1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879
|
/*********************************************************************
Segment - Segment initial labels based on signal structure.
Segment is part of GNU Astronomy Utilities (Gnuastro) package.
Original author:
Mohammad Akhlaghi <mohammad@akhlaghi.org>
Contributing author(s):
Copyright (C) 2015-2025 Free Software Foundation, Inc.
Gnuastro is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
Gnuastro is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with Gnuastro. If not, see <http://www.gnu.org/licenses/>.
**********************************************************************/
#include <config.h>
#include <stdio.h>
#include <errno.h>
#include <error.h>
#include <stdlib.h>
#include <string.h>
#include <gnuastro/fits.h>
#include <gnuastro/blank.h>
#include <gnuastro/label.h>
#include <gnuastro/threads.h>
#include <gnuastro/pointer.h>
#include <gnuastro/dimension.h>
#include <gnuastro/statistics.h>
#include <gnuastro-internal/timing.h>
#include "main.h"
#include "ui.h"
#include "clumps.h"
/**********************************************************************/
/***************** Grow clumps *****************/
/**********************************************************************/
/* Make the preparations for the intiial growing the clumps to identify
objects: a single standard deviation for the whole object and preparing
the labels (because the growth is going to happen on the 'olabel'
image. */
void
clumps_grow_prepare_initial(struct clumps_thread_params *cltprm)
{
gal_data_t *indexs=cltprm->indexs;
gal_data_t *input=cltprm->clprm->p->input;
struct segmentparams *p=cltprm->clprm->p;
double wcoord[3]={0.0f,0.0f,0.0f}, sum=0.0f;
size_t ndiffuse=0, coord[3], tcoord[3], *dindexs;
size_t *s, *sf, *dsize=input->dsize, ndim=input->ndim;
float glimit, *imgss=input->array, *std=p->std->array;
int32_t *olabel=p->olabel->array, *clabel=p->clabel->array;
/* Find the flux weighted center (meaningful only for positive valued
pixels). */
sf=(s=indexs->array)+indexs->size;
do
if( imgss[ *s ] > 0.0f )
{
gal_dimension_index_to_coord(*s, ndim, dsize, tcoord);
sum += imgss[ *s ];
wcoord[0] += imgss[ *s ] * tcoord[0];
wcoord[1] += imgss[ *s ] * tcoord[1];
if(ndim==3)
wcoord[1] += imgss[ *s ] * tcoord[2];
}
while(++s<sf);
/* Calculate the center, if no pixels were positive, use the
geometric center (irrespective of flux). */
if(sum==0.0f)
{
sf=(s=indexs->array)+indexs->size;
do
{
gal_dimension_index_to_coord(*s, ndim, dsize, tcoord);
wcoord[0] += tcoord[0];
wcoord[1] += tcoord[1];
if(ndim==3)
wcoord[2] += tcoord[2];
}
while(++s<sf);
sum = indexs->size;
}
/* Convert floating point coordinates to integers. */
coord[0] = GAL_DIMENSION_FLT_TO_INT(wcoord[0]/sum);
coord[1] = GAL_DIMENSION_FLT_TO_INT(wcoord[1]/sum);
if(ndim==3)
coord[2] = GAL_DIMENSION_FLT_TO_INT(wcoord[2]/sum);
/* Find the growth limit. Note that the STD may be a value, or a dataset
(which may be a full sized image or a tessellation). If its not a
single value, we'll check through the number of elements to see what
kind of dataset it is (if its a tile or full image). */
cltprm->std = ( p->std->size>1
? ( p->std->size==p->input->size
? std[gal_dimension_coord_to_index(ndim, dsize, coord)]
: std[gal_tile_full_id_from_coord(&p->cp.tl, coord)] )
: std[0] );
if(p->variance) cltprm->std = sqrt(cltprm->std);
/* From the standard deviation, find the growth limit. */
glimit = p->gthresh * cltprm->std;
/* Allocate space to keep the diffuse indexs over this detection. We need
to keep the actual indexs since it is our only connection to the
object at this stage: we are also going to re-label the pixels to
grow. For most astronomical objects, the major part of the detection
area is going to be diffuse flux, so we will just allocate the same
size as 'indexs' array (the 'dsize' will be corrected after getting
the exact number.
Also note that since 'indexs' is already sorted, therefore
'diffuseindexs' will also be already sorted. */
cltprm->diffuseindexs=gal_data_alloc(NULL, GAL_TYPE_SIZE_T, 1,
cltprm->indexs->dsize, NULL, 0,
p->cp.minmapsize, p->cp.quietmmap,
NULL, NULL, NULL);
dindexs=cltprm->diffuseindexs->array;
sf=(s=indexs->array)+indexs->size;
do
{
olabel[*s] = clabel[*s];
if( clabel[*s]==GAL_LABEL_INIT )
if( imgss[*s]>glimit ) dindexs[ ndiffuse++ ] = *s;
}
while(++s<sf);
/* Correct the sizes of the 'diffuseindexs' data structure. */
cltprm->diffuseindexs->size = cltprm->diffuseindexs->dsize[0] = ndiffuse;
}
/* Add all the remaining pixels in the detection (below the growth
threshold, or those that were not touching). Note that initially
'diffuseindexs' was filled with the pixels that are above the growth
threshold. That was necessary for identifying the objects. Now that we
have identified the objects and labeled them, we want to add the
remaining diffuse pixels to it too before doing the final growth.
Note that the most efficient way is just to re-fill the 'diffuseindexs'
array instead of adding the pixels below the threshold and sorting them
afterwards.*/
void
clumps_grow_prepare_final(struct clumps_thread_params *cltprm)
{
size_t ndiffuse=0;
size_t *dindexs=cltprm->diffuseindexs->array;
int32_t *olabel=cltprm->clprm->p->olabel->array;
size_t *s=cltprm->indexs->array, *sf=s+cltprm->indexs->size;
/* Recall that we initially allocated 'diffuseindexs' to have the same
size as the indexs. So there is no problem if there are more pixels in
this final round compared to the initial round. */
do
if( olabel[*s] < 0 )
dindexs[ ndiffuse++ ] = *s;
while(++s<sf);
/* Correct the sizes of the 'diffuseindexs' data structure. */
cltprm->diffuseindexs->size = cltprm->diffuseindexs->dsize[0] = ndiffuse;
}
/**********************************************************************/
/***************** S/N threshold *****************/
/**********************************************************************/
/* Correct the labels of the clumps that will be used in determining the
S/N threshold for true clumps. */
static void
clumps_correct_sky_labels_for_check(struct clumps_thread_params *cltprm,
gal_data_t *tile)
{
gal_data_t *newinds;
int32_t *ninds, curlab, *l, *lf;
size_t len=cltprm->numinitclumps+1;
struct segmentparams *p=cltprm->clprm->p;
/* If any of the clumps must be kept ('cltprm->snind->size!=0'), then
re-label them for the check image. Otherwise, remove all clumps. */
if(cltprm->snind->size)
{
/* A small sanity check. */
if(gal_tile_block(tile)!=p->clabel)
error(EXIT_FAILURE, 0, "%s: a bug! Please contact us at %s to "
"address the problem. 'tile->block' must point to the "
"'clabel' dataset", __func__, PACKAGE_BUGREPORT);
/* Allocate a dataset with the new indexs, note that it will need to
have one element for each initial label (the excluded clumps need
to be set to zero). So we also need to clear the allocated
space. */
newinds=gal_data_alloc(NULL, p->clabel->type, 1, &len, NULL, 0,
p->cp.minmapsize, p->cp.quietmmap,
NULL, NULL, NULL);
/* Get the next available label for these clumps. If more than one
thread was used, we are first going to lock the mutex (so no other
thread changes these values), we will then read the shared number
for this thread to use, then update the shared number and finally,
unlock the mutex so other threads can do the same when they get to
this point. */
if(p->cp.numthreads>1) pthread_mutex_lock(&cltprm->clprm->labmutex);
curlab = p->numclumps+1; /* Note that counting begins from 1. */
p->numclumps += cltprm->snind->size;
if(p->cp.numthreads>1) pthread_mutex_unlock(&cltprm->clprm->labmutex);
/* Initialize the newinds array to GAL_LABEL_INIT (which be used as a
new label for all the clumps that must be removed. */
lf = (l=newinds->array) + newinds->size;
do *l++=GAL_LABEL_INIT; while(l<lf);
/* The new indexs array has been initialized to zero. So we just need
to go over the labels in 'cltprm->sninds' and give them a value of
'curlab++'. */
ninds=newinds->array;
lf = (l=cltprm->snind->array) + cltprm->snind->size;
do { ninds[*l]=curlab++; *l=ninds[*l]; } while(++l<lf);
/* Go over this tile and correct the values. */
GAL_TILE_PARSE_OPERATE( tile, NULL, 0, 1,
{if(*i>0) *i=ninds[ *(int32_t *)i ];} );
/* Clean up. */
gal_data_free(newinds);
}
else
/* There were no usable clumps in this tile, so just set all the pixels
larger than zero (a clump) to 'GAL_LABEL_INIT'. */
GAL_TILE_PARSE_OPERATE( tile, NULL, 0, 1, {*i=*i>0?GAL_LABEL_INIT:*i;} );
}
static void *
clumps_find_make_sn_table(void *in_prm)
{
struct gal_threads_params *tprm=(struct gal_threads_params *)in_prm;
struct clumps_params *clprm=(struct clumps_params *)(tprm->params);
struct segmentparams *p=clprm->p;
size_t ndim=p->input->ndim, *dsize=p->input->dsize;
void *tarray;
double numdet;
int pixonedge;
gal_data_t *tile, *tblock, *tmp;
uint8_t *binary=p->binary->array;
struct clumps_thread_params cltprm;
size_t i, j, c, ind, tind, num, numsky, *indarr;
size_t *scoord=gal_pointer_allocate(GAL_TYPE_SIZE_T, ndim, 0, __func__,
"scoord");
size_t *icoord=gal_pointer_allocate(GAL_TYPE_SIZE_T, ndim, 0, __func__,
"icoord");
/* Initialize the parameters for this thread. */
cltprm.clprm = clprm;
cltprm.topinds = NULL;
/* Go over all the tiles/detections given to this thread. */
for(i=0; tprm->indexs[i] != GAL_BLANK_SIZE_T; ++i)
{
/* IDs. */
cltprm.id = tind = tprm->indexs[i];
tile = &p->ltl.tiles[tind];
/* Change the tile's pointers to the binary image (which has 1 for
detected pixels and 0 for un-detected regions). */
tarray=tile->array;
tblock=tile->block;
tile->array = gal_tile_block_relative_to_other(tile, p->binary);
tile->block = p->binary;
/* Get the number of usable elements in this tile (note that tiles
can have blank pixels), so we can't simply use 'tile->size'. */
if(p->input->flag & GAL_DATA_FLAG_HASBLANK)
{
tmp=gal_statistics_number(tile);
num=*((size_t *)(tmp->array));
gal_data_free(tmp);
}
else num=tile->size;
/* Find the number of detected pixels over this tile. Since this is
the binary image, this is just the sum of all the pixels.
Note that 'numdet' can be 'nan' when the whole tile is blank and
so there was no values to sum. Recall that in summing, when there
is not input, the output is 'nan'. */
tmp=gal_statistics_sum(tile);
numdet=*((double *)(tmp->array));
gal_data_free(tmp);
/* See if this tile should be used or not (has enough undetected
pixels). Note that it might happen that some tiles are fully
blank. In such cases, it is important to first check the number of
detected pixels. */
numsky=num-numdet;
if( num && (float)numsky/(float)num > p->minskyfrac )
{
/* Add the indexs of all undetected pixels in this tile into an
array. */
cltprm.indexs=gal_data_alloc(NULL, GAL_TYPE_SIZE_T, 1, &numsky,
NULL, 0, p->cp.minmapsize,
p->cp.quietmmap, NULL, NULL, NULL);
/* Change the tile's block to the clump labels dataset (because
we'll need to set the labels of the rivers on the edge of the
tile here). */
tile->array = gal_tile_block_relative_to_other(tile, p->clabel);
tile->block = p->clabel;
/* We need to set all the pixels on the edge of the tile to
rivers and not include them in the list of indexs to set
clumps. To do that, we need this tile's starting
coordinates. */
gal_dimension_index_to_coord(gal_pointer_num_between(
p->clabel->array, tile->array, p->clabel->type),
ndim, dsize, scoord);
/* Add the index of every sky element to the array of
indexs. Note that since we know the array is always of type
'int32_t', we can call the 'GAL_TILE_PO_OISET' macro to avoid
having to deal with multiple possible types in
'GAL_TILE_PARSE_OPERATE'. Since the OUT macro-variable is
NULL, the 'int' is just a place-holder, it will not be
used. */
c=0;
indarr=cltprm.indexs->array;
GAL_TILE_PO_OISET(int32_t, int, tile, NULL, 0, 1, {
/* This pixel's index over all the image. */
ind = (int32_t *)i - (int32_t *)(p->clabel->array);
gal_dimension_index_to_coord(ind, ndim, dsize, icoord);
/* Check if the pixel is on the tile edge. */
pixonedge=0;
for(j=0;j<ndim;++j)
if( icoord[j]==scoord[j]
|| icoord[j]==scoord[j]+tile->dsize[j]-1 )
{
pixonedge=1;
break;
}
/* If this pixel is on the edge, then it should be a
river. */
if(pixonedge)
*(int32_t *)i=GAL_LABEL_RIVER;
/* This pixel is not on the edge, check if it had a value of
'0' in the binary image (is not detected) then add it to
the list of indexs (note that the binary image also
contains the blank pixels, so only sky regions have a
value of 0 in the binary image). */
else if( binary[ind]==0 )
{
/*
if(c!=cltprm.indexs->size)
{
if(cltprm.id==282) *i+=2;
*/
indarr[c++]=gal_pointer_num_between(p->clabel->array,
i, p->clabel->type);
/*
}
else
if(cltprm.id==282)
{
int32_t *clabel=p->clabel->array;
size_t kjd=gal_data_num_between(p->clabel->array, i,
p->clabel->type);
printf("%zu, %zu: %u\n", kjd%dsize[1]+1,
kjd/dsize[1]+1, clabel[kjd]);
}
*/
}
});
/* Correct the number of indexs. */
cltprm.indexs->size=cltprm.indexs->dsize[0]=c;
/* Generate the clumps over this region. */
cltprm.numinitclumps=gal_label_watershed(p->conv, cltprm.indexs,
p->clabel,
cltprm.topinds,
!p->minima);
/* Set all river pixels to GAL_LABEL_INIT (to be distinguishable
from the detected regions). */
GAL_TILE_PO_OISET( int32_t, int, tile, NULL, 0, 1,
{if(*i==GAL_LABEL_RIVER) *i=GAL_LABEL_INIT;} );
/* For a check, the step variable will be set. */
if(clprm->step==1)
{ gal_data_free(cltprm.indexs); continue; }
/* Make the clump S/N table. */
cltprm.sn = &cltprm.clprm->sn[cltprm.id];
cltprm.snind = ( cltprm.clprm->snind
? &cltprm.clprm->snind[cltprm.id]
: NULL );
gal_label_clump_significance(p->clumpvals, p->std, p->clabel,
cltprm.indexs, &p->cp.tl,
cltprm.numinitclumps, p->snminarea,
p->variance, clprm->sky0_det1,
cltprm.sn, cltprm.snind);
/* If the user wanted to check the steps, remove the clumps that
weren't used from the 'clabel' image (they have been already
excluded from the table). */
if(cltprm.snind)
clumps_correct_sky_labels_for_check(&cltprm, tile);
/* If there were no clumps, then just set the S/N table to
NULL. This must be done after the check image creation (if
necessary), because we use 'cltprm.snind' as a proxy for the
check image.*/
if( cltprm.clprm->sn[ cltprm.id ].size==0 )
cltprm.snind=cltprm.sn=NULL;
/* Clean up. */
gal_data_free(cltprm.indexs);
}
/* Reset the tile's pointers back to what they were. */
tile->array=tarray;
tile->block=tblock;
}
/* Clean up. */
free(scoord);
free(icoord);
/* Wait for the all the threads to finish and return. */
if(tprm->b) pthread_barrier_wait(tprm->b);
return NULL;
}
/* Write the S/N table. */
static void
clumps_write_sn_table(struct segmentparams *p, gal_data_t *insn,
gal_data_t *inind, char *filename,
gal_list_str_t *comments)
{
gal_data_t *sn, *ind, *cols;
/* Remove all blank elements. The index and sn values must have the same
set of blank elements, but checking on the integer array is faster. */
if( gal_blank_present(inind, 1) )
{
/* Remove blank elements. */
ind=gal_data_copy(inind);
gal_blank_remove(ind,1);
sn=gal_data_copy(insn);
gal_blank_remove(sn,1);
/* A small sanity check. */
if(ind->size==0 || sn->size==0)
error(EXIT_FAILURE, 0, "%s: a bug! Please contact us at %s to fix "
"the problem. For some reason, all the elements in 'ind' or "
"'sn' are blank", __func__, PACKAGE_BUGREPORT);
}
else
{
sn = insn;
ind = inind;
}
/* Set the columns. */
cols = ind;
cols->next = sn;
/* Prepare the comments. */
gal_table_comments_add_intro(&comments, PROGRAM_STRING, &p->rawtime);
/* write the table. */
gal_table_write(cols, NULL, comments, p->cp.tableformat, filename,
"SKY_CLUMP_SN", 0, 0);
/* Clean up (if necessary). */
if(sn!=insn) gal_data_free(sn);
if(ind==inind) ind->next=NULL; else gal_data_free(ind);
}
/* Find the true clump signal to noise value from the clumps in the sky
region.
Each thread will find the useful signal to noise values for the tiles
that have been assigned to it. It will then store the pointer to the S/N
table into the sntablearr array (with the size of the number of
meshs). If no clumps could be found in a mesh, then
sntablearr[i]=NULL. Otherwise, it points to an array of the useful S/N
values in that clump. Note that we don't care about the order of S/N
values any more! There is also an accompanying array to keep the number
of elements in the final S/N array of each mesh: numclumpsarr.
Using these two arrays, after all the threads are finished, we can
concatenate all the S/N values into one array and send it to the main
findsnthresh function in thresh.c. */
void
clumps_true_find_sn_thresh(struct segmentparams *p)
{
char *msg;
struct timeval t1;
size_t i, j, c, numsn=0;
struct clumps_params clprm;
gal_list_str_t *comments=NULL;
gal_data_t *sn, *snind, *quant, *claborig;
/* Get starting time for later reporting if necessary. */
if(!p->cp.quiet) gettimeofday(&t1, NULL);
/* Initialize/allocate the clump parameters structure, Note that the S/N
indexs are also needed when we want to check the segmentation steps
(they are used to correct the indexs in the final output). */
clprm.p=p;
clprm.sky0_det1=0;
clprm.sn=gal_data_array_calloc(p->ltl.tottiles);
clprm.snind = ( p->checksegmentation || p->checksn
? gal_data_array_calloc(p->ltl.tottiles) : NULL );
/* If the user wants to check the steps of get an S/N table, then we need
a unique label for each clump. But in each region, the labels start
from 1. So we need a central place to keep the next available
label. Since 'p->numclumps' is not used yet, we will use it here. When
multiple threads are used, we will need a mutex to make sure that only
one thread can change this central variable at every one moment. */
if(p->checksegmentation || p->checksn)
{
p->numclumps=0;
if( p->cp.numthreads > 1 ) pthread_mutex_init(&clprm.labmutex, NULL);
}
/* Spin off the threads to start the work. Note that several steps are
done on each tile within a thread. So if the user wants to check
steps, we need to break out of the processing get an over-all output,
then reset the input and call it again. So it will be slower, but its
is natural, since the user is testing to find the correct combination
of parameters for later use. */
if(p->segmentationname)
{
/* Necessary initializations. */
clprm.step=1;
claborig=p->clabel;
p->clabel=gal_data_copy(claborig);
/* Do each step. */
while(clprm.step<3)
{
/* Reset the temporary copy of clabel back to its original. */
if(clprm.step>1)
memcpy(p->clabel->array, claborig->array,
claborig->size*gal_type_sizeof(claborig->type));
/* Do this step. */
gal_threads_spin_off(clumps_find_make_sn_table, &clprm,
p->ltl.tottiles, p->cp.numthreads,
p->cp.minmapsize, p->cp.quietmmap);
/* Set the extension name. */
switch(clprm.step)
{
case 1: p->clabel->name = "SKY_CLUMPS_ALL"; break;
case 2: p->clabel->name = "SKY_CLUMPS_FOR_SN"; break;
default:
error(EXIT_FAILURE, 0, "%s: a bug! Please contact us at %s "
"so we can address the issue. The value %d is not "
"valid for clprm.step", __func__, PACKAGE_BUGREPORT,
clprm.step);
}
/* Write the demonstration array into the check image. The
default values are hard to view, so we'll make a copy of the
demo, set all Sky regions to blank and all clump macro values
to zero. */
gal_fits_img_write(p->clabel, p->segmentationname, NULL, 0);
/* Increment the step counter. */
++clprm.step;
}
/* Clean up (we don't need the original any more). */
gal_data_free(claborig);
p->clabel->name=NULL;
}
else
{
clprm.step=0;
gal_threads_spin_off(clumps_find_make_sn_table, &clprm,
p->ltl.tottiles, p->cp.numthreads,
p->cp.minmapsize, p->cp.quietmmap);
}
/* Destroy the mutex if it was initialized. */
if( p->cp.numthreads>1 && (p->checksegmentation || p->checksn) )
pthread_mutex_destroy(&clprm.labmutex);
/* Find the total number of S/N values we have for all the clumps. */
for(i=0;i<p->ltl.tottiles;++i)
if(clprm.sn[i].ndim) /* Only on tiles were an S/N was calculated. */
numsn+=clprm.sn[i].size;
if( numsn < p->minnumfalse )
error(EXIT_FAILURE, 0, "%zu usable clumps found in the undetected "
"regions. This is smaller than the requested minimum number of "
"false/reference clumps (%zu, value to the '--minnumfalse' "
"option).\n\n"
"There are several ways to address the problem. The best and most "
"highly recommended is to use a larger input if possible (when the "
"input is a crop from a larger dataset). If that is not the case, "
"or it doesn't solve the problem, you need to loosen the "
"parameters (and therefore cause more scatter/bias in the final "
"result). Thus don't loosen them too much. Recall that you can "
"see all the option values to Gnuastro's programs by appending "
"'-P' to the end of your command.\n\n"
" * Slightly decrease '--largetilesize' to have more tiles.\n"
" * Decrease '--minskyfrac' (currently %g) to look into more "
"tiles.\n"
" * Slightly decrease '--snminarea' (currently %zu) to "
"measure more clumps.\n"
" * If Segment already works on a dataset with similar noise "
"properties, you can directly pass the 'true' clump "
"signal-to-noise ratio found there to '--clumpsnthresh' and "
"avoid having to study the undetected regions any more.\n\n"
"Append your previous command with '--checksegmentation' to see "
"the steps and get a better feeling of the cause/solution. Note "
"that the output is a multi-extension FITS file).\n\n"
"To better understand the segmentation process and options, "
"please run the following command (press 'SPACE'/arrow-keys to "
"navigate and 'Q' to return back to the command-line):\n\n"
" $ info gnuastro \"Segmentation options\"\n",
numsn, p->minnumfalse, p->minskyfrac, p->snminarea);
/* Allocate the space to keep all the S/N values. */
sn=gal_data_alloc(NULL, GAL_TYPE_FLOAT32, 1, &numsn, NULL, 0,
p->cp.minmapsize, p->cp.quietmmap, "CLUMP_S/N", "ratio",
"Signal-to-noise ratio");
snind = ( p->checksn
? gal_data_alloc(NULL, GAL_TYPE_INT32, 1, &numsn, NULL, 0,
p->cp.minmapsize, p->cp.quietmmap, "CLUMP_ID",
"counter", "Unique ID for this clump.")
: NULL );
/* Copy the S/N values of all the clumps into the unified array. */
c=0;
for(i=0;i<p->ltl.tottiles;++i)
if(clprm.sn[i].ndim)
for(j=0;j<clprm.sn[i].size;++j)
{
((float *)(sn->array))[c] = ((float *)(clprm.sn[i].array))[j];
if(snind)
((int32_t *)(snind->array))[c] =
((int32_t *)(clprm.snind[i].array))[j];
++c;
}
/* The S/N array of sky clumps is desiged to have no blank values, so set
the flags accordingly to avoid a redundant blank search. */
sn->flag = GAL_DATA_FLAG_BLANK_CH;
sn->flag &= ~GAL_DATA_FLAG_HASBLANK;
/* If the user wanted to see the S/N table, then save it. */
if(p->checksn)
{
/* Make the comments, then write the table and free the comments. */
if(p->cp.numthreads>1)
gal_list_str_add(&comments, "NOTE: In multi-threaded mode, clump "
"IDs differ in each run and are not sorted.", 1);
gal_list_str_add(&comments, "See also: 'SKY_CLUMPS_FOR_SN' HDU of "
"output with '--checksegmentation'.", 1);
gal_list_str_add(&comments, "S/N of clumps over undetected regions.",
1);
clumps_write_sn_table(p, sn, snind, p->clumpsn_s_name, comments);
gal_list_str_free(comments, 1);
}
/* Find the desired quantile from the full S/N distribution. */
quant = gal_statistics_quantile(sn, p->snquant, 1);
p->clumpsnthresh = *((float *)(quant->array));
if(!p->cp.quiet)
{
if( asprintf(&msg, "Clump peak S/N: %g (%.3f quant of %zu).",
p->clumpsnthresh, p->snquant, sn->size)<0 )
error(EXIT_FAILURE, 0, "%s: asprintf allocation", __func__);
gal_timing_report(&t1, msg, 2);
free(msg);
}
/* Clean up. */
gal_data_free(sn);
gal_data_free(snind);
gal_data_free(quant);
gal_data_array_free(clprm.sn, p->ltl.tottiles, 1);
gal_data_array_free(clprm.snind, p->ltl.tottiles, 1);
}
/***********************************************************************/
/***************** Over detections *****************/
/***********************************************************************/
/* Only keep true clumps over detections. */
void
clumps_det_keep_true_relabel(struct clumps_thread_params *cltprm)
{
struct segmentparams *p=cltprm->clprm->p;
size_t ndim=p->input->ndim, *dsize=p->input->dsize;
int istouching;
size_t i, *s, *sf, *dinc;
float *sn = cltprm->sn ? cltprm->sn->array : NULL;
int32_t *l, *lf, *newlabs, curlab=1, *clabel=p->clabel->array;
/* If there were no clumps over the detection, then just set the number
of true clumps to zero, otherwise, see which ones should be
removed. */
if(cltprm->sn)
{
/* Allocate the necessary arrays. */
newlabs=gal_pointer_allocate(GAL_TYPE_INT32,
cltprm->numinitclumps+1, 0, __func__,
"newlabs");
dinc=gal_dimension_increment(ndim, dsize);
/* Initialize the new labels with GAL_LABEL_INIT (so the diffuse area
can be distinguished from the clumps). */
lf=(l=newlabs)+cltprm->numinitclumps+1;
do *l++=GAL_LABEL_INIT; while(l<lf);
/* Set the new labels. Here we will also be removing clumps with a peak
that touches a river pixel. */
if(p->keepmaxnearriver)
{
for(i=1;i<cltprm->numinitclumps+1;++i)
if( sn[i] > p->clumpsnthresh ) newlabs[i]=curlab++;
}
else
{
for(i=1;i<cltprm->numinitclumps+1;++i)
{
/* Check if all the neighbors of this top element are
touching a river or not. */
istouching=0;
GAL_DIMENSION_NEIGHBOR_OP(cltprm->topinds[i], ndim, dsize,
ndim, dinc, { if(clabel[nind]<1) istouching=1; });
/* If the peak isn't touching a river, then check its S/N and
if that is also good, give it a new label. */
if( !istouching && sn[i] > p->clumpsnthresh )
newlabs[i]=curlab++;
}
}
/* Correct the clump labels. Note that the non-clumpy regions over
the detections (rivers) have already been initialized to
GAL_LABEL_INIT (which is negative). So we'll just need to correct
the ones with a value larger than 0. */
sf=(s=cltprm->indexs->array)+cltprm->indexs->size;
do if(clabel[*s]>0) clabel[*s] = newlabs[ clabel[*s] ]; while(++s<sf);
/* Save the total number of true clumps in this detection. */
cltprm->numtrueclumps=curlab-1;
/* Clean up. */
free(dinc);
free(newlabs);
}
else cltprm->numtrueclumps=0;
}
|