1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233
|
/*********************************************************************
Warp -- Warp pixels of one dataset to another pixel grid.
This is part of GNU Astronomy Utilities (Gnuastro) package.
Corresponding author:
Pedram Ashofteh-Ardakani <pedramardakani@pm.me>
Contributing author(s):
Mohammad Akhlaghi <mohammad@akhlaghi.org>
Copyright (C) 2022-2025 Free Software Foundation, Inc.
Gnuastro is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation, either version 3 of the License, or (at your
option) any later version.
Gnuastro is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with Gnuastro. If not, see <http://www.gnu.org/licenses/>.
**********************************************************************/
#include <config.h>
#include <errno.h>
#include <error.h>
#include <stdio.h>
#include <gnuastro/wcs.h>
#include <gnuastro/type.h>
#include <gnuastro/warp.h>
#include <gnuastro/blank.h>
#include <gnuastro/pointer.h>
#include <gnuastro/polygon.h>
#include <gnuastro/threads.h>
#include <gnuastro/dimension.h>
/* Macros. */
#define WARP_NEXT_ODD(D) \
( (size_t)( ceil((D)) ) + ( (size_t)( ceil((D)) )%2==0 ? 1 : 0 ) )
#define WARP_WCSALIGN_H(IND,ES,IS1) \
(size_t)( ( (IND)%(IS1) ) * ( (ES)+1 ) \
+ ( (IND)/(IS1) ) * (1+(IS1)*( (ES)+1 )) )
#define WARP_WCSALIGN_V0(ES,IS0,IS1) \
(size_t)( 1+(IS0)+(IS1)*( (IS0)+1 )*( (ES)+1) )
#define WARP_WCSALIGN_V(IND,ES,V0,IS1) \
(size_t)( (V0)+(ES)*( (IND)+(IND)/(IS1) ) )
/* Generate the points on the outer boundary of a dsize[0] x dsize[1]
matrix and return the array. */
static gal_data_t *
warp_alloc_perimeter(gal_data_t *input)
{
/* Low level variables. */
size_t ind, i;
gal_data_t *pcrn;
double *x=NULL, *y=NULL;
size_t is0=input->dsize[0];
size_t is1=input->dsize[1];
int quietmmap=input->quietmmap;
size_t minmapsize=input->minmapsize;
/* High level variables. */
size_t npcrn=2*(is0+is1);
pcrn=gal_data_alloc(NULL, GAL_TYPE_FLOAT64, 1, &npcrn, NULL, 0,
minmapsize, quietmmap, NULL, NULL, NULL);
pcrn->next=gal_data_alloc(NULL, GAL_TYPE_FLOAT64, 1, &npcrn, NULL, 0,
minmapsize, quietmmap, NULL, NULL, NULL);
/* Find outermost pixel coordinates of the input image. Cover two
corners at once to shorten the loop. */
x=pcrn->array; y=pcrn->next->array;
/* Top and bottom. */
ind=0;
for(i=is1+1; i--;)
{
x[ind]=i+0.5f; y[ind]=0.5f; ind++;
x[ind]=i+0.5f; y[ind]=is0+0.5f; ind++;
}
/* Left and right. */
for(i=is0-1; i--;)
{
x[ind]=0.5f; y[ind]=1.5f+i; ind++;
x[ind]=0.5f+is1; y[ind]=1.5f+i; ind++;
}
/* Sanity check: let's make sure we have correctly covered the input
perimeter. */
if(ind!=npcrn)
error(EXIT_FAILURE, 0, "%s: the input img perimeter of size <%zu> "
"is not covered correctly. Currently on ind <%zu>.", __func__,
npcrn, ind);
return pcrn;
}
/* Create a base image with WCS consisting of the basic geometry
keywords. */
static void
warp_wcsalign_init_output_from_params(gal_warp_wcsalign_t *wa)
{
/* Low level variables. */
size_t i, nkcoords, *osize;
gal_data_t *input=wa->input;
int quietmmap=input->quietmmap;
size_t minmapsize=input->minmapsize;
struct wcsprm *bwcs=NULL, *rwcs=NULL;
gal_data_t *kcoords=NULL, *pcrn=NULL, *converted=NULL;
double ocrpix[2], *xkcoords, *ykcoords, *x=NULL, *y=NULL;
double pmin[2]={DBL_MAX, DBL_MAX}, pmax[2]={-DBL_MAX, -DBL_MAX}, tmp;
/* Base WCS default parameters. */
double pc[4]={-1, 0, 0, 1};
double rcrpix[2]={1.0, 1.0};
char **ctype=wa->ctype->array;
struct wcsprm *iwcs=input->wcs;
double *cdelt=wa->cdelt->array;
double *center=wa->center->array;
/* High level variables. */
char *cunit[2]={iwcs->cunit[0], iwcs->cunit[1]};
/* Determine the output image size. */
size_t iminr=GAL_BLANK_SIZE_T, imaxr=GAL_BLANK_SIZE_T; /* indexs of */
size_t imind=GAL_BLANK_SIZE_T, imaxd=GAL_BLANK_SIZE_T; /* extreme-um */
double pminr=DBL_MAX, pmind=DBL_MAX, pmaxr=-DBL_MAX, pmaxd=-DBL_MAX;
/* Create the reference WCS. */
rwcs=gal_wcs_create(rcrpix, center, cdelt, pc, cunit, ctype, 2,
GAL_WCS_LINEAR_MATRIX_PC);
/* Calculate the outer boundary of the input. */
pcrn=warp_alloc_perimeter(input);
converted=gal_wcs_img_to_world(pcrn, iwcs, 0);
/* Get the minimum/maximum of the outer boundary. */
x=converted->array; y=converted->next->array;
for(i=converted->size; i--;)
{
if(x[i]<pminr) { pminr=x[i]; iminr=i; }
if(y[i]<pmind) { pmind=y[i]; imind=i; }
if(x[i]>pmaxr) { pmaxr=x[i]; imaxr=i; }
if(y[i]>pmaxd) { pmaxd=y[i]; imaxd=i; }
}
/* Prepare the key world coorinates and change to image coordinates
later. We are doing this to determine the CRPIX and NAXISi size for
the final image. */
nkcoords=5;
kcoords=gal_data_alloc(NULL, GAL_TYPE_FLOAT64, 1, &nkcoords, NULL, 0,
minmapsize, quietmmap, NULL, NULL, NULL);
kcoords->next=gal_data_alloc(NULL, GAL_TYPE_FLOAT64, 1, &nkcoords, NULL,
0, minmapsize, quietmmap, NULL, NULL, NULL);
xkcoords=kcoords->array; ykcoords=kcoords->next->array;
xkcoords[0]=x[iminr]; ykcoords[0]=y[iminr]; /* min RA */
xkcoords[1]=x[imaxr]; ykcoords[1]=y[imaxr]; /* max RA */
xkcoords[2]=x[imind]; ykcoords[2]=y[imind]; /* min Dec */
xkcoords[3]=x[imaxd]; ykcoords[3]=y[imaxd]; /* max Dec */
xkcoords[4]=center[0]; ykcoords[4]=center[1]; /* Image center */
/* Convert to pixel coords. */
gal_wcs_world_to_img(kcoords, rwcs, 1);
/* Determine output image size. */
if( wa->widthinpix )
osize=wa->widthinpix->array;
else
{
/* Automatic: the first four coordinates are the extreme-um RA/Dec. */
for(i=4; i--;)
{
pmin[0] = xkcoords[i] < pmin[0] ? xkcoords[i] : pmin[0];
pmin[1] = ykcoords[i] < pmin[1] ? ykcoords[i] : pmin[1];
pmax[0] = xkcoords[i] > pmax[0] ? xkcoords[i] : pmax[0];
pmax[1] = ykcoords[i] > pmax[1] ? ykcoords[i] : pmax[1];
}
/* Size must be odd so the image would have a center value. Also, the
indices are swapped since number of columns defines the horizontal
part of the center and vice versa. To calculate the output image
size, measure the difference between center and outermost edges of
the input image (in pixels). Since this is the distance from
center to the furthest edge of the image, the value must be
multiplied by two. */
osize=gal_pointer_allocate(GAL_TYPE_SIZE_T, 2, 0,
__func__, "osize");
tmp=2*fmax( fabs(ykcoords[4]-pmin[1]),
fabs(ykcoords[4]-pmax[1]) );
osize[0] = WARP_NEXT_ODD(tmp);
tmp=2*fmax( fabs(xkcoords[4]-pmin[0]),
fabs(xkcoords[4]-pmax[0]) );
osize[1] = WARP_NEXT_ODD(tmp);
}
/* Set the CRPIX value
Note: os1 is number of columns, so we use it to define CRPIX in the
horizontal axis, and vice versa. */
ocrpix[0]= 1.5f + osize[1]/2.0f - xkcoords[4];
ocrpix[1]= 1.5f + osize[0]/2.0f - ykcoords[4];
/* Create the base WCS. */
bwcs=gal_wcs_create(ocrpix, center, cdelt, pc, cunit,
ctype, 2, GAL_WCS_LINEAR_MATRIX_PC);
/* Make sure that the size is reasonable (i.e., less than 100000 pixels
on a side). This can happen when a wrong central coordinate is
requested. */
if(osize[0]>100000 || osize[1]>100000)
error(EXIT_SUCCESS, 0, "%s: the output image size (%zu x %zu pixels) "
"is unreasonably large. This may be due to a mistake in the "
"given central coordinate compared to the input image (the "
"given center is too far from the image)", __func__, osize[1],
osize[0]);
/* Create the output image dataset with the base WCS. */
wa->output=gal_data_alloc(NULL, GAL_TYPE_FLOAT64, 2, osize, bwcs, 0,
minmapsize, quietmmap,
GAL_WARP_OUTPUT_NAME_WARPED, NULL, NULL);
/* Clean up. */
wcsfree(bwcs);
wcsfree(rwcs);
gal_list_data_free(pcrn);
gal_list_data_free(kcoords);
gal_list_data_free(converted);
if(wa->widthinpix==NULL) free(osize);
/* Must be freed after wcsfree() is called! */
free(bwcs);
free(rwcs);
}
/* Initialize the vertices of each output pixel (accounting for any
edge-sampling). */
static void
warp_wcsalign_init_vertices(gal_warp_wcsalign_t *wa)
{
size_t es=wa->edgesampling;
size_t ind, i, j, ix, iy;
double gap=1.0f/(es+1.0f);
size_t os0=wa->output->dsize[0];
size_t os1=wa->output->dsize[1];
double *x=NULL, *y=NULL, row, col;
uint8_t quietmmap=wa->input->quietmmap;
size_t minmapsize=wa->input->minmapsize;
size_t nvcrn=es*os0;
size_t nhcrn=es*os1+os1+1;
size_t v0=WARP_WCSALIGN_V0(es,os0,os1);
size_t nvertices=nvcrn*(os1+1)+nhcrn*(os0+1);
/* Allocate the space for all the vertice coordinates. */
wa->vertices=gal_data_alloc(NULL, GAL_TYPE_FLOAT64, 1, &nvertices,
NULL, 0, minmapsize, quietmmap, NULL,
NULL, NULL);
wa->vertices->next=gal_data_alloc(NULL, GAL_TYPE_FLOAT64, 1, &nvertices,
NULL, 0, minmapsize, quietmmap,
NULL, NULL, NULL);
/* Parse all pixels. */
x=wa->vertices->array;
y=wa->vertices->next->array;
for(ind=os0*os1; ind--;)
{
/* For easy reading. */
row=ind%os1;
col=floor(ind/os1);
ix=WARP_WCSALIGN_H(ind,es,os1);
iy=WARP_WCSALIGN_V(ind,es,v0,os1);
/* Bottom left edge of pixel. */
x[ix]= 0.5f+row;
y[ix]= 0.5f+col;
for(i=es; i--;)
{
/* Horizontal */
j=ix+i+1;
x[j]=0.5f+row+gap+i*gap;
y[j]=0.5f+col;
/* Vertical */
j=iy+i;
x[j]=0.5f+row;
y[j]=0.5f+col+gap+i*gap;
}
}
/* Top */
for(i=nhcrn; i--;)
{
j=v0-nhcrn+i;
x[j]=0.5f+gap*i;
y[j]=0.5f+os0;
}
/* Right */
for(ind=os1-1; ind<os1*os0; ind+=os1)
{
/* For easy reading. */
row=(size_t)(ind%os1);
col=(size_t)(ind/os1);
ix=WARP_WCSALIGN_H(ind,es,os1);
iy=WARP_WCSALIGN_V(ind,es,v0,os1);
/* Bottom right */
j=ix+es+1;
x[j]=0.5f+os1;
y[j]=0.5f+col;
/* Right vertice */
for(i=es; i--;)
{
j=iy+es+i;
x[j]=0.5f+os1;
y[j]=0.5f+col+gap+i*gap;
}
}
/* For a check:
for(i=0;i<nvertices;++i)
printf("%zu: %f, %f\n", i, x[i], y[i]);
printf("%s: GOOD\n", __func__); exit(0);
*/
}
/* Check if the vertice orientation is clock-wise or counter-clock-wise. */
static void
warp_check_output_clockwise(gal_warp_wcsalign_t *wa)
{
size_t gcrn=wa->gcrn;
size_t es=wa->edgesampling;
double *vx=wa->vertices->array;
double *vy=wa->vertices->next->array;
size_t indices[4]={ 0, es+1, gcrn+es+1, gcrn };
double *temp=gal_pointer_allocate(GAL_TYPE_FLOAT64, 8, 0, __func__,
NULL);
temp[ 0 ]=vx[ indices[0] ]; temp[ 1 ]=vy[ indices[0] ];
temp[ 2 ]=vx[ indices[1] ]; temp[ 3 ]=vy[ indices[1] ];
temp[ 4 ]=vx[ indices[2] ]; temp[ 5 ]=vy[ indices[2] ];
temp[ 6 ]=vx[ indices[3] ]; temp[ 7 ]=vy[ indices[3] ];
wa->isccw=gal_polygon_is_counterclockwise(temp, 4);
/* Clean up. */
free(temp);
}
static double *
warp_pixel_perimeter_ccw(gal_warp_wcsalign_t *wa, size_t ind)
{
/* Low-level variables. */
size_t i, j, hor, ver, ic;
double *xcrn=NULL, *ycrn=NULL, *ocrn=NULL;
/* High-level variables. */
size_t v0=wa->v0;
size_t gcrn=wa->gcrn;
size_t ncrn=wa->ncrn;
size_t es=wa->edgesampling;
size_t os1=wa->output->dsize[1];
/* Set ocrn, the corners of each output pixel. */
xcrn=wa->vertices->array;
ycrn=wa->vertices->next->array;
ocrn=gal_pointer_allocate(GAL_TYPE_FLOAT64, (2*ncrn), 0, __func__,
"ocrn");
/* Index of surrounding vertices for this pixel. */
hor=WARP_WCSALIGN_H(ind, es, os1);
ver=WARP_WCSALIGN_V(ind, es, v0, os1);
/* All four corners
WARNING: this block of code highly depends on the ordering, take
extra care while refactoring
ocrn: all output edges transformed into the input image pixel
coordiantes
ic: index (position in array) of the current pixel edges
io: index of the output (reference) pixel edges
left edge -> +---------+ <- top edge
| |
| |
| |
bottom edge -> +---------+ <- right edge */
/* bottom left */
i=0;
j=hor;
ocrn[2*i]=xcrn[j]; ocrn[2*i+1]=ycrn[j];
/* bottom right */
i=es+1;
j=hor+es+1;
ocrn[2*i]=xcrn[j]; ocrn[2*i+1]=ycrn[j];
/* top right */
i=2*(es+1);
j=hor+es+1+gcrn;
ocrn[2*i]=xcrn[j]; ocrn[2*i+1]=ycrn[j];
/* top left */
i=3*(es+1);
j=hor+gcrn;
ocrn[2*i]=xcrn[j]; ocrn[2*i+1]=ycrn[j];
/* Sampling corners of the output pixel on the input image. */
for(i=es; i--;)
{
/* Bottom vertice: 0*(es+1)+(i+1) */
ic=i+1;
j=hor+i+1;
ocrn[2*ic]=xcrn[j]; ocrn[2*ic+1]=ycrn[j];
/* Right vertice: 1*(es+1)+(i+1) */
ic=i+2+es;
j=ver+es+i;
ocrn[2*ic]=xcrn[j]; ocrn[2*ic+1]=ycrn[j];
/* Top vertice: 2*(es+1)+(i+1) */
ic=i+3+2*es;
j=hor+es+gcrn-i;
ocrn[2*ic]=xcrn[j]; ocrn[2*ic+1]=ycrn[j];
/* Left vertice: 3*(es+1)+(i+1) */
ic=i+4+3*es;
j=ver+es-i-1;
ocrn[2*ic]=xcrn[j]; ocrn[2*ic+1]=ycrn[j];
}
return ocrn;
}
static double *
warp_pixel_perimeter_cw(gal_warp_wcsalign_t *wa, size_t ind)
{
size_t i, hor, ver, ic;
double *xcrn=NULL, *ycrn=NULL, *ocrn=NULL;
size_t gcrn=wa->gcrn;
size_t ncrn=wa->ncrn;
size_t es=wa->edgesampling;
size_t os1=wa->output->dsize[1];
/* High level variables. */
size_t v0=wa->v0;
/* Set ocrn, the corners of each output pixel. */
xcrn=wa->vertices->array;
ycrn=wa->vertices->next->array;
ocrn=gal_pointer_allocate(GAL_TYPE_FLOAT64, 2*ncrn, 0, __func__, "ocrn");
/* Index of surrounding vertices for this pixel. */
hor=WARP_WCSALIGN_H(ind, es, os1);
ver=WARP_WCSALIGN_V(ind, es, v0, os1);
/* All four corners: same as the counter clockwise method. */
/* top left <- previously bottom left */
i=0;
ocrn[ 2*i ]=xcrn[ hor+gcrn ]; /* xcrn[ hor ] */
ocrn[ 2*i+1 ]=ycrn[ hor+gcrn ]; /* ycrn[ hor ] */
/* top right <- previously bottom right */
i=es+1;
ocrn[ 2*i ]=xcrn[ hor+es+1+gcrn ]; /* xcrn[ hor+es+1 ] */
ocrn[ 2*i+1 ]=ycrn[ hor+es+1+gcrn ]; /* ycrn[ hor+es+1 ] */
/* bottom right <- previously top right */
i=2*(es+1);
ocrn[ 2*i ]=xcrn[ hor+es+1 ]; /* xcrn[ hor+es+1+gcrn ] */
ocrn[ 2*i+1 ]=ycrn[ hor+es+1 ]; /* ycrn[ hor+es+1+gcrn ] */
/* bottom left <- previously top left */
i=3*(es+1);
ocrn[ 2*i ]=xcrn[ hor ]; /* xcrn=[ hor+gcrn ] */
ocrn[ 2*i+1 ]=ycrn[ hor ]; /* ycrn=[ hor+gcrn ] */
/* Sampling corners of the output pixel on the input image. */
for(i=es; i--;)
{
/* top vertice 0*(es+1)+(i+1) <- previously bottom left */
ic=i+1;
ocrn[ 2*ic ]=xcrn[ hor+i+1+gcrn ]; /* xcrn=[ hor+i+1 ] */
ocrn[ 2*ic+1 ]=ycrn[ hor+i+1+gcrn ]; /* ycrn=[ hor+i+1 ] */
/* right vertice 1*(es+1)+(i+1) <- previously bottom right */
ic=i+2+es;
ocrn[ 2*ic ]=xcrn[ ver+2*es-1-i ]; /* xcrn[ ver+es+i ] */
ocrn[ 2*ic+1 ]=ycrn[ ver+2*es-1-i ]; /* ycrn[ ver+es+i ] */
/* bottom vertice 2*(es+1)+(i+1) <- previously top right */
ic=i+3+2*es;
ocrn[ 2*ic ]=xcrn[ hor+es-i ]; /* xcrn[ hor+es+gcrn-i ] */
ocrn[ 2*ic+1 ]=ycrn[ hor+es-i ]; /* ycrn[ hor+es+gcrn-i ] */
/* left vertice 3*(es+1)+(i+1) <- previously top left */
ic=i+4+3*es;
ocrn[ 2*ic ]=xcrn[ ver+i ]; /* xcrn[ ver+es-i-1 ] */
ocrn[ 2*ic+1 ]=ycrn[ ver+i ]; /* ycrn[ ver+es-i-1 ] */
}
return ocrn;
}
static void
warp_wcsalign_check_2d(gal_data_t *in, uint8_t type, const char *func,
char *name, char *comment)
{
if(!in)
error(EXIT_FAILURE, 0, "%s: no '%s' specified. %s", func,
name, comment);
if(in->size!=2)
error(EXIT_FAILURE, 0, "%s: '%s' takes exactly 2 values, currently "
"detected %zu values", func, name, in->size);
if(in->type!=type)
error(EXIT_FAILURE, 0, "%s: '%s' must have a type of '%s' but has "
"type '%s'", func, name, gal_type_name(type, 1),
gal_type_name(in->type, 1));
}
/* Create the output image using the WCS struct from the given 'gridfile'
and 'gridhdu'. */
static void
warp_wcsalign_init_output_from_wcs(gal_warp_wcsalign_t *wa,
const char *func)
{
gal_data_t *output=NULL;
int quietmmap=wa->input->quietmmap;
size_t *dsize=wa->widthinpix->array, minmapsize=wa->input->minmapsize;
/* Create the output image dataset with the target WCS given. */
output=gal_data_alloc(NULL, GAL_TYPE_FLOAT64, 2, dsize, wa->twcs, 0,
minmapsize, quietmmap, GAL_WARP_OUTPUT_NAME_WARPED,
NULL, NULL);
/* Write to wcsalign data type for later use. */
wa->output=output;
}
/* Check parameters for aligning and pixelarea. */
static void
warp_check_basic_params(gal_warp_wcsalign_t *wa, const char *func)
{
/* Check if input and 'wa' are not NULL! */
if(wa==NULL) error(EXIT_FAILURE, 0, "%s: 'wa' structure is NULL", func);
if(wa->input==NULL) error(EXIT_FAILURE, 0, "%s: input is NULL", func);
/* This function assumes the input is double precision. */
if(wa->input->type != GAL_TYPE_FLOAT64)
error(EXIT_FAILURE, 0, "%s: input must have a double precision "
"floating point type, but its type is '%s', you can use "
"'gal_data_copy_to_new_type' or "
"'gal_data_copy_to_new_type_free' for the conversion", func,
gal_type_name(wa->input->type, 1));
/* Check 'edgesampling', can't compare to '0' since it has meaning, can't
check if negative since it is an unsigned type. */
if(wa->edgesampling==GAL_BLANK_SIZE_T)
error(EXIT_FAILURE, 0, "%s: no 'edgesampling' specified. This is the "
"Order of samplings along each pixel edge", func);
if(wa->edgesampling>999)
error(EXIT_FAILURE, 0, "%s: edgesampling takes zero OR a positive "
"integer value of type 'size_t', <%zu> is too big which might "
"be a bad cast", func, wa->edgesampling);
/* If 'numthreads' is 0, use the number of threads available to the
system. */
if(wa->numthreads==GAL_BLANK_SIZE_T || wa->numthreads==0)
wa->numthreads=gal_threads_number();
/* Initialize the internal parameters. */
wa->vertices=NULL;
wa->isccw=GAL_BLANK_INT;
wa->v0=GAL_BLANK_SIZE_T;
wa->nhor=GAL_BLANK_SIZE_T;
wa->ncrn=GAL_BLANK_SIZE_T;
wa->gcrn=GAL_BLANK_SIZE_T;
}
static void
warp_wcsalign_init_internals(gal_warp_wcsalign_t *wa)
{
size_t es=wa->edgesampling;
size_t os0=wa->output->dsize[0];
size_t os1=wa->output->dsize[1];
/* Common variables to simplify next functions. */
wa->ncrn=4*es+4;
wa->gcrn=1+os1*(es+1);
wa->v0=WARP_WCSALIGN_V0(es, os0, os1);
/* Determine the output image rotation direction so we can sort the
indices in counter clockwise order. This is necessary for the
'gal_polygon_clip' function to work. */
warp_check_output_clockwise(wa);
}
static void *
warp_wcsalign_init_params(gal_warp_wcsalign_t *wa, const char *func)
{
size_t *tmp=NULL;
warp_check_basic_params(wa, func);
/* Check 'coveredfrac'. */
if(isnan( wa->coveredfrac ))
error(EXIT_FAILURE, 0, "%s: no 'coveredfrac' specified. This is the "
"acceptable fraction of output covered", func);
if(wa->coveredfrac<0.0f || wa->coveredfrac>1.0f)
error(EXIT_FAILURE, 0, "%s: coveredfrac takes exactly on positive "
"value less than or equal to 1.0, but it is given a value "
"of %f", func, wa->coveredfrac);
/* If a target WCS is given ignore other variables and initialize the
output image. */
if(wa->twcs)
{
/* Check the widthinpix element. */
warp_wcsalign_check_2d(wa->widthinpix, GAL_TYPE_SIZE_T, func,
"widthinpix", "This is the output image "
"size in pixels");
warp_wcsalign_init_output_from_wcs(wa, func);
/* Warp will ignore the following parameters, warn the user if
detected any. */
if(wa->cdelt || wa->center || wa->ctype)
error(EXIT_SUCCESS, 0, "%s: WARNING: target WCS is already "
"defined with 'gridfile' and 'gridhdu', ignoring extra "
"non-linear parameter(s) given", func);
return NULL;
}
/* No 'gridfile' given, Warp must create the output WCS using given
parameters. Proceed with checking the 2D input parameters. */
warp_wcsalign_check_2d(wa->ctype, GAL_TYPE_STRING, func, "ctype",
"Any pair of valid WCSLIB ctype is "
"allowed, e.g. 'RA---TAN, DEC--TAN'");
warp_wcsalign_check_2d(wa->cdelt, GAL_TYPE_FLOAT64, func, "cdelt",
"This is the pixel scale in degrees");
warp_wcsalign_check_2d(wa->center, GAL_TYPE_FLOAT64, func, "center",
"This is the output image center in degrees");
/* Check 'widthinpix', it can be null for automatic detection. */
if(wa->widthinpix)
{
warp_wcsalign_check_2d(wa->widthinpix, GAL_TYPE_SIZE_T, func,
"widthinpix", "This is the output "
"image size");
tmp=wa->widthinpix->array;
if(tmp[0]%2==0 || tmp[1]%2==0)
error(EXIT_FAILURE, 0, "%s: 'widthinpix' takes exactly 2 ODD "
"values, detected EVEN value in %zux%zu", func, tmp[0],
tmp[1]);
}
/* Initialize the output image for further processing. */
warp_wcsalign_init_output_from_params(wa);
return NULL;
}
/* Convert the necessary vertice coordinates. */
static void *
warp_wcsalign_init_convert(void *in_prm)
{
/* Low-level definitions to be done first. */
struct gal_threads_params *tprm=(struct gal_threads_params *)in_prm;
gal_warp_wcsalign_t *wa = (gal_warp_wcsalign_t *)tprm->params;
/* Higher-level variables. */
gal_data_t *vertices=NULL;
double *xarr=wa->vertices->array;
int quietmmap=wa->vertices->quietmmap;
double *yarr=wa->vertices->next->array;
size_t minmapsize=wa->vertices->minmapsize;
size_t first, size, nt=wa->numthreads, vsize=wa->vertices->size;
/* WCSLIB's conversion functions write intermediate processing steps in
the 'wcsprm', so each thread should use its own copy. */
struct wcsprm *iwcs=gal_wcs_copy(wa->input->wcs);
struct wcsprm *owcs=gal_wcs_copy(wa->output->wcs);
/* Find the first vertice index to use in this thread. For the last
thread, the size will not be pre-defined. */
size = vsize/nt;
first = vsize/nt*tprm->id;
if(tprm->id==nt-1 && nt>1) size=vsize-(nt-1)*size;
/* For a check:
printf("%s: thread-%zu: %zu, %zu\n", __func__,
tprm->id, first, size);
*/
/* Allocate the non-allocated vertices table for this thread. */
gal_list_data_add_alloc(&vertices, xarr+first, GAL_TYPE_FLOAT64,
1, &size, NULL, 0, minmapsize, quietmmap,
NULL, NULL, NULL);
gal_list_data_add_alloc(&vertices, yarr+first, GAL_TYPE_FLOAT64,
1, &size, NULL, 0, minmapsize, quietmmap,
NULL, NULL, NULL);
gal_list_data_reverse(&vertices); /* '_add' is last-in-first-out. */
/* Convert the coordinates. */
gal_wcs_img_to_world(vertices, owcs, 1);
gal_wcs_world_to_img(vertices, iwcs, 1);
/* Clean up: since the 'array' pointer is within a larger allocated
array, we shouldn't free it when freeing the table, so we'll set it to
NULL. */
vertices->array=vertices->next->array=NULL;
gal_list_data_free(vertices);
gal_wcs_free(iwcs);
gal_wcs_free(owcs);
/* Wait for all the other threads to finish, then return. */
if(tprm->b) pthread_barrier_wait(tprm->b);
return NULL;
}
/* Determine the final image size and allocate the output array
accordingly.
'is0' indicates number of rows available in the input fits image,
while 'is1' indicates nummber of columns. The same goes for 'os0'
and 'os1'. See the following figure:
+------------------------+
/ | |
| | N |
| | ^ |
| | | |
is0 < | | |
| | E <-----+ |
| | |
| | input image |
\ | |
+------------------------+
\__________ ___________/
v
is1
NOTE: please keep in mind that dsize[1] is NAXIS1 and dsize[0] is
NAXIS2 in FITS format.
In preparations, 'pcrn' is of type 'gal_data_t' linked lists. The
first list holds RA coords, and the next is Dec coords. This
variable is filled with the outer-most pixel coordinates. The
purpose of this variable is to hold the min and max RA and Dec
coordinates 'temporarily', so we can determine the output image size
later.
nhcrn and nvcrn:
'nhcrn' stands for number of horizontal corners, and similarly
'nvcrn' stands for number of vertical corners. Note that number of
'corners' is different from number of 'pixels'. Each pixel has many
corners.
Also bear in mind, to keep from counting repeated corners on the
image edges, we let the horizontal corners devour the first and
last vertical corners. See the following figure:
hc6 hc7 hc8 hc9 hc10
+-----+-----+-----+-----+
/ | |
| | img: 4x3 |
| x vc2 x vc4
is0=3 | | N |
| | ^ |
| x vc1 | x vc3
| | E <---+ |
\ | |
+-----+-----+-----+-----+
hc1 hc2 hc3 hc4 hc5
\_____________________/
is1=4
In the example above, for an image of 4x3, there will be 5
horizontal and 2 vertical corners in each axis, hence we would have
10 horizontal and 4 vertical corners: 'nhcrn=2*(is1+1)' and
'nvcrn=2*(is0-1)'. The total number of corners will be:
'nhcrn+nvcrn=2*(is0-1)+2*(is1+1)=2*(is0+is1)=2*(4+3)=14'.
After finding out the min and max RA and Decs, the 'pcrn' is
projected back to pixel coordinates.
*/
void
gal_warp_wcsalign_init(gal_warp_wcsalign_t *wa)
{
gal_data_t *output=NULL;
int quietmmap=wa->input->quietmmap;
size_t minmapsize=wa->input->minmapsize, *dsize=NULL;
/* Run a sanity check on the input parameters and initialize the output
image. */
warp_wcsalign_init_params(wa, __func__);
/* Create the check maximum fraction covered dataset if asked to. */
output=wa->output;
dsize=output->dsize;
if(wa->checkmaxfrac)
output->next=gal_data_alloc(NULL, GAL_TYPE_FLOAT64, 2, dsize, wa->twcs,
0, minmapsize, quietmmap,
GAL_WARP_OUTPUT_NAME_MAXFRAC, NULL, NULL);
/* Set up the output image corners in pixel coords. */
warp_wcsalign_init_vertices(wa);
/* Project the output image corners to the input image pixel coords. We
only want one job per thread, so the number of jobs and the number of
threads are the same. */
gal_threads_spin_off(warp_wcsalign_init_convert, wa, wa->output->size,
wa->numthreads, wa->input->minmapsize,
wa->input->quietmmap);
/* Now that the output image is ready, initialize the helper internal
variables for future processing. */
warp_wcsalign_init_internals(wa);
}
void
gal_warp_wcsalign_onpix(gal_warp_wcsalign_t *wa, size_t ind)
{
size_t ic, temp, numinput=0;
gal_data_t *input=wa->input;
gal_data_t *output=wa->output;
double xmin, xmax, ymin, ymax;
long xstart, ystart, xend, yend, x, y; /* Might be negative */
double filledarea, v, *ocrn=NULL, pcrn[8], opixarea;
size_t numcrn=0;
size_t ncrn=wa->ncrn;
size_t is0=input->dsize[0];
size_t is1=input->dsize[1];
double *inputarr=input->array;
double *outputarr=output->array;
double ccrn[GAL_POLYGON_MAX_CORNERS], area;
double *maxfrac=output->next ? output->next->array : NULL;
/* Initialize if asked for each pixel's maximum coverage fraction. */
if(maxfrac) maxfrac[ind]=-DBL_MAX;
/* Initialize the output pixel value: */
outputarr[ind] = filledarea = 0.0f;
if( wa->isccw==1 )
ocrn=warp_pixel_perimeter_cw(wa, ind);
else if( wa->isccw==0 )
ocrn=warp_pixel_perimeter_ccw(wa, ind);
else
error(EXIT_FAILURE, 0, "a bug! the code %d is not recognized as "
"a valid rotation orientation in "
"'gal_polygon_is_counterclockwise', this is not your fault, "
"something in the programming has gone wrong. Please contact "
"us at %s so we can correct it", wa->isccw, PACKAGE_BUGREPORT);
/* Find overlapping pixels. */
xmin = DBL_MAX; ymin = DBL_MAX;
xmax = -DBL_MAX; ymax = -DBL_MAX;
for(ic=ncrn; ic--;)
{
temp=ic*2;
if(xmin > ocrn[ temp ]) { xmin = ocrn[ temp ]; }
if(xmax < ocrn[ temp ]) { xmax = ocrn[ temp ]; }
if(ymin > ocrn[ temp+1 ]) { ymin = ocrn[ temp+1 ]; }
if(ymax < ocrn[ temp+1 ]) { ymax = ocrn[ temp+1 ]; }
}
/* Start and end in both dimensions. */
xstart = GAL_DIMENSION_NEARESTINT_HALFHIGHER( xmin );
ystart = GAL_DIMENSION_NEARESTINT_HALFHIGHER( ymin );
xend = GAL_DIMENSION_NEARESTINT_HALFLOWER( xmax ) + 1;
yend = GAL_DIMENSION_NEARESTINT_HALFLOWER( ymax ) + 1;
/* Check which input pixels we are covering. */
for(y=ystart;y<yend;++y)
{
/* If the pixel isn't in the image (note that the pixel
coordinates start from 1), skip this pixel. */
if( y<1 || y>is0 ) continue;
/* Y of base pixel vertices, in pixel coords. */
pcrn[1]=y-0.5f; pcrn[3]=y-0.5f;
pcrn[5]=y+0.5f; pcrn[7]=y+0.5f;
for(x=xstart;x<xend;++x)
{
if( x<1 || x>is1 ) continue;
/* X of base pixel vertices, in pixel coords. */
pcrn[0]=x-0.5f; pcrn[2]=x+0.5f;
pcrn[4]=x+0.5f; pcrn[6]=x-0.5f;
/* Read the value of the input pixel. */
v=inputarr[(y-1)*is1+x-1];
/* Find the overlapping (clipped) polygon and its area.
In theory, instead of 'gal_polygon_area_flat', we should be
using the spherical polygon area ('gal_polygon_area_flat').
But the area that is calculate here is not used in an absolute
sense: it is only relative for comparison with other input
pixels that overlap with this output pixel. Therefore, because
the flat area calculation is faster, we'll suffice to that
unless we discover there is any problem with it. */
numcrn=0; /* initialize it. */
gal_polygon_clip(ocrn, ncrn, pcrn, 4, ccrn, &numcrn);
area=gal_polygon_area_flat(ccrn, numcrn);
/* Write each pixel's maximum coverage fraction if asked. */
if( maxfrac ) maxfrac[ind] = fmax(area, maxfrac[ind]);
/* Add the fractional value of this pixel. If this output
pixel covers a NaN pixel in the input grid, then
calculate the area of this NaN pixel to account for it
later. */
if( !isnan(v) )
{
numinput+=1;
filledarea+=area;
outputarr[ind]+=v*area;
/* Check
printf("Check: numinput %zu filledarea %f "
"outputarr[%zu]=%f\n",
filledarea, ind, outputarr[ind]);
*/
}
}
}
/* Replace untouched pixels with NAN in the 'maxfrac' array. */
if( maxfrac && maxfrac[ind]==-DBL_MAX ) maxfrac[ind]=NAN;
/* See if the pixel value should be set to NaN or not (because of not
enough coverage). Note that 'ocrn' is sorted in anti-clockwise order
already. For a description of why we are not using
'gal_polygon_area_sky', see the comment above the previous call to
'gal_polygon_area_flat' above. */
opixarea=gal_polygon_area_flat(ocrn, ncrn);
if( numinput && filledarea/opixarea < wa->coveredfrac-1e-5)
numinput=0;
/* Write the final value and return. */
if( numinput==0 ) outputarr[ind]=NAN;
/* Clean up. */
free(ocrn);
}
void *
gal_warp_wcsalign_onthread(void *inparam)
{
size_t i, ind;
struct gal_threads_params *tprm=(struct gal_threads_params *)inparam;
gal_warp_wcsalign_t *wa=(gal_warp_wcsalign_t *)tprm->params;
/* Loop over pixels given from the 'warp' function. */
for(i=0; tprm->indexs[i] != GAL_BLANK_SIZE_T; ++i)
{
ind=tprm->indexs[i];
gal_warp_wcsalign_onpix(wa, ind);
}
/* Wait for all the other threads to finish, then return. */
if(tprm->b) { pthread_barrier_wait(tprm->b); }
return NULL;
}
/* Helper function that returns an empty set of the wcsalign data structure
to prevent using uninitialized variables without warnings. Please note
if you are not using this template to set 'gal_warp_wcsalign_t' values,
you MUST pass NULL to unused pointers at least. */
gal_warp_wcsalign_t
gal_warp_wcsalign_template()
{
gal_warp_wcsalign_t wa;
/* Initialize pointers with NULL. */
wa.twcs=NULL;
wa.cdelt=NULL;
wa.ctype=NULL;
wa.input=NULL;
wa.center=NULL;
wa.output=NULL;
wa.vertices=NULL;
wa.widthinpix=NULL;
/* Initialize values. */
wa.checkmaxfrac=0;
wa.isccw=GAL_BLANK_INT;
wa.v0=GAL_BLANK_SIZE_T;
wa.gcrn=GAL_BLANK_SIZE_T;
wa.ncrn=GAL_BLANK_SIZE_T;
wa.nhor=GAL_BLANK_SIZE_T;
wa.numthreads=GAL_BLANK_SIZE_T;
wa.coveredfrac=GAL_BLANK_FLOAT64;
wa.edgesampling=GAL_BLANK_SIZE_T;
return wa;
}
/* Clean up the internally allocated variables from the 'wa' struct. */
void
gal_warp_wcsalign_free(gal_warp_wcsalign_t *wa)
{
gal_list_data_free(wa->vertices);
wa->vertices=NULL;
}
/* Finalize the output 'gal_data_t' image in 'wa->output'. */
void
gal_warp_wcsalign(gal_warp_wcsalign_t *wa)
{
/* Calculate and allocate the output image size and WCS. */
gal_warp_wcsalign_init(wa);
/* Fill the output image. */
gal_threads_spin_off(gal_warp_wcsalign_onthread, wa, wa->output->size,
wa->numthreads, wa->input->minmapsize,
wa->input->quietmmap);
/* Clean up the internally allocated variables. */
gal_warp_wcsalign_free(wa);
}
static void *
warp_pixelarea_onthread(void *inparam)
{
/* Thread variables. */
struct gal_threads_params *tprm=(struct gal_threads_params *)inparam;
gal_warp_wcsalign_t *wa=(gal_warp_wcsalign_t *)tprm->params;
/* Low-level variables. */
size_t i, ind;
double area, *ocrn=NULL, *outputarr=wa->output->array;
double *(*warp_pixel_perimeter)(gal_warp_wcsalign_t *, size_t)=NULL;
/* Call the correct function based on the output image orientation. */
if( wa->isccw==1 )
warp_pixel_perimeter=warp_pixel_perimeter_cw;
else if( wa->isccw==0 )
warp_pixel_perimeter=warp_pixel_perimeter_ccw;
else
error(EXIT_FAILURE, 0, "a bug! the code %d is not recognized as "
"a valid rotation orientation in "
"'gal_polygon_is_counterclockwise', this is not your fault, "
"something in the programming has gone wrong. Please contact "
"us at %s so we can correct it", wa->isccw, PACKAGE_BUGREPORT);
/* Loop over pixels given from the 'warp' function. */
for(i=0; tprm->indexs[i] != GAL_BLANK_SIZE_T; ++i)
{
/* Pixel to use. */
ind=tprm->indexs[i];
/* Fix the vertice ordering, crucial for calculating the area. */
ocrn=warp_pixel_perimeter(wa, ind);
/* Now that the vertices are in CCW order, calculate the area. */
area=gal_polygon_area_sky(ocrn, wa->ncrn);
outputarr[ind]=area;
/* Clean up the allocated array. */
free(ocrn);
}
/* Wait for all the other threads to finish, then return. */
if(tprm->b) { pthread_barrier_wait(tprm->b); }
return NULL;
}
/* Calculate input pixel area covering the sky and write it to output. This
function has a debugging nature and is not used through the aligning
process. */
void
gal_warp_pixelarea(gal_warp_wcsalign_t *wa)
{
struct wcsprm *wcs;
gal_data_t *input=wa->input;
double crval[2]={180.0f,0.0f};
/* Basic sanity check. */
warp_check_basic_params(wa, __func__);
/* Create the output dataset. */
wa->output=gal_data_alloc(NULL, GAL_TYPE_FLOAT64, input->ndim,
input->dsize, input->wcs, 0,
input->minmapsize, input->quietmmap,
"PIX-AREA", NULL, NULL);
/* Create the vertices based on the edgesampling value. */
warp_wcsalign_init_vertices(wa);
warp_wcsalign_init_internals(wa);
/* For a check (before conversion).
size_t i;
double *x=wa->vertices->array;
double *y=wa->vertices->next->array;
for(i=0;i<wa->vertices->size;++i)
printf("%-20.15f %-20.15f\n", x[i], y[i]);
*/
/* Change the CRVALs to be on 0 and 180 (this helps to avoid issues with
an image passing the RA=0.0, or high declination problems. */
wcs=gal_wcs_copy_new_crval(input->wcs, crval);
/* Convert the output pixel-coordinate vertices to WCS and free the
temporary WCS. */
gal_wcs_img_to_world(wa->vertices, wcs, 1);
gal_wcs_free(wcs);
/* For a check (after conversion).
size_t j;
double *ra=wa->vertices->array;
double *dec=wa->vertices->next->array;
for(j=0;j<wa->vertices->size;++j)
printf("%-20.15f %-20.15f\n", ra[j], dec[j]);
*/
/* Calculate pixel area on WCS and write to output. */
gal_threads_spin_off(warp_pixelarea_onthread, wa, wa->output->size,
wa->numthreads, input->minmapsize,
input->quietmmap);
/* Clean up. */
gal_warp_wcsalign_free(wa);
}
|