1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
|
/* Copyright (C) 2018 Felix Salfelder
* Author: Felix Salfelder <felix@salfelder.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*------------------------------------------------------------------
*/
%module(directors="0", allprotected="1") u_sim_data
%{
#include "m_matrix_hack.h"
#include <u_sim_data.h>
%}
%include _md.i
%include _m_matrix.i
struct SIM_DATA{
int _user_nodes;
int _subckt_nodes;
int _model_nodes;
int _total_nodes;
int _iter[iCOUNT];
COMPLEX _jomega; /* AC frequency to analyze at (radians) */
bool _limiting; /* flag: node limiting */
double _vmax;
double _vmin;
bool _uic; /* flag: use initial conditions (spice-like) */
TRI_STATE _inc_mode; /* flag: make incremental changes (3 state) */
SIM_MODE _mode; /* simulation type (AC, DC, ...) */
SIM_PHASE _phase; /* phase of simulation (iter, init-dc,) */
int *_nm; /* node map (external to internal) */
double *_i; /* dc-tran current (i) vector */
double *_v0; /* dc-tran voltage, new */
double *_vt1; /* dc-tran voltage, 1 time ago */
/* used to restore after rejected step */
COMPLEX_array_t _ac; /* ac right side */
LOGIC_NODE* _nstat; /* digital data */
double *_vdc; /* saved dc voltages */
BSMATRIX<double> _aa; /* raw matrix for DC & tran */
BSMATRIX<double> _lu; /* decomposed matrix for DC & tran */
BSMATRIX<COMPLEX> _acx;/* raw & decomposed matrix for AC */
bool is_first_expand();
void alloc_hold_vectors();
void alloc_vectors();
void unalloc_vectors();
void uninit();
void init();
private:
virtual void setup(CS&) = 0;
virtual void sweep() = 0;
virtual void finish() {}
virtual bool is_step_rejected()const {return false;}
public:
void set_command_none() {_mode = s_NONE;}
void set_command_ac() {_mode = s_AC;}
void set_command_dc() {_mode = s_DC;}
void set_command_op() {_mode = s_OP;}
void set_command_tran() {_mode = s_TRAN;}
void set_command_fourier() {_mode = s_FOURIER;}
SIM_MODE sim_mode() {return _mode;}
bool command_is_ac() {return _mode == s_AC;}
bool command_is_dc() {return _mode == s_DC;}
bool command_is_op() {return _mode == s_OP;}
//bool command_is_tran() {return _mode == s_TRAN;}
//bool command_is_fourier() {return _mode == s_FOURIER;}
bool analysis_is_ac() {return _mode == s_AC;}
bool analysis_is_dcop() {return _mode == s_DC || _mode == s_OP;}
bool analysis_is_static() {return _phase == p_INIT_DC || _phase == p_DC_SWEEP;}
bool analysis_is_restore() {return _phase == p_RESTORE;}
bool analysis_is_tran() {return _mode == s_TRAN || _mode == s_FOURIER;}
bool analysis_is_tran_static() {return analysis_is_tran() && _phase == p_INIT_DC;}
bool analysis_is_tran_restore() {return analysis_is_tran() && _phase == p_RESTORE;}
bool analysis_is_tran_dynamic() {return analysis_is_tran() && _phase == p_TRAN;}
void reset_iteration_counter(int i) {assert(up_order(0,i,iCOUNT-1)); _iter[i] = 0;}
void count_iterations(int i) {assert(up_order(0,i,iCOUNT-1)); ++_iter[i];}
};
|