1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
|
/* $Id: d_mos.model $ -*- C++ -*-
* Copyright (C) 2001 Albert Davis
* Author: Albert Davis <aldavis@gnu.org>
*
* This file is part of "Gnucap", the Gnu Circuit Analysis Package
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA.
*------------------------------------------------------------------
* data structures and defaults for mos model.
* internal units all mks (meters)
* but some user input parameters are in cm.
*
* netlist syntax:
* device: mxxxx d g s b mname <device args> <model card args>
* model: .model mname NMOS <args>
* or .model mname PMOS <args>
*/
h_headers {
#include "d_diode.h"
}
cc_headers {
#include "u_limit.h"
#include "e_storag.h"
#include "d_mos_base.h"
}
/*--------------------------------------------------------------------------*/
device BUILT_IN_MOS {
parse_name mosfet;
model_type BUILT_IN_MOS_BASE;
id_letter M;
circuit {
sync;
ports {d g s b};
local_nodes {
id short_to=d short_if="!OPT::rstray || s->rd == 0.";
is short_to=s short_if="!OPT::rstray || s->rs == 0.";
}
args db BUILT_IN_DIODE {
area = double(s->ad);
perim = double(c->pd);
is_raw = double(s->idsat);
cj_raw = double(m->cbd);
cjsw_raw = NA;
off = true;
set_modelname(modelname());
attach(model());
}
args sb BUILT_IN_DIODE {
area = double(s->as);
perim = double(c->ps);
is_raw = double(s->issat);
cj_raw = double(m->cbs);
cjsw_raw = NA;
off = true;
set_modelname(modelname());
attach(model());
}
resistor Rs {s is} value="s->rs"
omit="!OPT::rstray || s->rs == 0.";
resistor Rd {d id} value="s->rd"
omit="!OPT::rstray || s->rd == 0.";
diode Ddb {b id} args="db" reverse="m->polarity==pP"
omit="_n[n_b].n_() == _n[n_d].n_() || s->idsat == 0.";
diode Dsb {b is} args="sb" reverse="m->polarity==pP"
omit="_n[n_b].n_() == _n[n_s].n_() || s->issat == 0.";
capacitor Cgs {g is} value="s->cgso" eval=Cgs
omit="!OPT::cstray || _n[n_g].n_() == _n[n_s].n_()";
capacitor Cgd {g id} value="s->cgdo" eval=Cgd
omit="!OPT::cstray || _n[n_g].n_() == _n[n_d].n_()";
capacitor Cgb {g b} value="s->cgbo" eval=Cgb
omit="!OPT::cstray || _n[n_b].n_() == _n[n_g].n_()";
fpoly_cap Cqgs {g is g b is b id b}
state=qgs // qgate, cgs, cggb, cgsb, cgdb
omit="m->cmodel != 0 || !OPT::cstray
|| _n[n_g].n_() == _n[n_is].n_()";
fpoly_cap Cqgd {g id g b id b is b}
state=qgd // qgate, cgs, cggb, cgsb, cgdb
omit="m->cmodel != 0 || !OPT::cstray
|| _n[n_g].n_() == _n[n_id].n_()";
fpoly_cap Cqds {id is g b is b id b}
state=qdrn // qdrn, cds, cdgb, cdsb, cddb
omit="m->cmodel != 0 || !OPT::cstray
|| _n[n_id].n_() == _n[n_is].n_()";
fpoly_cap Cqbs {b is g b is b id b}
state=qbs
omit="m->cmodel != 0 || !OPT::cstray
|| _n[n_b].n_() == _n[n_is].n_()";
fpoly_cap Cqbd {b id g b id b is b}
state=qbd
omit="m->cmodel != 0 || !OPT::cstray
|| _n[n_b].n_() == _n[n_id].n_()";
cpoly_g Ids {id is g is id g
b is id b} state=idsxxx;
cpoly_g Idb {id b id is g is b is}
state=idbxxx
omit="!(m->needs_isub) || _n[n_d].n_() == _n[n_b].n_()";
cpoly_g Isb {is b is id g id b id}
state=isbxxx
omit="!(m->needs_isub) || _n[n_s].n_() == _n[n_b].n_()";
}
tr_probe {
v = "@n_d[V] - @n_s[V]";
vds = "@n_d[V] - @n_s[V]";
vgs = "@n_g[V] - @n_s[V]";
vbs = "@n_b[V] - @n_s[V]";
"vdsi{nt}" = "vds";
"vgsi{nt}" = "vgs";
"vbsi{nt}" = "vbs";
vgd = "@n_g[V] - @n_d[V]";
vbd = "@n_b[V] - @n_d[V]";
vsd = "@n_s[V] - @n_d[V]";
vdm = "(@n_d[V] - @n_s[V] + @n_d[V] - @n_d[V]) / 2.";
vgm = "(@n_g[V] - @n_s[V] + @n_g[V] - @n_d[V]) / 2.";
vbm = "(@n_b[V] - @n_s[V] + @n_b[V] - @n_d[V]) / 2.";
vsm = "(@n_s[V] - @n_s[V] + @n_s[V] - @n_d[V]) / 2.";
vdg = "@n_d[V] - @n_g[V]";
vbg = "@n_b[V] - @n_g[V]";
vsg = "@n_s[V] - @n_g[V]";
vdb = "@n_d[V] - @n_b[V]";
vgb = "@n_g[V] - @n_b[V]";
vsb = "@n_s[V] - @n_b[V]";
vd = "@n_d[V]";
vg = "@n_g[V]";
vb = "@n_b[V]";
vs = "@n_s[V]";
"i{d}" = "(_Rd) ? @Rd[I] : (@Ids[I] - @Cgd[I] - @Ddb[I] * m->polarity)";
is = "(_Rs) ? @Rs[I] : (-@Ids[I] - @Cgs[I] - @Dsb[I] * m->polarity)";
ig = "@Cgs[I] + @Cgd[I] + @Cgb[I]";
ib = "- @Ddb[I] * m->polarity - @Dsb[I] * m->polarity - @Cgb[I]";
ibd = "@Ddb[I]";
ibs = "@Dsb[I]";
"cgso{vl}" = "@Cgs[NV]";
"cgdo{vl}" = "@Cgd[NV]";
"cgbo{vl}" = "@Cgb[NV]";
cgst = "@Cgs[EV]";
cgdt = "@Cgd[EV]";
cgbt = "@Cgb[EV]";
"cgs{m}" = "@Cgs[EV] - @Cgs[NV]";
"cgd{m}" = "@Cgd[EV] - @Cgd[NV]";
"cgb{m}" = "@Cgb[EV] - @Cgb[NV]";
cbd = "@Ddb[Cap]";
cbs = "@Dsb[Cap]";
cgate = "s->cgate";
gm = "(reversed) ? gmr : gmf";
"gmb{s}" = "(reversed) ? gmbr : gmbf";
gbd = "@Ddb[G]";
gbs = "@Dsb[G]";
vth = "von * m->polarity";
ids = "m->polarity * ((reversed) ? -ids : ids)";
"idst{ray}" = "- @Cgd[I] + @Ddb[I] * m->polarity";
p ="@Rs[P] +@Rd[P] +@Ddb[P] +@Dsb[P] +@Cgs[P] +@Cgd[P] +@Cgb[P] +@Ids[P]";
pd="@Rs[PD]+@Rd[PD]+@Ddb[PD]+@Dsb[PD]+@Cgs[PD]+@Cgd[PD]+@Cgb[PD]+@Ids[PD]";
ps="@Rs[PS]+@Rd[PS]+@Ddb[PS]+@Dsb[PS]+@Cgs[PS]+@Cgd[PS]+@Cgb[PS]+@Ids[PS]";
REgion = "static_cast<double>((!cutoff) + (!subthreshold * 2)
+ (saturated * 4) + (sbfwd * 10) + ((vbs > vds) * 20)
+ (punchthru * 40)) * ((reversed)? -1 : 1)";
SUBthreshold = "static_cast<double>(subthreshold)";
CUToff = "static_cast<double>(cutoff)";
SATurated= "static_cast<double>(saturated)";
TRIode = "static_cast<double>(!saturated && !subthreshold)";
SBFwd = "static_cast<double>(sbfwd)";
DBFwd = "static_cast<double>(vbs > vds)";
REVersed = "static_cast<double>(reversed)";
status = "static_cast<double>(converged() * 2)";
}
device {
calculated_parameters {
// ordinary drain current
double ids "" default=0.;
double idsxxx;
double gds "dids/dvds" default=0.;
double gmf "dids/dvgs" default=0.;
double gmr "dids/dvgd" default=0.;
double gmbf "dids/dvbs" default=0.;
double gmbr "dids/dvbd" default=0.;
// drain-bulk
double idb "" default=0.;
double idbxxx "" default=0.;
double gdbdb "placeholder" default=0.;
double gdbds "disub/dvds" default=0.;
double gdbgs "disub/dvgs" default=0.;
double gdbbs "disub/dvbs" default=0.;
// source-bulk
double isb "" default=0.;
double isbxxx "" default=0.;
double gsbsb "placeholder" default=0.;
double gsbsd "disub/dvds" default=0.;
double gsbgd "disub/dvgs" default=0.;
double gsbbd "disub/dvbs" default=0.;
// charge
double qgate "raw" default=0.;
double cgs "dqgate_vgs placeholder" default=0.;
double cggb "dqgate_vgb" default=0.;
double cgsb "dqgate_vsb" default=0.;
double cgdb "dqgate_vdb" default=0.;
double qgs "forward mode" default=0.;
double cgsgs "dqgs_vgs placeholder" default=0.;
double cgsgb "dqgs_vgb" default=0.;
double cgssb "dqgs_vsb" default=0.;
double cgsdb "dqgs_vdb" default=0.;
double qgd "reverse mode" default=0.;
double cgdgd "dqgd_vgs placeholder" default=0.;
double cgdgb "dqgd_vgb" default=0.;
double cgdsb "dqgd_vsb" default=0.;
double cgddb "dqgd_vdb" default=0.;
double qdrn "Qds" default=0.;
double cdsds "dqds_vds placeholder" default=0.;
double cdgb "dqds_vgb" default=0.;
double cdsb "dqds_vsb" default=0.;
double cddb "dqds_vdb" default=0.;
double qbulk "raw" default=0.;
double cbs "dqbs_vbs placeholder" default=0.;
double cbgb "dqbs_vbg" default=0.;
double cbsb "dqbs_vsb" default=0.;
double cbdb "dqbs_vdb" default=0.;
double qbs "Qbs forward" default=0.;
double cbsbs "dqbs_vbs placeholder" default=0.;
double cbsgb "dqbs_vbg" default=0.;
double cbssb "dqbs_vsb" default=0.;
double cbsdb "dqbs_vdb" default=0.;
double qbd "Qbd reverse" default=0.;
double cbdbd "dqbd_vbd placeholder" default=0.;
double cbdgb "dqbd_vbg" default=0.;
double cbdsb "dqbd_vsb" default=0.;
double cbddb "dqbd_vdb" default=0.;
double gtau "" default=0.;
double cqgb "" default=0.;
double cqsb "" default=0.;
double cqdb "" default=0.;
double cqbb "" default=0.;
/*
double tconst "" default=0.;
double cgb "placeholder" default=0.; // capacitors and charges
double qgb "placeholder" default=0.;
double qgd "" default=0.;
double cgd "" default=0.;
double qgs "" default=0.;
//double cgs "" default=0.;
*/
double vgs "terminal voltages" default=0.;
double vds "" default=0.;
double vbs "" default=0.;
double vdsat "saturation voltage" default=0.;
double vgst "vgs - von." default=0.;
double von "actual threshold voltage" default=0.;
bool reversed "flag: Vgs < 0, reverse s & d" default=false;
bool cutoff "flag: in cut off region" default=false;
bool subthreshold "flag: subthreshold region" default=false;
bool saturated "flag: in saturation region" default=false;
bool sbfwd "flag: sb diode fwd biased" default=false;
bool punchthru "flag: punch thru region" default=false;
}
}
common {
raw_parameters {
double l_in "drawn (optical) channel length"
name=L positive default="OPT::defl";
double w_in "channel width (drawn)"
name=W positive default="OPT::defw";
double ad_in "drain area, drawn"
name=AD positive default="OPT::defad"
print_test="has_hard_value(ad_in)";
double as_in "source area, drawn"
name=AS positive default="OPT::defas"
print_test="has_hard_value(as_in)";
double pd "drain perimeter" name=PD positive default=0.0
print_test="has_hard_value(pd)";
double ps "source perimeter" name=PS positive default=0.0
print_test="has_hard_value(ps)";
double nrd "drain # squares" name=NRD positive default=1.0
print_test="has_hard_value(nrd)";
double nrs "source # squares" name=NRS positive default=1.0
print_test="has_hard_value(nrs)";
}
}
tr_eval {
int foo=3;
}
/*--------------------------------------------------------------------*/
eval Cgb {
STORAGE* brh = prechecked_cast<STORAGE*>(d);
assert(brh);
double cap = brh->value();
if (m->cmodel != 0) {
if (p->vgst < - s->phi) { /* accumulation */
cap += s->cgate;
}else if (p->vgst < 0.) { /* depletion */
cap += s->cgate * (-p->vgst) / s->phi;
}else{ /* active, overlap only */
}
}
brh->_y[0].f1 = cap;
if (d->_sim->analysis_is_tran_dynamic()) {
cap = (brh->_y[0].f1 + brh->_y[1].f1) / 2;
brh->_y[0].f0 = (brh->_y[0].x - brh->_y[1].x) * cap + brh->_y[1].f0;
}else{
assert(d->_sim->analysis_is_static() || d->_sim->analysis_is_restore());
brh->_y[0].f0 = brh->_y[0].x * brh->_y[0].f1;
}
trace3(brh->long_label().c_str(), brh->_y[0].x, brh->_y[0].f0, brh->_y[0].f1);
}
/*--------------------------------------------------------------------*/
eval Cgd {
STORAGE* brh = prechecked_cast<STORAGE*>(d);
assert(brh);
double cap = 0;
if (m->cmodel != 0) {
assert(p->vdsat >= 0.);
assert(p->vds >= 0.);
double vbs = (m->cmodel == 3) ? 0. : p->vbs;
double vdbsat = p->vdsat - vbs;
double vdb = p->vds - vbs;
double ddif = 2. * vdbsat - vdb;
if (!p->reversed) { // treat as Cgs
if (p->vgst >= 0.) {
if (p->vdsat > p->vds) { /* linear */
cap = (2./3.) * s->cgate * (1. - (vdbsat*vdbsat)/(ddif*ddif));
if (p->vgst <= .1) {
cap *= 10. * p->vgst; // smooth discontinuity
}
}
}
}else{ // treat as Cgs
if (p->vgst >= -s->phi/2.) { /* depletion or active */
cap = (2./3.) * s->cgate;
if (p->vdsat > p->vds) { /* linear */
double ndif = p->vdsat - p->vds;
cap *= 1. - (ndif*ndif)/(ddif*ddif);
}
if (p->vgst <= 0) {
cap *= 1. + p->vgst / (s->phi);
cap *= 1. + p->vgst / (s->phi);
}
}
}
}
cap += brh->value(); /* else overlap only */
brh->_y[0].f1 = cap;
if (d->_sim->analysis_is_tran_dynamic()) {
cap = (brh->_y[0].f1 + brh->_y[1].f1) / 2;
brh->_y[0].f0 = (brh->_y[0].x - brh->_y[1].x) * cap + brh->_y[1].f0;
}else{
assert(d->_sim->analysis_is_static() || d->_sim->analysis_is_restore());
brh->_y[0].f0 = brh->_y[0].x * brh->_y[0].f1;
}
trace3(brh->long_label().c_str(), brh->_y[0].x, brh->_y[0].f0, brh->_y[0].f1);
}
/*--------------------------------------------------------------------*/
eval Cgs {
STORAGE* brh = prechecked_cast<STORAGE*>(d);
assert(brh);
double cap = 0;
if (m->cmodel != 0) {
assert(p->vdsat >= 0.);
assert(p->vds >= 0.);
double vbs = (m->cmodel == 3) ? 0. : p->vbs;
double vdbsat = p->vdsat - vbs;
double vdb = p->vds - vbs;
double ddif = 2. * vdbsat - vdb;
if (p->reversed) { // treat as Cgd
if (p->vgst >= 0.) {
if (p->vdsat > p->vds) { /* linear */
cap = (2./3.) * s->cgate * (1. - (vdbsat*vdbsat)/(ddif*ddif));
if (p->vgst <= .1) {
cap *= 10. * p->vgst; // smooth discontinuity
}
}
}
}else{ // treat as Cgs
if (p->vgst >= -s->phi/2.) { /* depletion or active */
cap = (2./3.) * s->cgate;
if (p->vdsat > p->vds) { /* linear */
double ndif = p->vdsat - p->vds;
cap *= 1. - (ndif*ndif)/(ddif*ddif);
}
if (p->vgst <= 0) {
cap *= 1. + p->vgst / (s->phi);
cap *= 1. + p->vgst / (s->phi);
}
}
}
}
cap += brh->value(); /* else overlap only */
brh->_y[0].f1 = cap;
if (d->_sim->analysis_is_tran_dynamic()) {
cap = (brh->_y[0].f1 + brh->_y[1].f1) / 2;
brh->_y[0].f0 = (brh->_y[0].x - brh->_y[1].x) * cap + brh->_y[1].f0;
}else{
assert(d->_sim->analysis_is_static() || d->_sim->analysis_is_restore());
brh->_y[0].f0 = brh->_y[0].x * brh->_y[0].f1;
}
trace3(brh->long_label().c_str(), brh->_y[0].x, brh->_y[0].f0, brh->_y[0].f1);
}
/*--------------------------------------------------------------------*/
function reverse_if_needed() {
if (vds < 0) {
error(bTRACE, long_label() + ": reversing\n");
error(bTRACE, "before: vds=%g vgs=%g vbs=%g\n", vds, vgs, vbs);
reversed = !reversed;
vgs -= vds;
vbs -= vds;
vds = -vds;
error(bTRACE, "after: vds=%g vgs=%g vbs=%g\n", vds, vgs, vbs);
if (OPT::dampstrategy & dsREVERSE) {
_sim->_fulldamp = true;
untested();
error(bTRACE, long_label() + ":reverse damp\n");
}
if (!(OPT::mosflags & 0040)) {
vbs = std::min(vbs,0.);
}else{
untested();
}
}
}
/*--------------------------------------------------------------------*/
}
/*--------------------------------------------------------------------------*/
cc_direct {
/*--------------------------------------------------------------------------*/
bool DEV_BUILT_IN_MOS::tr_needs_eval()const
{
if (is_q_for_eval()) {
untested();
return false;
}else if (!converged()) {
return true;
}else{
const COMMON_BUILT_IN_MOS* c = prechecked_cast<const COMMON_BUILT_IN_MOS*>(common());
assert(c);
const MODEL_BUILT_IN_MOS_BASE* m=prechecked_cast<const MODEL_BUILT_IN_MOS_BASE*>(c->model());
assert(m);
polarity_t polarity = m->polarity;
node_t& eff_s((reversed) ? _n[n_id] : _n[n_is]);
node_t& eff_d((reversed) ? _n[n_is] : _n[n_id]);
return !(conchk(vds,polarity*(eff_d.v0()-eff_s.v0()),OPT::vntol)
&& conchk(vgs, polarity*(_n[n_g].v0()-eff_s.v0()),
OPT::vntol)
&& conchk(vbs, polarity*(_n[n_b].v0()-eff_s.v0()),
OPT::vntol));
}
}
/*--------------------------------------------------------------------------*/
bool DEV_BUILT_IN_MOS::do_tr()
{
const COMMON_BUILT_IN_MOS* c = prechecked_cast<const COMMON_BUILT_IN_MOS*>(common());
assert(c);
const MODEL_BUILT_IN_MOS_BASE* m = prechecked_cast<const MODEL_BUILT_IN_MOS_BASE*>(c->model());
assert(m);
bool was_cutoff = cutoff;
bool was_subthreshold = subthreshold;
bool was_saturated = saturated;
bool was_reversed = reversed;
bool was_sbfwd = sbfwd;
polarity_t polarity = m->polarity;
if (_sim->is_initial_step()) {
reversed = false;
vds = vgs = vbs = 0.;
}else{
double Vds, Vgs, Vbs;
if (reversed) {
Vds = polarity * volts_limited(_n[n_is],_n[n_id]);
Vgs = polarity * volts_limited(_n[n_g],_n[n_id]);
Vbs = polarity * volts_limited(_n[n_b],_n[n_id]);
}else{
Vds = polarity * volts_limited(_n[n_id],_n[n_is]);
Vgs = polarity * volts_limited(_n[n_g],_n[n_is]);
Vbs = polarity * volts_limited(_n[n_b],_n[n_is]);
}
vgs = fet_limit_vgs(Vgs, vgs, von);
if (_n[n_d].n_() == _n[n_g].n_()) {
vds = Vds + (vgs - Vgs);
}else{
// Spice hacks Vds here, but my tests show that it often makes
// convergence worse, and never improves it.
// I am guessing that it does help when drain and gate are connected,
// and Spice does it here in case they are and cannot be determined
// whether they are or not.
// The hack maintains Vdg after Vgs limiting.
//Vds = Vds + (vgs - Vgs);
vds = fet_limit_vds(Vds, vds);
}
vbs = std::min(Vbs, 0.);
//vbs = pnj_limit(double Vbs, double vbs, double vt, double vcrit);
//vds = Vds;
//vgs = Vgs;
//vbs = Vbs;
}
assert(qgate == qgate);
assert(qgs == qgs);
assert(qgd == qgd);
assert(qdrn == qdrn);
assert(qbulk == qbulk);
assert(qbs == qbs);
assert(qbd == qbd);
m->tr_eval(this);
assert(qgate == qgate);
assert(qgs == qgs);
assert(qgd == qgd);
assert(qdrn == qdrn);
assert(qbulk == qbulk);
assert(qbs == qbs);
assert(qbd == qbd);
if (reversed) {
idsxxx = ids + vds*gds + vgs*gmr + vbs*gmbr;
isbxxx = isb - vds*gsbsd - vgs*gsbgd - vbs*gsbbd;
idbxxx = 0.;
}else{
idsxxx = ids - vds*gds - vgs*gmf - vbs*gmbf;
idbxxx = idb - vds*gdbds - vgs*gdbgs - vbs*gdbbs;
isbxxx = 0.;
}
ids *= polarity;
idsxxx *= polarity;
assert(subckt());
set_converged(subckt()->do_tr());
trace3(long_label().c_str(), vds, vgs, vbs);
trace4("", ids, gmf, gds, gmbf);
trace4("", ids, gmr, gds, gmbr);
if (was_cutoff != cutoff || was_subthreshold != subthreshold
|| was_saturated != saturated || was_reversed != reversed
|| was_sbfwd != sbfwd) {
if (OPT::dampstrategy & dsDEVREGION) {
_sim->_fulldamp = true;
}else{
}
#if defined(DO_TRACE)
error(bTRACE,"%s: region change\n", long_label().c_str());
#endif
}else{
}
return converged();
}
}
/*--------------------------------------------------------------------------*/
/*--------------------------------------------------------------------------*/
|