File: d_coil.cc

package info (click to toggle)
gnucap-python 0.0.2-1.2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, sid
  • size: 2,668 kB
  • sloc: python: 7,873; sh: 4,384; cpp: 1,786; makefile: 249
file content (579 lines) | stat: -rw-r--r-- 18,120 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
/*$Id: d_coil.cc 2016/03/23 al $ -*- C++ -*-
 * Copyright (C) 2001 Albert Davis
 * Author: Albert Davis <aldavis@gnu.org>
 *
 * This file is part of "Gnucap", the Gnu Circuit Analysis Package
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 * 02110-1301, USA.
 *------------------------------------------------------------------
 * inductors
 * y.x = amps,  y.f0 = flux,  ev = y.f1 = henrys
 * q = y history in time
 * i.x = amps,  i.f0 = volts,      i.f1 = ohms
 * m.x = volts, m.c0 = amps, acg = m.c1 = mhos
 */
//testing=script 2008.10.09
#include "globals.h"
#include "e_subckt.h"
#include "e_ccsrc.h"
#include "e_storag.h"
/*--------------------------------------------------------------------------*/
namespace {
/*--------------------------------------------------------------------------*/
class DEV_INDUCTANCE : public STORAGE {
protected:
  explicit DEV_INDUCTANCE(const DEV_INDUCTANCE& p) 
    :STORAGE(p), _c_model(p._c_model) {}
public:
  explicit DEV_INDUCTANCE()
    :STORAGE(), _c_model(false) {}
public: // override virtual
  char	   id_letter()const	{return 'L';}
  std::string value_name()const {return "l";}
  std::string dev_type()const	{return "inductor";}
  int	   max_nodes()const	{return 2;}
  int	   min_nodes()const	{return 2;}
  int	   net_nodes()const	{return 2;}
  int	   int_nodes()const     {return (!_c_model) ? 0 : 1;}
  int	   matrix_nodes()const	{return net_nodes() + int_nodes();}

  bool	   has_inode()const	{return _c_model;}
  bool	   has_iv_probe()const  {return true;}
  bool	   use_obsolete_callback_parse()const {return true;}
  CARD*	   clone()const		{return new DEV_INDUCTANCE(*this);}
  void     expand();
  void	   tr_iwant_matrix();
  void     tr_begin();
  bool	   do_tr();
  void	   tr_load();
  void	   tr_unload();
  double   tr_involts()const	{return tr_outvolts();}
  double   tr_input()const;
  double   tr_involts_limited()const {return tr_outvolts_limited();}
  double   tr_input_limited()const;
  double   tr_amps()const;
  double   tr_probe_num(const std::string&)const;
  void	   ac_iwant_matrix();
  void	   ac_begin()		{_loss1 = _loss0 = ((!_c_model) ? 0. : 1.); _ev = _y[0].f1;}
  void	   do_ac();
  void	   ac_load();
  COMPLEX  ac_involts()const	{return ac_outvolts();}
  COMPLEX  ac_amps()const;

  std::string port_name(int i)const {itested();
    assert(i >= 0);
    assert(i < 2);
    static std::string names[] = {"p", "n"};
    return names[i];
  }

  bool _c_model;
};
/*--------------------------------------------------------------------------*/
class DEV_MUTUAL_L : public DEV_INDUCTANCE {
private:
  std::string	  _output_label;
  DEV_INDUCTANCE* _output;
  std::string	  _input_label;
  DEV_INDUCTANCE* _input;
  double _lm;
  double _mf0_c0;	// matrix parameters, new
  double _mf1_c0;	// matrix parameters, 1 fill ago
  double _mr0_c0;	// matrix parameters, new
  double _mr1_c0;	// matrix parameters, 1 fill ago
  FPOLY1 _yf1;		// iteration parameters, 1 iter ago
  FPOLY1 _yf[OPT::_keep_time_steps];
  FPOLY1 _if[OPT::_keep_time_steps];
  FPOLY1 _yr1;		// iteration parameters, 1 iter ago
  FPOLY1 _yr[OPT::_keep_time_steps];
  FPOLY1 _ir[OPT::_keep_time_steps];
private:
  explicit	DEV_MUTUAL_L(const DEV_MUTUAL_L& p);
public:
  explicit	DEV_MUTUAL_L();
private: // override virtual
  char	   id_letter()const	{return 'K';}
  bool	   print_type_in_spice()const {return false;}
  std::string value_name()const {return "k";}
  std::string dev_type()const	{untested(); return "mutual_inductor";}
  int	   max_nodes()const	{return 2;}
  int	   min_nodes()const	{return 2;}
  int	   matrix_nodes()const	{return 2;}
  int	   net_nodes()const	{return 0;}
  int	   num_current_ports()const {return 2;}
  bool	   has_iv_probe()const  {untested(); return false;}
  bool	   use_obsolete_callback_parse()const {return false;}
  CARD*	   clone()const		{return new DEV_MUTUAL_L(*this);}
  void     expand_first();
  void	   expand_last();
  void	   precalc_last();
  void     tr_iwant_matrix()	{tr_iwant_matrix_passive();}
  void     tr_begin();
  void     dc_advance();
  void     tr_advance();
  bool     do_tr()		{_sim->_late_evalq.push_back(this); return true;}
  bool     do_tr_last();
  void	   tr_load();
  TIME_PAIR tr_review()		{return TIME_PAIR(NEVER,NEVER);}
  void	   tr_unload();
  double   tr_input()const		{return tr_involts();}
  double   tr_input_limited()const	{untested(); return tr_involts_limited();}
  double   tr_amps()const		{untested(); return _loss0 * tr_outvolts();}
  double   tr_probe_num(const std::string&)const;

  void	   ac_iwant_matrix()	{ac_iwant_matrix_passive();}
  void	   ac_load();
  COMPLEX  ac_amps()const	{untested(); return _loss0 * ac_outvolts();}

  void	   set_port_by_name(std::string& Name, std::string& Value)
		{untested(); COMPONENT::set_port_by_name(Name,Value);}
  void	   set_port_by_index(int Index, std::string& Value)
		{set_current_port_by_index(Index, Value);}
  bool	   node_is_connected(int i)const {
    switch (i) {
    case 0:  return _output_label != "";
    case 1:  return _input_label != "";
    default: unreachable(); return false;
    }
  }

  std::string port_name(int)const {untested();
    return "";
  }
  std::string current_port_name(int i)const {untested();
    assert(i >= 0);
    assert(i < 2);
    static std::string names[] = {"l1", "l2"};
    return names[i];
  }
  const std::string current_port_value(int i)const {
    switch (i) {
    case 0:  return _output_label;
    case 1:  return _input_label;
    default: unreachable(); return COMPONENT::current_port_value(i);
    }
  }
  void set_current_port_by_index(int i, const std::string& s) {
    switch (i) {
    case 0:  _output_label = s;	break;
    case 1:  _input_label = s;	break;
    default: unreachable();	break;
    }
  }
};
/*--------------------------------------------------------------------------*/
/*--------------------------------------------------------------------------*/
DEV_MUTUAL_L::DEV_MUTUAL_L()
  :DEV_INDUCTANCE(),
   _output_label(),
   _output(0),
   _input_label(),
   _input(0),
   _lm(NOT_INPUT),
   _mf0_c0(0.),
   _mf1_c0(0.),
   _mr0_c0(0.),
   _mr1_c0(0.)
{
  _c_model = true;
  assert(_yf[0].x == 0. && _yf[0].f0 == 0. && _yf[0].f1 == 0.);
  assert(_yf1 == _yf[0]);
  assert(_yr[0].x == 0. && _yr[0].f0 == 0. && _yr[0].f1 == 0.);
  assert(_yr1 == _yr[0]);
}
/*--------------------------------------------------------------------------*/
DEV_MUTUAL_L::DEV_MUTUAL_L(const DEV_MUTUAL_L& p)
  :DEV_INDUCTANCE(p),
   _output_label(p._output_label),
   _output(p._output),
   _input_label(p._input_label),
   _input(p._input),
   _lm(p._lm),
   _mf0_c0(0.),
   _mf1_c0(0.),
   _mr0_c0(0.),
   _mr1_c0(0.)
{
  _c_model = true;
  assert(_yf[0].x == 0. && _yf[0].f0 == 0. && _yf[0].f1 == 0.);
  assert(_yf1 == _yf[0]);
  assert(_yr[0].x == 0. && _yr[0].f0 == 0. && _yr[0].f1 == 0.);
  assert(_yr1 == _yr[0]);
}
/*--------------------------------------------------------------------------*/
void DEV_INDUCTANCE::expand()
{
  STORAGE::expand();
  if (_sim->is_first_expand()) {
    if (!_c_model) {
      _n[IN1].set_to_ground(this);
    }else{
      _n[IN1].new_model_node(long_label() + ".i", this);
    }
  }else{untested();
  }
}
/*--------------------------------------------------------------------------*/
void DEV_MUTUAL_L::expand_first()
{
  _output = dynamic_cast<DEV_INDUCTANCE*>(find_in_my_scope(_output_label));
  if (!_output) {
    throw Exception_Type_Mismatch(long_label(), _output_label, "inductor");
  }else{
    _output->_c_model = true;
  }

  _input = dynamic_cast<DEV_INDUCTANCE*>(find_in_my_scope(_input_label));
  if (!_input) {
    throw Exception_Type_Mismatch(long_label(), _input_label, "inductor");
  }else{
    _input->_c_model = true;
  }
}
/*--------------------------------------------------------------------------*/
void DEV_MUTUAL_L::expand_last()
{
  STORAGE::expand(); // skip DEV_INDUCTANCE
  if (_sim->is_first_expand()) {
    _n[OUT2] = _input->n_(IN1);
    _n[OUT1] = _output->n_(IN1);
  }else{untested();
  }
}
/*--------------------------------------------------------------------------*/
void DEV_MUTUAL_L::precalc_last()
{
  _output->precalc_last();
  _input->precalc_last();

  DEV_INDUCTANCE::precalc_last();

  double l1 = _output->value();
  double l2 = _input->value();
  _lm = value() * sqrt(l1 * l2);
  trace3(long_label().c_str(), l1, l2, _lm);

  if (_sim->has_op() == s_NONE) {
    assert(_y[0].x  == 0.);
    assert(_y[0].f0 == LINEAR);
    _y[0].f1 = -_lm; // override
    _yf[0] = _yr[0] = _y[0];
  }else{
  }
}
/*--------------------------------------------------------------------------*/
void DEV_INDUCTANCE::tr_iwant_matrix()
{
  if (!_c_model) {
    tr_iwant_matrix_passive();
  }else{
    assert(matrix_nodes() == 3);
    
    assert(_n[OUT1].m_() != INVALID_NODE);
    assert(_n[OUT2].m_() != INVALID_NODE);
    assert(_n[IN1].m_() != INVALID_NODE);
    
    _sim->_aa.iwant(_n[OUT1].m_(),_n[IN1].m_());
    _sim->_aa.iwant(_n[OUT2].m_(),_n[IN1].m_());
    
    _sim->_lu.iwant(_n[OUT1].m_(),_n[IN1].m_());
    _sim->_lu.iwant(_n[OUT2].m_(),_n[IN1].m_());
  }
}
/*--------------------------------------------------------------------------*/
void DEV_INDUCTANCE::tr_begin()
{
  STORAGE::tr_begin();
  _loss1 = _loss0 = ((!_c_model) ? 0. : 1.);
}
/*--------------------------------------------------------------------------*/
void DEV_MUTUAL_L::tr_begin()
{
  DEV_INDUCTANCE::tr_begin();
  assert(_y[0].x  == 0.);
  assert(_y[0].f0 == LINEAR);
  _y[0].f1 = -_lm; // override
  _y1 = _y[0];

  for (int i = 0;  i < OPT::_keep_time_steps;  ++i) {
    _if[i] = _ir[i] = FPOLY1(0., 0., 0.);
  }
  _mf1_c0 = _mf0_c0 = _mr1_c0 = _mr0_c0 = 0.;
}
/*--------------------------------------------------------------------------*/
void DEV_MUTUAL_L::dc_advance()
{
  STORAGE::dc_advance();

  for (int i = 1;  i < OPT::_keep_time_steps;  ++i) {
    _if[i] = _if[0];
    _ir[i] = _ir[0];
  }
}
/*--------------------------------------------------------------------------*/
void DEV_MUTUAL_L::tr_advance()
{
  STORAGE::tr_advance();
  
  for (int i=OPT::_keep_time_steps-1; i>0; --i) {
    _yf[i] = _yf[i-1];
    _yr[i] = _yr[i-1];
    _if[i] = _if[i-1];
    _ir[i] = _ir[i-1];
  }
}
/*--------------------------------------------------------------------------*/
bool DEV_INDUCTANCE::do_tr()
{
  if (using_tr_eval()) {
    _y[0].x = tr_input_limited(); // _m0.c0 + _m0.c1 * x;
    tr_eval();
    if ((!_c_model) && (_y[0].f1 == 0.)) {untested();
      error(bDANGER, long_label() + ": short circuit,  L = 0\n");
      _y[0].f1 = OPT::shortckt;
      set_converged(conv_check());
    }else{
    }
  }else{
    _y[0].x = tr_input(); // _m0.c0 + _m0.c1 * x;
    assert(_y[0].f1 == value());
    _y[0].f0 = _y[0].x * _y[0].f1;
    assert(converged());
  }
  store_values();
  q_load();
  
  // i is really voltage ..
  // _i[0].x = current, _i[0].f0 = voltage, _i[0].f1 = ohms
  _i[0] = differentiate(_y, _i, _time, _method_a);
  
  if (!_c_model) {
    _m0.x = NOT_VALID;
    _m0.c1 = 1 / ((_i[0].c1()==0) ? OPT::shortckt : _i[0].c1());
    _m0.c0 = -_i[0].c0() * _m0.c1;
  }else{
    //_m0 = -CPOLY1(_i[0]);
    _m0.x = NOT_VALID;
    _m0.c1 = -_loss0 * _loss0 * _i[0].c1();
    _m0.c0 =  _loss0 * _loss0 * _i[0].c0();
  }

  return converged();
}
/*--------------------------------------------------------------------------*/
bool DEV_MUTUAL_L::do_tr_last()
{
  double l1 = _output->_y[0].f1;
  double l2 = _input->_y[0].f1;
  _lm = value() * sqrt(l1 * l2);

  _y[0].x = _n[OUT1].v0() - _n[OUT2].v0(); // really current
  _y[0].f1 = -_lm;
  _y[0].f0 = _y[0].x * _y[0].f1;	   // flux = I * L
  trace3("", _y[0].x, _y[0].f0, _y[0].f1);
  store_values();
  _i[0] = differentiate(_y, _i, _time, _method_a);  // really voltage, v = df/dt
  trace3("", _i[0].x, _i[0].f0, _i[0].f1);
  _m0.x = NOT_VALID;
  _m0.c1 = -_loss0 * _loss0 * _i[0].c1();
  _m0.c0 = -_loss0 * _loss0 * _i[0].c0();
  trace3("", _m0.x, _m0.c0, _m0.c1);

  _yf[0].x = _n[OUT1].v0();
  _yf[0].f1 = -_lm;
  _yf[0].f0 = _yf[0].x * _yf[0].f1;
  trace3("", _yf[0].x, _yf[0].f0, _yf[0].f1);
  assert(_yf[0]==_yf[0]); // store_values();
  _yf1=_yf[0];		  // store_values();
  _if[0] = differentiate(_yf, _if, _time, _method_a);
  trace3("", _if[0].x, _if[0].f0, _if[0].f1);
  _mf0_c0 = -_loss0 * _loss0 * _if[0].c0();
  
  _yr[0].x = _n[OUT2].v0();
  _yr[0].f1 = -_lm;
  _yr[0].f0 = _yr[0].x * _yr[0].f1;
  trace3("", _yr[0].x, _yr[0].f0, _yr[0].f1);
  assert(_yr[0]==_yr[0]); // store_values();
  _yr1=_yr[0];		  // store_values();
  _ir[0] = differentiate(_yr, _ir, _time, _method_a);
  trace3("", _ir[0].x, _ir[0].f0, _ir[0].f1);
  _mr0_c0 = -_loss0 * _loss0 * _ir[0].c0();

  q_load();
  return true;
}
/*--------------------------------------------------------------------------*/
void DEV_INDUCTANCE::tr_load()
{
  if (!_c_model) {
    tr_load_passive();
  }else{
    tr_load_inode();
    tr_load_diagonal_point(_n[IN1], &_m0.c1, &_m1.c1);
    tr_load_source_point(_n[IN1], &_m0.c0, &_m1.c0);
  }
}
/*--------------------------------------------------------------------------*/
void DEV_MUTUAL_L::tr_load()
{
  tr_load_couple();
  tr_load_source();
  tr_load_source_point(_n[OUT2], &_mr0_c0, &_mr1_c0);
  tr_load_source_point(_n[OUT1], &_mf0_c0, &_mf1_c0);
}
/*--------------------------------------------------------------------------*/
void DEV_INDUCTANCE::tr_unload()
{untested();
  _loss0 = _m0.c0 = _m0.c1 = 0.;
  _sim->mark_inc_mode_bad();
  tr_load();
}
/*--------------------------------------------------------------------------*/
void DEV_MUTUAL_L::tr_unload()
{untested();
  tr_unload_couple();
}
/*--------------------------------------------------------------------------*/
double DEV_INDUCTANCE::tr_input()const
{
  if (!_c_model) {
    return _m0.c0 + _m0.c1 * tr_involts();
  }else{
    return _n[IN1].v0();
  }
}
/*--------------------------------------------------------------------------*/
double DEV_INDUCTANCE::tr_input_limited()const
{
  if (!_c_model) {
    return _m0.c0 + _m0.c1 * tr_involts_limited();
  }else{
    return _n[IN1].v0();
  }
}
/*--------------------------------------------------------------------------*/
double DEV_INDUCTANCE::tr_amps()const
{
  if (!_c_model) {
    return fixzero((_m0.c1 * tr_involts() + _m0.c0), _m0.c0);
  }else{
    return _loss0 * _n[IN1].v0();
  }
}
/*--------------------------------------------------------------------------*/
void DEV_INDUCTANCE::ac_iwant_matrix()
{
  if (!_c_model) {
    ac_iwant_matrix_passive();
  }else{
    assert(matrix_nodes() == 3);
    
    assert(_n[OUT1].m_() != INVALID_NODE);
    assert(_n[OUT2].m_() != INVALID_NODE);
    assert(_n[IN1].m_() != INVALID_NODE);
    
    _sim->_acx.iwant(_n[OUT1].m_(),_n[IN1].m_());
    _sim->_acx.iwant(_n[OUT2].m_(),_n[IN1].m_());
  }
}
/*--------------------------------------------------------------------------*/
void DEV_INDUCTANCE::do_ac()
{
  if (using_ac_eval()) {
    ac_eval();
  }else{
    assert(_ev == _y[0].f1);
    assert(dynamic_cast<DEV_MUTUAL_L*>(this) || has_tr_eval() || _ev == double(value()));
  }
  if (!_c_model) {
    if (_ev * _sim->_jomega == 0.) {untested();
      _acg = 1. / OPT::shortckt;
    }else{
      _acg = 1. / (_ev * _sim->_jomega);
    }
  }else{
    _acg =  -_loss0 * _loss0 * _ev * _sim->_jomega;
  }
}
/*--------------------------------------------------------------------------*/
void DEV_INDUCTANCE::ac_load()
{
  if (!_c_model) {
    ac_load_passive();
  }else{
    ac_load_inode();
    ac_load_diagonal_point(_n[IN1], _acg);
  }
}
/*--------------------------------------------------------------------------*/
void DEV_MUTUAL_L::ac_load()
{
  ac_load_couple();
}
/*--------------------------------------------------------------------------*/
COMPLEX DEV_INDUCTANCE::ac_amps()const
{
  if (!_c_model) {
    return (ac_involts() * _acg);
  }else{
    return  _loss0 * _n[IN1].vac();
  }
}
/*--------------------------------------------------------------------------*/
double DEV_INDUCTANCE::tr_probe_num(const std::string& x)const
{
  if (Umatch(x, "flux ")) {untested();
    return _y[0].f0;
  }else if (Umatch(x, "ind{uctance} |l ")) {untested();
    return _y[0].f1;
  }else if (Umatch(x, "dldt ")) {untested();
    return (_y[0].f1 - _y[1].f1) / _dt;
  }else if (Umatch(x, "dl ")) {untested();
    return (_y[0].f1 - _y[1].f1);
  }else if (Umatch(x, "dfdt ")) {untested();
    return (_y[0].f0 - _y[1].f0) / _dt;
  }else if (Umatch(x, "dflux ")) {untested();
    return (_y[0].f0 - _y[1].f0);
  }else{
    return STORAGE::tr_probe_num(x);
  }
}
/*--------------------------------------------------------------------------*/
double DEV_MUTUAL_L::tr_probe_num(const std::string& x)const
{untested();
  if (Umatch(x, "fflux ")) {untested();
    return _yf[0].f0;
  }else if (Umatch(x, "rflux ")) {untested();
    return _yr[0].f0;
  }else if (Umatch(x, "fiof{fset} ")) {untested();
    return _mf0_c0;
  }else if (Umatch(x, "riof{fset} ")) {untested();
    return _mr0_c0;
  }else{untested();
    return DEV_INDUCTANCE::tr_probe_num(x);
  }
}
/*--------------------------------------------------------------------------*/
/*--------------------------------------------------------------------------*/
DEV_MUTUAL_L   p1;
DEV_INDUCTANCE p2;
DISPATCHER<CARD>::INSTALL
  d1(&device_dispatcher, "K|mutual_inductor", &p1),
  d2(&device_dispatcher, "L|inductor",        &p2);
}
/*--------------------------------------------------------------------------*/
/*--------------------------------------------------------------------------*/
// vim:ts=8:sw=2:noet: