the objects. Now that we
   have identified the objects and labeled them, we want to add the
   remaining diffuse pixels to it too before doing the final growth.

   Note that the most efficient way is just to re-fill the 'diffuseindexs'
   array instead of adding the pixels below the threshold and sorting them
   afterwards.*/
void
clumps_grow_prepare_final(struct clumps_thread_params *cltprm)
{
  size_t ndiffuse=0;
  size_t *dindexs=cltprm->diffuseindexs->array;
  int32_t *olabel=cltprm->clprm->p->olabel->array;
  size_t *s=cltprm->indexs->array, *sf=s+cltprm->indexs->size;

  /* Recall that we initially allocated 'diffuseindexs' to have the same
     size as the indexs. So there is no problem if there are more pixels in
     this final round compared to the initial round. */
  do
    if( olabel[*s] < 0 )
      dindexs[ ndiffuse++ ] = *s;
  while(++s<sf);

  /* Correct the sizes of the 'diffuseindexs' data structure. */
  cltprm->diffuseindexs->size = cltprm->diffuseindexs->dsize[0] = ndiffuse;
}
























/**********************************************************************/
/*****************             S/N threshold          *****************/
/**********************************************************************/
/* Correct the labels of the clumps that will be used in determining the
   S/N threshold for true clumps.   */
static void
clumps_correct_sky_labels_for_check(struct clumps_thread_params *cltprm,
                                    gal_data_t *tile)
{
  gal_data_t *newinds;
  int32_t *ninds, curlab, *l, *lf;
  size_t len=cltprm->numinitclumps+1;
  struct segmentparams *p=cltprm->clprm->p;

  /* If any of the clumps must be kept ('cltprm->snind->size!=0'), then
     re-label them for the check image. Otherwise, remove all clumps. */
  if(cltprm->snind->size)
    {
      /* A small sanity check. */
      if(gal_tile_block(tile)!=p->clabel)
        error(EXIT_FAILURE, 0, "%s: a bug! Please contact us at %s to "
              "address the problem. 'tile->block' must point to the "
              "'clabel' dataset", __func__, PACKAGE_BUGREPORT);


      /* Allocate a dataset with the new indexs, note that it will need to
         have one element for each initial label (the excluded clumps need
         to be set to zero). So we also need to clear the allocated
         space. */
      newinds=gal_data_alloc(NULL, p->clabel->type, 1, &len, NULL, 0,
                             p->cp.minmapsize, p->cp.quietmmap,
                             NULL, NULL, NULL);


      /* Get the next available label for these clumps. If more than one
         thread was used, we are first going to lock the mutex (so no other
         thread changes these values), we will then read the shared number
         for this thread to use, then update the shared number and finally,
         unlock the mutex so other threads can do the same when they get to
         this point. */
      if(p->cp.numthreads>1) pthread_mutex_lock(&cltprm->clprm->labmutex);
      curlab        = p->numclumps+1; /* Note that counting begins from 1. */
      p->numclumps += cltprm->snind->size;
      if(p->cp.numthreads>1) pthread_mutex_unlock(&cltprm->clprm->labmutex);


      /* Initialize the newinds array to GAL_LABEL_INIT (which be used as a
         new label for all the clumps that must be removed. */
      lf = (l=newinds->array) + newinds->size;
      do *l++=GAL_LABEL_INIT; while(l<lf);


      /* The new indexs array has been initialized to zero. So we just need
         to go over the labels in 'cltprm->sninds' and give them a value of
         'curlab++'. */
      ninds=newinds->array;
      lf = (l=cltprm->snind->array) + cltprm->snind->size;
      do { ninds[*l]=curlab++; *l=ninds[*l]; } while(++l<lf);


      /* Go over this tile and correct the values. */
      GAL_TILE_PARSE_OPERATE( tile, NULL, 0, 1,
                              {if(*i>0) *i=ninds[ *(int32_t *)i ];} );

      /* Clean up. */
      gal_data_free(newinds);
    }
  else
    /* There were no usable clumps in this tile, so just set all the pixels
       larger than zero (a clump) to 'GAL_LABEL_INIT'. */
    GAL_TILE_PARSE_OPERATE( tile, NULL, 0, 1, {*i=*i>0?GAL_LABEL_INIT:*i;} );
}





static void *
clumps_find_make_sn_table(void *in_prm)
{
  struct gal_threads_params *tprm=(struct gal_threads_params *)in_prm;
  struct clumps_params *clprm=(struct clumps_params *)(tprm->params);
  struct segmentparams *p=clprm->p;
  size_t ndim=p->input->ndim, *dsize=p->input->dsize;

  void *tarray;
  double numdet;
  int pixonedge;
  gal_data_t *tile, *tblock, *tmp;
  uint8_t *binary=p->binary->array;
  struct clumps_thread_params cltprm;
  size_t i, j, c, ind, tind, num, numsky, *indarr;
  size_t *scoord=gal_pointer_allocate(GAL_TYPE_SIZE_T, ndim, 0, __func__,
                                      "scoord");
  size_t *icoord=gal_pointer_allocate(GAL_TYPE_SIZE_T, ndim, 0, __func__,
                                      "icoord");


  /* Initialize the parameters for this thread. */
  cltprm.clprm   = clprm;
  cltprm.topinds = NULL;


  /* Go over all the tiles/detections given to this thread. */
  for(i=0; tprm->indexs[i] != GAL_BLANK_SIZE_T; ++i)
    {
      /* IDs. */
      cltprm.id = tind  = tprm->indexs[i];
      tile = &p->ltl.tiles[tind];


      /* Change the tile's pointers to the binary image (which has 1 for
         detected pixels and 0 for un-detected regions). */
      tarray=tile->array;
      tblock=tile->block;
      tile->array = gal_tile_block_relative_to_other(tile, p->binary);
      tile->block = p->binary;


      /* Get the number of usable elements in this tile (note that tiles
         can have blank pixels), so we can't simply use 'tile->size'. */
      if(p->input->flag & GAL_DATA_FLAG_HASBLANK)
        {
          tmp=gal_statistics_number(tile);
          num=*((size_t *)(tmp->array));
          gal_data_free(tmp);
        }
      else num=tile->size;


      /* Find the number of detected pixels over this tile. Since this is
         the binary image, this is just the sum of all the pixels.

         Note that 'numdet' can be 'nan' when the whole tile is blank and
         so there was no values to sum. Recall that in summing, when there
         is not input, the output is 'nan'. */
      tmp=gal_statistics_sum(tile);
      numdet=*((double *)(tmp->array));
      gal_data_free(tmp);


      /* See if this tile should be used or not (has enough undetected
         pixels). Note that it might happen that some tiles are fully
         blank. In such cases, it is important to first check the number of
         detected pixels. */
      numsky=num-numdet;
      if( num && (float)numsky/(float)num > p->minskyfrac )
        {
          /* Add the indexs of all undetected pixels in this tile into an
             array. */
          cltprm.indexs=gal_data_alloc(NULL, GAL_TYPE_SIZE_T, 1, &numsky,
                                       NULL, 0, p->cp.minmapsize,
                                       p->cp.quietmmap, NULL, NULL, NULL);


          /* Change the tile's block to the clump labels dataset (because
             we'll need to set the labels of the rivers on the edge of the
             tile here). */
          tile->array = gal_tile_block_relative_to_other(tile, p->clabel);
          tile->block = p->clabel;


          /* We need to set all the pixels on the edge of the tile to
             rivers and not include them in the list of indexs to set
             clumps. To do that, we need this tile's starting
             coordinates. */
          gal_dimension_index_to_coord(gal_pointer_num_between(
                           p->clabel->array, tile->array, p->clabel->type),
                                       ndim, dsize, scoord);


          /* Add the index of every sky element to the array of
             indexs. Note that since we know the array is always of type
             'int32_t', we can call the 'GAL_TILE_PO_OISET' macro to avoid
             having to deal with multiple possible types in
             'GAL_TILE_PARSE_OPERATE'. Since the OUT macro-variable is
             NULL, the 'int' is just a place-holder, it will not be
             used. */
          c=0;
          indarr=cltprm.indexs->array;
          GAL_TILE_PO_OISET(int32_t, int, tile, NULL, 0, 1, {
              /* This pixel's index over all the image. */
              ind = (int32_t *)i - (int32_t *)(p->clabel->array);
              gal_dimension_index_to_coord(ind, ndim, dsize, icoord);

              /* Check if the pixel is on the tile edge. */
              pixonedge=0;
              for(j=0;j<ndim;++j)
                if( icoord[j]==scoord[j]
                    || icoord[j]==scoord[j]+tile->dsize[j]-1 )
                  {
                    pixonedge=1;
                    break;
                  }

              /* If this pixel is on the edge, then it should be a
                 river. */
              if(pixonedge)
                *(int32_t *)i=GAL_LABEL_RIVER;

              /* This pixel is not on the edge, check if it had a value of
                 '0' in the binary image (is not detected) then add it to
                 the list of indexs (note that the binary image also
                 contains the blank pixels, so only sky regions have a
                 value of 0 in the binary image). */
              else if( binary[ind]==0 )
                {
                  /*
                  if(c!=cltprm.indexs->size)
                    {
                      if(cltprm.id==282) *i+=2;
                  */
                      indarr[c++]=gal_pointer_num_between(p->clabel->array,
                                                          i, p->clabel->type);
                  /*
                    }
                  else
                    if(cltprm.id==282)
                      {
                        int32_t *clabel=p->clabel->array;
                        size_t kjd=gal_data_num_between(p->clabel->array, i,
                                                        p->clabel->type);
                        printf("%zu, %zu: %u\n", kjd%dsize[1]+1,
                               kjd/dsize[1]+1, clabel[kjd]);
                      }
                  */
                }
            });


          /* Correct the number of indexs. */
          cltprm.indexs->size=cltprm.indexs->dsize[0]=c;


          /* Generate the clumps over this region. */
          cltprm.numinitclumps=gal_label_watershed(p->conv, cltprm.indexs,
                                                   p->clabel,
                                                   cltprm.topinds,
                                                   !p->minima);


          /* Set all river pixels to GAL_LABEL_INIT (to be distinguishable
             from the detected regions). */
          GAL_TILE_PO_OISET( int32_t, int, tile, NULL, 0, 1,
                             {if(*i==GAL_LABEL_RIVER) *i=GAL_LABEL_INIT;} );


          /* For a check, the step variable will be set. */
          if(clprm->step==1)
            { gal_data_free(cltprm.indexs); continue; }


          /* Make the clump S/N table. */
          cltprm.sn    = &cltprm.clprm->sn[cltprm.id];
          cltprm.snind = ( cltprm.clprm->snind
                           ? &cltprm.clprm->snind[cltprm.id]
                           : NULL );
          gal_label_clump_significance(p->clumpvals, p->std, p->clabel,
                                       cltprm.indexs, &p->cp.tl,
                                       cltprm.numinitclumps, p->snminarea,
                                       p->variance, clprm->sky0_det1,
                                       cltprm.sn, cltprm.snind);


          /* If the user wanted to check the steps, remove the clumps that
             weren't used from the 'clabel' image (they have been already
             excluded from the table). */
          if(cltprm.snind)
            clumps_correct_sky_labels_for_check(&cltprm, tile);


          /* If there were no clumps, then just set the S/N table to
             NULL. This must be done after the check image creation (if
             necessary), because we use 'cltprm.snind' as a proxy for the
             check image.*/
          if( cltprm.clprm->sn[ cltprm.id ].size==0 )
            cltprm.snind=cltprm.sn=NULL;


          /* Clean up. */
          gal_data_free(cltprm.indexs);
        }

      /* Reset the tile's pointers back to what they were. */
      tile->array=tarray;
      tile->block=tblock;
    }

  /* Clean up. */
  free(scoord);
  free(icoord);

  /* Wait for the all the threads to finish and return. */
  if(tprm->b) pthread_barrier_wait(tprm->b);
  return NULL;
}





/* Write the S/N table. */
static void
clumps_write_sn_table(struct segmentparams *p, gal_data_t *insn,
                      gal_data_t *inind, char *filename,
                      gal_list_str_t *comments)
{
  gal_data_t *sn, *ind, *cols;

  /* Remove all blank elements. The index and sn values must have the same
     set of blank elements, but checking on the integer array is faster. */
  if( gal_blank_present(inind, 1) )
    {
      /* Remove blank elements. */
      ind=gal_data_copy(inind);
      gal_blank_remove(ind,1);
      sn=gal_data_copy(insn);
      gal_blank_remove(sn,1);

      /* A small sanity check. */
      if(ind->size==0 || sn->size==0)
        error(EXIT_FAILURE, 0, "%s: a bug! Please contact us at %s to fix "
              "the problem. For some reason, all the elements in 'ind' or "
              "'sn' are blank", __func__, PACKAGE_BUGREPORT);
    }
  else
    {
      sn  = insn;
      ind = inind;
    }

  /* Set the columns. */
  cols       = ind;
  cols->next = sn;

  /* Prepare the comments. */
  gal_table_comments_add_intro(&comments, PROGRAM_STRING, &p->rawtime);

  /* write the table. */
  gal_table_write(cols, NULL, comments, p->cp.tableformat, filename,
                  "SKY_CLUMP_SN", 0, 0);

  /* Clean up (if necessary). */
  if(sn!=insn) gal_data_free(sn);
  if(ind==inind) ind->next=NULL; else gal_data_free(ind);
}





/* Find the true clump signal to noise value from the clumps in the sky
   region.

   Each thread will find the useful signal to noise values for the tiles
   that have been assigned to it. It will then store the pointer to the S/N
   table into the sntablearr array (with the size of the number of
   meshs). If no clumps could be found in a mesh, then
   sntablearr[i]=NULL. Otherwise, it points to an array of the useful S/N
   values in that clump. Note that we don't care about the order of S/N
   values any more! There is also an accompanying array to keep the number
   of elements in the final S/N array of each mesh: numclumpsarr.

   Using these two arrays, after all the threads are finished, we can
   concatenate all the S/N values into one array and send it to the main
   findsnthresh function in thresh.c. */
void
clumps_true_find_sn_thresh(struct segmentparams *p)
{
  char *msg;
  struct timeval t1;
  size_t i, j, c, numsn=0;
  struct clumps_params clprm;
  gal_list_str_t *comments=NULL;
  gal_data_t *sn, *snind, *quant, *claborig;

  /* Get starting time for later reporting if necessary. */
  if(!p->cp.quiet) gettimeofday(&t1, NULL);


  /* Initialize/allocate the clump parameters structure, Note that the S/N
     indexs are also needed when we want to check the segmentation steps
     (they are used to correct the indexs in the final output). */
  clprm.p=p;
  clprm.sky0_det1=0;
  clprm.sn=gal_data_array_calloc(p->ltl.tottiles);
  clprm.snind = ( p->checksegmentation || p->checksn
                  ? gal_data_array_calloc(p->ltl.tottiles) : NULL );


  /* If the user wants to check the steps of get an S/N table, then we need
     a unique label for each clump. But in each region, the labels start
     from 1. So we need a central place to keep the next available
     label. Since 'p->numclumps' is not used yet, we will use it here. When
     multiple threads are used, we will need a mutex to make sure that only
     one thread can change this central variable at every one moment. */
  if(p->checksegmentation || p->checksn)
    {
      p->numclumps=0;
      if( p->cp.numthreads > 1 ) pthread_mutex_init(&clprm.labmutex, NULL);
    }


  /* Spin off the threads to start the work. Note that several steps are
     done on each tile within a thread. So if the user wants to check
     steps, we need to break out of the processing get an over-all output,
     then reset the input and call it again. So it will be slower, but its
     is natural, since the user is testing to find the correct combination
     of parameters for later use. */
  if(p->segmentationname)
    {
      /* Necessary initializations. */
      clprm.step=1;
      claborig=p->clabel;
      p->clabel=gal_data_copy(claborig);

      /* Do each step. */
      while(clprm.step<3)
        {
          /* Reset the temporary copy of clabel back to its original. */
          if(clprm.step>1)
            memcpy(p->clabel->array, claborig->array,
                   claborig->size*gal_type_sizeof(claborig->type));

          /* Do this step. */
          gal_threads_spin_off(clumps_find_make_sn_table, &clprm,
                               p->ltl.tottiles, p->cp.numthreads,
                               p->cp.minmapsize, p->cp.quietmmap);

          /* Set the extension name. */
          switch(clprm.step)
            {
            case 1: p->clabel->name = "SKY_CLUMPS_ALL";    break;
            case 2: p->clabel->name = "SKY_CLUMPS_FOR_SN"; break;
            default:
              error(EXIT_FAILURE, 0, "%s: a bug! Please contact us at %s "
                    "so we can address the issue. The value %d is not "
                    "valid for clprm.step", __func__, PACKAGE_BUGREPORT,
                    clprm.step);
            }

          /* Write the demonstration array into the check image. The
             default values are hard to view, so we'll make a copy of the
             demo, set all Sky regions to blank and all clump macro values
             to zero. */
          gal_fits_img_write(p->clabel, p->segmentationname, NULL, 0);

          /* Increment the step counter. */
          ++clprm.step;
        }

      /* Clean up (we don't need the original any more). */
      gal_data_free(claborig);
      p->clabel->name=NULL;
    }
  else
    {
      clprm.step=0;
      gal_threads_spin_off(clumps_find_make_sn_table, &clprm,
                           p->ltl.tottiles, p->cp.numthreads,
                           p->cp.minmapsize, p->cp.quietmmap);
    }


  /* Destroy the mutex if it was initialized. */
  if( p->cp.numthreads>1 && (p->checksegmentation || p->checksn) )
    pthread_mutex_destroy(&clprm.labmutex);


  /* Find the total number of S/N values we have for all the clumps. */
  for(i=0;i<p->ltl.tottiles;++i)
    if(clprm.sn[i].ndim)  /* Only on tiles were an S/N was calculated. */
      numsn+=clprm.sn[i].size;
  if( numsn < p->minnumfalse )
    error(EXIT_FAILURE, 0, "%zu usable clumps found in the undetected "
          "regions. This is smaller than the requested minimum number of "
          "false/reference clumps (%zu, value to the '--minnumfalse' "
          "option).\n\n"
          "There are several ways to address the problem. The best and most "
          "highly recommended is to use a larger input if possible (when the "
          "input is a crop from a larger dataset). If that is not the case, "
          "or it doesn't solve the problem, you need to loosen the "
          "parameters (and therefore cause more scatter/bias in the final "
          "result). Thus don't loosen them too much. Recall that you can "
          "see all the option values to Gnuastro's programs by appending "
          "'-P' to the end of your command.\n\n"
          "  * Slightly decrease '--largetilesize' to have more tiles.\n"
          "  * Decrease '--minskyfrac' (currently %g) to look into more "
          "tiles.\n"
          "  * Slightly decrease '--snminarea' (currently %zu) to "
          "measure more clumps.\n"
          "  * If Segment already works on a dataset with similar noise "
          "properties, you can directly pass the 'true' clump "
          "signal-to-noise ratio found there to '--clumpsnthresh' and "
          "avoid having to study the undetected regions any more.\n\n"
          "Append your previous command with '--checksegmentation' to see "
          "the steps and get a better feeling of the cause/solution. Note "
          "that the output is a multi-extension FITS file).\n\n"
          "To better understand the segmentation process and options, "
          "please run the following command (press 'SPACE'/arrow-keys to "
          "navigate and 'Q' to return back to the command-line):\n\n"
          "    $ info gnuastro \"Segmentation options\"\n",
          numsn, p->minnumfalse, p->minskyfrac, p->snminarea);


  /* Allocate the space to keep all the S/N values. */
  sn=gal_data_alloc(NULL, GAL_TYPE_FLOAT32, 1, &numsn, NULL, 0,
                    p->cp.minmapsize, p->cp.quietmmap, "CLUMP_S/N", "ratio",
                    "Signal-to-noise ratio");
  snind = ( p->checksn
            ? gal_data_alloc(NULL, GAL_TYPE_INT32, 1, &numsn, NULL, 0,
                             p->cp.minmapsize, p->cp.quietmmap, "CLUMP_ID",
                             "counter", "Unique ID for this clump.")
            : NULL );


  /* Copy the S/N values of all the clumps into the unified array. */
  c=0;
  for(i=0;i<p->ltl.tottiles;++i)
    if(clprm.sn[i].ndim)
      for(j=0;j<clprm.sn[i].size;++j)
        {
          ((float *)(sn->array))[c] = ((float *)(clprm.sn[i].array))[j];
          if(snind)
            ((int32_t *)(snind->array))[c] =
              ((int32_t *)(clprm.snind[i].array))[j];
          ++c;
        }


  /* The S/N array of sky clumps is desiged to have no blank values, so set
     the flags accordingly to avoid a redundant blank search. */
  sn->flag  =  GAL_DATA_FLAG_BLANK_CH;
  sn->flag &= ~GAL_DATA_FLAG_HASBLANK;


  /* If the user wanted to see the S/N table, then save it. */
  if(p->checksn)
    {
      /* Make the comments, then write the table and free the comments. */
      if(p->cp.numthreads>1)
        gal_list_str_add(&comments, "NOTE: In multi-threaded mode, clump "
                         "IDs differ in each run and are not sorted.", 1);
      gal_list_str_add(&comments, "See also: 'SKY_CLUMPS_FOR_SN' HDU of "
                       "output with '--checksegmentation'.", 1);
      gal_list_str_add(&comments, "S/N of clumps over undetected regions.",
                       1);
      clumps_write_sn_table(p, sn, snind, p->clumpsn_s_name, comments);
      gal_list_str_free(comments, 1);
    }


  /* Find the desired quantile from the full S/N distribution. */
  quant = gal_statistics_quantile(sn, p->snquant, 1);
  p->clumpsnthresh = *((float *)(quant->array));
  if(!p->cp.quiet)
    {
      if( asprintf(&msg, "Clump peak S/N: %g (%.3f quant of %zu).",
                   p->clumpsnthresh, p->snquant, sn->size)<0 )
        error(EXIT_FAILURE, 0, "%s: asprintf allocation", __func__);
      gal_timing_report(&t1, msg, 2);
      free(msg);
    }


  /* Clean up. */
  gal_data_free(sn);
  gal_data_free(snind);
  gal_data_free(quant);
  gal_data_array_free(clprm.sn, p->ltl.tottiles, 1);
  gal_data_array_free(clprm.snind, p->ltl.tottiles, 1);
}


















/***********************************************************************/
/*****************           Over detections           *****************/
/***********************************************************************/
/* Only keep true clumps over detections. */
void
clumps_det_keep_true_relabel(struct clumps_thread_params *cltprm)
{
  struct segmentparams *p=cltprm->clprm->p;
  size_t ndim=p->input->ndim, *dsize=p->input->dsize;

  int istouching;
  size_t i, *s, *sf, *dinc;
  float *sn = cltprm->sn ? cltprm->sn->array : NULL;
  int32_t *l, *lf, *newlabs, curlab=1, *clabel=p->clabel->array;

  /* If there were no clumps over the detection, then just set the number
     of true clumps to zero, otherwise, see which ones should be
     removed. */
  if(cltprm->sn)
    {
      /* Allocate the necessary arrays. */
      newlabs=gal_pointer_allocate(GAL_TYPE_INT32,
                                   cltprm->numinitclumps+1, 0, __func__,
                                   "newlabs");
      dinc=gal_dimension_increment(ndim, dsize);

      /* Initialize the new labels with GAL_LABEL_INIT (so the diffuse area
         can be distinguished from the clumps). */
      lf=(l=newlabs)+cltprm->numinitclumps+1;
      do *l++=GAL_LABEL_INIT; while(l<lf);

      /* Set the new labels. Here we will also be removing clumps with a peak
         that touches a river pixel. */
      if(p->keepmaxnearriver)
        {
          for(i=1;i<cltprm->numinitclumps+1;++i)
            if( sn[i] > p->clumpsnthresh ) newlabs[i]=curlab++;
        }
      else
        {
          for(i=1;i<cltprm->numinitclumps+1;++i)
            {
              /* Check if all the neighbors of this top element are
                 touching a river or not. */
              istouching=0;
              GAL_DIMENSION_NEIGHBOR_OP(cltprm->topinds[i], ndim, dsize,
                        ndim, dinc, { if(clabel[nind]<1) istouching=1; });

              /* If the peak isn't touching a river, then check its S/N and
                 if that is also good, give it a new label. */
              if( !istouching && sn[i] > p->clumpsnthresh )
                newlabs[i]=curlab++;
            }
        }

      /* Correct the clump labels. Note that the non-clumpy regions over
         the detections (rivers) have already been initialized to
         GAL_LABEL_INIT (which is negative). So we'll just need to correct
         the ones with a value larger than 0. */
      sf=(s=cltprm->indexs->array)+cltprm->indexs->size;
      do if(clabel[*s]>0) clabel[*s] = newlabs[ clabel[*s] ]; while(++s<sf);

      /* Save the total number of true clumps in this detection. */
      cltprm->numtrueclumps=curlab-1;

      /* Clean up. */
      free(dinc);
      free(newlabs);
    }
  else cltprm->numtrueclumps=0;
}