1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578
|
/*********************************************************************
Segment - Segment initial labels based on signal structure.
Segment is part of GNU Astronomy Utilities (Gnuastro) package.
Original author:
Mohammad Akhlaghi <mohammad@akhlaghi.org>
Contributing author(s):
Copyright (C) 2015-2025 Free Software Foundation, Inc.
Gnuastro is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
Gnuastro is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with Gnuastro. If not, see <http://www.gnu.org/licenses/>.
**********************************************************************/
#include <config.h>
#include <stdio.h>
#include <errno.h>
#include <error.h>
#include <stdlib.h>
#include <string.h>
#include <gnuastro/wcs.h>
#include <gnuastro/fits.h>
#include <gnuastro/blank.h>
#include <gnuastro/label.h>
#include <gnuastro/binary.h>
#include <gnuastro/threads.h>
#include <gnuastro/pointer.h>
#include <gnuastro/convolve.h>
#include <gnuastro/dimension.h>
#include <gnuastro/statistics.h>
#include <gnuastro-internal/timing.h>
#include <gnuastro-internal/checkset.h>
#include "main.h"
#include "ui.h"
#include "clumps.h"
#include "segment.h"
/***********************************************************************/
/***************** Preparations *****************/
/***********************************************************************/
static void
segment_convolve(struct segmentparams *p)
{
struct timeval t1;
struct gal_tile_two_layer_params *tl=&p->cp.tl;
/* Convovle with sharper kernel. */
if(p->conv==NULL)
{
/* Do the convolution if a kernel was requested. */
if(p->kernel)
{
/* Make the convolved image. */
if(!p->cp.quiet) gettimeofday(&t1, NULL);
p->conv = gal_convolve_spatial(tl->tiles, p->kernel,
p->cp.numthreads, 1,
tl->workoverch, 0);
/* Report and write check images if necessary. */
if(!p->cp.quiet)
gal_timing_report(&t1, "Convolved with given kernel.", 1);
}
else
p->conv=p->input;
}
/* Make necessary corrections to the convolved array. */
if(p->conv!=p->input)
{
/* Set the flags (most importantly, the blank flags). */
p->conv->flag = p->input->flag;
/* Set the name. */
if(p->conv->name) free(p->conv->name);
gal_checkset_allocate_copy("CONVOLVED", &p->conv->name);
}
/* Set the values to build clumps on. We are mainly doing this to avoid
the accidentially using different arrays when building clumps on the
undetected and detected regions. */
p->clumpvals=p->conv;
}
static void
segment_initialize(struct segmentparams *p)
{
uint8_t *b;
float *f, minv;
gal_data_t *min;
int32_t *o, *c, *cf;
/* Allocate the clump labels image and the binary image. */
p->clabel=gal_data_alloc(NULL, p->olabel->type, p->olabel->ndim,
p->olabel->dsize, p->olabel->wcs, 1,
p->cp.minmapsize, p->cp.quietmmap,
NULL, NULL, NULL);
p->binary=gal_data_alloc(NULL, GAL_TYPE_UINT8, p->olabel->ndim,
p->olabel->dsize, p->olabel->wcs, 1,
p->cp.minmapsize, p->cp.quietmmap,
NULL, NULL, NULL);
p->clabel->flag=p->input->flag;
p->binary->wcs=gal_wcs_copy(p->input->wcs);
p->clabel->wcs=gal_wcs_copy(p->input->wcs);
/* Prepare the 'binary', 'clabel' and 'olabel' arrays. */
b=p->binary->array;
o=p->olabel->array;
f=p->input->array; cf=(c=p->clabel->array)+p->clabel->size;
do
{
if(isnan(*f++)) *o = *c = GAL_BLANK_INT32;
else
{
/* Initialize the binary array. */
*b = *o > 0;
/* A small sanity check. */
if(*o<0 && *o!=GAL_BLANK_INT32)
error(EXIT_FAILURE, 0, "%s (hdu: %s) has negative value(s). "
"Each non-zero pixel in this image must be positive (a "
"counter, counting from 1).", p->useddetectionname,
p->dhdu);
}
++o;
++b;
}
while(++c<cf);
/* If the (minimum) standard deviation is less than 1, then the units of
the input are in units of counts/time. As described in the NoiseChisel
paper, we need to correct the S/N equation later. */
if(p->std->size>1)
{
min=gal_statistics_minimum(p->std);
minv=*(float *)(min->array);
gal_data_free(min);
}
else minv=*(float *)(p->std->array);
if(p->variance) minv=sqrt(minv);
p->cpscorr = minv>1 ? 1.0 : minv;
}
/***********************************************************************/
/***************** Relabeling (grown) clumps *****************/
/***********************************************************************/
/* Correct the label of an detection when it doesn't need segmentation (it
is fully one object). The final labels for the object(s) with a detected
region will be set later (don't forget that we have detections that are
composed of multiple objects). So the labels within each detection start
from 1.*/
static void
segment_relab_noseg(struct clumps_thread_params *cltprm)
{
int32_t *olabel=cltprm->clprm->p->olabel->array;
size_t *s=cltprm->indexs->array, *sf=s+cltprm->indexs->size;
do olabel[ *s ] = 1; while(++s<sf);
}
/* Find the adjacency matrixs (number, sum and signal to noise) for the
rivers between potentially separate objects in a detection region. They
have to be allocated prior to entering this function.
The way to find connected objects is through an adjacency matrix. It is
a square matrix with a side equal to numobjs. So to see if regions 'a'
and 'b' are connected. All we have to do is to look at element
a*numobjs+b or b*numobjs+a and get the answer. Since the number of
objects in a given region will not be too high, this is efficient. */
static void
segment_relab_to_objects_array(struct clumps_thread_params *cltprm)
{
size_t amwidth=cltprm->numtrueclumps+1;
struct segmentparams *p=cltprm->clprm->p;
size_t ndim=p->input->ndim, *dsize=p->input->dsize;
size_t mdsize[2]={amwidth, amwidth};
gal_data_t *nums_d=gal_data_alloc(NULL, GAL_TYPE_SIZE_T, 2, mdsize, NULL,
1, p->cp.minmapsize, p->cp.quietmmap,
NULL, NULL, NULL);
gal_data_t *sums_d=gal_data_alloc(NULL, GAL_TYPE_FLOAT64, 2, mdsize, NULL,
1, p->cp.minmapsize, p->cp.quietmmap,
NULL, NULL, NULL);
gal_data_t *adjacency_d=gal_data_alloc(NULL, GAL_TYPE_UINT8, 2, mdsize,
NULL, 1, p->cp.minmapsize,
p->cp.quietmmap, NULL, NULL, NULL);
float *imgss=p->input->array;
int32_t *olabel=p->olabel->array;
double var=cltprm->std*cltprm->std;
uint8_t *adjacency=adjacency_d->array;
size_t nngb=gal_dimension_num_neighbors(ndim);
size_t *dinc=gal_dimension_increment(ndim, dsize);
size_t *s, *sf, i, j, ii, rpnum, *nums=nums_d->array;
double ave, rpsum, c=sqrt(1/p->cpscorr), *sums=sums_d->array;
int32_t *ngblabs=gal_pointer_allocate(GAL_TYPE_UINT32, nngb, 0, __func__,
"ngblabs");
/* Go over all the still-unlabeled pixels (if they exist) and see which
labels they touch. In the process, get the average value of the
river-pixel values and put them in the respective adjacency
matrix. Note that at this point, the rivers are also part of the
"diffuse" regions. So we don't need to go over all the indexs of this
object, only its diffuse indexs. */
sf=(s=cltprm->diffuseindexs->array)+cltprm->diffuseindexs->size;
do
/* We only want to work on pixels that have already been identified as
touching more than one label: river pixels. */
if( olabel[ *s ]==GAL_LABEL_RIVER )
{
/* Initialize the values. */
i=ii=0;
rpnum=1; /* River-pixel number of points used. */
rpsum=imgss[*s]; /* River-pixel sum of values used. */
memset(ngblabs, 0, nngb*sizeof *ngblabs);
/* Check all the fully-connected neighbors of this pixel and
see if it touches a label or not */
GAL_DIMENSION_NEIGHBOR_OP(*s, ndim, dsize, ndim, dinc, {
if( olabel[nind] > 0 )
{
/* Add this neighbor's value and increment the number. */
if( !isnan(imgss[nind]) ) { ++rpnum; rpsum+=imgss[nind]; }
/* Go over the already found neighbors and see if this
grown clump has already been considered or not. */
for(i=0;i<ii;++i) if(ngblabs[i]==olabel[nind]) break;
/* This is the first time we are getting to this
neighbor: */
if(i==ii) ngblabs[ ii++ ] = olabel[nind];
}
} );
/* For a check:
if(ii>0)
{
printf("%zu, %zu:\n", *s%dsize[1]+1, *s/dsize[1]+1);
for(i=0;i<ii;++i) printf("\t%u\n", ngblabs[i]);
}
*/
/* If more than one neighboring label was found, fill in the
'sums' and 'nums' adjacency matrixs with the values for this
pixel. Recall that ii is the number of neighboring labels to
this river pixel. */
if(ii>i)
for(i=0;i<ii;++i)
for(j=0;j<ii;++j)
if(i!=j)
{
/* For safety, we will fill both sides of the
diagonal. */
++nums[ ngblabs[i] * amwidth + ngblabs[j] ];
++nums[ ngblabs[j] * amwidth + ngblabs[i] ];
sums[ ngblabs[i] * amwidth + ngblabs[j] ] +=
rpsum/rpnum;
sums[ ngblabs[j] * amwidth + ngblabs[i] ] +=
rpsum/rpnum;
}
}
while(++s<sf);
/* We now have the average values and number of all rivers between
the grown clumps. We now want to finalize their connection (given
the user's criteria). */
for(i=1;i<amwidth;++i)
for(j=1;j<i;++j)
{
ii = i * amwidth + j;
if(nums[ii]>p->minriverlength) /* There is a connection. */
{
/* For easy reading. */
ave=sums[ii]/nums[ii];
/* In case the average is negative (only possible if 'sums'
is negative), don't change the adjacency: it is already
initialized to zero. Note that even an area of 1 is
acceptable, and we put no area criteria here, because
the fact that a river exists between two clumps is
important. */
if( ave>0.0f && ( c * ave / sqrt(ave+var) ) > p->objbordersn )
{
adjacency[ii]=1; /* We want to set both sides of the */
adjacency[ j * amwidth + i ] = 1; /* Symmetric matrix. */
}
}
}
/* For a check:
if(cltprm->id==XXX)
{
printf("=====================\n");
printf("%zu:\n--------\n", cltprm->id);
for(i=1;i<amwidth;++i)
{
printf(" %zu...\n", i);
for(j=1;j<amwidth;++j)
{
ii=i*amwidth+j;
if(nums[ii])
{
ave=sums[ii]/nums[ii];
printf(" ...%zu: N:%-4zu S:%-10.2f S/N: %-10.2f "
"--> %u\n", j, nums[ii], sums[ii],
c*ave/sqrt(ave+var), adjacency[ii]);
}
}
printf("\n");
}
}
*/
/* Calculate the new labels for each grown clump. */
cltprm->clumptoobj = gal_binary_connected_adjacency_matrix(adjacency_d,
&cltprm->numobjects);
/* Clean up and return. */
free(dinc);
free(ngblabs);
gal_data_free(nums_d);
gal_data_free(sums_d);
gal_data_free(adjacency_d);
}
/* For a large number of clumps, 'segment_relab_to_objects_array' will
consume too much memory and can completely fill the memory. So we need
to use a list-based adjacency solution. */
typedef struct segment_relab_list_t
{
size_t num;
double sum;
size_t ngbid;
struct segment_relab_list_t *next;
} segment_relab_list_t;
static void
segment_relab_list_add(struct segment_relab_list_t **list, size_t ngbid,
double value)
{
int done=0;
struct segment_relab_list_t *tmp=NULL;
/* Check if the desired index has already been found or not. Note that if
'list' is empty, then it will never enter the loop.*/
for(tmp=*list; tmp!=NULL; tmp=tmp->next)
if( tmp->ngbid == ngbid )
{
tmp->sum += value;
++tmp->num;
done=1;
break;
}
/* Either the list was empty, or the desired index didn't exist in it. So
we need to allocate a new node and add it to the list. */
if(done==0)
{
/* Allocate a new node. */
errno=0;
tmp=malloc(sizeof *tmp);
if(tmp==NULL)
error(EXIT_FAILURE, errno, "%s: couldn't allocate %zu bytes "
"for 'tmp'", __func__, sizeof tmp);
/* Fill in the node. */
tmp->num=1;
tmp->sum=value;
tmp->ngbid=ngbid;
/* Put the node at the top of the list. */
tmp->next = *list ? *list : NULL;
*list=tmp;
}
}
static void
segment_relab_to_objects_list(struct clumps_thread_params *cltprm)
{
size_t amwidth=cltprm->numtrueclumps+1;
struct segmentparams *p=cltprm->clprm->p;
size_t ndim=p->input->ndim, *dsize=p->input->dsize;
int addadj;
float *imgss=p->input->array;
size_t *s, *sf, i, j, ii, rpnum;
int32_t *olabel=p->olabel->array;
double var=cltprm->std*cltprm->std;
gal_list_sizet_t **adjacency, *atmp;
segment_relab_list_t **rlist, *rtmp;
double ave, rpsum, c=sqrt(1/p->cpscorr);
size_t nngb=gal_dimension_num_neighbors(ndim);
size_t *dinc=gal_dimension_increment(ndim, dsize);
int32_t *ngblabs=gal_pointer_allocate(GAL_TYPE_UINT32, nngb, 0, __func__,
"ngblabs");
/* Allocate the two lists to keep the number and sum, as well as the
final adjacency matrix. */
errno=0;
rlist=calloc(amwidth, sizeof *rlist);
if(rlist==NULL)
error(EXIT_FAILURE, errno, "%s: couldn't allocate %zu bytes for 'rlist'",
__func__, amwidth * (sizeof *rlist));
errno=0;
adjacency=calloc(amwidth, sizeof *adjacency);
if(adjacency==NULL)
error(EXIT_FAILURE, errno, "%s: couldn't allocate %zu bytes for 'adjacency'",
__func__, amwidth * (sizeof *adjacency));
/* Go over all the still-unlabeled pixels (if they exist) and see which
labels they touch. In the process, get the average value of the
river-pixel values and put them in the respective adjacency
matrix. Note that at this point, the rivers are also part of the
"diffuse" regions. So we don't need to go over all the indexs of this
object, only its diffuse indexs. */
sf=(s=cltprm->diffuseindexs->array)+cltprm->diffuseindexs->size;
do
/* We only want to work on pixels that have already been identified as
touching more than one label: river pixels. */
if( olabel[ *s ]==GAL_LABEL_RIVER )
{
/* Initialize the values. */
i=ii=0;
rpnum=1; /* River-pixel number of points used. */
rpsum=imgss[*s]; /* River-pixel sum of values used. */
memset(ngblabs, 0, nngb*sizeof *ngblabs);
/* Check all the fully-connected neighbors of this pixel and
see if it touches a label or not */
GAL_DIMENSION_NEIGHBOR_OP(*s, ndim, dsize, ndim, dinc, {
if( olabel[nind] > 0 )
{
/* Add this neighbor's value and increment the number. */
if( !isnan(imgss[nind]) ) { ++rpnum; rpsum+=imgss[nind]; }
/* Go over the already found neighbors and see if this
grown clump has already been considered or not. */
for(i=0;i<ii;++i) if(ngblabs[i]==olabel[nind]) break;
/* This is the first time we are getting to this
neighbor: */
if(i==ii) ngblabs[ ii++ ] = olabel[nind];
}
} );
/* For a check:
if(ii>0)
{
printf("%zu, %zu:\n", *s%dsize[1]+1, *s/dsize[1]+1);
for(i=0;i<ii;++i) printf("\t%u\n", ngblabs[i]);
}
*/
/* If more than one neighboring label was found, fill in the
'sums' and 'nums' adjacency matrixs with the values for this
pixel. Recall that ii is the number of neighboring labels to
this river pixel. */
if(ii>i)
for(i=0;i<ii;++i)
for(j=0;j<ii;++j)
if(i!=j)
{
/* For safety and ease of processing, we will fill
both sides of the diagonal. */
segment_relab_list_add(&rlist[ ngblabs[i] ], ngblabs[j],
rpsum/rpnum);
segment_relab_list_add(&rlist[ ngblabs[j] ], ngblabs[i],
rpsum/rpnum);
}
}
while(++s<sf);
/* We now have the average values and number of all rivers between
the grown clumps. We now want to finalize their connection (given
the user's criteria). */
for(i=1; i<amwidth; ++i)
for(rtmp=rlist[i]; rtmp!=NULL; rtmp=rtmp->next)
{
if(rtmp->num > p->minriverlength) /* There is a connection. */
{
/* For easy reading. */
ave = rtmp->sum / rtmp->num;
/* In case the average is negative (only possible if 'sums'
is negative), don't change the adjacency: it is already
initialized to zero. Note that even an area of 1 is
acceptable, and we put no area criteria here, because
the fact that a river exists between two clumps is
important. */
if( ave>0.0f && ( c * ave / sqrt(ave+var) ) > p->objbordersn )
{
addadj=1;
for(atmp=adjacency[i]; atmp!=NULL; atmp=atmp->next)
if(atmp->v==rtmp->ngbid)
{ addadj=0; break; }
if(addadj)
{
gal_list_sizet_add(&adjacency[i], rtmp->ngbid);
gal_list_sizet_add(&adjacency[rtmp->ngbid], i);
}
}
}
}
/* For a check:
if(cltprm->id==2)
{
printf("=====================\n");
printf("%zu:\n--------\n", cltprm->id);
for(i=1; i<amwidth; ++i)
{
printf(" %zu...\n", i);
for(rtmp=rlist[i]; rtmp!=NULL; rtmp=rtmp->next)
{
if(rtmp->num)
{
ave=rtmp->sum/rtmp->num;
printf(" ...%zu: N:%-4zu S:%-10.2f S/N: %-10.2f\n",
rtmp->ngbid, rtmp->num, rtmp->sum,
c*ave/sqrt(ave+var));
}
}
printf("FINAL: ");
for(atmp=adjacency[i]; atmp!=NULL; atmp=atmp->next)
printf("%zu ", atmp->v);
printf("\n\n");
}
exit(0);
}
*/
/* Calculate the new labels for each grown clump. */
cltprm->clumptoobj=gal_binary_connected_adjacency_list(adjacency,
amwidth, p->cp.minmapsize,
p->cp.quietmmap,
&cltprm->numobjects);
/* Clean up. */
for(i=1; i<amwidth; ++i)
while(rlist[i]!=NULL)
{ rtmp=rlist[i]->next; free(rlist[i]); rlist[i]=rtmp; }
for(i=1; i<amwidth; ++i) gal_list_sizet_free(adjacency[i]);
free(adjacency);
free(ngblabs);
free(rlist);
free(dinc);
}
/* Relabel objects. */
static void
segment_relab_to_objects(struct clumps_thread_params *cltprm)
{
struct segmentparams *p=cltprm->clprm->p;
size_t *s, *sf;
size_t i, amwidth=cltprm->numtrueclumps+1;
int32_t *clumptoobj, *olabel=p->olabel->array;
/* Find the final object IDs if there is any list of diffuse pixels. It
can happen that we don't have a list of diffuse pixels when the user
sets a very high 'gthresh' threshold and wants to make sure that each
clump is a separate object. So we need to define the number of objects
and 'clumptoobj' manually.*/
if(cltprm->diffuseindexs->size)
{
/* See if we should use a matrix-based adjacent finding (good for
small numbers) or a list-based method (necessary for large
numbers). Here we'll set the limit to 1000, because of this: the
adjacency array will be 1e6 pixels in three types (size_t, double
and uint8_t), so it will consume (8+8+1)*1e6 bytes which is 17
megabytes and reasonable. But the same argument for a 10000 limit
would be 17*e8 bytes or 1.7GB which is not reasonable. Note that
cases with +600000 have also been encountered (wide images of
dense fields near the Milky way disk). */
if( amwidth>1000 )
segment_relab_to_objects_list(cltprm);
else
segment_relab_to_objects_array(cltprm);
clumptoobj = cltprm->clumptoobj->array;
}
else
{
/* Allocate the 'clumptoobj' array. */
cltprm->clumptoobj = gal_data_alloc(NULL, GAL_TYPE_INT32, 1, &amwidth,
NULL, 1, p->cp.minmapsize,
p->cp.quietmmap, NULL, NULL, NULL);
clumptoobj = cltprm->clumptoobj->array;
/* Fill in the 'clumptoobj' array with the indexs of the objects. */
for(i=0;i<amwidth;++i) clumptoobj[i]=i;
/* Set the number of objects. */
cltprm->numobjects = cltprm->numtrueclumps;
}
/* For a check
if(cltprm->id==XXXX)
{
printf("NUMTRUECLUMPS: %zu\n----------\n", cltprm->numtrueclumps);
for(i=0;i<cltprm->numtrueclumps+1;++i)
printf("\t%zu --> %d\n", i, clumptoobj[i]);
printf("=== numobjects: %zu====\n", cltprm->numobjects);
exit(0);
}
*/
/* Correct all the labels. */
sf=(s=cltprm->indexs->array)+cltprm->indexs->size;
do
if( olabel[*s] > 0 )
olabel[*s] = clumptoobj[ olabel[*s] ];
while(++s<sf);
}
/* The correspondance between the clumps and objects has been found. With
this function, we want to correct the clump labels so the clump IDs in
each object start from 1 and are contiguous. */
static void
segment_relab_clumps_in_objects(struct clumps_thread_params *cltprm)
{
size_t numobjects=cltprm->numobjects, numtrueclumps=cltprm->numtrueclumps;
int32_t *clumptoobj=cltprm->clumptoobj->array;
int32_t *clabel=cltprm->clprm->p->clabel->array;
size_t i, *s=cltprm->indexs->array, *sf=s+cltprm->indexs->size;
size_t *nclumpsinobj=gal_pointer_allocate(GAL_TYPE_SIZE_T, numobjects+1,
1, __func__, "nclumpsinobj");
int32_t *newlabs=gal_pointer_allocate(GAL_TYPE_UINT32, numtrueclumps+1,
1, __func__, "newlabs");
/* Fill both arrays. */
for(i=1;i<numtrueclumps+1;++i)
newlabs[i] = ++nclumpsinobj[ clumptoobj[i] ];
/* Reset the clump labels over the detection region. */
do if(clabel[*s]>0) clabel[*s] = newlabs[ clabel[*s] ]; while(++s<sf);
/* Clean up. */
free(newlabs);
free(nclumpsinobj);
}
/* Prior to this function, the objects have labels that are unique and
contiguous (the labels are contiguous, not the objects!) within each
detection and start from 1. However, for the final output, it is
necessary that each object over the whole dataset have a unique
ID. Since multiple threads are working on separate objects at every
instance, this function will use a mutex to limit the reading and
writing to the variable keeping the total number of objects counter. */
static void
segment_relab_overall(struct clumps_thread_params *cltprm)
{
struct clumps_params *clprm=cltprm->clprm;
int32_t startinglab;
uint8_t noobjects=clprm->p->noobjects;
size_t *s=cltprm->indexs->array, *sf=s+cltprm->indexs->size;
int32_t *clabel=clprm->p->clabel->array, *olabel=clprm->p->olabel->array;
/* Lock the mutex if we are working on more than one thread. NOTE: it is
very important to keep the number of operations within the mutex to a
minimum so other threads don't get delayed. */
if(clprm->p->cp.numthreads>1)
pthread_mutex_lock(&clprm->labmutex);
/* Set the starting label for re-labeling (THIS HAS TO BE BEFORE
CORRECTING THE TOTAL NUMBER OF CLUMPS/OBJECTS). */
startinglab = noobjects ? clprm->totclumps : clprm->totobjects;
/* Save the total number of clumps and objects. */
clprm->totclumps += cltprm->numtrueclumps;
if( !noobjects ) clprm->totobjects += cltprm->numobjects;
/* Unlock the mutex (if it was locked). */
if(clprm->p->cp.numthreads>1)
pthread_mutex_unlock(&clprm->labmutex);
/* Increase all the object labels by 'startinglab'. */
if( noobjects )
{
if(cltprm->numtrueclumps>0)
{
do
if(clabel[*s]>0)
clabel[*s] += startinglab;
while(++s<sf);
}
}
else
do olabel[*s] += startinglab; while(++s<sf);
}
/***********************************************************************/
/***************** Over detections *****************/
/***********************************************************************/
/* Find the true clumps over each detection. */
static void *
segment_on_threads(void *in_prm)
{
struct gal_threads_params *tprm=(struct gal_threads_params *)in_prm;
struct clumps_params *clprm=(struct clumps_params *)(tprm->params);
struct segmentparams *p=clprm->p;
size_t i, *s, *sf;
gal_data_t *topinds;
struct clumps_thread_params cltprm;
int32_t *clabel=p->clabel->array, *olabel=p->olabel->array;
/* Initialize the general parameters for this thread. */
cltprm.clprm = clprm;
/* Go over all the detections given to this thread (counting from zero.) */
for(i=0; tprm->indexs[i] != GAL_BLANK_SIZE_T; ++i)
{
/* Set the ID of this detection, note that for the threads, we
counted from zero, but the IDs start from 1, so we'll add a 1 to
the ID given to this thread. */
cltprm.id = tprm->indexs[i]+1;
cltprm.indexs = &clprm->labindexs[ cltprm.id ];
cltprm.numinitclumps = cltprm.numtrueclumps = cltprm.numobjects = 0;
/* The 'topinds' array is only necessary when the user wants to
ignore true clumps with a peak touching a river. */
if(p->keepmaxnearriver==0)
{
/* Allocate the list of local maxima. For each clump there is
going to be one local maxima. But we don't know the number of
clumps a-priori, so we'll just allocate the number of pixels
given to this detected region. */
topinds=gal_data_alloc(NULL, GAL_TYPE_SIZE_T, 1,
cltprm.indexs->dsize, NULL, 0,
p->cp.minmapsize, p->cp.quietmmap,
NULL, NULL, NULL);
cltprm.topinds=topinds->array;
}
else { cltprm.topinds=NULL; topinds=NULL; }
/* Find the clumps over this region. */
cltprm.numinitclumps=gal_label_watershed(p->conv, cltprm.indexs,
p->clabel, cltprm.topinds,
!p->minima);
/* Set all the river pixels to zero (we don't need them any more in
the clumps image). */
sf=(s=cltprm.indexs->array) + cltprm.indexs->size;
do
if( clabel[*s]==GAL_LABEL_RIVER ) clabel[*s]=GAL_LABEL_INIT;
while(++s<sf);
/* Make the clump S/N table. This table is made before (possibly)
stopping the process (if a check is requested). This is because if
the user has also asked for a check image, we can break out of the
loop at that point.
Note that the array of 'gal_data_t' that keeps the S/N table for
each detection is allocated before threading starts. However, when
the user wants to inspect the steps, this function is called
multiple times. So we need to avoid over-writing the allocations. */
if( clprm->sn[ cltprm.id ].dsize==NULL )
{
/* Calculate the S/N table. */
cltprm.sn = &cltprm.clprm->sn[ cltprm.id ];
cltprm.snind = ( cltprm.clprm->snind
? &cltprm.clprm->snind[ cltprm.id ]
: NULL );
gal_label_clump_significance(p->clumpvals, p->std, p->clabel,
cltprm.indexs, &p->cp.tl,
cltprm.numinitclumps, p->snminarea,
p->variance, clprm->sky0_det1,
cltprm.sn, cltprm.snind);
/* If it didn't succeed, then just set the S/N table to NULL. */
if( cltprm.clprm->sn[ cltprm.id ].size==0 )
cltprm.snind=cltprm.sn=NULL;
}
else cltprm.sn=&clprm->sn[ cltprm.id ];
/* If the user wanted to check the segmentation steps or the clump
S/N values in a table, then we have to stop the process at this
point. */
if( clprm->step==1 || (p->checksn && !p->continueaftercheck ) )
{ gal_data_free(topinds); continue; }
/* Only keep true clumps. */
clumps_det_keep_true_relabel(&cltprm);
gal_data_free(topinds);
/* When only clumps are desired ignore the rest of the process. */
if(!p->noobjects)
{
/* Abort the looping here if we don't only want clumps. */
if(clprm->step==2) continue;
/* Set the internal (with the detection) clump and object
labels. Segmenting a detection into multiple objects is only
defined when there is more than one true clump over the
detection. When there is only one true clump
(cltprm->numtrueclumps==1) or none (p->numtrueclumps==0), then
just set the required preliminaries to make the next steps be
generic for all cases. */
if(cltprm.numtrueclumps<=1)
{
/* Set the basics. */
cltprm.numobjects=1;
segment_relab_noseg(&cltprm);
/* If the user wanted a check image, this object doesn't
change. */
if( clprm->step >= 3 && clprm->step <= 6) continue;
/* If the user has asked for grown clumps in the clumps image
instead of the raw clumps, then replace the indexs in the
'clabel' array is well. In this case, there will always be
one "clump". */
if(p->grownclumps)
{
sf=(s=cltprm.indexs->array)+cltprm.indexs->size;
do clabel[ *s++ ] = 1; while(s<sf);
cltprm.numtrueclumps=1;
}
}
else
{
/* Grow the true clumps over the detection. */
clumps_grow_prepare_initial(&cltprm);
if(cltprm.diffuseindexs->size)
gal_label_grow_indexs(p->olabel, cltprm.diffuseindexs, 1, 1);
if(clprm->step==3)
{ gal_data_free(cltprm.diffuseindexs); continue; }
/* If grown clumps are desired instead of the raw clumps,
then replace all the grown clumps with those in clabel. */
if(p->grownclumps)
{
sf=(s=cltprm.indexs->array)+cltprm.indexs->size;
do
if(olabel[*s]>0) clabel[*s]=olabel[*s];
while(++s<sf);
}
/* Identify the objects in this detection using the grown
clumps and correct the grown clump labels into new object
labels. When the number of clumps are large the
array-based adjacency finding will consume too much
memory. So we should switch to a list-based adjacency
process instead. */
segment_relab_to_objects(&cltprm);
if(clprm->step==4)
{
gal_data_free(cltprm.clumptoobj);
gal_data_free(cltprm.diffuseindexs);
continue;
}
/* Continue the growth and cover the whole area, we don't
need the diffuse indexs any more, so after filling the
detected region, free the indexs. */
if( cltprm.numobjects == 1 )
segment_relab_noseg(&cltprm);
else
{
/* Correct the labels so every non-labeled pixel can be
grown. */
clumps_grow_prepare_final(&cltprm);
/* Cover the whole area (using maximum connectivity to
not miss any pixels). */
gal_label_grow_indexs(p->olabel, cltprm.diffuseindexs, 0,
p->olabel->ndim);
/* Make sure all diffuse pixels are labeled. */
if(cltprm.diffuseindexs->size)
error(EXIT_FAILURE, 0, "a bug! Please contact us at %s "
"to fix it. %zu pixels of detection %zu have not "
"been labeled (as an object)", PACKAGE_BUGREPORT,
cltprm.diffuseindexs->size, cltprm.id);
}
gal_data_free(cltprm.diffuseindexs);
if(clprm->step==5)
{ gal_data_free(cltprm.clumptoobj); continue; }
/* Correct the clump labels. Note that this is only necessary
when there is more than object over the detection or when
there were multiple clumps over the detection. */
if(cltprm.numobjects>1)
segment_relab_clumps_in_objects(&cltprm);
gal_data_free(cltprm.clumptoobj);
if(clprm->step==6) {continue;}
}
}
/* Convert the object labels to their final value */
segment_relab_overall(&cltprm);
}
/* Wait until all the threads finish then return. */
if(tprm->b) pthread_barrier_wait(tprm->b);
return NULL;
}
/* If the user wanted to see the S/N table in a file, this function will be
called and will do the job. */
static void
segment_save_sn_table(struct clumps_params *clprm)
{
char *msg;
float *sarr;
int32_t *oiarr, *cioarr;
gal_list_str_t *comments=NULL;
size_t i, j, c=0, totclumps=0;
struct segmentparams *p=clprm->p;
gal_data_t *sn, *objind, *clumpinobj;
/* Find the total number of clumps in all the initial detections. Recall
that the 'size' values were one more than the actual number because
the labelings start from 1. */
for(i=1;i<p->numdetections+1;++i)
if( clprm->sn[i].size > 1 )
totclumps += clprm->sn[i].size-1;
/* Allocate the columns for the table. */
sn=gal_data_alloc(NULL, GAL_TYPE_FLOAT32, 1, &totclumps, NULL, 0,
p->cp.minmapsize, p->cp.quietmmap, "CLUMP_S/N", "ratio",
"Signal-to-noise ratio.");
objind=gal_data_alloc(NULL, GAL_TYPE_INT32, 1, &totclumps, NULL, 0,
p->cp.minmapsize, p->cp.quietmmap, "HOST_DET_ID",
"counter", "ID of detection hosting this clump.");
clumpinobj=gal_data_alloc(NULL, GAL_TYPE_INT32, 1, &totclumps, NULL, 0,
p->cp.minmapsize, p->cp.quietmmap,
"CLUMP_ID_IN_OBJ", "counter",
"ID of clump in host detection.");
/* Fill in the columns. */
sarr=sn->array;
oiarr=objind->array;
cioarr=clumpinobj->array;
for(i=1;i<p->numdetections+1;++i)
if( clprm->sn[i].size > 1 )
for(j=1;j<clprm->sn[i].size;++j)
{
oiarr[c] = i;
cioarr[c] = j;
sarr[c] = ((float *)(clprm->sn[i].array))[j];
++c;
}
/* Write the comments. */
gal_list_str_add(&comments, "See also: 'CLUMPS_ALL_DET' HDU of "
"output with '--checksegmentation'.", 1);
if( asprintf(&msg, "S/N values of 'nan': clumps smaller than "
"'--snminarea' of %zu.", p->snminarea)<0 )
error(EXIT_FAILURE, 0, "%s: asprintf allocation", __func__);
gal_list_str_add(&comments, msg, 0);
gal_list_str_add(&comments, "S/N of clumps over detected regions.", 1);
gal_table_comments_add_intro(&comments, PROGRAM_STRING, &p->rawtime);
/* Set the column pointers and write them into a table.. */
clumpinobj->next=sn;
objind->next=clumpinobj;
gal_table_write(objind, NULL, comments, p->cp.tableformat,
p->clumpsn_d_name, "DET_CLUMP_SN", 0, 0);
/* Clean up. */
gal_data_free(sn);
gal_data_free(objind);
gal_data_free(clumpinobj);
gal_list_str_free(comments, 1);
/* Abort NoiseChisel if necessary. */
if(!p->continueaftercheck)
ui_abort_after_check(p, p->clumpsn_s_name,
( p->cp.tableformat==GAL_TABLE_FORMAT_TXT
? p->clumpsn_d_name : NULL ),
"showing all clump S/N values");
}
/* Avoid non-reproducible labels (when built on multiple threads). Note
that when working with objects, the clump labels don't need to be
re-labeled (they always start from 1 within each object and are thus
already thread-safe).*/
static void
segment_reproducible_labels(struct segmentparams *p)
{
size_t i;
gal_data_t *new;
int32_t currentlab=0, *oldarr, *newarr, *newlabs;
gal_data_t *old = p->noobjects ? p->clabel : p->olabel;
size_t numlabsplus1 = (p->noobjects ? p->numclumps : p->numobjects) + 1;
/* Allocate the necessary datasets. */
new=gal_data_alloc(NULL, old->type, old->ndim, old->dsize, old->wcs, 0,
p->cp.minmapsize, p->cp.quietmmap, old->name, old->unit,
old->comment);
newlabs=gal_pointer_allocate(old->type, numlabsplus1, 0, __func__,
"newlabs");
/* Initialize the newlabs array to blank (so we don't relabel
things). */
for(i=0;i<numlabsplus1;++i) newlabs[i]=GAL_BLANK_INT32;
/* Parse the old dataset and set the new labels. */
oldarr=old->array;
for(i=0;i<old->size;++i)
if( oldarr[i] > 0 && newlabs[ oldarr[i] ]==GAL_BLANK_INT32 )
newlabs[ oldarr[i] ] = ++currentlab;
/* For a check.
for(i=0;i<numlabsplus1;++i) printf("%zu --> %d\n", i, newlabs[i]);
*/
/* Fill the newly labeled dataset. */
newarr=new->array;
for(i=0;i<old->size;++i)
newarr[i] = oldarr[i]>0 ? newlabs[ oldarr[i] ] : oldarr[i];
/* Clean up. */
free(newlabs);
if(p->noobjects) { gal_data_free(p->clabel); p->clabel=new; }
else { gal_data_free(p->olabel); p->olabel=new; }
}
/* Find true clumps over the detected regions. */
static void
segment_detections(struct segmentparams *p)
{
char *msg;
struct clumps_params clprm;
gal_data_t *labindexs, *claborig, *demo=NULL;
/* Get the indexs of all the pixels in each label. */
labindexs=gal_label_indexs(p->olabel, p->numdetections, p->cp.minmapsize,
p->cp.quietmmap);
/* Initialize the necessary thread parameters. Note that since the object
labels begin from one, the 'sn' array will have one extra element.*/
clprm.p=p;
clprm.sky0_det1=1;
clprm.totclumps=0;
clprm.totobjects=0;
clprm.snind = NULL;
clprm.labindexs=labindexs;
clprm.sn=gal_data_array_calloc(p->numdetections+1);
/* When more than one thread is to be used, initialize the mutex. */
if( p->cp.numthreads > 1 ) pthread_mutex_init(&clprm.labmutex, NULL);
/* Spin off the threads to start the work. Note that several steps are
done on each tile within a thread. So if the user wants to check
steps, we need to break out of the processing get an over-all output,
then reset the input and call it again. So it will be slower, but its
is natural, since the user is testing to find the correct combination
of parameters for later use. */
if(p->segmentationname)
{
/* Necessary initializations. */
clprm.step=1;
claborig=p->clabel;
p->clabel=gal_data_copy(claborig);
/* Do each step. */
while( clprm.step<8
/* When the user only wanted clumps, there is no point in
continuing beyond step 2. */
&& !(p->noobjects && clprm.step>2)
/* When the user just wants to check the clump S/N values,
then break out of the loop, we don't need the rest of the
process any more. */
&& !( (p->checksn && !p->continueaftercheck) && clprm.step>1 ) )
{
/* Reset the temporary copy of clabel back to its original. */
if(clprm.step>1)
memcpy(p->clabel->array, claborig->array,
claborig->size*gal_type_sizeof(claborig->type));
/* (Re-)do everything until this step. */
gal_threads_spin_off(segment_on_threads, &clprm,
p->numdetections, p->cp.numthreads,
p->cp.minmapsize, p->cp.quietmmap);
/* Set the extension name. */
switch(clprm.step)
{
case 1:
demo=p->clabel;
demo->name = "DET_CLUMPS_ALL";
if(!p->cp.quiet)
{
if( asprintf(&msg, "Identified clumps over detections "
"(HDU: '%s').", demo->name)<0 )
error(EXIT_FAILURE, 0, "%s: asprintf allocation",
__func__);
gal_timing_report(NULL, msg, 2);
free(msg);
}
break;
case 2:
demo=p->clabel;
demo->name = "DET_CLUMPS_TRUE";
if(!p->cp.quiet)
{
if( asprintf(&msg, "True clumps found "
"(HDU: '%s').", demo->name)<0 )
error(EXIT_FAILURE, 0, "%s: asprintf allocation",
__func__);
gal_timing_report(NULL, msg, 2);
free(msg);
}
break;
case 3:
demo=p->olabel;
demo->name = "DET_CLUMPS_GROWN";
if(!p->cp.quiet)
{
gal_timing_report(NULL, "Identify objects...",
1);
if( asprintf(&msg, "True clumps grown "
"(HDU: '%s').", demo->name)<0 )
error(EXIT_FAILURE, 0, "%s: asprintf allocation",
__func__);
gal_timing_report(NULL, msg, 2);
free(msg);
}
break;
case 4:
demo=p->olabel;
demo->name = "DET_OBJ_IDENTIFIED";
if(!p->cp.quiet)
{
if( asprintf(&msg, "Identified objects over detections "
"(HDU: '%s').", demo->name)<0 )
error(EXIT_FAILURE, 0, "%s: asprintf allocation",
__func__);
gal_timing_report(NULL, msg, 2);
free(msg);
}
break;
case 5:
demo=p->olabel;
demo->name = "DET_OBJECTS_FULL";
if(!p->cp.quiet)
{
if( asprintf(&msg, "Objects grown to cover full area "
"(HDU: '%s').", demo->name)<0 )
error(EXIT_FAILURE, 0, "%s: asprintf allocation",
__func__);
gal_timing_report(NULL, msg, 2);
free(msg);
}
break;
case 6:
demo=p->clabel;
demo->name = "CLUMPS_FINAL";
if(!p->cp.quiet)
{
if( asprintf(&msg, "Clumps given their final label "
"(HDU: '%s').", demo->name)<0 )
error(EXIT_FAILURE, 0, "%s: asprintf allocation",
__func__);
gal_timing_report(NULL, msg, 2);
free(msg);
}
break;
case 7:
demo=p->olabel;
demo->name = "OBJECTS_FINAL";
if(!p->cp.quiet)
{
if( asprintf(&msg, "Objects given their final label "
"(HDU: '%s').", demo->name)<0 )
error(EXIT_FAILURE, 0, "%s: asprintf allocation",
__func__);
gal_timing_report(NULL, msg, 2);
free(msg);
}
break;
default:
error(EXIT_FAILURE, 0, "%s: a bug! Please contact us at %s so "
"we can address the issue. The value %d is not "
"recognized for clprm.step", __func__, PACKAGE_BUGREPORT,
clprm.step);
}
/* Write the demonstration array into the check image. */
gal_fits_img_write(demo, p->segmentationname, NULL, 0);
/* Increment the step counter. */
++clprm.step;
}
/* Clean up (we don't need the original any more). */
gal_data_free(claborig);
p->olabel->name = p->clabel->name = NULL;
}
else
{
clprm.step=0;
gal_threads_spin_off(segment_on_threads, &clprm, p->numdetections,
p->cp.numthreads, p->cp.minmapsize,
p->cp.quietmmap);
}
/* If the user wanted to see the S/N table, then make the S/N table and
abort Segment if necessary. */
if(p->checksn) segment_save_sn_table(&clprm);
/* Write the final number of objects and clumps to be used beyond this
function. */
p->numclumps=clprm.totclumps;
p->numobjects=clprm.totobjects;
/* Correct the final object labels to start from the bottom of the
image. This is necessary because we define objects on multiple
threads, so every time a program is run, an object can have a
different label! */
segment_reproducible_labels(p);
/* Clean up allocated structures and destroy the mutex. */
gal_data_array_free(clprm.sn, p->numdetections+1, 1);
gal_data_array_free(labindexs, p->numdetections+1, 1);
if( p->cp.numthreads>1 ) pthread_mutex_destroy(&clprm.labmutex);
}
/***********************************************************************/
/***************** Output *****************/
/***********************************************************************/
void
segment_output(struct segmentparams *p)
{
float *f, *ff;
gal_fits_list_key_t *keys=NULL;
/* Write the configuration keywords. */
gal_fits_key_write_filename("input", p->inputname, &p->cp.ckeys, 1,
p->cp.quiet);
gal_fits_key_write(p->cp.ckeys, p->cp.output, "0", "NONE", 1, 1);
/* The Sky-subtracted input (if requested). */
if(!p->rawoutput)
gal_fits_img_write(p->input, p->cp.output, NULL, 0);
/* The clump labels. */
gal_fits_key_list_add(&keys, GAL_TYPE_FLOAT32, "CLUMPSN", 0,
&p->clumpsnthresh, 0, "Minimum S/N of true clumps",
0, "ratio", 0);
gal_fits_key_list_add(&keys, GAL_TYPE_SIZE_T, "NUMLABS", 0,
&p->numclumps, 0, "Total number of clumps", 0,
"counter", 0);
p->clabel->name="CLUMPS";
gal_fits_img_write(p->clabel, p->cp.output, keys, 1);
p->clabel->name=NULL;
keys=NULL;
/* The object labels. */
if(!p->noobjects)
{
gal_fits_key_list_add(&keys, GAL_TYPE_SIZE_T, "NUMLABS", 0,
&p->numobjects, 0, "Total number of objects",
0, "counter", 0);
p->olabel->name="OBJECTS";
gal_fits_img_write(p->olabel, p->cp.output, keys, 1);
p->olabel->name=NULL;
keys=NULL;
}
/* The Standard deviation image (if one was actually given). */
if( !p->rawoutput && p->std->size>1 )
{
/* See if any keywords should be written (possibly inherited from the
detection program). */
if( !isnan(p->maxstd) )
gal_fits_key_list_add(&keys, GAL_TYPE_FLOAT32, "MAXSTD", 0,
&p->maxstd, 0,
"Maximum raw tile standard deviation", 0,
p->input->unit, 0);
if( !isnan(p->minstd) )
gal_fits_key_list_add(&keys, GAL_TYPE_FLOAT32, "MINSTD", 0,
&p->minstd, 0,
"Minimum raw tile standard deviation", 0,
p->input->unit, 0);
if( !isnan(p->medstd) )
gal_fits_key_list_add(&keys, GAL_TYPE_FLOAT32, "MEDSTD", 0,
&p->medstd, 0,
"Median raw tile standard deviation", 0,
p->input->unit, 0);
/* If the input was actually a variance dataset, we'll need to take
its square root before writing it. We want this output to be a
standard deviation dataset. */
if(p->variance)
{ ff=(f=p->std->array)+p->std->size; do *f=sqrt(*f); while(++f<ff); }
/* Write the STD dataset into the output file. */
p->std->name="SKY_STD";
if(p->std->size == p->input->size)
{
p->std->wcs=p->input->wcs;
gal_fits_img_write(p->std, p->cp.output, keys, 1);
p->std->wcs=NULL;
}
else
gal_tile_full_values_write(p->std, &p->cp.tl, 1, p->cp.output,
keys, 1);
p->std->name=NULL;
}
/* Let the user know that the output is written. */
if(!p->cp.quiet)
printf(" - Output written to '%s'.\n", p->cp.output);
}
/***********************************************************************/
/***************** Top-level function *****************/
/***********************************************************************/
void
segment(struct segmentparams *p)
{
float *f;
char *msg;
int32_t *c, *cf;
struct timeval t1;
/* Get starting time for later reporting if necessary. */
if(!p->cp.quiet) gettimeofday(&t1, NULL);
/* Prepare the inputs. */
segment_convolve(p);
segment_initialize(p);
/* If a check segmentation image was requested, then start filling it
in. */
if(p->segmentationname)
{
gal_fits_img_write(p->input, p->segmentationname, NULL, 0);
if(p->input!=p->conv)
gal_fits_img_write(p->conv, p->segmentationname, NULL, 0);
p->olabel->name="DETECTION_LABELS";
gal_fits_img_write(p->olabel, p->segmentationname, NULL, 0);
p->olabel->name=NULL;
}
if(!p->cp.quiet)
printf(" - Input number of connected components: %zu\n",
p->numdetections);
/* Find the clump S/N threshold. */
if( isnan(p->clumpsnthresh) )
{
if(!p->cp.quiet)
gal_timing_report(NULL, "Finding true clumps...", 1);
clumps_true_find_sn_thresh(p);
}
else
{
if(!p->cp.quiet)
{
if( asprintf(&msg, "Given S/N for true clumps: %g",
p->clumpsnthresh) <0 )
error(EXIT_FAILURE, 0, "%s: asprintf allocation", __func__);
gal_timing_report(NULL, msg, 1);
free(msg);
}
}
/* Reset the clabel array to find true clumps in objects. */
f=p->input->array; cf=(c=p->clabel->array)+p->clabel->size;
do *c = isnan(*f++) ? GAL_BLANK_INT32 : 0; while(++c<cf);
/* Find true clumps over the detected regions. */
segment_detections(p);
/* Report the results and timing to the user. */
if(!p->cp.quiet)
{
if(p->noobjects)
{
if( asprintf(&msg, "%zu clump%sfound.",
p->numclumps, p->numclumps ==1 ? " " : "s ")<0 )
error(EXIT_FAILURE, 0, "%s: asprintf allocation", __func__);
}
else
{
if( asprintf(&msg, "%zu object%s""containing %zu clump%sfound.",
p->numobjects, p->numobjects==1 ? " " : "s ",
p->numclumps, p->numclumps ==1 ? " " : "s ")<0 )
error(EXIT_FAILURE, 0, "%s: asprintf allocation", __func__);
}
gal_timing_report(&t1, msg, 1);
free(msg);
}
/* If the user wanted to check the segmentation and hasn't called
'continueaftercheck', then stop Segment. */
if(p->segmentationname && !p->continueaftercheck)
ui_abort_after_check(p, p->segmentationname, NULL,
"showing all segmentation steps");
/* Write the output. */
segment_output(p);
}
|