File: units.c

package info (click to toggle)
gnuastro 0.24-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 44,360 kB
  • sloc: ansic: 185,444; sh: 15,785; makefile: 1,303; cpp: 9
file content (672 lines) | stat: -rw-r--r-- 16,867 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
/*********************************************************************
Units -- Convert data from one unit to other.
This is part of GNU Astronomy Utilities (Gnuastro) package.

Original author:
     Kartik Ohri <kartikohri13@gmail.com>
Contributing author(s):
     Mohammad Akhlaghi <mohammad@akhlaghi.org>
     Pedram Ashofteh-Ardakani <pedramardakani@pm.me>
Copyright (C) 2020-2025 Free Software Foundation, Inc.

Gnuastro is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.

Gnuastro is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with Gnuastro. If not, see <http://www.gnu.org/licenses/>.
**********************************************************************/
#include <config.h>

#include <math.h>
#include <errno.h>
#include <error.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <gnuastro/type.h>
#include <gnuastro/pointer.h>



/**********************************************************************/
/****************      Functions to parse strings     *****************/
/**********************************************************************/
/* Parse the input string consisting of numbers separated by given
   delimiter into an array. */
int
gal_units_extract_decimal(char *convert, const char *delimiter,
                          double *args, size_t n)
{
  size_t i = 0;
  char *copy, *token, *end;

  /* Create a copy of the string to be parsed and parse it. This is because
     it will be modified during the parsing. */
  copy=strdup(convert);
  do
    {
      /* Check if the required number of arguments are passed. */
      if(i==n+1)
        {
          free(copy);
          error(0, 0, "%s: input '%s' exceeds maximum number of arguments "
                "(%zu)", __func__, convert, n);
          return 0;
        }

      /* Extract the substring till the next delimiter. */
      token=strtok(i==0?copy:NULL, delimiter);
      if(token)
        {
          /* Parse extracted string as a number, and check if it worked. */
          args[i++] = strtod (token, &end);
          if (*end && *end != *delimiter)
            {
              /* In case a warning is necessary
              error(0, 0, "%s: unable to parse element %zu in '%s'\n",
                    __func__, i, convert);
              */
              free(copy);
              return 0;
            }
        }
    }
  while(token && *token);
  free (copy);

  /* Check if the number of elements parsed. */
  if (i != n)
    {
      /* In case a warning is necessary
      error(0, 0, "%s: input '%s' must contain %lu numbers, but has "
            "%lu numbers\n", __func__, convert, n, i);
      */
      return 0;
    }

  /* Numbers are written, return successfully. */
  return 1;
}


















/**********************************************************************/
/****************      Convert string to decimal      *****************/
/**********************************************************************/

/* Parse the right ascension input as a string in form of hh:mm:ss to a
 * single decimal value calculated by (hh + mm / 60 + ss / 3600 ) * 15. */
double
gal_units_ra_to_degree(char *convert)
{
  double val[3];
  double decimal=0.0;

  /* Check whether the string is successfully parsed. */
  if(gal_units_extract_decimal(convert, ":hms", val, 3))
    {
      /* Check whether the first value is in within limits, and add it. We
         are using 'signbit(val[0])' instead of 'val[0]<0.0f' because
         'val[0]<0.0f' can't distinguish negative zero (-0.0) from an
         unsigned zero (in other words, '-0.0' will be interpretted to be
         positive). For the declinations it is possible (see the comments
         in 'gal_units_dec_to_degree'), so a user may mistakenly give that
         format in Right Ascension. */
      if(signbit(val[0]) || val[0]>24.0) return NAN;
      decimal += val[0];

      /* Check whether value of minutes is within limits, and add it. */
      if(signbit(val[1]) || val[1]>60.0) return NAN;
      decimal += val[1] / 60;

      /* Check whether value of seconds is in within limits, and add it. */
      if(signbit(val[2]) || val[2]>60.0) return NAN;
      decimal += val[2] / 3600;

      /* Convert value to degrees and return. */
      decimal *= 15.0;
      return decimal;
    }
  else return NAN;

  /* Control shouldn't reach this point. If it does, its a bug! */
  error(EXIT_FAILURE, 0, "%s: a bug! Please contact us at %s to fix the "
        "problem. Control should not reach the end of this function",
        __func__, PACKAGE_BUGREPORT);
  return NAN;
}





/* Parse the declination input as a string in form of dd:mm:ss to a decimal
 * calculated by (dd + mm / 60 + ss / 3600 ). */
double
gal_units_dec_to_degree(char *convert)
{
  int sign;
  double val[3], decimal=0.0;

  /* Parse the values in the input string. */
  if(gal_units_extract_decimal(convert, ":dms", val, 3))
    {
      /* Check whether the first value is in within limits. */
      if(val[0]<-90.0 || val[0]>90.0) return NAN;

      /* If declination is negative, the first value in the array will be
         negative and all other values will be positive. In that case, we
         set sign equal to -1. Therefore, we multiply the first value by
         sign to make it positive. The final answer is again multiplied by
         sign to make its sign same as original.

        We are using 'signbit(val[0])' instead of 'val[0]<0.0f' because
        'val[0]<0.0f' can't distinguish negative zero (-0.0) from an
        unsigned zero (in other words, '-0.0' will be interpretted to be
        positive). In the case of declination, this can happen just below
        the equator (where the declination is less than one degree), for
        example '-00d:12:34'. */
      sign = signbit(val[0]) ? -1 : 1;
      decimal += val[0] * sign;

      /* Check whether value of arc-minutes is in within limits. */
      if(signbit(val[1]) || val[1]>60.0) return NAN;
      decimal += val[1] / 60;

      /* Check whether value of arc-seconds is in within limits. */
      if (signbit(val[2]) || val[2] > 60.0) return NAN;
      decimal += val[2] / 3600;

      /* Make the sign of the decimal value same as input and return. */
      decimal *= sign;
      return decimal;
    }
  else return NAN;

  /* Control shouldn't reach this point. If it does, its a bug! */
  error(EXIT_FAILURE, 0, "%s: a bug! Please contact us at %s to fix the "
        "problem. Control should not reach the end of this function",
        __func__, PACKAGE_BUGREPORT);
  return NAN;
}




















/**********************************************************************/
/****************      Convert decimal to string      *****************/
/**********************************************************************/

/* Max-length of output string. */
#define UNITS_RADECSTR_MAXLENGTH 50

/* Parse the right ascension input as a decimal to a string in form of
   hh:mm:ss.ss . */
char *
gal_units_degree_to_ra(double decimal, int usecolon)
{
  size_t nchars;
  int hours=0, minutes=0;
  float seconds=0.0; /* For sub-second accuracy. */

  /* Allocate a long string which is large enough for string of format
     hh:mm:ss.ss and sign. */
  char *ra=gal_pointer_allocate(GAL_TYPE_UINT8, UNITS_RADECSTR_MAXLENGTH,
                                0, __func__, "ra");

  /* Check if decimal value is within bounds otherwise return error. */
  if (decimal<0 || decimal>360)
    {
      error (0, 0, "%s: value of decimal should be between be 0 and 360, "
             "but is %g\n", __func__, decimal);
      return NULL;
    }

  /* Divide decimal value by 15 and extract integer part of decimal value
     to obtain hours. */
  decimal /= 15.0;
  hours = (int)decimal;

  /* Subtract hours from decimal and multiply remaining value by 60 to
     obtain minutes. */
  minutes = (int)((decimal - hours) * 60);

  /* Subtract hours and minutes from decimal and multiply remaining value
     by 3600 to obtain seconds. */
  seconds = (decimal - hours - minutes / 60.0) * 3600;

  /* Format the extracted hours, minutes and seconds as a string with
     leading zeros if required, in hh:mm:ss format. */
  nchars = snprintf(ra, UNITS_RADECSTR_MAXLENGTH-1,
                    usecolon ? "%02d:%02d:%g" : "%02dh%02dm%g",
                    hours, minutes, seconds);
  if(nchars>UNITS_RADECSTR_MAXLENGTH)
    error(EXIT_FAILURE, 0, "%s: a bug! Please contact us at %s to address "
          "the problem. The output string has an unreasonable length of "
          "%zu characters", __func__, PACKAGE_BUGREPORT, nchars);

  /* Return the final string. */
  return ra;
}





/* Parse the declination input as a decimal to a string in form of dd:mm:ss . */
char *
gal_units_degree_to_dec(double decimal, int usecolon)
{
  size_t nchars;
  float arc_seconds=0.0;
  int sign, degrees=0, arc_minutes=0;

  /* Allocate string of fixed length which is large enough for string of
   * format hh:mm:ss.ss and sign. */
  char *dec=gal_pointer_allocate(GAL_TYPE_UINT8, UNITS_RADECSTR_MAXLENGTH,
                                 0, __func__, "ra");

  /* Check if decimal value is within bounds otherwise return error. */
  if(decimal<-90 || decimal>90)
    {
      error (0, 0, "%s: value of decimal should be between be -90 and 90, "
             "but is %g\n", __func__, decimal);
      return NULL;
    }

  /* If declination is negative, we set 'sign' equal to -1. We multiply the
     decimal by to make sure it is positive. We then extract degrees,
     arc-minutes and arc-seconds from the decimal. Finally, we add a minus
     sign in beginning of string if input was negative. */
  sign = decimal<0.0 ? -1 : 1;
  decimal *= sign;

  /* Extract integer part of decimal value to obtain degrees. */
  degrees=(int)decimal;

  /* Subtract degrees from decimal and multiply remaining value by 60 to
     obtain arc-minutes. */
  arc_minutes=(int)( (decimal - degrees) * 60 );

  /* Subtract degrees and arc-minutes from decimal and multiply remaining
     value by 3600 to obtain arc-seconds. */
  arc_seconds = (decimal - degrees - arc_minutes / 60.0) * 3600;

  /* Format the extracted degrees, arc-minutes and arc-seconds as a string
     with leading zeros if required, in hh:mm:ss format with correct
     sign. */
  nchars = snprintf(dec, UNITS_RADECSTR_MAXLENGTH-1,
                    usecolon ? "%s%02d:%02d:%g" : "%s%02dd%02dm%g",
                    sign<0?"-":"+", degrees, arc_minutes, arc_seconds);
  if(nchars>UNITS_RADECSTR_MAXLENGTH)
    error(EXIT_FAILURE, 0, "%s: a bug! Please contact us at %s to address "
          "the problem. The output string has an unreasonable length of "
          "%zu characters", __func__, PACKAGE_BUGREPORT, nchars);

  /* Return the final string. */
  return dec;
}




















/**********************************************************************/
/****************          Flux conversions           *****************/
/**********************************************************************/

/* Convert counts to magnitude using the given zeropoint. */
double
gal_units_counts_to_mag(double counts, double zeropoint)
{
  return ( counts > 0.0f
           ? ( -2.5f * log10(counts) + zeropoint )
           : NAN );
}





/* Convert magnitude to counts using the given zeropoint. */
double
gal_units_mag_to_counts(double mag, double zeropoint)
{
  return pow(10, (mag - zeropoint)/(-2.5f));
}



/* Convert apparent magnitude to luminosity. The absolute magnitude of the
   sun for different filters can be taken from Table 3 of
   https://arxiv.org/abs/1804.07788
*/
double
gal_units_mag_to_luminosity(double mag, double mag_absolute_sun,
                            double distance_modulus)
{
  return pow(10.0, (mag_absolute_sun - (mag - distance_modulus)) / 2.5);
}




double
gal_units_luminosity_to_mag(double luminosity, double mag_absolute_sun,
                            double distance_modulus)
{
  return mag_absolute_sun - 2.5*log10(luminosity) + distance_modulus;
}



double
gal_units_mag_to_sb(double mag, double area_arcsec2)
{
  return mag+2.5*log10(area_arcsec2);
}





double
gal_units_sb_to_mag(double sb, double area_arcsec2)
{
  return sb-2.5*log10(area_arcsec2);
}





double
gal_units_counts_to_sb(double counts, double zeropoint,
                       double area_arcsec2)
{
  return gal_units_mag_to_sb(
                   gal_units_counts_to_mag(counts, zeropoint),
                   area_arcsec2);
}





double
gal_units_sb_to_counts(double sb, double zeropoint,
                       double area_arcsec2)
{
  return gal_units_mag_to_counts(
                   gal_units_sb_to_mag(sb, area_arcsec2),
                   zeropoint);
}




/* Convert Pixel values to Janskys with an AB-magnitude based
   zero-point. See the "Brightness, Flux, Magnitude and Surface
   brightness". */
double
gal_units_counts_to_jy(double counts, double zeropoint_ab)
{
  return counts * 3631 * pow(10, -1 * zeropoint_ab / 2.5);
}





/* Convert Janskys to pixel values with an AB-magnitude based
   zero-point. See the "Brightness, Flux, Magnitude and Surface
   brightness". */
double
gal_units_jy_to_counts(double jy, double zeropoint_ab)
{
  return jy / 3631 / pow(10, -1 * zeropoint_ab / 2.5);
}





/* Convert counts to a custom zero point. The job of this function is
   equivalent to the double-call bellow. We just don't want to repeat some
   extra multiplication/divisions.

     gal_units_jy_to_counts(gal_units_counts_to_jy(counts, zeropoint_in),
                            custom_out)
*/
double
gal_units_zeropoint_change(double counts, double zeropoint_in,
                           double zeropoint_out)
{
  return ( counts
           * pow(10, -1 * zeropoint_in  / 2.5)
           / pow(10, -1 * zeropoint_out / 2.5) );
}





double
gal_units_counts_to_nanomaggy(double counts, double zeropoint_ab)
{
  return gal_units_zeropoint_change(counts, zeropoint_ab, 22.5);
}





double
gal_units_nanomaggy_to_counts(double counts, double zeropoint_ab)
{
  return gal_units_zeropoint_change(counts, 22.5, zeropoint_ab);
}





double
gal_units_jy_to_mag(double jy)
{
  double zp=0;
  return gal_units_counts_to_mag(gal_units_jy_to_counts(jy, zp),zp);
}





/* Converting Janskys ($f(\nu)$ or flux in units of frequency) to
   $f(\lambda)$ (or wavelength flux density). See the description of this
   operator in the book for its derivation.*/
double
gal_units_jy_to_wavelength_flux_density(double jy, double angstrom)
{
  return jy * 2.99792458e-05 / (angstrom*angstrom);
}





double
gal_units_wavelength_flux_density_to_jy(double wfd, double angstrom)
{
  return wfd * (angstrom*angstrom) / 2.99792458e-05;
}




double
gal_units_mag_to_jy(double mag)
{
  double zp=0;
  return gal_units_counts_to_jy(gal_units_mag_to_counts(mag, zp),zp);
}





double
gal_units_sblim_diff(double r_frac, double t_frac)
{
  return 2.5*log10(r_frac*sqrt(t_frac));
}




















/**********************************************************************/
/****************         Distance conversions        *****************/
/**********************************************************************/
/* Convert Astronomical Units (AU) to Parsecs (PC). From the definition of
   Parsecs, 648000/pi AU = 1 PC. The mathematical constant 'PI' is imported
   from the GSL as M_PI. So: */
double
gal_units_au_to_pc(double au)
{
  return au / 648000.0f * M_PI;
}





/* Convert Parsecs (PC) to Astronomical units (AU), see comment of
   'gal_units_au_to_pc'. */
double
gal_units_pc_to_au(double au)
{
  return au * 648000.0f / M_PI;
}





/* Convert Light-years to Parsecs, according to
   https://en.wikipedia.org/wiki/Light-year#Definitions:

   1 light-year = 9460730472580800 metres (exactly)
                ~ 9.461 petametres
                ~ 9.461 trillion kilometres (5.879 trillion miles)
                ~ 63241.077 astronomical units
                ~ 0.306601 parsecs  */
double
gal_units_ly_to_pc(double ly)
{
  return ly * 0.306601f;
}





/* Convert Parsecs to Light-years (see comment of gal_units_ly_to_pc). */
double
gal_units_pc_to_ly(double pc)
{
  return pc / 0.306601f;
}





/* Convert Astronomical Units to Light-years (see comment of
   gal_units_ly_to_pc). */
double
gal_units_au_to_ly(double au)
{
  return au / 63241.077f;
}





/* Convert Light-years to Astronomical Units (see comment of
   gal_units_ly_to_pc). */
double
gal_units_ly_to_au(double ly)
{
  return ly * 63241.077f;
}