File: m_wave.h

package info (click to toggle)
gnucap 1%3A0.36~20171003-1.1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, forky, sid, trixie
  • size: 9,336 kB
  • sloc: cpp: 29,323; sh: 319; makefile: 172
file content (156 lines) | stat: -rw-r--r-- 4,905 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
/*$Id: m_wave.h 2014/11/23$ -*- C++ -*-
 * Copyright (C) 2001 Albert Davis
 * Author: Albert Davis <aldavis@gnu.org>
 *
 * This file is part of "Gnucap", the Gnu Circuit Analysis Package
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 * 02110-1301, USA.
 *------------------------------------------------------------------
 * "wave" class, for transmission lines and delays
 */
//testing=script 2006.07.13
#include "l_denoise.h"
#include "m_interp.h"
/*--------------------------------------------------------------------------*/
class WAVE {
private:
  std::deque<DPAIR> _w;
  double _delay;
public:
  typedef std::deque<DPAIR>::iterator iterator;
  typedef std::deque<DPAIR>::const_iterator const_iterator;

  explicit WAVE(double d=0);
  explicit WAVE(const WAVE&);
	  ~WAVE() {}
  WAVE&	   set_delay(double d);
  WAVE&	   initialize();
  WAVE&	   push(double t, double v);
  FPOLY1   v_out(double t)const;
  double   v_reflect(double t, double v_total)const;
  WAVE&	   operator+=(const WAVE& x);
  WAVE&	   operator+=(double x);
  WAVE&	   operator*=(const WAVE& x);
  WAVE&	   operator*=(double x);
  const_iterator begin()const {return _w.begin();}
  const_iterator end()const {return _w.end();}
};
/*--------------------------------------------------------------------------*/
/*--------------------------------------------------------------------------*/
// push: insert a signal on the "input" end.
// args: t = the time now
//       v = the value to push
//
inline WAVE& WAVE::push(double t, double v)
{
  _w.push_back(DPAIR(t+_delay, v));
  return *this;
}
/*--------------------------------------------------------------------------*/
// initialize: remove all info, fill it with all 0.
//
inline WAVE& WAVE::initialize()
{
  _w.clear();
  return *this;
}
/*--------------------------------------------------------------------------*/
inline WAVE::WAVE(const WAVE& w)
  :_w(w._w),
   _delay(w._delay)
{ untested();
}
/*--------------------------------------------------------------------------*/
// constructor -- argument is the delay
//
inline WAVE::WAVE(double d)
  :_w(),
   _delay(d)
{
  initialize();
}
/*--------------------------------------------------------------------------*/
inline WAVE& WAVE::set_delay(double d) 
{
  _delay = d; 
  return *this;
}
/*--------------------------------------------------------------------------*/
// v_out: return the value at the "output" end
// args: t = the time now
//
inline FPOLY1 WAVE::v_out(double t)const
{
  return interpolate(_w.begin(), _w.end(), t, 0., 0.);
}
/*--------------------------------------------------------------------------*/
// reflect: calculate a reflection
// args: t = the time now
//       v_total = actual voltage across the termination
// returns: the value (voltage) to send back as the reflection
//
inline double WAVE::v_reflect(double t, double v_total)const
{
  // return (v_total*2 - v_out(t)); // de-noised
  return dn_diff(v_total*2, v_out(t).f0);
}
/*--------------------------------------------------------------------------*/
inline WAVE& WAVE::operator+=(const WAVE& x)
{
  untested();
  for (std::deque<DPAIR>::iterator
	 i = _w.begin(); i != _w.end(); ++i) {
    untested();
    (*i).second += x.v_out((*i).first).f0;
  }
  return *this;
}
/*--------------------------------------------------------------------------*/
inline WAVE& WAVE::operator+=(double x)
{
  untested();
  for (std::deque<DPAIR>::iterator
	 i = _w.begin(); i != _w.end(); ++i) {
    untested();
    (*i).second += x;
  }
  return *this;
}
/*--------------------------------------------------------------------------*/
inline WAVE& WAVE::operator*=(const WAVE& x)
{
  untested();
  for (std::deque<DPAIR>::iterator
	 i = _w.begin(); i != _w.end(); ++i) {
    untested();
    (*i).second *= x.v_out((*i).first).f0;
  }
  return *this;
}
/*--------------------------------------------------------------------------*/
inline WAVE& WAVE::operator*=(double x)
{
  untested();
  for (std::deque<DPAIR>::iterator
	 i = _w.begin(); i != _w.end(); ++i) {
    untested();
    (*i).second *= x;
  }
  return *this;
}
/*--------------------------------------------------------------------------*/
/*--------------------------------------------------------------------------*/
// vim:ts=8:sw=2:noet: