1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
; by Sylwester Arabas <slayoo (at) igf.fuw.edu.pl>
; tests: ATAN, LL_ARC_DISTANCE and values of !PI, !DPI, !DTOR, !RADEG
pro test_angles
; testing values of !PI, !DPI, !DTOR, !RADEG in full precision
if !PI ne atan(1.) * 4 then begin
message, '!PI != atan(1) * 4', /conti
;exit, status=1
endif
if !DPI ne atan(1d) * 4 then begin
message, '!DPI != atan(1) * 4', /conti
;exit, status=1
endif
if !DTOR ne !PI / 180. then begin
message, '!DTOR != !PI / 180.', /conti
;exit, status=1
endif
if !RADEG ne 180. / !PI then begin
message, '!RADEG != 180. / !PI', /conti
;exit, status=1
endif
types = [1, 2, 3, 4, 5, 6, 9, 12, 13, 14, 15]
; : B I L F D C D U U L U :
; : Y N O L O O C I L O L :
; : T T N O U M O N O N O :
; : E : G A B P M T N G N :
; : : : : T L L P : G 6 G :
; : : : : : E E L : : 4 6 :
; : : : : : : X E : : : 4 :
; : : : : : : : X : : : : : ... matrix ;)
; testing ATAN
seed = !PI
len = 10
rand_byte = byte(255 * randomu(seed, len))
rand_float = float(1e38 * (randomu(seed, len) - .5))
rand_complex = complex(float(1e38 * (randomu(seed, len) - .5)), float(1e38 * (randomu(seed, len) - .5)))
for t1 = 0, n_elements(types) - 1 do begin ; datatype of the first argument
for t2 = 0, n_elements(types) - 1 do begin ; datatype of the second argument
for d1 = 0, 3 do begin ; dimension of the first argument (0 - scalar)
for d2 = 0, 3 do begin ; dimension of the second argument (0 - scalar)
for ph = 0, 1 do begin ; PHASE keyword presence
; A. single-argument case
if d1 gt 0 then a1 = make_array(d1, ty=types[t1]) else a1 = (make_array(1, ty=types[t1]))[0]
a1 += rand_byte[fix(len * randomu(seed))]
if types[t1] gt 3 && types[t1] lt 12 then a1 /= rand_float[fix(len * randomu(seed))]
if types[t1] eq 6 || types[t1] eq 9 then a1 *= rand_complex[fix(len * randomu(seed))]
v = atan(a1, phase=ph)
s = size(v, /stru)
help, a1, out=o
e = string(10b) + 'in: ' + o + string(10b)
help, v, out=o
e += 'out: ' + o
; A.01 for real input atan() should return values between (-pi/2, pi/2)
if (types[t1] ne 6 && types[t1] ne 9) && $
total(v lt -!DPI/2 or v gt !DPI/2) gt 0 then begin
message, 'FAILED (A.01)' + e, /conti
;exit, status=1
endif
; A.02 for any input Z = tan(atan(Z)) (not for /PHASE)
if ~ph && total(abs(fix(a1, ty=s.type) - tan(v)) gt max([abs(a1/.5e3), .5e-3])) gt 0 $
then begin
message, 'FAILED (A.02)' + e, /conti
;exit, status=1
endif
; A.03 for complex input output should be complex (if PHASE not set)
if (~ph && types[t1] eq 6 && s.type ne 6) $
then begin
message, 'FAILED (A.03)' + e, /conti
;exit, status=1
endif $
; A.04 for complexdbl input output should be complexdbl (if PHASE not set)
else if (~ph && types[t1] eq 9 && s.type ne 9) $
then begin
message, 'FAILED (A.04)' + e, /conti
;exit, status=1
endif $
; A.05 for double input output should be double
else if (types[t1] eq 5 && s.type ne 5) then begin
message, 'FAILED (A.05)' + e, /conti
;exit, status=1
endif $
; A.06 for any other input output should be float
else if ((types[t1] ne 6 && types[t1] ne 9 && types[t1] ne 5) $
&& s.type ne 4) then begin
message, 'FAILED (A.06)' + e, /conti
;exit, status=1
endif
; A.07 for any input output has the same shape (arrays)
if (~array_equal(s.dimensions, (size(a1, /stru)).dimensions)) $
then begin
message, 'FAILED (A.07)' + e, /conti
;exit, status=1
endif
; A.08 if /PHASE is set and the argument is complex the output is float
if (ph && types[t1] eq 6 && s.type ne 4) then begin
message, 'FAILED (A.08)' + e, /conti
;exit, status=1
endif
; A.09 if /PHASE is set and the argument is complexdbl the output is double
if (ph && types[t1] eq 9 && s.type ne 5) then begin
message, 'FAILED (A.09)' + e, /conti
;exit, status=1
endif
; A.10 if /PHASE is present and the argument is complex[dbl], the result
; is equal atan(imaginary(Z), real_part(Z))
if (ph && (types[t1] eq 9 || types[t1] eq 6) && $
~array_equal(v, atan(imaginary(a1), real_part(a1)))) $
then begin
message, 'FAILED (A.10)' + e, /conti
;exit, status=1
endif
; B. two-argument case
if d2 gt 0 then a2 = make_array(d2, ty=types[t2]) else a2 = (make_array(1, ty=types[t2]))[0]
a2 += rand_byte[fix(len * randomu(seed))]
if types[t2] gt 3 && types[t2] lt 12 then a2 /= rand_float[fix(len * randomu(seed))]
if types[t2] eq 6 || types[t2] eq 9 then a2 *= rand_complex[fix(len * randomu(seed))]
v = atan(a1, a2, phase=ph)
s = size(v, /stru)
help, a1, out=o
e = string(10b) + 'in: ' + o + string(10b)
help, a2, out=o
e += ' ' + o + string(10b)
help, v, out=o
e += 'out: ' + o
; B.01 for real input atan() should return values between (-pi, pi)
if (types[t1] ne 6 && types[t1] ne 9 && types[t2] ne 6 && types[t2] ne 9) && $
total(v lt -!PI or v gt !PI) gt 0 then begin
message, 'FAILED (B.01)' + e, /conti
;exit, status=1
endif
; B.02 for complex input output should be complex (while the other != double)
if (((types[t2] eq 6 && types[t1] ne 5 && types[t1] ne 9) $
|| (types[t1] eq 6 && types[t2] ne 5 && types[t2] ne 9)) $
&& s.type ne 6) then begin
message, 'FAILED (B.02)' + e, /conti
;exit, status=1
endif $
; B.03 for complexdbl input output should be complexdbl
else if ((types[t2] eq 9 || types[t1] eq 9) && s.type ne 9) $
then begin
message, 'FAILED (B.03)' + e, /conti
;exit, status=1
endif $
; B.04 for double input output should be double
else if (((types[t2] eq 5 && types[t1] ne 9 && types[t1] ne 6) $
|| (types[t1] eq 5 && types[t2] ne 9 && types[t2] ne 6)) $
&& s.type ne 5) then begin
message, 'FAILED (B.04)' + e, /conti
;exit, status=1
endif $
; B.05 for any other input output should be float
else if ((types[t1] ne 9 && types[t2] ne 9 && types[t1] ne 5 && $
types[t2] ne 5 && types[t1] ne 6 && types[t2] ne 6) && s.type ne 4) $
then begin
message, 'FAILED (B.05)' + e, /conti
;exit, status=1
endif
; B.06 for two-array input output has the size of the smaller array
if (d1 gt 0 && d2 gt 0 && ~ array_equal(s.dimensions, (size(d1 lt d2 ? $
a1 : a2, /stru)).dimensions)) then begin
message, 'FAILED (B.06)' + e, /conti
;exit, status=1
endif
; B.07 for array/scalar input output has the size of the array
if (((d1 eq 0 && d2 gt 0) || (d1 gt 0 && d2 eq 0)) && $
~array_equal(s.dimensions, (size(d1 gt d2 ? a1 : a2, /stru)).dimensions)) $
then begin
message, 'FAILED (B.07)' + e, /conti
;exit, status=1
endif
; C. testing LL_ARC_DISTANCE
if d1 gt 1 && d2 lt 2 then begin
lr = ll_arc_distance(a1, a2, a2)
ld = ll_arc_distance(a1, a2, a2, /degrees)
; C.01 always expecting 2-element array
if n_elements(lr) ne 2 || n_elements(ld) ne 2 $
then begin
message, 'FAILED (C.01)', /conti
;exit, status=1
endif
; C.02 if any input param is dcomplex -> dcomplex
if (types[t1] eq 9 || types[t2] eq 9) && $
(size(lr, /ty) ne 9 || size(ld, /ty) ne 9) $
then begin
message, 'FAILED (C.02)', /conti
;exit, status=1
endif
; C.03 if any input param is complex -> complex
if ((types[t1] eq 6 && types[t2] ne 9) || (types[t2] eq 6 && types[t1] ne 9)) && $
(size(lr, /ty) ne 6 || size(ld, /ty) ne 6) $
then begin
message, 'FAILED (C.03)', /conti
;exit, status=1
endif
; C.04 if any input param is double -> double
if (types[t1] eq 5 || types[t2] eq 5) && $
total(imaginary(a1) ne 0 or imaginary(a2) ne 0) eq 0 && $
(size(lr, /ty) ne 5 || size(ld, /ty) ne 5) $
then begin
message, 'FAILED (C.04)', /conti
;exit, status=1
endif
; C.05 otherwise expecting float output
if (types[t1] ne 9 && types[t2] ne 9 && types[t1] ne 6 && types[t2] ne 6 $
&& types[t1] ne 5 && types[t2] ne 5) $
&& (size(ld, /ty) ne 4 || size(lr, /ty) ne 4) $
then begin
message, 'FAILED (C.05)', /conti
;exit, status=1
endif
; C.06 output lat should lay between (-pi, pi) if talking radians
if (real_part(lr[1]) lt -!PI || real_part(lr[1]) gt !PI) $
then begin
message, 'FAILED (C.06)', /conti
;exit, status=1
endif
; C.07 output lat should lay between (-180, 180) if talking degrees
if (real_part(ld[1]) lt -180 || real_part(ld[1]) gt 180) $
then begin
message, 'FAILED (C.07)'
;exit, status=1
endif
endif
endfor
endfor
endfor
endfor
endfor
message, 'PASSED', /continue
end
|