File: mec.c

package info (click to toggle)
gnubg 1.08.003-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 30,308 kB
  • sloc: ansic: 104,162; xml: 15,451; sh: 5,292; pascal: 820; yacc: 700; makefile: 586; python: 538; lex: 286; sql: 236; awk: 26
file content (505 lines) | stat: -rw-r--r-- 15,050 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
/*
 * mec - match equity calculator for backgammon. calculate equity table
 * given match length, gammon rate and winning probabilities.
 *
 * Copyright (C) 1996 Claes Tornberg <claest@it.kth.se>
 * Copyright (C) 2004-2013 the AUTHORS
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 *
 *
 * Modified for usage with GNUbg by Joern Thyssen <jth@gnubg.org>:
 *
 * (1) make external entry for usage in GNUbg
 * (2) change "double" to "metentry", and typedef metentry to float
 *     or double depending on MEC_STANDALONE
 * (3) Compile with MEC_STANDALONE to get Tornberg's original program, e.g.,
 *
 *     gcc -DMEC_STANDALONE mec.c -o mec
 *
 * $Id: mec.c,v 1.11 2019/04/27 17:24:56 plm Exp $
 */

#include "config.h"
#include <stdio.h>
#include <stdlib.h>

#ifndef MEC_STANDALONE
#include "mec.h"
#endif

struct dp {
    double e;
    double w;
};

typedef struct dp dp;

static void post_crawford(double, double, int, double **, double, double);

static void crawford(double, double, int, double **);

static void pre_crawford(double, double, int, double **);

static dp dpt(int, int, int, double, double, double **);

/*
 * Arguments are (in this order):
 * match length
 * gammon rate
 * winning percentage (favorite)
 */

#ifdef MEC_STANDALONE

int
main(int argc, char **argv)
{
    /* match length */

    int ml = argc > 1 ? atoi(argv[1]) : 9;

    /* gammon rate, i.e. how many of games won/lost will be gammons */

    double gr = argc > 2 ? atof(argv[2]) : 0;

    /* Here one could argue for different approaches.  Does the underdog
     * in match (current score) have different gammon rate.  Or does the
     * underdog in match (equity at current score) have different gammon
     * rate.  This could be solved, but for now, we assume same rates. */

    /* winning percentage for favorite in one game.  NB: when one player
     * is favorite, there is no symmetry in the equity table! I.e.
     * E[i][1] = 1 - E[1][i] doesn't necessarily hold.  This figure must
     * be higher than or equal to .5, i.e. 50% */

    double wpf = argc > 3 ? atof(argv[3]) : 0.5;

    /* Equity chart, E[p][o] = equity for p when p is p away, and o is o away.
     * If there is a game favorite, i.e. wpf > 0.5, p above is considered
     * to be the favorite in each game.  For now we also assume no free drop
     * vigourish.  This will only affect the computation of post-Crawford
     * equities, and is quite easy to correct.  */

    double **E = (double **) malloc((ml + 1) * sizeof(double *));

    double *ec = (double *) calloc((ml + 1) * (ml + 1), sizeof(double));

    {
        int i;

        /* Initialize E to point to correct positions */

        for (i = 0; i <= ml; i++) {
            E[i] = &ec[i * (ml + 1)];
        }

        /* Initialize E for 0-away scores */

        for (i = 1; i <= ml; i++) {
            E[0][i] = 1;
            E[i][0] = 0;
        }
    }

    /* Compute post-Crawford equities, given gammon rate, winning percentage
     * for favorite (game), match length.  Fill in the equity table. */

    post_crawford(gr, wpf, ml, E, 0.0, 0.0);

    {
        int i;
        printf("Post-Crawford:\n");
        for (i = 1; i < ml; ++i)
            printf("%6.3f", E[i][1]);
        printf("\n");
        for (i = 1; i < ml; ++i)
            printf("%6.3f", E[1][i]);
        printf("\n");
    }


    /* Compute Crawford equities, given gammon rate, winning percentage
     * for favorite (game), match length, and post-Crawford equities.
     * Fill in the table. */

    crawford(gr, wpf, ml, E);

    /* Compute pre-Crawford equities,  given gammon rate, winning percentage
     * for favorite (game), match length, and Crawford equities.
     * Fill in the table. */

    pre_crawford(gr, wpf, ml, E);

    /* Print the equity table.  Nothing fancy. */

    {
        int i, j;

        printf("Gammon rate %5.4f\n" "Winning %%   %5.4f\n\n", gr, wpf);


        printf("%3s", "");

        for (i = 1; i <= ml; i++) {
            printf("%6d", i);
        }

        printf("\n");

        for (i = 1; i <= ml; i++) {
            printf("%3d", i);
            for (j = 1; j <= ml; j++)
                printf("%6.3f", E[i][j]);
            printf("\n");
        }
    }

    free(ec);
    free(E);
}

#else                           /* MEC_STANDALONE */

extern void
mec_pc(const float rGammonRate,
       const float rFreeDrop2Away, const float rFreeDrop4Away, const float rWinRate, float arMetPC[MAXSCORE])
{

    unsigned int i;

    /* match length */

    const unsigned int ml = 64;

    /* gammon rate, i.e. how many of games won/lost will be gammons */

    double gr = rGammonRate;

    /* Here one could argue for different approaches.  Does the underdog
     * in match (current score) have different gammon rate.  Or does the
     * underdog in match (equity at current score) have different gammon
     * rate.  This could be solved, but for now, we assume same rates. */

    /* winning percentage for favorite in one game.  NB: when one player
     * is favorite, there is no symmetry in the equity table! I.e.
     * E[i][1] = 1 - E[1][i] doesn't necessarily hold.  This figure must
     * be higher than or equal to .5, i.e. 50% */

    double wpf = rWinRate;

    /* Equity chart, E[p][o] = equity for p when p is p away, and o is o away.
     * If there is a game favorite, i.e. wpf > 0.5, p above is considered
     * to be the favorite in each game.  For now we also assume no free drop
     * vigourish.  This will only affect the computation of post-Crawford
     * equities, and is quite easy to correct.  */

    double **E = (double **) malloc((ml + 1) * sizeof(double *));

    double *ec = (double *) calloc((ml + 1) * (ml + 1), sizeof(double));

    if (!E || !ec)
        exit(-1);               /* We're in trouble... */

    {

        /* Initialize E to point to correct positions */

        for (i = 0; i <= ml; i++) {
            E[i] = &ec[i * (ml + 1)];
        }

        /* Initialize E for 0-away scores */

        for (i = 1; i <= ml; i++) {
            E[0][i] = 1;
            E[i][0] = 0;
        }
    }

    /* Compute post-Crawford equities, given gammon rate, winning percentage
     * for favorite (game), match length.  Fill in the equity table. */

    post_crawford(gr, wpf, ml, E, (double) rFreeDrop2Away, (double) rFreeDrop4Away);

    /* save post Crawford equities */

    for (i = 0; i < ml; ++i)
        arMetPC[i] = (float) E[i + 1][1];

    /* garbage collect */

    free(ec);
    free(E);
}


extern void
mec(const float rGammonRate, const float rWinRate,
    /* const *//*lint -e{818} */ float aarMetPC[2][MAXSCORE],
    float aarMet[MAXSCORE][MAXSCORE])
{

    unsigned int i, j;

    /* match length */

    const unsigned int ml = 64;

    /* gammon rate, i.e. how many of games won/lost will be gammons */

    double gr = rGammonRate;

    /* Here one could argue for different approaches.  Does the underdog
     * in match (current score) have different gammon rate.  Or does the
     * underdog in match (equity at current score) have different gammon
     * rate.  This could be solved, but for now, we assume same rates. */

    /* winning percentage for favorite in one game.  NB: when one player
     * is favorite, there is no symmetry in the equity table! I.e.
     * E[i][1] = 1 - E[1][i] doesn't necessarily hold.  This figure must
     * be higher than or equal to .5, i.e. 50% */

    double wpf = rWinRate;

    /* Equity chart, E[p][o] = equity for p when p is p away, and o is o away.
     * If there is a game favorite, i.e. wpf > 0.5, p above is considered
     * to be the favorite in each game.  For now we also assume no free drop
     * vigourish.  This will only affect the computation of post-Crawford
     * equities, and is quite easy to correct.  */

    double **E = (double **) malloc((ml + 1) * sizeof(double *));

    double *ec = (double *) calloc((ml + 1) * (ml + 1), sizeof(double));

    if (!E || !ec)
        exit(-1);               /* We're in trouble... */

    {

        /* Initialize E to point to correct positions */

        for (i = 0; i <= ml; i++) {
            E[i] = &ec[i * (ml + 1)];
        }

        /* Initialize E for 0-away scores */

        for (i = 1; i <= ml; i++) {
            E[0][i] = 1;
            E[i][0] = 0;
        }
    }

    /* Compute post-Crawford equities, given gammon rate, winning percentage
     * for favorite (game), match length.  Fill in the equity table. */

    for (i = 0; i < ml; ++i)
        E[i + 1][1] = aarMetPC[0][i];

    for (i = 0; i < ml; ++i)
        E[1][i + 1] = 1.0 - (double)aarMetPC[1][i];

    /* Compute Crawford equities, given gammon rate, winning percentage
     * for favorite (game), match length, and post-Crawford equities.
     * Fill in the table. */

    crawford(gr, wpf, ml, E);

    /* Compute pre-Crawford equities,  given gammon rate, winning percentage
     * for favorite (game), match length, and Crawford equities.
     * Fill in the table. */

    pre_crawford(gr, wpf, ml, E);

    /* save the match equiy table */

    for (i = 0; i < ml; ++i)
        for (j = 0; j < ml; ++j)
            aarMet[i][j] = (float) E[i + 1][j + 1];

    /* garbage collect */

    free(ec);
    free(E);
}

#endif                          /* ! MEC_STANDALONE */

/* If last bit is zero, then x is even. */
#define even(x)	(((x)&0x1)==0)

/* sq returns x if x is greater than zero, else it returns zero. */
#define sq(x) ((x)>0?(x):0)

static void
post_crawford(double gr, double wpf, int ml, /*lint -e{818} */ double **E,
              double fd2, double fd4)
{
    int i;

    E[1][1] = wpf;

    for (i = 2; i <= ml; i++) {
        if (even(i)) {
            /* Free drop condition exists */
            E[1][i] = E[1][i - 1];
            E[i][1] = E[i - 1][1];
            /* jth: add empirical values for free drop */
            if (i == 2) {
                /* 2-away */
                E[1][i] += fd2;
                E[i][1] -= fd2;
            } else if (i == 4) {
                /* 4-away */
                E[1][i] += fd4;
                E[i][1] += fd4;
            }
        } else {
            E[1][i] =           /* Equity for favorite when 1-away, i-away */
                E[0][i] * wpf   /* Favorite wins */
                + E[1][sq(i - 2)] * (1 - wpf) * (1 - gr)        /* Favorite loses single */
                +E[1][sq(i - 4)] * (1 - wpf) * gr;      /* Favorite loses gammon */

            E[i][1] =           /* Equity for favorite when i-away, 1-away */
                E[i][0] * (1 - wpf)     /* Favorite loses */
                +E[sq(i - 2)][1] * wpf * (1 - gr)       /* Favorite wins single */
                +E[sq(i - 4)][1] * wpf * gr;    /* Favorite wins gammon */
        }
    }
}

static void
crawford(double gr, double wpf, int ml, /*lint -e{818} */ double **E)
{
    int i;

    /* Compute Crawford equities.  Do this backwards, since
     * we overwrite post-Crawford equities with Crawford equities.
     * In this way we only overwrite equities no longer needed. */

    for (i = ml; i >= 2; i--) {
        E[1][i] =               /* Equity for favorite when 1-away,i-away */
            E[0][i] * wpf       /* Favorite wins */
            + E[1][i - 1] * (1 - wpf) * (1 - gr)        /* Favorite loses single */
            +E[1][i - 2] * (1 - wpf) * gr;      /* Favorite loses gammon */

        E[i][1] =               /* Equity for favorite when i-away, 1-away */
            E[i][0] * (1 - wpf) /* Favorite loses */
            +E[i - 1][1] * wpf * (1 - gr)       /* Favorite wins single */
            +E[i - 2][1] * wpf * gr;    /* Favorite wins gammon */
    }
}

static void
pre_crawford(double gr, double wpf, int ml, double **E)
{
    int i, j;
    dp dpf, dpu;
    double eq;

    for (i = 2; i <= ml; i++)
        for (j = i; j <= ml; j++) {
            dpf = dpt(i, j, 2, gr, wpf, E);
            dpu = dpt(j, i, 2, gr, 1 - wpf, E);

            dpu.e = 1 - dpu.e;
            dpu.w = 1 - dpu.w;

            eq = dpu.e + (dpf.e - dpu.e) * (wpf - dpu.w) / (dpf.w - dpu.w);

            E[i][j] = eq;

            if (i != j) {
                dpf = dpt(j, i, 2, gr, wpf, E);
                dpu = dpt(i, j, 2, gr, 1 - wpf, E);

                dpu.e = 1 - dpu.e;
                dpu.w = 1 - dpu.w;

                eq = dpu.e + (dpf.e - dpu.e) * (wpf - dpu.w) / (dpf.w - dpu.w);

                E[j][i] = eq;
            }
        }
}

/* Compute point when p doubles o to c, assuming gammon rate gr,
 * p wins wpp % of games, and equities E for favorite.  At this
 * point o does equally well passing the double as taking it. */

static dp
dpt(int p, int o, int c, double gr, double wpp, double **E)
{
    dp dpo, dpp;
    double e0, edp, wdp;

    if (p <= c / 2) {
        /* No reason for p to double o, since a single win
         * is enough to win the match. */

        dpp.e = 1;
        dpp.w = 1;
        return dpp;
    }

    /* p might double o to c since he needs more than a single
     * game to win the match. */

    /* Find out when o (re)doubles p to 2*c */

    dpo = dpt(o, p, 2 * c, gr, 1 - wpp, E);

    /* Find out equity for o if p does well and wins
     * all games here (assuming no recube from o), i.e.
     * o loses all games sitting on a c-cube. */

    if (wpp > 0.5) {
        /* o isn't game favorite, equity for o at o-away x-away is 1 - E[x][o]. */

        e0 = (1 - E[sq(p - c)][o]) * (1 - gr)
            + (1 - E[sq(p - 2 * c)][o]) * gr;
    } else {
        /* o is game favorite, equity for o at o-away x-away is E[o][x]. */

        e0 = E[o][sq(p - c)] * (1 - gr)
            + E[o][sq(p - 2 * c)] * gr;
    }

    /* Find out o:s equity if o passes the double to c, i.e. loses c / 2 points. */

    if (wpp > 0.5) {
        /* o isn't game favorite, equity for o at o-away x-away is 1 - E[x][o]. */

        edp = 1 - E[sq(p - c / 2)][o];
    } else {
        /* o is game favorite, equity for o at o-away x-away is E[o][x]. */

        edp = E[o][sq(p - c / 2)];
    }

    /* Find the winning percentage, which on the line from
     * (w0?,e0) to (dpo.w,dpo.e) gives o an equity equal to O's
     * equity  passing the double to c (i.e. losing c / 2 pts) */

    wdp = (edp - e0) * dpo.w / (dpo.e - e0);

    /* Now we know when p should double o, expressed as
     * winning percentage and equity for o.  Return this
     * expressed in figures for p */

    dpp.e = 1 - edp;
    dpp.w = 1 - wdp;
    return dpp;
}