1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948
|
/***************************************************************************
randomgenerators.cpp - GDL library function
-------------------
begin : Oct 26 2018
copyright : (C) 2004 by Joel Gales
: (C) 2018 G. Duvert
email : see https://github.com/gnudatalanguage/gdl
***************************************************************************/
/***************************************************************************
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
**************************************************************************/
#include "gsl_fun.hpp"
#ifdef _MSC_VER
#include "gtdhelper.hpp" //for gettimeofday()
#else
#include <sys/time.h>
#endif
namespace lib {
#ifdef USE_EIGEN
/* following are some modified codes taken from the GNU Scientific Library.
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000, 2006, 2007 James Theiler, Brian Gough
* Copyright (C) 2006 Charles Karney
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
// following is the default version that uses the dSFMT algo, with further parallelisation using their jump function
#include "dSFMT/dSFMT.h"
#include "dSFMT/dSFMT-params.h"
#include "dSFMT/dSFMT-common.h"
//for jumps and parallelism
#include "dSFMT/dSFMT-jump.h"
#include "dSFMT/dSFMT-poly.h"
#define GSL_M_E 2.7182818284590452354 /* e */
//our own struct to keep up things related to parallel seeds
//it will contain all 128-bit internal state arrays, one per thread.
//as the number of threads is not known, it will be initialized at start.
struct DSFMT_STATE {
dsfmt_t **r;
};
typedef struct DSFMT_STATE dsfmt_state;
//RANDOM numbers are not thread-pool commands. We take the opportunity to use the same mechanism because dsfmt can be parallelized thanks to
// 'loooooong jump' in the quasi infinite serie of random numbers rendered possible by dSFMT_jump.
// the random seed sequence is initialized to a max of maxNumberOfThreadsForDSFMT() which is capped to a reasonable (8 procs) value.
// However, contrary to the use of !CPU.TPOOLxxx that just switch from 'all parallel' to 'no parallel', we need to optimize by using
// reasonably sized parallel chunks. I suggest to use CpuTPOOL_MIN_ELTS as the minimum size for a chunk, and
#define DEFINE_NCHUNK_FOR_dSFMT int dsfmt_nthreads = (nEl >= CpuTPOOL_MIN_ELTS && (CpuTPOOL_MAX_ELTS == 0 || CpuTPOOL_MAX_ELTS <= nEl)) ? maxNumberOfThreadsForDSFMT() : 1;
// This function could prove to be way faster than the function below, provided the parallelization insures
// an alignment on _align16 , i.e., 2 doubles = 128 bits = address%16==0
//
// int random_uniform(double* res, dsfmt_state state, SizeT nEl)
// {
// if (nEl >= dsfmt_get_min_array_size() + 1) {
// SizeT n = (nEl % 2) ? nEl - 1 : nEl;
// dsfmt_fill_array_close_open(state.r[0], res, n);
// if (!(n == nEl)) res[nEl - 1] = dsfmt_genrand_close_open(state.r[0]);
// } else {
// for (SizeT i = 0; i < nEl; ++i) res[i] = dsfmt_genrand_close_open(state.r[0]);
// }
// return 0;
// }
int random_uniform(double* res, dsfmt_state state, SizeT nEl)
{
//no difficulty as we do not use aligned functions here.
DEFINE_NCHUNK_FOR_dSFMT
SizeT dsfmt_chunksize = nEl / dsfmt_nthreads;
TRACEOMP(__FILE__,__LINE__)
#pragma omp parallel num_threads(dsfmt_nthreads) if (dsfmt_nthreads > 1)
{
int thread_id = currentThreadNumber();
SizeT start_index, stop_index;
start_index = thread_id * dsfmt_chunksize;
if (thread_id != dsfmt_nthreads-1) //robust wrt. use of threads or not.
{
stop_index = start_index + dsfmt_chunksize;
} else {
stop_index = nEl;
}
SizeT i;
for (i=start_index; i<stop_index; ++i) res[i] = dsfmt_genrand_close_open(state.r[thread_id]);
}
return 0;
}
int random_uniform(float* res, dsfmt_state state, SizeT nEl)
{
DEFINE_NCHUNK_FOR_dSFMT
SizeT dsfmt_chunksize = nEl / dsfmt_nthreads;
TRACEOMP(__FILE__,__LINE__)
#pragma omp parallel num_threads(dsfmt_nthreads) if (dsfmt_nthreads > 1)
{
int thread_id = currentThreadNumber();
SizeT start_index, stop_index;
start_index = thread_id * dsfmt_chunksize;
if (thread_id != dsfmt_nthreads-1) //robust wrt. use of threads or not.
{
stop_index = start_index + dsfmt_chunksize;
} else {
stop_index = nEl;
}
SizeT i;
for (i=start_index; i<stop_index; ++i) res[i] = (float) dsfmt_genrand_close_open(state.r[thread_id]);
}
return 0;
}
double dsfmt_gauss(dsfmt_t *r, const double sigma)
{
double x, y, r2;
do {
x = -3 + 2 * dsfmt_genrand_close1_open2(r);//belongs to [1,2): faster
y = -3 + 2 * dsfmt_genrand_close1_open2(r);
/* see if it is in the unit circle */
r2 = x * x + y * y;
} while (r2 > 1.0 || r2 == 0);
/* Box-Muller transform */
double fct = sqrt(-2.0 * log(r2) / r2);
double current = sigma * y * fct;
return current;
}
// //unused, but could prove useful, see comment sbelow.
// void dsfmt_gauss_array(dsfmt_t *r, double *ret, const SizeT n, const double sigma)
// {
// //populate array with random doubles (fastest mode)
// //use these randoms to make them gaussian until no more available.
// //complete then with singular entries.
// //nEl must be even and greater than 382. Only this permits the following code.
// //assert(n%2==0); //There is an assert already in dSFMT!
//
// dsfmt_fill_array_close1_open2(r, ret, n); //belongs to [1,2): faster
// for (SizeT i=0; i< n; ++i) ret[i]=-3.+2*ret[i]; //hopefully optimized by compiler!
// double x, y, r2;
// SizeT i = 0;
// SizeT MARGIN=(n/5 > 512)? 512:n/5; //huge safety margin, at least 76. Probability is thus always much less than (1-PI/4)^76=210^-51
// SizeT index = 0;
// /* choose x,y in uniform square (-1,-1) to (+1,+1) */
// do {
// do {
// x = ret[i++];
// y = ret[i++];
// /* see if it is in the unit circle */
// r2 = x * x + y * y;
// } while (r2 > 1.0 || r2 == 0);
// /* Box-Muller transform */
// double fct = sqrt(-2.0 * log(r2) / r2);
// double current = sigma * y * fct;
// ret[index++] = current;
// if (index < n-1) {
// double other = sigma * x * fct;
// ret[index++] = other;
// }
// } while (i < n-MARGIN); //i always > index
// //finish the few last values
// for (SizeT k = index; k < n; ++k) ret[k] = dsfmt_gauss(r, sigma);
// }
// see comment about random_uniform (double) above for optimzation possibilities.
// int random_normal( double* res, dsfmt_state state, SizeT nEl)
// {
// if (nEl >= dsfmt_get_min_array_size() + 1) {
// SizeT n = (nEl % 2) ? nEl - 1 : nEl;
// dsfmt_gauss_array(state.r[0], res, n, 1.0);
// if (!(n == nEl)) res[nEl-1] = dsfmt_gauss(state.r[0], 1.0);
// } else {
// for (SizeT i = 0; i < nEl; ++i) res[i] = dsfmt_gauss(state.r[0], 1.0);
// }
// return 0;
// }
int random_normal(double* res, dsfmt_state state, SizeT nEl)
{
DEFINE_NCHUNK_FOR_dSFMT
SizeT dsfmt_chunksize = nEl / dsfmt_nthreads;
TRACEOMP(__FILE__,__LINE__)
#pragma omp parallel num_threads(dsfmt_nthreads) if (dsfmt_nthreads > 1)
{
int thread_id = currentThreadNumber();
SizeT start_index, stop_index;
start_index = thread_id * dsfmt_chunksize;
if (thread_id != dsfmt_nthreads-1) //robust wrt. use of threads or not.
{
stop_index = start_index + dsfmt_chunksize;
} else {
stop_index = nEl;
}
SizeT i;
for (i=start_index; i<stop_index; ++i) res[i] = dsfmt_gauss(state.r[thread_id],1.0);
}
return 0;
}
int random_normal( float* res, dsfmt_state state, SizeT nEl)
{
DEFINE_NCHUNK_FOR_dSFMT
SizeT dsfmt_chunksize = nEl / dsfmt_nthreads;
TRACEOMP(__FILE__,__LINE__)
#pragma omp parallel num_threads(dsfmt_nthreads) if (dsfmt_nthreads > 1)
{
int thread_id = currentThreadNumber();
SizeT start_index, stop_index;
start_index = thread_id * dsfmt_chunksize;
if (thread_id != dsfmt_nthreads-1) //robust wrt. use of threads or not.
{
stop_index = start_index + dsfmt_chunksize;
} else {
stop_index = nEl;
}
SizeT i;
for (i=start_index; i<stop_index; ++i) res[i] = (float) dsfmt_gauss(state.r[thread_id],1.0);
}
return 0;
}
//gamma, poisson and binomial distributions code taken from GSL and updated to use dSFMT generator.
static double
dsfmt_gamma_large(dsfmt_t * r, const double a)
{
/* Works only if a > 1, and is most efficient if a is large
This algorithm, reported in Knuth, is attributed to Ahrens. A
faster one, we are told, can be found in: J. H. Ahrens and
U. Dieter, Computing 12 (1974) 223-246. */
double sqa, x, y, v;
sqa = sqrt(2 * a - 1);
do {
do {
y = tan(M_PI * dsfmt_genrand_close_open(r));
x = sqa * y + a - 1;
} while (x <= 0);
v = dsfmt_genrand_close_open(r);
} while (v > (1 + y * y) * exp((a - 1) * log(x / (a - 1)) - sqa * y));
return x;
}
static double
dsfmt_gamma_frac(dsfmt_t * r, const double a)
{
/* This is exercise 16 from Knuth; see page 135, and the solution is
on page 551. */
double p, q, x, u, v;
if (a == 0) {
return 0;
}
p = GSL_M_E / (a + GSL_M_E);
do {
u = dsfmt_genrand_close_open(r);
v = dsfmt_genrand_open_open(r);
if (u < p) {
x = exp((1 / a) * log(v));
q = exp(-x);
} else {
x = 1 - log(v);
q = exp((a - 1) * log(x));
}
} while (dsfmt_genrand_close_open(r) >= q);
return x;
}
static double
dsfmt_ran_gamma_int(dsfmt_t * r, const unsigned int a)
{
if (a < 12) {
unsigned int i;
double prod = 1;
for (i = 0; i < a; i++) {
prod *= dsfmt_genrand_open_open(r);
}
/* Note: for 12 iterations we are safe against underflow, since
the smallest positive random number is O(2^-32). This means
the smallest possible product is 2^(-12*32) = 10^-116 which
is within the range of double precision. */
return -log(prod);
} else {
return dsfmt_gamma_large(r, (double) a);
}
}
static double
dsfmt_ran_gamma_knuth(dsfmt_t * r, const double a, const double b)
{
/* assume a > 0 */
unsigned int na = floor(a);
if (a >= UINT_MAX) {
return b * (dsfmt_gamma_large(r, floor(a)) + dsfmt_gamma_frac(r, a - floor(a)));
} else if (a == na) {
return b * dsfmt_ran_gamma_int(r, na);
} else if (na == 0) {
return b * dsfmt_gamma_frac(r, a);
} else {
return b * (dsfmt_ran_gamma_int(r, na) + dsfmt_gamma_frac(r, a - na));
}
}
double
dsfmt_ran_gamma(dsfmt_t * r, const double a, const double b)
{
/* assume a > 0 */
if (a < 1) {
double u = dsfmt_genrand_open_open(r);
return dsfmt_ran_gamma(r, 1.0 + a, b) * pow(u, 1.0 / a);
}
{
double x, v, u;
double d = a - 1.0 / 3.0;
double c = (1.0 / 3.0) / sqrt(d);
while (1) {
do {
x = dsfmt_gauss(r, 1.0); //GSL's method uses gaussian_ziggurat but intent is the same!
v = 1.0 + c * x;
} while (v <= 0);
v = v * v * v;
u = dsfmt_genrand_open_open(r);
if (u < 1 - 0.0331 * x * x * x * x)
break;
if (log(u) < 0.5 * x * x + d * (1 - v + log(v)))
break;
}
return b * d * v;
}
}
double
dsfmt_ran_beta(dsfmt_t * r, const double a, const double b)
{
if ((a <= 1.0) && (b <= 1.0)) {
double U, V, X, Y;
while (1) {
U = dsfmt_genrand_open_open(r);
V = dsfmt_genrand_open_open(r);
X = pow(U, 1.0 / a);
Y = pow(V, 1.0 / b);
if ((X + Y) <= 1.0) {
if (X + Y > 0) {
return X / (X + Y);
} else {
double logX = log(U) / a;
double logY = log(V) / b;
double logM = logX > logY ? logX : logY;
logX -= logM;
logY -= logM;
return exp(logX - log(exp(logX) + exp(logY)));
}
}
}
} else {
double x1 = dsfmt_ran_gamma(r, a, 1.0);
double x2 = dsfmt_ran_gamma(r, b, 1.0);
return x1 / (x1 + x2);
}
}
static unsigned int
dsfmt_ran_binomial_knuth(dsfmt_t * r, double p, unsigned int n)
{
unsigned int i, a, b, k = 0;
while (n > 10) /* This parameter is tunable */ {
double X;
a = 1 + (n / 2);
b = 1 + n - a;
X = dsfmt_ran_beta(r, (double) a, (double) b);
if (X >= p) {
n = a - 1;
p /= X;
} else {
k += a;
n = b - 1;
p = (p - X) / (1 - X);
}
}
for (i = 0; i < n; i++) {
double u = dsfmt_genrand_close_open(r);
if (u < p)
k++;
}
return k;
}
unsigned int
dsfmt_ran_poisson(dsfmt_t * r, double mu)
{
double emu;
double prod = 1.0;
unsigned int k = 0;
while (mu > 10) {
unsigned int m = mu * (7.0 / 8.0);
double X = dsfmt_ran_gamma_int(r, m);
if (X >= mu) {
return k + dsfmt_ran_binomial_knuth(r, mu / X, m - 1);
} else {
k += m;
mu -= X;
}
}
/* This following method works well when mu is small */
emu = exp(-mu);
do {
prod *= dsfmt_genrand_close_open(r);
k++;
} while (prod > emu);
return k - 1;
}
int random_gamma(double* res, dsfmt_state state, SizeT nEl, DLong n)
{
DEFINE_NCHUNK_FOR_dSFMT
SizeT dsfmt_chunksize = nEl / dsfmt_nthreads;
TRACEOMP(__FILE__,__LINE__)
#pragma omp parallel num_threads(dsfmt_nthreads) if (dsfmt_nthreads > 1)
{
int thread_id = currentThreadNumber();
SizeT start_index, stop_index;
start_index = thread_id * dsfmt_chunksize;
if (thread_id != dsfmt_nthreads - 1) //robust wrt. use of threads or not.
{
stop_index = start_index + dsfmt_chunksize;
} else {
stop_index = nEl;
}
SizeT i;
for (i = start_index; i < stop_index; ++i) res[i] = dsfmt_ran_gamma_knuth(state.r[thread_id], 1.0 * n, 1.0);
}
return 0;
}
int random_gamma(float* res, dsfmt_state state, SizeT nEl, DLong n)
{
DEFINE_NCHUNK_FOR_dSFMT
SizeT dsfmt_chunksize = nEl / dsfmt_nthreads;
TRACEOMP(__FILE__,__LINE__)
#pragma omp parallel num_threads(dsfmt_nthreads) if (dsfmt_nthreads > 1)
{
int thread_id = currentThreadNumber();
SizeT start_index, stop_index;
start_index = thread_id * dsfmt_chunksize;
if (thread_id != dsfmt_nthreads - 1) //robust wrt. use of threads or not.
{
stop_index = start_index + dsfmt_chunksize;
} else {
stop_index = nEl;
}
SizeT i;
for (i = start_index; i < stop_index; ++i) res[i] = (float) dsfmt_ran_gamma_knuth(state.r[thread_id], 1.0 * n, 1.0);
}
return 0;
}
int random_binomial(double* res, dsfmt_state state, SizeT nEl, DDoubleGDL* binomialKey)
{
//Note: Binomial values are not same IDL.
DULong n = (DULong) (*binomialKey)[0];
DDouble p = (DDouble) (*binomialKey)[1];
DEFINE_NCHUNK_FOR_dSFMT
SizeT dsfmt_chunksize = nEl / dsfmt_nthreads;
TRACEOMP(__FILE__,__LINE__)
#pragma omp parallel num_threads(dsfmt_nthreads) if (dsfmt_nthreads > 1)
{
int thread_id = currentThreadNumber();
SizeT start_index, stop_index;
start_index = thread_id * dsfmt_chunksize;
if (thread_id != dsfmt_nthreads - 1) //robust wrt. use of threads or not.
{
stop_index = start_index + dsfmt_chunksize;
} else {
stop_index = nEl;
}
SizeT i;
for (i = start_index; i < stop_index; ++i) res[i] = dsfmt_ran_binomial_knuth(state.r[thread_id], p, n);
}
return 0;
}
int random_binomial(float* res, dsfmt_state state, SizeT nEl, DDoubleGDL* binomialKey)
{
//Note: Binomial values are not same IDL.
DULong n = (DULong) (*binomialKey)[0];
DDouble p = (DDouble) (*binomialKey)[1];
DEFINE_NCHUNK_FOR_dSFMT
SizeT dsfmt_chunksize = nEl / dsfmt_nthreads;
TRACEOMP(__FILE__,__LINE__)
#pragma omp parallel num_threads(dsfmt_nthreads) if (dsfmt_nthreads > 1)
{
int thread_id = currentThreadNumber();
SizeT start_index, stop_index;
start_index = thread_id * dsfmt_chunksize;
if (thread_id != dsfmt_nthreads - 1) //robust wrt. use of threads or not.
{
stop_index = start_index + dsfmt_chunksize;
} else {
stop_index = nEl;
}
SizeT i;
for (i = start_index; i < stop_index; ++i) res[i] = (float) dsfmt_ran_binomial_knuth(state.r[thread_id], p, n);
}
return 0;
}
int random_poisson(double* res, dsfmt_state state, SizeT nEl, DDoubleGDL* poissonKey)
{
DDouble mu = (DDouble) (*poissonKey)[0];
DEFINE_NCHUNK_FOR_dSFMT
SizeT dsfmt_chunksize = nEl / dsfmt_nthreads;
TRACEOMP(__FILE__,__LINE__)
#pragma omp parallel num_threads(dsfmt_nthreads) if (dsfmt_nthreads > 1)
{
int thread_id = currentThreadNumber();
SizeT start_index, stop_index;
start_index = thread_id * dsfmt_chunksize;
if (thread_id != dsfmt_nthreads - 1) //robust wrt. use of threads or not.
{
stop_index = start_index + dsfmt_chunksize;
} else {
stop_index = nEl;
}
SizeT i;
for (i = start_index; i < stop_index; ++i) res[i] = dsfmt_ran_poisson(state.r[thread_id], mu);
}
return 0;
}
int random_poisson(float* res, dsfmt_state state, SizeT nEl, DDoubleGDL* poissonKey)
{
DDouble mu = (DDouble) (*poissonKey)[0];
DEFINE_NCHUNK_FOR_dSFMT
SizeT dsfmt_chunksize = nEl / dsfmt_nthreads;
TRACEOMP(__FILE__,__LINE__)
#pragma omp parallel num_threads(dsfmt_nthreads) if (dsfmt_nthreads > 1)
{
int thread_id = currentThreadNumber();
SizeT start_index, stop_index;
start_index = thread_id * dsfmt_chunksize;
if (thread_id != dsfmt_nthreads-1) //robust wrt. use of threads or not.
{
stop_index = start_index + dsfmt_chunksize;
} else {
stop_index = nEl;
}
SizeT i;
for (i=start_index; i<stop_index; ++i) res[i] = (float) dsfmt_ran_poisson(state.r[thread_id], mu);
}
return 0;
}
int random_dlong(DLong* res, dsfmt_state state, SizeT nEl)
{
DEFINE_NCHUNK_FOR_dSFMT
SizeT dsfmt_chunksize = nEl / dsfmt_nthreads;
TRACEOMP(__FILE__,__LINE__)
#pragma omp parallel num_threads(dsfmt_nthreads) if (dsfmt_nthreads > 1)
{
int thread_id = currentThreadNumber();
SizeT start_index, stop_index;
start_index = thread_id * dsfmt_chunksize;
if (thread_id != dsfmt_nthreads - 1) //robust wrt. use of threads or not.
{
stop_index = start_index + dsfmt_chunksize;
} else {
stop_index = nEl;
}
SizeT i;
for (i = start_index; i < stop_index; ++i) res[i] = dsfmt_genrand_int31(state.r[thread_id]); //int31 as in [0..2^31-1]
}
return 0;
}
int random_dulong(DULong* res, dsfmt_state state, SizeT nEl)
{
DEFINE_NCHUNK_FOR_dSFMT
SizeT dsfmt_chunksize = nEl / dsfmt_nthreads;
TRACEOMP(__FILE__,__LINE__)
#pragma omp parallel num_threads(dsfmt_nthreads) if (dsfmt_nthreads > 1)
{
int thread_id = currentThreadNumber();
SizeT start_index, stop_index;
start_index = thread_id * dsfmt_chunksize;
if (thread_id != dsfmt_nthreads - 1) //robust wrt. use of threads or not.
{
stop_index = start_index + dsfmt_chunksize;
} else {
stop_index = nEl;
}
SizeT i;
for (i = start_index; i < stop_index; ++i) res[i] = dsfmt_genrand_uint32(state.r[thread_id]); //int31 as in [0..2^31-1]
}
return 0;
}
void set_random_state(dsfmt_t *dsfmt_mem, const DULong64* seedState, const int pos)
{
uint64_t *psfmt64 = (uint64_t*) &(dsfmt_mem->status[0].u[0]);
for (int k = 0; k < DSFMT_N64; ++k) psfmt64[k] = seedState[k];
dsfmt_mem->idx = pos;
}
void get_random_state(EnvT* e, dsfmt_state state, const DULong seed)
{
if (e->GlobalPar(0)) {
DULong64GDL* ret = new DULong64GDL(dimension(1+(DSFMT_N64+1)*maxNumberOfThreadsForDSFMT()), BaseGDL::NOZERO);
DULong64* newstate = (DULong64*) (ret->DataAddr());
long k=0;
newstate[k++] = seed;
for (int ithread=0; ithread < maxNumberOfThreadsForDSFMT() ; ++ithread) {
newstate[k++] = state.r[ithread]->idx;
uint64_t *psfmt64 = &(state.r[ithread]->status[0].u[0]);
for (int j = 0; j < DSFMT_N64; ++j) newstate[k++] = psfmt64[j];
}
e->SetPar(0, ret);
}
}
// GDL uses now by default the hardware accelerated mersenne twister (dSFMT) written
// by Mutsuo Saito (Hiroshima University) and Makoto Matsumoto (The University of Tokyo).
// This is already two to four times faster than IDL.
// Use of dSFMT depends on the presence of switches (--no-dSFMT), environment variable (GDL_USE_DSFMT)
// and if Eigen:: is used (because Eigen:: aligns correctly wrt. the requirements of dSFMT)
// We moreover definitely speed up random number generation for a very large number of
// values by parallelizing the code. This is possible within dSFMT, provided one use the dsfmt-jump() function
// written by the authors above. It permits to "jump" the seed to a new state as if 2^{128}
// random numbers had been generated in the meantime. (This in a random series with a period of 2^19937 !).
// Note: 2^128 is already way larger than the number of particles in the Universe.
// The implementation creates maxNumberOfThreadsForDSFMT() seed states, separated by a 2^{128} state jump,
// and may run up to maxNumberOfThreadsForDSFMT() threads in parallell, each continuing with its own seed.
// maxNumberOfThreadsForDSFMT() is capped to 8 threads, you do not normally want to see GDL
// intializing 256 seed states on a 256 thread machine.
// The price to pay is that **the produced random numbers are not the same as IDL**.
// To get values comparable with IDL, but slowly, use the /RAN1 switch (1) (or do not enable dSFMT).
// Moreover, the seed arrays are different. Switching from one to another is *NOT* possible as the
// types and seed lengths are different. Besides, our dSFMT seed is, because of the use of parallel threads
// to speed up the random generator, approx maxNumberOfThreadsForDSFMT() larger than the IDL one (not a big deal!).
// (1) Why /RAN1? Because this option is present in IDL, and, instead of throwing an error on it,
// we use it also as a compatibility switch. But in our case the compatibility is with IDL8+
// results, not with IDL6.
#include "dSFMT/dSFMT-jump.c"
//this initializes parallel states up to min of max_allowed_threads and omp_max_threads.
//independently of the fact that only a subset of theses thtreads will be used in loops.
void init_seeds(dsfmt_state state, DULong seed) {
//populate with seed template state 'temp'
dsfmt_t temp;
dsfmt_init_gen_rand(&temp, seed);
//sucessively push by 2^128 and copy to next place
//Note: we use the maximum number of threads allowed as this seed can be replayed
//after changing the number of threads to be used.
memcpy((void*)(state.r[0]),(void*)&temp,sizeof(temp));
for (int i=1; i<maxNumberOfThreadsForDSFMT(); ++i) {
dSFMT_jump(&temp, poly_128);
memcpy((void*)(state.r[i]),(void*)&temp,sizeof(temp));
}
}
BaseGDL* random_fun_dsfmt(EnvT* e)
{
//used in RANDOMU and RANDOMN, which share the SAME KEYLIST. It is safe to speed up by using static ints KeywordIx.
//Note: LONG or ULONG are obeyed irrespectively of the presence of GAMMA etc which are ignored.
static int LONGIx = e->KeywordIx("LONG");
static int ULONGIx = e->KeywordIx("ULONG");
static int GAMMAIx = e->KeywordIx("GAMMA");
static int BINOMIALIx = e->KeywordIx("BINOMIAL");
static int NORMALIx = e->KeywordIx("NORMAL");
static int POISSONIx = e->KeywordIx("POISSON");
static int UNIFORMIx = e->KeywordIx("UNIFORM");
// testing Exclusive Keywords ...
int exclusiveKW = e->KeywordPresent(GAMMAIx);
exclusiveKW = exclusiveKW + e->KeywordPresent(BINOMIALIx);
exclusiveKW = exclusiveKW + e->KeywordPresent(NORMALIx);
exclusiveKW = exclusiveKW + e->KeywordPresent(POISSONIx);
exclusiveKW = exclusiveKW + e->KeywordPresent(UNIFORMIx);
if (exclusiveKW > 1) e->Throw("Conflicting keywords.");
//idem for LONG and ULONG at the same time!
exclusiveKW = e->KeywordPresent(LONGIx);
exclusiveKW = exclusiveKW + e->KeywordPresent(ULONGIx);
if (exclusiveKW > 1) e->Throw("Conflicting keywords.");
static dsfmt_state dsfmt_mem;
//initialize only once!
if (dsfmt_mem.r==NULL) {
dsfmt_mem.r=(dsfmt_t**)malloc(maxNumberOfThreadsForDSFMT()*sizeof(dsfmt_t*));
{for (int i=0; i< maxNumberOfThreadsForDSFMT() ; ++i) dsfmt_mem.r[i]=(dsfmt_t*)malloc(sizeof(dsfmt_t));}
}
SizeT nParam = e->NParam(1);
dimension dim;
if (nParam > 1) arr(e, dim, 1);
DULong seed;
bool initialized=false;
BaseGDL* p0 = e->GetPar(0);
bool isAnull = NullGDL::IsNULLorNullGDL(p0);
if (!isAnull) { //something is passed
// IDL does not check that the seed sequence has been changed: as long as it is a 628 element Ulong, it takes it
// and use it as the current sequence (try with "all zeroes").
// for us, a valid seed sequence is the content of dsfmt_mem.r, i.e, (DSFMT_N64+1)*maxNumberOfThreads(),
// plus the memory of the initial seed value.
if (p0->Type() == GDL_ULONG64) { //good chances we have here a genuine dSFMT seed!
DULong64GDL* p0L = e->IfDefGetParAs< DULong64GDL>(0);
if (p0L->N_Elements() == 1 + (DSFMT_N64 + 1) * maxNumberOfThreadsForDSFMT()) {
long k = 0;
seed = (*p0L)[k++]; //hopefully it is always compatible with an unisgned int32 as reslut of a saved previous seed.
for (int ithread = 0; ithread < maxNumberOfThreadsForDSFMT(); ++ithread) {
int pos = (*p0L)[k++];
DULong64 sequence[DSFMT_N64];
for (int i = 0; i < DSFMT_N64; ++i) sequence[i] = (*p0L)[k++];
set_random_state(dsfmt_mem.r[ithread], sequence, pos); //initialize each thread seed
}
initialized=true;
} else { // not a seed sequence: take first value as 32 bit UNsigned integer (for dSFMT compatibility).
DULongGDL* p02L = e->IfDefGetParAs< DULongGDL>(0);
if (p02L->N_Elements() > 0) {
seed = (*p02L)[0];
//this initialize all the maxNumberOfThreads() parallel states, as a new seed has been given.
init_seeds(dsfmt_mem, seed);
initialized=true;
}
}
} else { // not a seed sequence: take first value as 32 bit UNsigned integer (for dSFMT compatibility).
DULongGDL* p0L = e->IfDefGetParAs< DULongGDL>(0);
if (p0L->N_Elements() > 0) {
seed = (*p0L)[0];
//this initialize all the maxNumberOfThreads() parallel states, as a new seed has been given.
init_seeds(dsfmt_mem, seed);
initialized=true;
}
}
}
if (!initialized) { //initialze with something (/dev/urandom? no: idl uses systime:
struct timeval tval;
struct timezone tzone;
gettimeofday(&tval, &tzone);
long long int tt = tval.tv_sec * 1e6 + tval.tv_usec; // time in UTC microseconds
seed = (tt);
init_seeds(dsfmt_mem, seed);
initialized=true;
}
if (e->KeywordSet(LONGIx)) {
DLongGDL* res = new DLongGDL(dim, BaseGDL::NOZERO);
random_dlong((DLong*)res->DataAddr(), dsfmt_mem,res->N_Elements());
get_random_state(e, dsfmt_mem, seed);
return res;
}
if (e->KeywordSet(ULONGIx)) {
DULongGDL* res = new DULongGDL(dim, BaseGDL::NOZERO);
random_dulong((DULong*)res->DataAddr(), dsfmt_mem,res->N_Elements());
get_random_state(e, dsfmt_mem, seed);
return res;
}
if (e->KeywordPresent(GAMMAIx)) {
DLong n = -1; //please initialize everything!
e->AssureLongScalarKW(GAMMAIx, n);
if (n == 0) {
DDouble test_n;
e->AssureDoubleScalarKW(GAMMAIx, test_n);
if (test_n > 0.0) n = 1;
}
if (n <= 0) e->Throw("Value of (Int/Long) GAMMA is out of allowed range: Gamma = 1, 2, 3, ...");
if (!e->KeywordSet(0)) { //hence:float
if (n >= 10000000) e->Throw("Value of GAMMA is out of allowed range: Try /DOUBLE.");
}
if (e->KeywordSet(0)) { // GDL_DOUBLE
DDoubleGDL* res = new DDoubleGDL(dim, BaseGDL::NOZERO);
random_gamma((double*)res->DataAddr(), dsfmt_mem,res->N_Elements(), n);
get_random_state(e, dsfmt_mem, seed);
return res;
} else {
DFloatGDL* res = new DFloatGDL(dim, BaseGDL::NOZERO);
random_gamma((float*)res->DataAddr(), dsfmt_mem,res->N_Elements(), n);
get_random_state(e, dsfmt_mem, seed);
return res;
}
}
DDoubleGDL* binomialKey = e->IfDefGetKWAs<DDoubleGDL>(BINOMIALIx);
if (binomialKey != NULL) {
SizeT nBinomialKey = binomialKey->N_Elements();
if (nBinomialKey != 2)
e->Throw("Keyword array parameter BINOMIAL must have 2 elements.");
if ((*binomialKey)[0] < 1.0)
e->Throw(" Value of BINOMIAL[0] is out of allowed range: n = 1, 2, 3, ...");
if (((*binomialKey)[1] < 0.0) || ((*binomialKey)[1] > 1.0))
e->Throw(" Value of BINOMIAL[1] is out of allowed range: 0.0 <= p <= 1.0");
if (e->KeywordSet(0)) { // GDL_DOUBLE
DDoubleGDL* res = new DDoubleGDL(dim, BaseGDL::NOZERO);
random_binomial((double*)res->DataAddr(), dsfmt_mem, res->N_Elements(), binomialKey);
get_random_state(e, dsfmt_mem, seed);
return res;
} else {
DFloatGDL* res = new DFloatGDL(dim, BaseGDL::NOZERO);
random_binomial((float*)res->DataAddr(), dsfmt_mem, res->N_Elements(), binomialKey);
get_random_state(e, dsfmt_mem, seed);
return res;
}
}
DDoubleGDL* poissonKey = e->IfDefGetKWAs<DDoubleGDL>(POISSONIx);
if (poissonKey != NULL) {
SizeT nPoissonKey = poissonKey->N_Elements();
if (nPoissonKey != 1)
e->Throw("Expression must be a scalar or 1 element array in this context: " + e->GetString(POISSONIx));
if ((*poissonKey)[0] < 0.0)
e->Throw("Value of POISSON is out of allowed range: Poisson > 0.0");
if (e->KeywordSet("DOUBLE")) { // GDL_DOUBLE
DDoubleGDL* res = new DDoubleGDL(dim, BaseGDL::NOZERO);
random_poisson((double*)res->DataAddr(), dsfmt_mem, res->N_Elements(), poissonKey);
get_random_state(e, dsfmt_mem, seed);
return res;
} else {
DFloatGDL* res = new DFloatGDL(dim, BaseGDL::NOZERO);
if ((*poissonKey)[0] > 1.0e7)
e->Throw("Value of POISSON is out of allowed range: Try /DOUBLE.");
random_poisson((float*)res->DataAddr(), dsfmt_mem, res->N_Elements(), poissonKey);
get_random_state(e, dsfmt_mem, seed);
return res;
}
}
if (e->KeywordSet(UNIFORMIx) || ((e->GetProName() == "RANDOMU") && !e->KeywordSet(NORMALIx))) {
if (e->KeywordSet(0)) { // GDL_DOUBLE
DDoubleGDL* res = new DDoubleGDL(dim, BaseGDL::NOZERO);
random_uniform((double*)res->DataAddr(), dsfmt_mem, res->N_Elements());
get_random_state(e, dsfmt_mem, seed);
return res;
} else {
DFloatGDL* res = new DFloatGDL(dim, BaseGDL::NOZERO);
random_uniform((float*)res->DataAddr(), dsfmt_mem, res->N_Elements());
get_random_state(e, dsfmt_mem, seed);
return res;
}
}
if (e->KeywordSet(NORMALIx) || ((e->GetProName() == "RANDOMN") && !e->KeywordSet(UNIFORMIx))) {
if (e->KeywordSet(0)) { // GDL_DOUBLE
DDoubleGDL* res = new DDoubleGDL(dim, BaseGDL::NOZERO);
random_normal((double*)res->DataAddr(), dsfmt_mem, res->N_Elements());
get_random_state(e, dsfmt_mem, seed);
return res;
} else {
DFloatGDL* res = new DFloatGDL(dim, BaseGDL::NOZERO);
random_normal((float*)res->DataAddr(), dsfmt_mem, res->N_Elements());
get_random_state(e, dsfmt_mem, seed);
return res;
}
}
assert(false);
return NULL;
}
#endif
BaseGDL* random_fun(EnvT* e)
{
//switches between gsl-based and parallelized version depending on enviromnent and RAN1 switch.
//Probably the gsl version could be dropped at some point as the speed gain is more important that everything.
//USE_EIGEN as long as we have not our own alignment malloc procedure and rely on Eigen:: only.
#ifdef USE_EIGEN
static int RAN1Ix = e->KeywordIx("RAN1");
static bool warning_about_ran1 = false;
if (useDSFMTAcceleration && e->KeywordSet(RAN1Ix) && !warning_about_ran1) {
Message("When using the RAN1 mode, be sure to keep the RAN1 and dSFMT seed arrays in separate variables.");
warning_about_ran1 = true;
}
//we may have set -no-dSFMT, or GDL_NO_DSFMT, or simply /RAN1 only.
bool use_dsfmt = (!e->KeywordSet(RAN1Ix) && useDSFMTAcceleration == true);
if (use_dsfmt) return random_fun_dsfmt(e);
else
#endif
return random_fun_gsl(e);
}
} //namespace lib
|