1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
|
/*$Id: d_admit.cc,v 26.138 2013/04/24 02:44:30 al Exp $ -*- C++ -*-
* Copyright (C) 2001 Albert Davis
* Author: Albert Davis <aldavis@gnu.org>
*
* This file is part of "Gnucap", the Gnu Circuit Analysis Package
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*------------------------------------------------------------------
* admittance devices:
* self-admittance (old Y device)
* y.x = volts, y.f0 = amps, ev = y.f1 = mhos.
* m.x = volts, m.c0 = amps, acg = m.c1 = mhos.
* trans-admittance (VCCS, G device)
* voltage controlled admittance
* y.x = volts(control), y.f0 = mhos, ev = y.f1 = mhos/volt
* m.x = volts(control), m.c0 = 0, acg = m.c1 = mhos
* _loss0 == 1/R. (mhos)
*/
//testing=script 2006.07.17
#include "globals.h"
#include "e_elemnt.h"
/*--------------------------------------------------------------------------*/
namespace {
/*--------------------------------------------------------------------------*/
class DEV_ADMITTANCE : public ELEMENT {
protected:
explicit DEV_ADMITTANCE(const DEV_ADMITTANCE& p) :ELEMENT(p) {}
public:
explicit DEV_ADMITTANCE() :ELEMENT() {}
protected: // override virtual
char id_letter()const override {return 'Y';}
std::string value_name()const override{return "g";}
std::string dev_type()const override {return "admittance";}
int max_nodes()const override {return 2;}
int min_nodes()const override {return 2;}
int matrix_nodes()const override {return 2;}
int net_nodes()const override {return 2;}
bool has_iv_probe()const override {return true;}
bool use_obsolete_callback_parse()const override {return true;}
CARD* clone()const override {return new DEV_ADMITTANCE(*this);}
void precalc_last()override;
void dc_advance()override;
void tr_iwant_matrix() override {tr_iwant_matrix_passive();}
void tr_begin()override;
bool do_tr()override;
void tr_load()override {tr_load_passive();}
void tr_unload()override {tr_unload_passive();}
double tr_involts()const override {return tr_outvolts();}
double tr_involts_limited()const override {return tr_outvolts_limited();}
void ac_iwant_matrix()override {ac_iwant_matrix_passive();}
void ac_begin()override {ELEMENT::ac_begin(); _acg = _ev = _y[0].f1;}
void do_ac()override;
void ac_load()override {ac_load_passive();}
COMPLEX ac_involts()const override {untested();return ac_outvolts();}
std::string port_name(int i)const override {
assert(i >= 0);
assert(i < 2);
static std::string names[] = {"p", "n"};
return names[i];
}
};
/*--------------------------------------------------------------------------*/
class DEV_VCCS : public DEV_ADMITTANCE {
protected:
explicit DEV_VCCS(const DEV_VCCS& p) :DEV_ADMITTANCE(p) {}
public:
explicit DEV_VCCS() :DEV_ADMITTANCE() {}
protected: // override virtual
char id_letter()const override {return 'G';}
std::string value_name()const override {return "gm";}
std::string dev_type()const override {return "vccs";}
int max_nodes()const override {return 4;}
int min_nodes()const override {return 4;}
int matrix_nodes()const override {return 4;}
int net_nodes()const override {return 4;}
bool has_iv_probe()const override {return false;}
CARD* clone()const override {return new DEV_VCCS(*this);}
void tr_iwant_matrix()override {tr_iwant_matrix_active();}
void tr_load()override {tr_load_active();}
void tr_unload()override {untested();tr_unload_active();}
double tr_involts()const override {return dn_diff(_n[IN1].v0(), _n[IN2].v0());}
double tr_involts_limited()const override {return volts_limited(_n[IN1],_n[IN2]);}
void ac_iwant_matrix()override {ac_iwant_matrix_active();}
void ac_load()override {ac_load_active();}
COMPLEX ac_involts()const override {untested();return _n[IN1]->vac() - _n[IN2]->vac();}
std::string port_name(int i)const override {
assert(i >= 0);
assert(i < 4);
static std::string names[] = {"sink", "src", "ps", "ns"};
return names[i];
}
};
/*--------------------------------------------------------------------------*/
/*--------------------------------------------------------------------------*/
void DEV_ADMITTANCE::precalc_last()
{
ELEMENT::precalc_last();
set_constant(!using_tr_eval());
set_converged(!has_tr_eval());
}
/*--------------------------------------------------------------------------*/
void DEV_ADMITTANCE::dc_advance()
{
ELEMENT::dc_advance();
if(using_tr_eval()){
}else{
_y[0].f1 = value();
_y[0].f0 = LINEAR;
if(_y[0].f1 != _y1.f1){
store_values();
_m0.c1 = _y[0].f1;
_m0.c0 = 0.;
q_load();
// set_constant(false); not needed. nothing to do in do_tr.
}else{
}
}
}
/*--------------------------------------------------------------------------*/
void DEV_ADMITTANCE::tr_begin()
{
ELEMENT::tr_begin();
_m0.x = _y[0].x;
_m0.c1 = _y[0].f1;
_m0.c0 = 0.;
_m1 = _m0;
assert(_loss0 == 0.);
assert(_loss1 == 0.);
}
/*--------------------------------------------------------------------------*/
bool DEV_ADMITTANCE::do_tr()
{
if (using_tr_eval()) {
_y[0].x = _m0.x = tr_involts_limited();
_y[0].f0 = _m0.c1 * _m0.x + _m0.c0; //BUG// patch for diode
tr_eval();
assert(_y[0].f0 != LINEAR);
store_values();
q_load();
_m0 = CPOLY1(_y[0]);
}else{
assert(_y[0].f0 == LINEAR);
assert(_y[0].f1 == value());
assert(_m0.c1 == _y[0].f1);
assert(_m0.c0 == 0.);
assert(_y1 == _y[0]);
assert(converged());
}
return converged();
}
/*--------------------------------------------------------------------------*/
void DEV_ADMITTANCE::do_ac()
{
if (using_ac_eval()) {itested();
ac_eval();
_acg = _ev;
}else{
assert(_ev == _y[0].f1);
assert(has_tr_eval() || _ev == double(value()));
}
assert(_acg == _ev);
}
/*--------------------------------------------------------------------------*/
/*--------------------------------------------------------------------------*/
DEV_ADMITTANCE p1;
DEV_VCCS p2;
DISPATCHER<CARD>::INSTALL
d1(&device_dispatcher, "Y|admittance", &p1),
d2(&device_dispatcher, "G|vccs", &p2);
}
/*--------------------------------------------------------------------------*/
/*--------------------------------------------------------------------------*/
// vim:ts=8:sw=2:noet:
|