File: d_mos.model

package info (click to toggle)
gnucap 1%3A20230520-dev-1
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 9,836 kB
  • sloc: cpp: 29,956; sh: 352; makefile: 139
file content (582 lines) | stat: -rw-r--r-- 19,839 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
/* $Id: d_mos.model $ -*- C++ -*-
 * Copyright (C) 2001 Albert Davis
 * Author: Albert Davis <aldavis@gnu.org>
 *
 * This file is part of "Gnucap", the Gnu Circuit Analysis Package
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 * 02110-1301, USA.
 *------------------------------------------------------------------
 * data structures and defaults for mos model.
 * internal units all mks (meters)
 * but some user input parameters are in cm.
 *
 * netlist syntax:
 * device:  mxxxx d g s b mname <device args> <model card args>
 * model:   .model mname NMOS <args>
 *	or  .model mname PMOS <args>
 */
h_headers {
#include "d_diode.h"
}
cc_headers {
#include "u_limit.h"
#include "e_storag.h"
#include "d_mos_base.h"
}
/*--------------------------------------------------------------------------*/
device BUILT_IN_MOS {
  parse_name mosfet;
  model_type BUILT_IN_MOS_BASE;
  id_letter M;
  circuit {
    sync;
    ports {d g s b};
    local_nodes {
      id short_to=d short_if="!OPT::rstray || s->rd == 0.";
      is short_to=s short_if="!OPT::rstray || s->rs == 0.";
    }
    args db BUILT_IN_DIODE {
      area = double(s->ad);
      perim = double(c->pd);
      is_raw = double(s->idsat);
      cj_raw = double(m->cbd);
      cjsw_raw = NA;
      off = true;
      set_modelname(modelname());
      attach(model());
    }
    args sb BUILT_IN_DIODE {
      area = double(s->as);
      perim = double(c->ps);
      is_raw = double(s->issat);
      cj_raw = double(m->cbs);
      cjsw_raw = NA;
      off = true;
      set_modelname(modelname());
      attach(model());
    }
    resistor Rs {s is} value="s->rs"
      omit="!OPT::rstray || s->rs == 0.";
    resistor Rd {d id} value="s->rd"
      omit="!OPT::rstray || s->rd == 0.";
    diode Ddb {b id} args="db" reverse="m->polarity==pP"
      omit="_n[n_b].n_() == _n[n_d].n_() || s->idsat == 0.";
    diode Dsb {b is} args="sb" reverse="m->polarity==pP"
      omit="_n[n_b].n_() == _n[n_s].n_() || s->issat == 0.";
    
    capacitor Cgs {g is} value="s->cgso" eval=Cgs
      omit="!OPT::cstray || _n[n_g].n_() == _n[n_s].n_()";
    capacitor Cgd {g id} value="s->cgdo" eval=Cgd
      omit="!OPT::cstray || _n[n_g].n_() == _n[n_d].n_()";
    capacitor Cgb {g b} value="s->cgbo" eval=Cgb
      omit="!OPT::cstray || _n[n_b].n_() == _n[n_g].n_()";
    fpoly_cap Cqgs {g is g b is b id b}
      state=qgs  // qgate, cgs, cggb, cgsb, cgdb
      omit="m->cmodel != 0 || !OPT::cstray 
		|| _n[n_g].n_() == _n[n_is].n_()";
    fpoly_cap Cqgd {g id g b id b is b}
      state=qgd  // qgate, cgs, cggb, cgsb, cgdb
      omit="m->cmodel != 0 || !OPT::cstray 
		|| _n[n_g].n_() == _n[n_id].n_()";

    fpoly_cap Cqds {id is g b is b id b}
      state=qdrn  // qdrn, cds, cdgb, cdsb, cddb
      omit="m->cmodel != 0 || !OPT::cstray 
             || _n[n_id].n_() == _n[n_is].n_()";

    fpoly_cap Cqbs {b is g b is b id b}
      state=qbs
      omit="m->cmodel != 0 || !OPT::cstray 
             || _n[n_b].n_() == _n[n_is].n_()";

    fpoly_cap Cqbd {b id g b id b is b}
      state=qbd
      omit="m->cmodel != 0 || !OPT::cstray 
             || _n[n_b].n_() == _n[n_id].n_()";
    cpoly_g Ids {id is  g is  id g
		b is  id b} state=idsxxx;
    cpoly_g Idb {id b  id is  g is  b is}
      state=idbxxx 
      omit="!(m->needs_isub) || _n[n_d].n_() == _n[n_b].n_()";
    cpoly_g Isb {is b  is id  g id  b id}
      state=isbxxx 
      omit="!(m->needs_isub) || _n[n_s].n_() == _n[n_b].n_()";
  }
  tr_probe {
    v   = "@n_d[V] - @n_s[V]";
    vds = "@n_d[V] - @n_s[V]";
    vgs = "@n_g[V] - @n_s[V]";
    vbs = "@n_b[V] - @n_s[V]";
    "vdsi{nt}" = "vds";
    "vgsi{nt}" = "vgs";
    "vbsi{nt}" = "vbs";
    vgd = "@n_g[V] - @n_d[V]";
    vbd = "@n_b[V] - @n_d[V]";
    vsd = "@n_s[V] - @n_d[V]";
    vdm = "(@n_d[V] - @n_s[V] + @n_d[V] - @n_d[V]) / 2.";
    vgm = "(@n_g[V]  - @n_s[V] + @n_g[V]  - @n_d[V]) / 2.";
    vbm = "(@n_b[V]  - @n_s[V] + @n_b[V]  - @n_d[V]) / 2.";
    vsm = "(@n_s[V] - @n_s[V] + @n_s[V] - @n_d[V]) / 2.";
    vdg = "@n_d[V] - @n_g[V]";
    vbg = "@n_b[V] - @n_g[V]";
    vsg = "@n_s[V] - @n_g[V]";
    vdb = "@n_d[V] - @n_b[V]";
    vgb = "@n_g[V] - @n_b[V]";
    vsb = "@n_s[V] - @n_b[V]";
    vd = "@n_d[V]";
    vg = "@n_g[V]";
    vb = "@n_b[V]";
    vs = "@n_s[V]";
    "i{d}" = "(_Rd) ? @Rd[I] : (@Ids[I] - @Cgd[I] - @Ddb[I] * m->polarity)";
    is = "(_Rs) ? @Rs[I] : (-@Ids[I] - @Cgs[I] - @Dsb[I] * m->polarity)";
    ig = "@Cgs[I] + @Cgd[I] + @Cgb[I]";
    ib = "- @Ddb[I] * m->polarity - @Dsb[I] * m->polarity - @Cgb[I]";
    ibd = "@Ddb[I]";
    ibs = "@Dsb[I]";
    "cgso{vl}" = "@Cgs[NV]";
    "cgdo{vl}" = "@Cgd[NV]";
    "cgbo{vl}" = "@Cgb[NV]";
    cgst = "@Cgs[EV]";
    cgdt = "@Cgd[EV]";
    cgbt = "@Cgb[EV]";
    "cgs{m}" = "@Cgs[EV] - @Cgs[NV]";
    "cgd{m}" = "@Cgd[EV] - @Cgd[NV]";
    "cgb{m}" = "@Cgb[EV] - @Cgb[NV]";
    cbd = "@Ddb[Cap]";
    cbs = "@Dsb[Cap]";
    cgate = "s->cgate";
    gm = "(reversed) ? gmr : gmf";
    "gmb{s}" = "(reversed) ? gmbr : gmbf";
    gbd = "@Ddb[G]";
    gbs = "@Dsb[G]";
    vth = "von * m->polarity";
    ids = "m->polarity * ((reversed) ? -ids : ids)";
    "idst{ray}" = "- @Cgd[I] + @Ddb[I] * m->polarity";
    p ="@Rs[P] +@Rd[P] +@Ddb[P] +@Dsb[P] +@Cgs[P] +@Cgd[P] +@Cgb[P] +@Ids[P]";
    pd="@Rs[PD]+@Rd[PD]+@Ddb[PD]+@Dsb[PD]+@Cgs[PD]+@Cgd[PD]+@Cgb[PD]+@Ids[PD]";
    ps="@Rs[PS]+@Rd[PS]+@Ddb[PS]+@Dsb[PS]+@Cgs[PS]+@Cgd[PS]+@Cgb[PS]+@Ids[PS]";
    REgion = "static_cast<double>((!cutoff) + (!subthreshold * 2) 
	+ (saturated * 4) + (sbfwd * 10) + ((vbs > vds) * 20)
	+ (punchthru * 40)) * ((reversed)? -1 : 1)";
    SUBthreshold = "static_cast<double>(subthreshold)";
    CUToff = "static_cast<double>(cutoff)";
    SATurated= "static_cast<double>(saturated)";
    TRIode = "static_cast<double>(!saturated && !subthreshold)";
    SBFwd = "static_cast<double>(sbfwd)";
    DBFwd = "static_cast<double>(vbs > vds)";
    REVersed = "static_cast<double>(reversed)";
    status = "static_cast<double>(converged() * 2)";
  }
  device {
    calculated_parameters {
      // ordinary drain current
      double ids "" default=0.;
      double idsxxx;
      double gds "dids/dvds" default=0.;
      double gmf "dids/dvgs" default=0.;
      double gmr "dids/dvgd" default=0.;
      double gmbf "dids/dvbs" default=0.;
      double gmbr "dids/dvbd" default=0.;
      
      // drain-bulk
      double idb "" default=0.;
      double idbxxx "" default=0.;
      double gdbdb "placeholder" default=0.;
      double gdbds "disub/dvds" default=0.;
      double gdbgs "disub/dvgs" default=0.;
      double gdbbs "disub/dvbs" default=0.;
      
      // source-bulk
      double isb "" default=0.;
      double isbxxx "" default=0.;
      double gsbsb "placeholder" default=0.;
      double gsbsd "disub/dvds" default=0.;
      double gsbgd "disub/dvgs" default=0.;
      double gsbbd "disub/dvbs" default=0.;
      
      // charge
      double qgate "raw" default=0.;
      double cgs  "dqgate_vgs placeholder" default=0.;
      double cggb "dqgate_vgb" default=0.;
      double cgsb "dqgate_vsb" default=0.;
      double cgdb "dqgate_vdb" default=0.;
      
      double qgs "forward mode" default=0.;
      double cgsgs "dqgs_vgs placeholder" default=0.;
      double cgsgb "dqgs_vgb" default=0.;
      double cgssb "dqgs_vsb" default=0.;
      double cgsdb "dqgs_vdb" default=0.;
      
      double qgd "reverse mode" default=0.;
      double cgdgd "dqgd_vgs placeholder" default=0.;
      double cgdgb "dqgd_vgb" default=0.;
      double cgdsb "dqgd_vsb" default=0.;
      double cgddb "dqgd_vdb" default=0.;
      

      double qdrn "Qds" default=0.;
      double cdsds "dqds_vds placeholder" default=0.;
      double cdgb "dqds_vgb" default=0.;
      double cdsb "dqds_vsb" default=0.;
      double cddb "dqds_vdb" default=0.;

      
      double qbulk "raw" default=0.;
      double cbs "dqbs_vbs placeholder" default=0.;
      double cbgb "dqbs_vbg" default=0.;
      double cbsb "dqbs_vsb" default=0.;
      double cbdb "dqbs_vdb" default=0.;
      
      double qbs "Qbs forward" default=0.;
      double cbsbs "dqbs_vbs placeholder" default=0.;
      double cbsgb "dqbs_vbg" default=0.;
      double cbssb "dqbs_vsb" default=0.;
      double cbsdb "dqbs_vdb" default=0.;
      
      double qbd "Qbd reverse" default=0.;
      double cbdbd "dqbd_vbd placeholder" default=0.;
      double cbdgb "dqbd_vbg" default=0.;
      double cbdsb "dqbd_vsb" default=0.;
      double cbddb "dqbd_vdb" default=0.;

      
      double gtau "" default=0.;
      double cqgb "" default=0.;
      double cqsb "" default=0.;
      double cqdb "" default=0.;
      double cqbb "" default=0.;
      /*      
      double tconst "" default=0.;
      double cgb "placeholder" default=0.; // capacitors and charges
      double qgb "placeholder" default=0.;
      double qgd "" default=0.;
      double cgd "" default=0.;
      double qgs "" default=0.;
      //double cgs "" default=0.;
      */
      double vgs "terminal voltages" default=0.;
      double vds "" default=0.;
      double vbs "" default=0.;
      
      double vdsat "saturation voltage" default=0.;
      double vgst "vgs - von." default=0.;
      double von "actual threshold voltage" default=0.;
      bool   reversed "flag: Vgs < 0, reverse s & d" default=false;
      bool   cutoff "flag: in cut off region" default=false;
      bool   subthreshold "flag: subthreshold region" default=false;
      bool   saturated "flag: in saturation region" default=false;
      bool   sbfwd "flag: sb diode fwd biased" default=false;
      bool   punchthru "flag: punch thru region" default=false;
    }
  }
  common {
    raw_parameters {
      double l_in "drawn (optical) channel length"
	name=L positive default="OPT::defl";
      double w_in "channel width (drawn)" 
	name=W positive default="OPT::defw";
      double ad_in "drain area, drawn"
	name=AD positive default="OPT::defad"
	print_test="has_hard_value(ad_in)";
      double as_in "source area, drawn" 
	name=AS positive default="OPT::defas"
	print_test="has_hard_value(as_in)";
      double pd "drain perimeter" name=PD positive default=0.0
	print_test="has_hard_value(pd)";
      double ps "source perimeter" name=PS positive default=0.0
	print_test="has_hard_value(ps)";
      double nrd "drain # squares" name=NRD positive default=1.0
	print_test="has_hard_value(nrd)";
      double nrs "source # squares" name=NRS positive default=1.0
	print_test="has_hard_value(nrs)";
    }
  }
  tr_eval {
    int foo=3;
  }
  /*--------------------------------------------------------------------*/
  eval Cgb {
    STORAGE* brh = prechecked_cast<STORAGE*>(d);
    assert(brh);

    double cap = brh->value();

    if (m->cmodel != 0) {
      if (p->vgst < - s->phi) { 		/* accumulation */
	cap += s->cgate;
      }else if (p->vgst < 0.) {			/* depletion */
	cap += s->cgate * (-p->vgst) / s->phi;
      }else{					/* active, overlap only */
      }
    }
    brh->_y[0].f1 = cap;
    if (d->_sim->analysis_is_tran_dynamic()) {
      cap = (brh->_y[0].f1 + brh->_y[1].f1) / 2;
      brh->_y[0].f0 = (brh->_y[0].x - brh->_y[1].x) * cap + brh->_y[1].f0;
    }else{
      assert(d->_sim->analysis_is_static() || d->_sim->analysis_is_restore());
      brh->_y[0].f0 = brh->_y[0].x * brh->_y[0].f1;
    }
    trace3(brh->long_label().c_str(), brh->_y[0].x, brh->_y[0].f0, brh->_y[0].f1);
  }
  /*--------------------------------------------------------------------*/
  eval Cgd {
    STORAGE* brh = prechecked_cast<STORAGE*>(d);
    assert(brh);

    double cap = 0;
    if (m->cmodel != 0) {
      assert(p->vdsat >= 0.);
      assert(p->vds >= 0.);
      double vbs    = (m->cmodel == 3) ? 0. : p->vbs;
      double vdbsat = p->vdsat - vbs;
      double vdb    = p->vds   - vbs;
      double ddif   = 2. * vdbsat - vdb;
      
      if (!p->reversed) { // treat as Cgs
	if (p->vgst >= 0.) {
	  if (p->vdsat > p->vds) {		/* linear */
	    cap = (2./3.) * s->cgate * (1. - (vdbsat*vdbsat)/(ddif*ddif));
	    if (p->vgst <= .1) {
	      cap *= 10. * p->vgst;	// smooth discontinuity
	    }
	  }
	}
      }else{ // treat as Cgs
	if (p->vgst >= -s->phi/2.) {		/* depletion  or active */
	  cap = (2./3.) * s->cgate;
	  if (p->vdsat > p->vds) {			/* linear */
	    double ndif   = p->vdsat - p->vds;
	    cap *= 1. - (ndif*ndif)/(ddif*ddif);
	  }
	  if (p->vgst <= 0) {
	    cap *= 1. + p->vgst / (s->phi);
	    cap *= 1. + p->vgst / (s->phi);
	  }
	}
      }
    }
    cap += brh->value();		/* else overlap only */
    
    brh->_y[0].f1 = cap;
    if (d->_sim->analysis_is_tran_dynamic()) {
      cap = (brh->_y[0].f1 + brh->_y[1].f1) / 2;
      brh->_y[0].f0 = (brh->_y[0].x - brh->_y[1].x) * cap + brh->_y[1].f0;
    }else{
      assert(d->_sim->analysis_is_static() || d->_sim->analysis_is_restore());
      brh->_y[0].f0 = brh->_y[0].x * brh->_y[0].f1;
    }
    trace3(brh->long_label().c_str(), brh->_y[0].x, brh->_y[0].f0, brh->_y[0].f1);
  }
  /*--------------------------------------------------------------------*/
  eval Cgs {
    STORAGE* brh = prechecked_cast<STORAGE*>(d);
    assert(brh);

    double cap = 0;
    if (m->cmodel != 0) {
      assert(p->vdsat >= 0.);
      assert(p->vds >= 0.);
      double vbs    = (m->cmodel == 3) ? 0. : p->vbs;
      double vdbsat = p->vdsat - vbs;
      double vdb    = p->vds   - vbs;
      double ddif   = 2. * vdbsat - vdb;
      
      if (p->reversed) { // treat as Cgd
	if (p->vgst >= 0.) {
	  if (p->vdsat > p->vds) {		/* linear */
	    cap = (2./3.) * s->cgate * (1. - (vdbsat*vdbsat)/(ddif*ddif));
	    if (p->vgst <= .1) {
	      cap *= 10. * p->vgst;	// smooth discontinuity
	    }
	  }
	}
      }else{ // treat as Cgs
	if (p->vgst >= -s->phi/2.) {		/* depletion  or active */
	  cap = (2./3.) * s->cgate;
	  if (p->vdsat > p->vds) {			/* linear */
	    double ndif   = p->vdsat - p->vds;
	    cap *= 1. - (ndif*ndif)/(ddif*ddif);
	  }
	  if (p->vgst <= 0) {
	    cap *= 1. + p->vgst / (s->phi);
	    cap *= 1. + p->vgst / (s->phi);
	  }
	}
      }
    }
    cap += brh->value();		/* else overlap only */
    
    brh->_y[0].f1 = cap;
    if (d->_sim->analysis_is_tran_dynamic()) {
      cap = (brh->_y[0].f1 + brh->_y[1].f1) / 2;
      brh->_y[0].f0 = (brh->_y[0].x - brh->_y[1].x) * cap + brh->_y[1].f0;
    }else{
      assert(d->_sim->analysis_is_static() || d->_sim->analysis_is_restore());
      brh->_y[0].f0 = brh->_y[0].x * brh->_y[0].f1;
    }
    trace3(brh->long_label().c_str(), brh->_y[0].x, brh->_y[0].f0, brh->_y[0].f1);
  }
  /*--------------------------------------------------------------------*/
  function reverse_if_needed() {
    if (vds < 0) {
      error(bTRACE, long_label() + ": reversing\n");
      error(bTRACE, "before: vds=%g vgs=%g vbs=%g\n", vds, vgs, vbs);
      reversed = !reversed;
      vgs -= vds;
      vbs -= vds;
      vds = -vds;
      error(bTRACE, "after: vds=%g vgs=%g vbs=%g\n", vds, vgs, vbs);
      if (OPT::dampstrategy & dsREVERSE) {
	_sim->_fulldamp = true;
	untested();
	error(bTRACE, long_label() + ":reverse damp\n");
      }
      if (!(OPT::mosflags & 0040)) {
	vbs = std::min(vbs,0.);
      }else{
	untested();
      }
    }
  }
  /*--------------------------------------------------------------------*/
}
/*--------------------------------------------------------------------------*/
cc_direct {
/*--------------------------------------------------------------------------*/
bool DEV_BUILT_IN_MOS::tr_needs_eval()const
{
  if (is_q_for_eval()) {
    untested();
    return false;
  }else if (!converged()) {
    return true;
  }else{
    const COMMON_BUILT_IN_MOS* c = prechecked_cast<const COMMON_BUILT_IN_MOS*>(common());
    assert(c);
    const MODEL_BUILT_IN_MOS_BASE* m=prechecked_cast<const MODEL_BUILT_IN_MOS_BASE*>(c->model());
    assert(m);
    polarity_t polarity = m->polarity;
    node_t& eff_s((reversed) ? _n[n_id] : _n[n_is]);
    node_t& eff_d((reversed) ? _n[n_is] : _n[n_id]);
    return !(conchk(vds,polarity*(eff_d.v0()-eff_s.v0()),OPT::vntol)
	     && conchk(vgs, polarity*(_n[n_g].v0()-eff_s.v0()),
		       OPT::vntol)
	     && conchk(vbs, polarity*(_n[n_b].v0()-eff_s.v0()),
		       OPT::vntol));
  }
}
/*--------------------------------------------------------------------------*/
bool DEV_BUILT_IN_MOS::do_tr()
{
  const COMMON_BUILT_IN_MOS* c = prechecked_cast<const COMMON_BUILT_IN_MOS*>(common());
  assert(c);
  const MODEL_BUILT_IN_MOS_BASE* m = prechecked_cast<const MODEL_BUILT_IN_MOS_BASE*>(c->model());
  assert(m);

  bool was_cutoff = cutoff;
  bool was_subthreshold = subthreshold;
  bool was_saturated = saturated;
  bool was_reversed = reversed;
  bool was_sbfwd = sbfwd;
  polarity_t polarity = m->polarity;

  if (_sim->is_initial_step()) {
    reversed = false;
    vds = vgs = vbs = 0.;
  }else{
    double Vds, Vgs, Vbs;
    if (reversed) {
      Vds = polarity * volts_limited(_n[n_is],_n[n_id]);
      Vgs = polarity * volts_limited(_n[n_g],_n[n_id]);
      Vbs = polarity * volts_limited(_n[n_b],_n[n_id]);
    }else{
      Vds = polarity * volts_limited(_n[n_id],_n[n_is]);
      Vgs = polarity * volts_limited(_n[n_g],_n[n_is]);
      Vbs = polarity * volts_limited(_n[n_b],_n[n_is]);
    }
    vgs = fet_limit_vgs(Vgs, vgs, von);
    if (_n[n_d].n_() == _n[n_g].n_()) {
      vds = Vds + (vgs - Vgs);
    }else{
      // Spice hacks Vds here, but my tests show that it often makes
      // convergence worse, and never improves it.
      // I am guessing that it does help when drain and gate are connected,
      // and Spice does it here in case they are and cannot be determined
      // whether they are or not.
      // The hack maintains Vdg after Vgs limiting.
      //Vds = Vds + (vgs - Vgs);
      vds = fet_limit_vds(Vds, vds);
    }
    vbs = std::min(Vbs, 0.);
    //vbs = pnj_limit(double Vbs, double vbs, double vt, double vcrit);
    //vds = Vds;
    //vgs = Vgs;
    //vbs = Vbs;
  }

  assert(qgate == qgate);
  assert(qgs == qgs);
  assert(qgd == qgd);
  assert(qdrn == qdrn);
  assert(qbulk == qbulk);
  assert(qbs == qbs);
  assert(qbd == qbd);

  m->tr_eval(this);

  assert(qgate == qgate);
  assert(qgs == qgs);
  assert(qgd == qgd);
  assert(qdrn == qdrn);
  assert(qbulk == qbulk);
  assert(qbs == qbs);
  assert(qbd == qbd);

  if (reversed) {
    idsxxx = ids + vds*gds + vgs*gmr + vbs*gmbr;
    isbxxx = isb - vds*gsbsd - vgs*gsbgd - vbs*gsbbd;
    idbxxx = 0.;
  }else{
    idsxxx = ids - vds*gds - vgs*gmf - vbs*gmbf;
    idbxxx = idb - vds*gdbds - vgs*gdbgs - vbs*gdbbs;
    isbxxx = 0.;
  }
  ids *= polarity;
  idsxxx *= polarity;
  assert(subckt());
  set_converged(subckt()->do_tr());
  
  trace3(long_label().c_str(), vds, vgs, vbs);
  trace4("", ids, gmf, gds, gmbf);
  trace4("", ids, gmr, gds, gmbr);
  if (was_cutoff != cutoff  ||  was_subthreshold != subthreshold  
  	||  was_saturated != saturated  ||  was_reversed != reversed  
	||  was_sbfwd != sbfwd) {
    if (OPT::dampstrategy & dsDEVREGION) {
      _sim->_fulldamp = true;
    }else{
    }
    #if defined(DO_TRACE)
      error(bTRACE,"%s: region change\n", long_label().c_str());
    #endif
  }else{
  }
  return converged();
}
}
/*--------------------------------------------------------------------------*/
/*--------------------------------------------------------------------------*/