1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235
|
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\
* This is GNU Go, a Go program. Contact gnugo@gnu.org, or see *
* http://www.gnu.org/software/gnugo/ for more information. *
* *
* Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005 and 2006 *
* by the Free Software Foundation. *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation - version 2 *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License in file COPYING for more details. *
* *
* You should have received a copy of the GNU General Public *
* License along with this program; if not, write to the Free *
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor, *
* Boston, MA 02111, USA. *
\* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/* The functions in this file implements a go board with incremental
* update of strings and liberties.
*
* See the Texinfo documentation (Utility Functions: Incremental Board)
* for an introduction.
*/
#include "board.h"
#include "hash.h"
#include "sgftree.h"
#include "gg_utils.h"
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stdarg.h>
/* This can be used for internal checks w/in board.c that should
* typically not be necessary (for speed).
*/
#if 1
#define PARANOID1(x, pos) ASSERT1(x, pos)
#else
#define PARANOID1(x, pos)
#endif
/* ================================================================ */
/* data structures */
/* ================================================================ */
/* Incremental string data. */
struct string_data {
int color; /* Color of string, BLACK or WHITE */
int size; /* Number of stones in string. */
int origin; /* Coordinates of "origin", i.e. */
/* "upper left" stone. */
int liberties; /* Number of liberties. */
int neighbors; /* Number of neighbor strings */
int mark; /* General purpose mark. */
};
struct string_liberties_data {
int list[MAX_LIBERTIES]; /* Coordinates of liberties. */
};
struct string_neighbors_data {
int list[MAXCHAIN]; /* List of neighbor string numbers. */
};
/* we keep the address and the old value */
struct change_stack_entry {
int *address;
int value;
};
/* we keep the address and the old value */
struct vertex_stack_entry {
Intersection *address;
int value;
};
/* Experimental results show that the average number of change stack
* entries per move usually is in the 20-30 range and very seldom
* exceeds 40. But since we have no way to recover from running out of
* stack space, we allocate with a substantial safety margin.
*/
#define STACK_SIZE 80 * MAXSTACK
#define CLEAR_STACKS() do { \
change_stack_pointer = change_stack; \
vertex_stack_pointer = vertex_stack; \
VALGRIND_MAKE_WRITABLE(change_stack, sizeof(change_stack)); \
VALGRIND_MAKE_WRITABLE(vertex_stack, sizeof(vertex_stack)); \
} while (0)
/* Begin a record : address == NULL */
#define BEGIN_CHANGE_RECORD()\
((change_stack_pointer++)->address = NULL,\
(vertex_stack_pointer++)->address = NULL)
/* Save a value : store the address and the value in the stack */
#define PUSH_VALUE(v)\
(change_stack_pointer->address = &(v),\
(change_stack_pointer++)->value = (v))
/* Save a board value : store the address and the value in the stack */
#define PUSH_VERTEX(v)\
(vertex_stack_pointer->address = &(v),\
(vertex_stack_pointer++)->value = (v))
#define POP_MOVE()\
while ((--change_stack_pointer)->address)\
*(change_stack_pointer->address) =\
change_stack_pointer->value
#define POP_VERTICES()\
while ((--vertex_stack_pointer)->address)\
*(vertex_stack_pointer->address) =\
vertex_stack_pointer->value
/* ================================================================ */
/* static data structures */
/* ================================================================ */
/* Main array of string information. */
static struct string_data string[MAX_STRINGS];
static struct string_liberties_data string_libs[MAX_STRINGS];
static struct string_neighbors_data string_neighbors[MAX_STRINGS];
/* Stacks and stack pointers. */
static struct change_stack_entry change_stack[STACK_SIZE];
static struct change_stack_entry *change_stack_pointer;
static struct vertex_stack_entry vertex_stack[STACK_SIZE];
static struct vertex_stack_entry *vertex_stack_pointer;
/* Index into list of strings. The index is only valid if there is a
* stone at the vertex.
*/
static int string_number[BOARDMAX];
/* The stones in a string are linked together in a cyclic list.
* These are the coordinates to the next stone in the string.
*/
static int next_stone[BOARDMAX];
/* ---------------------------------------------------------------- */
/* Macros to traverse the stones of a string.
*
* Usage:
* int s, pos;
* s = find_the_string()
* pos = FIRST_STONE(s);
* do {
* use_stone(pos);
* pos = NEXT_STONE(pos);
* } while (!BACK_TO_FIRST_STONE(s, pos));
*/
#define FIRST_STONE(s) \
(string[s].origin)
#define NEXT_STONE(pos) \
(next_stone[pos])
#define BACK_TO_FIRST_STONE(s, pos) \
((pos) == string[s].origin)
/* Assorted useful macros.
*
* Some of them could have been functions but are implemented as
* macros for speed.
*/
#define LIBERTY(pos) \
(board[pos] == EMPTY)
#define UNMARKED_LIBERTY(pos) \
(board[pos] == EMPTY && ml[pos] != liberty_mark)
#define MARK_LIBERTY(pos) \
ml[pos] = liberty_mark
#define UNMARKED_STRING(pos) \
(string[string_number[pos]].mark != string_mark)
/* Note that these two macros are not complementary. Both return
* false if board[pos] != color.
*/
#define UNMARKED_COLOR_STRING(pos, color)\
(board[pos] == color\
&& string[string_number[pos]].mark != string_mark)
#define MARKED_COLOR_STRING(pos, color)\
(board[pos] == color\
&& string[string_number[pos]].mark == string_mark)
#define MARK_STRING(pos) string[string_number[pos]].mark = string_mark
#define STRING_AT_VERTEX(pos, s, color)\
((board[pos] == color) && string_number[pos] == (s))
#define NEIGHBOR_OF_STRING(pos, s, color)\
(STRING_AT_VERTEX(SOUTH(pos), s, color)\
|| STRING_AT_VERTEX(WEST(pos), s, color)\
|| STRING_AT_VERTEX(NORTH(pos), s, color)\
|| STRING_AT_VERTEX(EAST(pos), s, color))
/* These four macros have rather confusing names. It should be read as:
* "(pos) is a neighbor of string (s) of (color) in any direction except
* the specified one".
*/
#define NON_SOUTH_NEIGHBOR_OF_STRING(pos, s, color)\
(STRING_AT_VERTEX(SOUTH(pos), s, color)\
|| STRING_AT_VERTEX(WEST(pos), s, color)\
|| STRING_AT_VERTEX(EAST(pos), s, color))
#define NON_WEST_NEIGHBOR_OF_STRING(pos, s, color)\
(STRING_AT_VERTEX(WEST(pos), s, color)\
|| STRING_AT_VERTEX(NORTH(pos), s, color)\
|| STRING_AT_VERTEX(SOUTH(pos), s, color))
#define NON_NORTH_NEIGHBOR_OF_STRING(pos, s, color)\
(STRING_AT_VERTEX(NORTH(pos), s, color)\
|| STRING_AT_VERTEX(EAST(pos), s, color)\
|| STRING_AT_VERTEX(WEST(pos), s, color))
#define NON_EAST_NEIGHBOR_OF_STRING(pos, s, color)\
(STRING_AT_VERTEX(EAST(pos), s, color)\
|| STRING_AT_VERTEX(SOUTH(pos), s, color)\
|| STRING_AT_VERTEX(NORTH(pos), s, color))
#define LIBERTIES(pos)\
string[string_number[pos]].liberties
#define COUNTSTONES(pos) \
string[string_number[pos]].size
#define ADD_LIBERTY(s, pos)\
do {\
if (string[s].liberties < MAX_LIBERTIES)\
string_libs[s].list[string[s].liberties] = pos;\
string[s].liberties++;\
} while (0)
#define ADD_AND_MARK_LIBERTY(s, pos)\
do {\
if (string[s].liberties < MAX_LIBERTIES)\
string_libs[s].list[string[s].liberties] = pos;\
string[s].liberties++;\
ml[pos] = liberty_mark;\
} while (0)
#define ADD_NEIGHBOR(s, pos)\
string_neighbors[s].list[string[s].neighbors++] = string_number[pos]
#define DO_ADD_STONE(pos, color)\
do {\
PUSH_VERTEX(board[pos]);\
board[pos] = color;\
hashdata_invert_stone(&board_hash, pos, color);\
} while (0)
#define DO_REMOVE_STONE(pos)\
do {\
PUSH_VERTEX(board[pos]);\
hashdata_invert_stone(&board_hash, pos, board[pos]);\
board[pos] = EMPTY;\
} while (0)
/* ---------------------------------------------------------------- */
/* Number of the next free string. */
static int next_string;
/* For marking purposes. */
static int ml[BOARDMAX];
static int liberty_mark;
static int string_mark;
/* Forward declarations. */
static void really_do_trymove(int pos, int color);
static int do_trymove(int pos, int color, int ignore_ko);
static void undo_trymove(void);
static int do_approxlib(int pos, int color, int maxlib, int *libs);
static int slow_approxlib(int pos, int color, int maxlib, int *libs);
static int do_accuratelib(int pos, int color, int maxlib, int *libs);
static int is_superko_violation(int pos, int color, enum ko_rules type);
static void new_position(void);
static int propagate_string(int stone, int str);
static void find_liberties_and_neighbors(int s);
static int do_remove_string(int s);
static void do_commit_suicide(int pos, int color);
static void do_play_move(int pos, int color);
static int komaster, kom_pos;
/* Statistics. */
static int trymove_counter = 0;
/* Coordinates for the eight directions, ordered
* south, west, north, east, southwest, northwest, northeast, southeast.
*/
int deltai[8] = { 1, 0, -1, 0, 1, -1, -1, 1};
int deltaj[8] = { 0, -1, 0, 1, -1, -1, 1, 1};
int delta[8] = { NS, -1, -NS, 1, NS-1, -NS-1, -NS+1, NS+1};
/* ================================================================ */
/* Board initialization */
/* ================================================================ */
/*
* Save board state.
*/
void
store_board(struct board_state *state)
{
int k;
gg_assert(stackp == 0);
state->board_size = board_size;
memcpy(state->board, board, sizeof(board));
memcpy(state->initial_board, initial_board, sizeof(initial_board));
state->board_ko_pos = board_ko_pos;
state->white_captured = white_captured;
state->black_captured = black_captured;
state->initial_board_ko_pos = initial_board_ko_pos;
state->initial_white_captured = initial_white_captured;
state->initial_black_captured = initial_black_captured;
state->move_history_pointer = move_history_pointer;
for (k = 0; k < move_history_pointer; k++) {
state->move_history_color[k] = move_history_color[k];
state->move_history_pos[k] = move_history_pos[k];
state->move_history_hash[k] = move_history_hash[k];
}
state->komi = komi;
state->handicap = handicap;
state->move_number = movenum;
}
/*
* Restore a saved board state.
*/
void
restore_board(struct board_state *state)
{
int k;
gg_assert(stackp == 0);
board_size = state->board_size;
memcpy(board, state->board, sizeof(board));
memcpy(initial_board, state->initial_board, sizeof(initial_board));
board_ko_pos = state->board_ko_pos;
white_captured = state->white_captured;
black_captured = state->black_captured;
initial_board_ko_pos = state->initial_board_ko_pos;
initial_white_captured = state->initial_white_captured;
initial_black_captured = state->initial_black_captured;
move_history_pointer = state->move_history_pointer;
for (k = 0; k < move_history_pointer; k++) {
move_history_color[k] = state->move_history_color[k];
move_history_pos[k] = state->move_history_pos[k];
move_history_hash[k] = state->move_history_hash[k];
}
komi = state->komi;
handicap = state->handicap;
movenum = state->move_number;
hashdata_recalc(&board_hash, board, board_ko_pos);
new_position();
}
/*
* Clear the internal board.
*/
void
clear_board(void)
{
int k;
gg_assert(board_size > 0 && board_size <= MAX_BOARD);
memset(board, EMPTY, sizeof(board));
memset(initial_board, EMPTY, sizeof(initial_board));
for (k = 0; k < BOARDSIZE; k++) {
if (!ON_BOARD2(I(k), J(k))) {
board[k] = GRAY;
initial_board[k] = GRAY;
}
}
board_ko_pos = NO_MOVE;
white_captured = 0;
black_captured = 0;
komaster = EMPTY;
kom_pos = NO_MOVE;
initial_board_ko_pos = NO_MOVE;
initial_white_captured = 0;
initial_black_captured = 0;
move_history_pointer = 0;
movenum = 0;
handicap = 0;
hashdata_recalc(&board_hash, board, board_ko_pos);
new_position();
}
/* Test the integrity of the gray border. */
int
test_gray_border(void)
{
int k;
gg_assert(board_size > 0 && board_size <= MAX_BOARD);
for (k = 0; k < BOARDSIZE; k++)
if (!ON_BOARD2(I(k), J(k)))
if (board[k] != GRAY)
return k;
return -1;
}
/* ================================================================ */
/* Temporary moves */
/* ================================================================ */
/* Stack of trial moves to get to current
* position and which color made them. Perhaps
* this should be one array of a structure
*/
static int stack[MAXSTACK];
static int move_color[MAXSTACK];
static Hash_data board_hash_stack[MAXSTACK];
/*
* trymove pushes the position onto the stack, and makes a move
* at pos of color. Returns one if the move is legal. The
* stack pointer is only incremented if the move is legal.
*
* The way to use this is:
*
* if (trymove(...)) {
* ...
* popgo();
* }
*
* The message can be written as a comment to an sgf file using
* sgfdump(). str can be NO_MOVE if it is not needed but otherwise
* the location of str is included in the comment.
*/
int
trymove(int pos, int color, const char *message, int str)
{
UNUSED(str);
/* Do the real work elsewhere. */
if (!do_trymove(pos, color, 0))
return 0;
/* Store the move in an sgf tree if one is available. */
if (sgf_dumptree) {
char buf[100];
if (message == NULL)
message = "UNKNOWN";
if (pos == NO_MOVE) {
if (komaster != EMPTY)
gg_snprintf(buf, 100, "%s (variation %d, hash %s, komaster %s:%s)",
message, count_variations, hashdata_to_string(&board_hash),
color_to_string(komaster), location_to_string(kom_pos));
else
gg_snprintf(buf, 100, "%s (variation %d, hash %s)", message,
count_variations, hashdata_to_string(&board_hash));
}
else {
if (komaster != EMPTY)
gg_snprintf(buf, 100,
"%s at %s (variation %d, hash %s, komaster %s:%s)",
message, location_to_string(pos), count_variations,
hashdata_to_string(&board_hash),
color_to_string(komaster),
location_to_string(kom_pos));
else
gg_snprintf(buf, 100, "%s at %s (variation %d, hash %s)",
message, location_to_string(pos), count_variations,
hashdata_to_string(&board_hash));
}
sgftreeAddPlayLast(sgf_dumptree, color, I(pos), J(pos));
sgftreeAddComment(sgf_dumptree, buf);
}
if (count_variations)
count_variations++;
stats.nodes++;
return 1;
}
/*
* tryko pushes the position onto the stack, and makes a move
* at (pos) of (color). The move is allowed even if it is an
* illegal ko capture. It is to be imagined that (color) has
* made an intervening ko threat which was answered and now
* the continuation is to be explored.
*
* Return 1 if the move is legal with the above caveat. Returns
* zero if it is not legal because of suicide.
*/
int
tryko(int pos, int color, const char *message)
{
/* Do the real work elsewhere. */
if (!do_trymove(pos, color, 1))
return 0;
if (sgf_dumptree) {
char buf[100];
if (message == NULL)
message = "UNKNOWN";
if (komaster != EMPTY)
gg_snprintf(buf, 100, "tryko: %s (variation %d, %s, komaster %s:%s)",
message, count_variations, hashdata_to_string(&board_hash),
color_to_string(komaster), location_to_string(kom_pos));
else
gg_snprintf(buf, 100, "tryko: %s (variation %d, %s)", message,
count_variations, hashdata_to_string(&board_hash));
/* Add two pass moves to the SGF output to simulate the ko threat
* and the answer.
*
* The reason we add these is that certain SGF viewers, including
* Cgoban 1, won't properly display variations with illegal ko
* captures. SGF FF[4] compliant browsers should have no problem
* with this, though.
*/
sgftreeAddPlayLast(sgf_dumptree, color, -1, -1);
sgftreeAddComment(sgf_dumptree, "tenuki (ko threat)");
sgftreeAddPlayLast(sgf_dumptree, OTHER_COLOR(color), -1, -1);
sgftreeAddComment(sgf_dumptree, "tenuki (answers ko threat)");
sgftreeAddPlayLast(sgf_dumptree, color, I(pos), J(pos));
sgftreeAddComment(sgf_dumptree, buf);
}
if (count_variations)
count_variations++;
stats.nodes++;
return 1;
}
/* Really, really make a temporary move. It is assumed that all
* necessary checks have already been made and likewise that various
* administrative bookkeeping outside of the actual board logic has
* either been done or is not needed.
*/
static void
really_do_trymove(int pos, int color)
{
BEGIN_CHANGE_RECORD();
PUSH_VALUE(board_ko_pos);
/*
* FIXME: Do we really have to store board_hash in a stack?
*
* Answer: No, we don't. But for every stone that we add
* or remove, we must call hashdata_invert_stone(). This is
* not difficult per se, but the whole board.c
* will have to be checked, and there is lots of room
* for mistakes.
*
* At the same time, profiling shows that storing the
* hashdata in a stack doesn't take a lot of time, so
* this is not an urgent FIXME.
*/
memcpy(&board_hash_stack[stackp], &board_hash, sizeof(board_hash));
if (board_ko_pos != NO_MOVE)
hashdata_invert_ko(&board_hash, board_ko_pos);
board_ko_pos = NO_MOVE;
stackp++;
if (pos != PASS_MOVE) {
PUSH_VALUE(black_captured);
PUSH_VALUE(white_captured);
do_play_move(pos, color);
}
}
/*
* Do the main work of trymove() and tryko(), i.e. the common parts.
* The ignore_ko flag tells whether an illegal ko capture may be done.
* Return 1 if the move was valid, otherwise 0.
*/
static int
do_trymove(int pos, int color, int ignore_ko)
{
/* 1. The color must be BLACK or WHITE. */
gg_assert(color == BLACK || color == WHITE);
if (pos != PASS_MOVE) {
/* 2. Unless pass, the move must be inside the board. */
ASSERT_ON_BOARD1(pos);
/* Update the reading tree shadow. */
shadow[pos] = 1;
/* 3. The location must be empty. */
if (board[pos] != EMPTY)
return 0;
/* 4. The location must not be the ko point, unless ignore_ko == 1. */
if (!ignore_ko && pos == board_ko_pos) {
if (board[WEST(pos)] == OTHER_COLOR(color)
|| board[EAST(pos)] == OTHER_COLOR(color)) {
return 0;
}
}
/* 5. Test for suicide. */
if (is_suicide(pos, color))
return 0;
}
/* Check for stack overflow. */
if (stackp >= MAXSTACK-2) {
fprintf(stderr,
"gnugo: Truncating search. This is beyond my reading ability!\n");
/* FIXME: Perhaps it's best to just assert here and be done with it? */
if (0) {
ASSERT1(0 && "trymove stack overflow", pos);
}
#if 0
if (verbose > 0) {
showboard(0);
dump_stack();
}
#endif
fflush(stderr);
return 0;
}
/* Only count trymove when we do create a new position. */
trymove_counter++;
/* So far, so good. Now push the move on the move stack. These are
* needed for dump_stack().
*/
stack[stackp] = pos;
move_color[stackp] = color;
really_do_trymove(pos, color);
return 1;
}
/*
* popgo pops the position from the stack.
*/
void
popgo()
{
undo_trymove();
if (sgf_dumptree) {
char buf[100];
int is_tryko = 0;
char *sgf_comment;
/* FIXME: Change the sgfGet*Property() interface so that either
* "C" instead of "C " works or the SGFXX symbols are used.
*/
if (sgfGetCharProperty(sgf_dumptree->lastnode, "C ", &sgf_comment)
&& strncmp(sgf_comment, "tryko:", 6) == 0)
is_tryko = 1;
gg_snprintf(buf, 100, "(next variation: %d)", count_variations);
sgftreeAddComment(sgf_dumptree, buf);
sgf_dumptree->lastnode = sgf_dumptree->lastnode->parent;
/* After tryko() we need to undo two pass nodes too. */
if (is_tryko)
sgf_dumptree->lastnode = sgf_dumptree->lastnode->parent->parent;
}
}
/* Restore board state to the position before the last move. This is
* accomplished by popping everything that was stored on the stacks
* since the last BEGIN_CHANGE_RECORD(). Also stackp is decreased and
* board hash is restored from stack.
*
* This undoes the effects of do_trymove() or really_do_trymove() and
* is appropriate to call instead of popgo() if you have not passed
* through trymove() or tryko().
*/
static void
undo_trymove()
{
gg_assert(change_stack_pointer - change_stack <= STACK_SIZE);
if (0) {
gprintf("Change stack size = %d\n", change_stack_pointer - change_stack);
gprintf("Vertex stack size = %d\n", vertex_stack_pointer - vertex_stack);
}
POP_MOVE();
POP_VERTICES();
stackp--;
memcpy(&board_hash, &(board_hash_stack[stackp]), sizeof(board_hash));
}
/*
* dump_stack() for use under gdb prints the move stack.
*/
void
dump_stack(void)
{
do_dump_stack();
#if !TRACE_READ_RESULTS
if (count_variations)
gprintf("%o (variation %d)", count_variations-1);
#else
gprintf("%o (%s)", hashdata_to_string(&board_hash));
#endif
gprintf("%o\n");
fflush(stderr);
}
/* Bare bones of dump_stack(). */
void
do_dump_stack(void)
{
int n;
for (n = 0; n < stackp; n++)
gprintf("%o%s:%1m ", move_color[n] == BLACK ? "B" : "W", stack[n]);
}
/* ================================================================ */
/* Permanent moves */
/* ================================================================ */
static void
reset_move_history(void)
{
memcpy(initial_board, board, sizeof(board));
initial_board_ko_pos = board_ko_pos;
initial_white_captured = white_captured;
initial_black_captured = black_captured;
move_history_pointer = 0;
}
/* Place a stone on the board and update the board_hash. This operation
* destroys all move history.
*/
void
add_stone(int pos, int color)
{
ASSERT1(stackp == 0, pos);
ASSERT_ON_BOARD1(pos);
ASSERT1(board[pos] == EMPTY, pos);
board[pos] = color;
hashdata_invert_stone(&board_hash, pos, color);
reset_move_history();
new_position();
}
/* Remove a stone from the board and update the board_hash. This
* operation destroys the move history.
*/
void
remove_stone(int pos)
{
ASSERT1(stackp == 0, pos);
ASSERT_ON_BOARD1(pos);
ASSERT1(IS_STONE(board[pos]), pos);
hashdata_invert_stone(&board_hash, pos, board[pos]);
board[pos] = EMPTY;
reset_move_history();
new_position();
}
/* Play a move. Basically the same as play_move() below, but doesn't store
* the move in history list.
*
* Set `update_internals' to zero if you want to play several moves in a
* row to avoid overhead caused by new_position(). Don't forget to call
* it yourself after all the moves have been played.
*/
static void
play_move_no_history(int pos, int color, int update_internals)
{
#if CHECK_HASHING
Hash_data oldkey;
/* Check the hash table to see if it corresponds to the cumulative one. */
hashdata_recalc(&oldkey, board, board_ko_pos);
gg_assert(hashdata_is_equal(oldkey, board_hash));
#endif
if (board_ko_pos != NO_MOVE)
hashdata_invert_ko(&board_hash, board_ko_pos);
board_ko_pos = NO_MOVE;
/* If the move is a pass, we can skip some steps. */
if (pos != PASS_MOVE) {
ASSERT_ON_BOARD1(pos);
ASSERT1(board[pos] == EMPTY, pos);
/* Do play the move. */
if (!is_suicide(pos, color))
do_play_move(pos, color);
else
do_commit_suicide(pos, color);
#if CHECK_HASHING
/* Check the hash table to see if it equals the previous one. */
hashdata_recalc(&oldkey, board, board_ko_pos);
gg_assert(hashdata_is_equal(oldkey, board_hash));
#endif
}
if (update_internals || next_string == MAX_STRINGS)
new_position();
else
CLEAR_STACKS();
}
/* Load the initial position and replay the first n moves. */
static void
replay_move_history(int n)
{
int k;
memcpy(board, initial_board, sizeof(board));
board_ko_pos = initial_board_ko_pos;
white_captured = initial_white_captured;
black_captured = initial_black_captured;
new_position();
for (k = 0; k < n; k++)
play_move_no_history(move_history_pos[k], move_history_color[k], 0);
new_position();
}
/* Play a move. If you want to test for legality you should first call
* is_legal(). This function strictly follows the algorithm:
* 1. Place a stone of given color on the board.
* 2. If there are any adjacent opponent strings without liberties,
* remove them and increase the prisoner count.
* 3. If the newly placed stone is part of a string without liberties,
* remove it and increase the prisoner count.
*
* In spite of the name "permanent move", this move can (usually) be
* unplayed by undo_move(), but it is significantly more costly than
* unplaying a temporary move. There are limitations on the available
* move history, so under certain circumstances the move may not be
* possible to unplay at a later time.
*/
void
play_move(int pos, int color)
{
ASSERT1(stackp == 0, pos);
ASSERT1(color == WHITE || color == BLACK, pos);
ASSERT1(pos == PASS_MOVE || ON_BOARD1(pos), pos);
ASSERT1(pos == PASS_MOVE || board[pos] == EMPTY, pos);
ASSERT1(komaster == EMPTY && kom_pos == NO_MOVE, pos);
if (move_history_pointer >= MAX_MOVE_HISTORY) {
/* The move history is full. We resolve this by collapsing the
* first about 10% of the moves into the initial position.
*/
int number_collapsed_moves = 1 + MAX_MOVE_HISTORY / 10;
int k;
Intersection saved_board[BOARDSIZE];
int saved_board_ko_pos = board_ko_pos;
int saved_white_captured = white_captured;
int saved_black_captured = black_captured;
memcpy(saved_board, board, sizeof(board));
replay_move_history(number_collapsed_moves);
memcpy(initial_board, board, sizeof(board));
initial_board_ko_pos = board_ko_pos;
initial_white_captured = white_captured;
initial_black_captured = black_captured;
for (k = number_collapsed_moves; k < move_history_pointer; k++) {
move_history_color[k - number_collapsed_moves] = move_history_color[k];
move_history_pos[k - number_collapsed_moves] = move_history_pos[k];
move_history_hash[k - number_collapsed_moves] = move_history_hash[k];
}
move_history_pointer -= number_collapsed_moves;
memcpy(board, saved_board, sizeof(board));
board_ko_pos = saved_board_ko_pos;
white_captured = saved_white_captured;
black_captured = saved_black_captured;
new_position();
}
move_history_color[move_history_pointer] = color;
move_history_pos[move_history_pointer] = pos;
move_history_hash[move_history_pointer] = board_hash;
if (board_ko_pos != NO_MOVE)
hashdata_invert_ko(&move_history_hash[move_history_pointer], board_ko_pos);
move_history_pointer++;
play_move_no_history(pos, color, 1);
movenum++;
}
/* Undo n permanent moves. Returns 1 if successful and 0 if it fails.
* If n moves cannot be undone, no move is undone.
*/
int
undo_move(int n)
{
gg_assert(stackp == 0);
/* Fail if and only if the move history is too short. */
if (move_history_pointer < n)
return 0;
replay_move_history(move_history_pointer - n);
move_history_pointer -= n;
movenum -= n;
return 1;
}
/* Return the last move done by the opponent to color. Both if no move
* was found or if the last move was a pass, PASS_MOVE is returned.
*/
int
get_last_opponent_move(int color)
{
int k;
for (k = move_history_pointer - 1; k >= 0; k--)
if (move_history_color[k] == OTHER_COLOR(color))
return move_history_pos[k];
return PASS_MOVE;
}
/* Return the last move done by anyone. Both if no move was found or
* if the last move was a pass, PASS_MOVE is returned.
*/
int
get_last_move()
{
if (move_history_pointer == 0)
return PASS_MOVE;
return move_history_pos[move_history_pointer - 1];
}
/* Return the color of the player doing the last move. If no move was
* found, EMPTY is returned.
*/
int
get_last_player()
{
if (move_history_pointer == 0)
return EMPTY;
return move_history_color[move_history_pointer - 1];
}
/* ================================================================ */
/* Utility functions */
/* ================================================================ */
/*
* Test if the move is a pass or not. Return 1 if it is.
*/
int
is_pass(int pos)
{
return pos == 0;
}
/*
* is_legal(pos, color) determines whether the move (color) at pos is
* legal. This is for internal use in the engine and always assumes
* that suicide is allowed and only simple ko restrictions, no
* superko, regardless of the rules actually used in the game.
*
* Use is_allowed_move() if you want to take alternative suicide and
* ko rules into account.
*/
int
is_legal(int pos, int color)
{
/* 0. A pass move is always legal. */
if (pos == 0)
return 1;
/* 1. The move must be inside the board. */
ASSERT_ON_BOARD1(pos);
/* 2. The location must be empty. */
if (board[pos] != EMPTY)
return 0;
/* 3. The location must not be the ko point. */
if (pos == board_ko_pos) {
/* The ko position is guaranteed to have all neighbors of the
* same color, or off board. If that color is the same as the
* move the ko is being filled, which is always allowed. This
* could be tested with has_neighbor() but here a faster test
* suffices.
*/
if (board[WEST(pos)] == OTHER_COLOR(color)
|| board[EAST(pos)] == OTHER_COLOR(color)) {
return 0;
}
}
/* Check for stack overflow. */
if (stackp >= MAXSTACK-2) {
fprintf(stderr,
"gnugo: Truncating search. This is beyond my reading ability!\n");
/* FIXME: Perhaps it's best to just assert here and be done with it? */
if (0) {
ASSERT1(0 && "is_legal stack overflow", pos);
}
return 0;
}
/* Check for suicide. */
if (is_suicide(pos, color))
return 0;
return 1;
}
/*
* is_suicide(pos, color) determines whether the move (color) at
* (pos) would be a suicide.
*
* This is the case if
* 1. There is no neighboring empty intersection.
* 2. There is no neighboring opponent string with exactly one liberty.
* 3. There is no neighboring friendly string with more than one liberty.
*/
int
is_suicide(int pos, int color)
{
ASSERT_ON_BOARD1(pos);
ASSERT1(board[pos] == EMPTY, pos);
/* Check for suicide. */
if (LIBERTY(SOUTH(pos))
|| (ON_BOARD(SOUTH(pos))
&& ((board[SOUTH(pos)] == color) ^ (LIBERTIES(SOUTH(pos)) == 1))))
return 0;
if (LIBERTY(WEST(pos))
|| (ON_BOARD(WEST(pos))
&& ((board[WEST(pos)] == color) ^ (LIBERTIES(WEST(pos)) == 1))))
return 0;
if (LIBERTY(NORTH(pos))
|| (ON_BOARD(NORTH(pos))
&& ((board[NORTH(pos)] == color) ^ (LIBERTIES(NORTH(pos)) == 1))))
return 0;
if (LIBERTY(EAST(pos))
|| (ON_BOARD(EAST(pos))
&& ((board[EAST(pos)] == color) ^ (LIBERTIES(EAST(pos)) == 1))))
return 0;
return 1;
}
/*
* is_illegal_ko_capture(pos, color) determines whether the move
* (color) at (pos) would be an illegal ko capture.
*/
int
is_illegal_ko_capture(int pos, int color)
{
ASSERT_ON_BOARD1(pos);
ASSERT1(board[pos] == EMPTY, pos);
return (pos == board_ko_pos
&& ((board[WEST(pos)] == OTHER_COLOR(color))
|| (board[EAST(pos)] == OTHER_COLOR(color))));
}
/*
* is_allowed_move(int pos, int color) determines whether a move is
* legal with respect to the suicide and ko rules in play.
*
* This function is only valid when stackp == 0 since there is no
* tracking of superko for trymoves.
*/
int
is_allowed_move(int pos, int color)
{
gg_assert(stackp == 0);
/* 1. A pass move is always legal, no matter what. */
if (pos == PASS_MOVE)
return 1;
/* 2. The move must be inside the board. */
ASSERT_ON_BOARD1(pos);
/* 3. The location must be empty. */
if (board[pos] != EMPTY)
return 0;
/* 4. Simple ko repetition is only allowed if no ko rule is in use.
* For superko rules this check is redundant.
*
* The ko position is guaranteed to have all neighbors of the
* same color, or off board. If that color is the same as the
* move the ko is being filled, which is always allowed. This
* could be tested with has_neighbor() but here a faster test
* suffices.
*/
if (ko_rule != NONE
&& pos == board_ko_pos
&& (board[WEST(pos)] == OTHER_COLOR(color)
|| board[EAST(pos)] == OTHER_COLOR(color)))
return 0;
/* 5. Check for suicide. Suicide rule options:
* FORBIDDEN - No suicides allowed.
* ALLOWED - Suicide of more than one stone allowed.
* ALL_ALLOWED - All suicides allowed.
*/
if (is_suicide(pos, color))
if (suicide_rule == FORBIDDEN
|| (suicide_rule == ALLOWED
&& !has_neighbor(pos, color)))
return 0;
/* 6. Check for whole board repetitions. The superko options are
* SIMPLE, NONE - No superko restrictions.
* PSK - Repetition of a previous position forbidden.
* SSK - Repetition of a previous position with the same
* player to move forbidden.
*/
if (is_superko_violation(pos, color, ko_rule))
return 0;
return 1;
}
/* Necessary work to set the new komaster state. */
static void
set_new_komaster(int new_komaster)
{
PUSH_VALUE(komaster);
hashdata_invert_komaster(&board_hash, komaster);
komaster = new_komaster;
hashdata_invert_komaster(&board_hash, komaster);
}
/* Necessary work to set the new komaster position. */
static void
set_new_kom_pos(int new_kom_pos)
{
PUSH_VALUE(kom_pos);
hashdata_invert_kom_pos(&board_hash, kom_pos);
kom_pos = new_kom_pos;
hashdata_invert_kom_pos(&board_hash, kom_pos);
}
/* Variation of trymove()/tryko() where ko captures (both conditional
* and unconditional) must follow a komaster scheme.
*
* Historical note: Up to GNU Go 3.4 five different komaster schemes
* were implemented and could easily be switched between. In GNU Go
* 3.5.1 four of them were removed to simplify the code and because it
* no longer seemed interesting to be able to switch. The remaining
* komaster scheme was previously known as komaster scheme 5 (or V).
*
* FIXME: This function could be optimized by integrating the
* trymove()/tryko() code.
*/
/* V. Complex scheme, O to move.
*
* 1. Komaster is EMPTY.
* 1a) Unconditional ko capture is allowed.
* Komaster remains EMPTY if previous move was not a ko capture.
* Komaster is set to WEAK_KO if previous move was a ko capture
* and kom_pos is set to the old value of board_ko_pos.
* 1b) Conditional ko capture is allowed. Komaster is set to O and
* kom_pos to the location of the ko, where a stone was
* just removed.
*
* 2. Komaster is O:
* 2a) Only nested ko captures are allowed. Kom_pos is moved to the
* new removed stone.
* 2b) If komaster fills the ko at kom_pos then komaster reverts to
* EMPTY.
*
* 3. Komaster is X:
* Play at kom_pos is not allowed. Any other ko capture
* is allowed. If O takes another ko, komaster becomes GRAY_X.
*
* 4. Komaster is GRAY_O or GRAY_X:
* Ko captures are not allowed. If the ko at kom_pos is
* filled then the komaster reverts to EMPTY.
*
* 5. Komaster is WEAK_KO:
* 5a) After a non-ko move komaster reverts to EMPTY.
* 5b) Unconditional ko capture is only allowed if it is nested ko capture.
* Komaster is changed to WEAK_X and kom_pos to the old value of
* board_ko_pos.
* 5c) Conditional ko capture is allowed according to the rules of 1b.
*/
int
komaster_trymove(int pos, int color, const char *message, int str,
int *is_conditional_ko, int consider_conditional_ko)
{
int other = OTHER_COLOR(color);
int ko_move;
int kpos;
int previous_board_ko_pos = board_ko_pos;
*is_conditional_ko = 0;
ko_move = is_ko(pos, color, &kpos);
if (ko_move) {
/* If opponent is komaster we may not capture his ko. */
if (komaster == other && pos == kom_pos)
return 0;
/* If komaster is gray we may not capture ko at all. */
if (komaster == GRAY_WHITE || komaster == GRAY_BLACK)
return 0;
/* If we are komaster, we may only do nested captures. */
if (komaster == color && !DIAGONAL_NEIGHBORS(kpos, kom_pos))
return 0;
/* If komaster is WEAK_KO, we may only do nested ko capture or
* conditional ko capture.
*/
if (komaster == WEAK_KO) {
if (pos != board_ko_pos && !DIAGONAL_NEIGHBORS(kpos, kom_pos))
return 0;
}
}
if (!trymove(pos, color, message, str)) {
if (!consider_conditional_ko)
return 0;
if (!tryko(pos, color, message))
return 0; /* Suicide. */
*is_conditional_ko = 1;
/* Conditional ko capture, set komaster parameters. */
if (komaster == EMPTY || komaster == WEAK_KO) {
set_new_komaster(color);
set_new_kom_pos(kpos);
return 1;
}
}
if (!ko_move) {
/* If we are komaster, check whether the ko was resolved by the
* current move. If that is the case, revert komaster to EMPTY.
*
* The ko has been resolved in favor of the komaster if it has
* been filled, or if it is no longer a ko and an opponent move
* there is suicide.
*/
if (((komaster == color
|| (komaster == GRAY_WHITE && color == WHITE)
|| (komaster == GRAY_BLACK && color == BLACK))
&& (IS_STONE(board[kom_pos])
|| (!is_ko(kom_pos, other, NULL)
&& is_suicide(kom_pos, other))))) {
set_new_komaster(EMPTY);
set_new_kom_pos(NO_MOVE);
}
if (komaster == WEAK_KO) {
set_new_komaster(EMPTY);
set_new_kom_pos(NO_MOVE);
}
return 1;
}
if (komaster == other) {
if (color == WHITE)
set_new_komaster(GRAY_BLACK);
else
set_new_komaster(GRAY_WHITE);
}
else if (komaster == color) {
/* This is where we update kom_pos after a nested capture. */
set_new_kom_pos(kpos);
}
else {
/* We can reach here when komaster is EMPTY or WEAK_KO. If previous
* move was also a ko capture, we now set komaster to WEAK_KO.
*/
if (previous_board_ko_pos != NO_MOVE) {
set_new_komaster(WEAK_KO);
set_new_kom_pos(previous_board_ko_pos);
}
}
return 1;
}
int
get_komaster()
{
return komaster;
}
int
get_kom_pos()
{
return kom_pos;
}
/* Determine whether vertex is on the edge. */
int
is_edge_vertex(int pos)
{
ASSERT_ON_BOARD1(pos);
if (!ON_BOARD(SW(pos))
|| !ON_BOARD(NE(pos)))
return 1;
return 0;
}
/* Distance to the edge. */
int
edge_distance(int pos)
{
int i = I(pos);
int j = J(pos);
ASSERT_ON_BOARD1(pos);
return gg_min(gg_min(i, board_size-1 - i), gg_min(j, board_size-1 - j));
}
/* Determine whether vertex is a corner. */
int
is_corner_vertex(int pos)
{
ASSERT_ON_BOARD1(pos);
if ((!ON_BOARD(WEST(pos)) || !ON_BOARD(EAST(pos)))
&& (!ON_BOARD(SOUTH(pos)) || !ON_BOARD(NORTH(pos))))
return 1;
return 0;
}
/* Returns true if the empty vertex respectively the string at pos1 is
* adjacent to the empty vertex respectively the string at pos2.
*/
int
are_neighbors(int pos1, int pos2)
{
if (board[pos1] == EMPTY) {
if (board[pos2] == EMPTY)
return (gg_abs(pos1 - pos2) == NS || gg_abs(pos1 - pos2) == WE);
else
return neighbor_of_string(pos1, pos2);
}
else {
if (board[pos2] == EMPTY)
return neighbor_of_string(pos2, pos1);
else
return adjacent_strings(pos1, pos2);
}
}
/* Count the number of liberties of the string at pos. pos must not be
* empty.
*/
int
countlib(int str)
{
ASSERT1(IS_STONE(board[str]), str);
/* We already know the number of liberties. Just look it up. */
return string[string_number[str]].liberties;
}
/* Find the liberties of the string at str. str must not be
* empty. The locations of up to maxlib liberties are written into
* libs[]. The full number of liberties is returned.
*
* If you want the locations of all liberties, whatever their number,
* you should pass MAXLIBS as the value for maxlib and allocate space
* for libs[] accordingly.
*/
int
findlib(int str, int maxlib, int *libs)
{
int k;
int liberties;
int s;
ASSERT1(IS_STONE(board[str]), str);
ASSERT1(libs != NULL, str);
/* We already have the list of liberties and only need to copy it to
* libs[].
*
* However, if the string has more than MAX_LIBERTIES liberties the
* list is truncated and if maxlib is also larger than MAX_LIBERTIES
* we have to traverse the stones in the string in order to find
* where the liberties are.
*/
s = string_number[str];
liberties = string[s].liberties;
if (liberties <= MAX_LIBERTIES || maxlib <= MAX_LIBERTIES) {
/* The easy case, it suffices to copy liberty locations from the
* incrementally updated list.
*/
for (k = 0; k < maxlib && k < liberties; k++)
libs[k] = string_libs[s].list[k];
}
else {
/* The harder case, where we have to traverse the stones in the
* string. We don't have to check explicitly if we are back to
* the start of the chain since we will run out of liberties
* before that happens.
*/
int pos;
liberty_mark++;
for (k = 0, pos = FIRST_STONE(s);
k < maxlib && k < liberties;
pos = NEXT_STONE(pos)) {
if (UNMARKED_LIBERTY(SOUTH(pos))) {
libs[k++] = SOUTH(pos);
MARK_LIBERTY(SOUTH(pos));
if (k >= maxlib)
break;
}
if (UNMARKED_LIBERTY(WEST(pos))) {
libs[k++] = WEST(pos);
MARK_LIBERTY(WEST(pos));
if (k >= maxlib)
break;
}
if (UNMARKED_LIBERTY(NORTH(pos))) {
libs[k++] = NORTH(pos);
MARK_LIBERTY(NORTH(pos));
if (k >= maxlib)
break;
}
if (UNMARKED_LIBERTY(EAST(pos))) {
libs[k++] = EAST(pos);
MARK_LIBERTY(EAST(pos));
if (k >= maxlib)
break;
}
}
}
return liberties;
}
/* Count the liberties a stone of the given color would get if played
* at (pos). The location (pos) must be empty.
*
* The intent of this function is to be as fast as possible, not
* necessarily complete. But if it returns a positive value (meaning
* it has succeeded), the value is guaranteed to be correct.
*
* Captures are ignored based on the ignore_capture flag. The function
* fails if there are more than two neighbor strings of the same
* color. In this case, the return value is -1. Captures are handled
* in a very limited way, so if ignore_capture is 0, and a capture is
* required, it will often return -1.
*
* Note well, that it relies on incremental data.
*/
int
fastlib(int pos, int color, int ignore_captures)
{
int ally1 = -1;
int ally2 = -1;
int fast_liberties = 0;
ASSERT1(board[pos] == EMPTY, pos);
ASSERT1(IS_STONE(color), pos);
/* Find neighboring strings of the same color. If there are more than two of
* them, we give up (it's too difficult to count their common liberties).
*/
if (board[SOUTH(pos)] == color) {
ally1 = string_number[SOUTH(pos)];
if (board[WEST(pos)] == color
&& string_number[WEST(pos)] != ally1) {
ally2 = string_number[WEST(pos)];
if (board[NORTH(pos)] == color
&& string_number[NORTH(pos)] != ally1
&& string_number[NORTH(pos)] != ally2)
return -1;
}
else if (board[NORTH(pos)] == color
&& string_number[NORTH(pos)] != ally1)
ally2 = string_number[NORTH(pos)];
if (board[EAST(pos)] == color
&& string_number[EAST(pos)] != ally1) {
if (ally2 < 0)
ally2 = string_number[EAST(pos)];
else if (string_number[EAST(pos)] != ally2)
return -1;
}
}
else if (board[WEST(pos)] == color) {
ally1 = string_number[WEST(pos)];
if (board[NORTH(pos)] == color
&& string_number[NORTH(pos)] != ally1) {
ally2 = string_number[NORTH(pos)];
if (board[EAST(pos)] == color
&& string_number[EAST(pos)] != ally1
&& string_number[EAST(pos)] != ally2)
return -1;
}
else if (board[EAST(pos)] == color
&& string_number[EAST(pos)] != ally1)
ally2 = string_number[EAST(pos)];
}
else if (board[NORTH(pos)] == color) {
ally1 = string_number[NORTH(pos)];
if (board[EAST(pos)] == color
&& string_number[EAST(pos)] != ally1)
ally2 = string_number[EAST(pos)];
}
else if (board[EAST(pos)] == color)
ally1 = string_number[EAST(pos)];
/* If we are to ignore captures, the things are very easy. */
if (ignore_captures) {
if (ally1 < 0) { /* No allies */
if (LIBERTY(SOUTH(pos)))
fast_liberties++;
if (LIBERTY(WEST(pos)))
fast_liberties++;
if (LIBERTY(NORTH(pos)))
fast_liberties++;
if (LIBERTY(EAST(pos)))
fast_liberties++;
}
else if (ally2 < 0) { /* One ally */
if (LIBERTY(SOUTH(pos))
&& !NON_SOUTH_NEIGHBOR_OF_STRING(SOUTH(pos), ally1, color))
fast_liberties++;
if (LIBERTY(WEST(pos))
&& !NON_WEST_NEIGHBOR_OF_STRING(WEST(pos), ally1, color))
fast_liberties++;
if (LIBERTY(NORTH(pos))
&& !NON_NORTH_NEIGHBOR_OF_STRING(NORTH(pos), ally1, color))
fast_liberties++;
if (LIBERTY(EAST(pos))
&& !NON_EAST_NEIGHBOR_OF_STRING(EAST(pos), ally1, color))
fast_liberties++;
fast_liberties += string[ally1].liberties - 1;
}
else { /* Two allies */
if (LIBERTY(SOUTH(pos))
&& !NON_SOUTH_NEIGHBOR_OF_STRING(SOUTH(pos), ally1, color)
&& !NON_SOUTH_NEIGHBOR_OF_STRING(SOUTH(pos), ally2, color))
fast_liberties++;
if (LIBERTY(WEST(pos))
&& !NON_WEST_NEIGHBOR_OF_STRING(WEST(pos), ally1, color)
&& !NON_WEST_NEIGHBOR_OF_STRING(WEST(pos), ally2, color))
fast_liberties++;
if (LIBERTY(NORTH(pos))
&& !NON_NORTH_NEIGHBOR_OF_STRING(NORTH(pos), ally1, color)
&& !NON_NORTH_NEIGHBOR_OF_STRING(NORTH(pos), ally2, color))
fast_liberties++;
if (LIBERTY(EAST(pos))
&& !NON_EAST_NEIGHBOR_OF_STRING(EAST(pos), ally1, color)
&& !NON_EAST_NEIGHBOR_OF_STRING(EAST(pos), ally2, color))
fast_liberties++;
fast_liberties += string[ally1].liberties + string[ally2].liberties
- count_common_libs(string[ally1].origin, string[ally2].origin) - 1;
}
}
/* We are to take captures into account. This case is much more rare, so
* it is not optimized much.
*/
else {
int k;
for (k = 0; k < 4; k++) {
int neighbor = pos + delta[k];
if (LIBERTY(neighbor)
&& (ally1 < 0 || !NEIGHBOR_OF_STRING(neighbor, ally1, color))
&& (ally2 < 0 || !NEIGHBOR_OF_STRING(neighbor, ally2, color)))
fast_liberties++;
else if (board[neighbor] == OTHER_COLOR(color) /* A capture */
&& LIBERTIES(neighbor) == 1) {
int neighbor_size = COUNTSTONES(neighbor);
if (neighbor_size == 1 || (neighbor_size == 2 && ally1 < 0))
fast_liberties++;
else
return -1;
}
}
if (ally1 >= 0) {
fast_liberties += string[ally1].liberties - 1;
if (ally2 >= 0)
fast_liberties += string[ally2].liberties
- count_common_libs(string[ally1].origin, string[ally2].origin);
}
}
return fast_liberties;
}
/* Effectively true unless we store full position in hash. */
#define USE_BOARD_CACHES (NUM_HASHVALUES <= 4)
struct board_cache_entry {
int threshold;
int liberties;
Hash_data position_hash;
};
/* approxlib() cache. */
static struct board_cache_entry approxlib_cache[BOARDMAX][2];
/* Clears approxlib() cache. This function should be called only once
* during engine initialization. Sets thresholds to zero.
*/
void
clear_approxlib_cache(void)
{
int pos;
for (pos = BOARDMIN; pos < BOARDMAX; pos++) {
approxlib_cache[pos][0].threshold = 0;
approxlib_cache[pos][1].threshold = 0;
}
}
/* Find the liberties a stone of the given color would get if played
* at (pos), ignoring possible captures of opponent stones. (pos)
* must be empty. If libs != NULL, the locations of up to maxlib
* liberties are written into libs[]. The counting of liberties may
* or may not be halted when maxlib is reached. The number of liberties
* found is returned.
*
* If you want the number or the locations of all liberties, however
* many they are, you should pass MAXLIBS as the value for maxlib and
* allocate space for libs[] accordingly.
*/
int
approxlib(int pos, int color, int maxlib, int *libs)
{
int liberties;
#ifdef USE_BOARD_CACHES
struct board_cache_entry *entry = &approxlib_cache[pos][color - 1];
ASSERT1(board[pos] == EMPTY, pos);
ASSERT1(IS_STONE(color), pos);
if (!libs) {
/* First see if this result is cached. */
if (hashdata_is_equal(board_hash, entry->position_hash)
&& maxlib <= entry->threshold) {
return entry->liberties;
}
liberties = fastlib(pos, color, 1);
if (liberties >= 0) {
/* Since fastlib() always returns precise result and doesn't take
* `maxlib' into account, we set threshold to MAXLIBS so that this
* result is used regardless of any `maxlib' passed.
*/
entry->threshold = MAXLIBS;
entry->liberties = liberties;
entry->position_hash = board_hash;
return liberties;
}
}
/* We initialize the cache entry threshold to `maxlib'. If do_approxlib()
* or slow_approxlib() finds all the liberties (that is, they don't use
* `maxlib' value for an early return), they will set threshold to
* MAXLIBS themselves.
*/
entry->threshold = maxlib;
if (maxlib <= MAX_LIBERTIES)
liberties = do_approxlib(pos, color, maxlib, libs);
else
liberties = slow_approxlib(pos, color, maxlib, libs);
entry->liberties = liberties;
entry->position_hash = board_hash;
#else /* not USE_BOARD_CACHES */
ASSERT1(board[pos] == EMPTY, pos);
ASSERT1(IS_STONE(color), pos);
if (!libs) {
liberties = fastlib(pos, color, 1);
if (liberties >= 0)
return liberties;
}
if (maxlib <= MAX_LIBERTIES)
liberties = do_approxlib(pos, color, maxlib, libs);
else
liberties = slow_approxlib(pos, color, maxlib, libs);
#endif /* not USE_BOARD_CACHES */
return liberties;
}
/* Does the real work of approxlib(). */
static int
do_approxlib(int pos, int color, int maxlib, int *libs)
{
int k;
int liberties = 0;
/* Look for empty neighbors and the liberties of the adjacent
* strings of the given color. The algorithm below won't work
* correctly if any of the adjacent strings have more than
* MAX_LIBERTIES liberties AND maxlib is larger than MAX_LIBERTIES.
* therefore approxlib() calls more robust slow_approxlib() if
* this might be the case.
*/
/* Start by marking pos itself so it isn't counted among its own
* liberties.
*/
liberty_mark++;
MARK_LIBERTY(pos);
if (UNMARKED_LIBERTY(SOUTH(pos))) {
if (libs != NULL)
libs[liberties] = SOUTH(pos);
liberties++;
/* Stop counting if we reach maxlib. */
if (liberties >= maxlib)
return liberties;
MARK_LIBERTY(SOUTH(pos));
}
else if (board[SOUTH(pos)] == color) {
int s = string_number[SOUTH(pos)];
for (k = 0; k < string[s].liberties; k++) {
int lib = string_libs[s].list[k];
if (UNMARKED_LIBERTY(lib)) {
if (libs != NULL)
libs[liberties] = lib;
liberties++;
if (liberties >= maxlib)
return liberties;
MARK_LIBERTY(lib);
}
}
}
if (UNMARKED_LIBERTY(WEST(pos))) {
if (libs != NULL)
libs[liberties] = WEST(pos);
liberties++;
/* Stop counting if we reach maxlib. */
if (liberties >= maxlib)
return liberties;
MARK_LIBERTY(WEST(pos));
}
else if (board[WEST(pos)] == color) {
int s = string_number[WEST(pos)];
for (k = 0; k < string[s].liberties; k++) {
int lib = string_libs[s].list[k];
if (UNMARKED_LIBERTY(lib)) {
if (libs != NULL)
libs[liberties] = lib;
liberties++;
if (liberties >= maxlib)
return liberties;
MARK_LIBERTY(lib);
}
}
}
if (UNMARKED_LIBERTY(NORTH(pos))) {
if (libs != NULL)
libs[liberties] = NORTH(pos);
liberties++;
/* Stop counting if we reach maxlib. */
if (liberties >= maxlib)
return liberties;
MARK_LIBERTY(NORTH(pos));
}
else if (board[NORTH(pos)] == color) {
int s = string_number[NORTH(pos)];
for (k = 0; k < string[s].liberties; k++) {
int lib = string_libs[s].list[k];
if (UNMARKED_LIBERTY(lib)) {
if (libs != NULL)
libs[liberties] = lib;
liberties++;
if (liberties >= maxlib)
return liberties;
MARK_LIBERTY(lib);
}
}
}
if (UNMARKED_LIBERTY(EAST(pos))) {
if (libs != NULL)
libs[liberties] = EAST(pos);
liberties++;
/* Unneeded since we're about to leave. */
#if 0
if (liberties >= maxlib)
return liberties;
MARK_LIBERTY(EAST(pos));
#endif
}
else if (board[EAST(pos)] == color) {
int s = string_number[EAST(pos)];
for (k = 0; k < string[s].liberties; k++) {
int lib = string_libs[s].list[k];
if (UNMARKED_LIBERTY(lib)) {
if (libs != NULL)
libs[liberties] = lib;
liberties++;
if (liberties >= maxlib)
return liberties;
MARK_LIBERTY(lib);
}
}
}
#if USE_BOARD_CACHES
/* If we reach here, then we have counted _all_ the liberties, so
* we set threshold to MAXLIBS (the result is the same regardless
* of `maxlib' value).
*/
if (!libs)
approxlib_cache[pos][color - 1].threshold = MAXLIBS;
#endif
return liberties;
}
/* Find the liberties a move of the given color at pos would have,
* excluding possible captures, by traversing all adjacent friendly
* strings. This is a fallback used by approxlib() when a faster
* algorithm can't be used.
*/
static int
slow_approxlib(int pos, int color, int maxlib, int *libs)
{
int k;
int liberties = 0;
liberty_mark++;
MARK_LIBERTY(pos);
string_mark++;
for (k = 0; k < 4; k++) {
int d = delta[k];
if (UNMARKED_LIBERTY(pos + d)) {
if (libs)
libs[liberties] = pos + d;
liberties++;
if (liberties == maxlib)
return liberties;
MARK_LIBERTY(pos + d);
}
else if (board[pos + d] == color
&& UNMARKED_STRING(pos + d)) {
int s = string_number[pos + d];
int pos2;
pos2 = FIRST_STONE(s);
do {
int l;
for (l = 0; l < 4; l++) {
int d2 = delta[l];
if (UNMARKED_LIBERTY(pos2 + d2)) {
if (libs)
libs[liberties] = pos2 + d2;
liberties++;
if (liberties == maxlib)
return liberties;
MARK_LIBERTY(pos2 + d2);
}
}
pos2 = NEXT_STONE(pos2);
} while (!BACK_TO_FIRST_STONE(s, pos2));
MARK_STRING(pos + d);
}
}
#if USE_BOARD_CACHES
/* If we reach here, then we have counted _all_ the liberties, so
* we set threshold to MAXLIBS (the result is the same regardless
* of `maxlib' value).
*/
if (!libs)
approxlib_cache[pos][color - 1].threshold = MAXLIBS;
#endif
return liberties;
}
/* accuratelib() cache. */
static struct board_cache_entry accuratelib_cache[BOARDMAX][2];
/* Clears accuratelib() cache. This function should be called only once
* during engine initialization. Sets thresholds to zero.
*/
void
clear_accuratelib_cache(void)
{
int pos;
for (pos = BOARDMIN; pos < BOARDMAX; pos++) {
accuratelib_cache[pos][0].threshold = 0;
accuratelib_cache[pos][1].threshold = 0;
}
}
/* Find the liberties a stone of the given color would get if played
* at (pos). This function takes into consideration all captures. Its
* return value is exact in that sense it counts all the liberties,
* unless (maxlib) allows it to stop earlier. (pos) must be empty. If
* libs != NULL, the locations of up to maxlib liberties are written
* into libs[]. The counting of liberties may or may not be halted
* when maxlib is reached. The number of found liberties is returned.
*
* This function guarantees that liberties which are not results of
* captures come first in libs[] array. To find whether all the
* liberties starting from a given one are results of captures, one
* may use if (board[libs[k]] != EMPTY) construction.
*
* If you want the number or the locations of all liberties, however
* many they are, you should pass MAXLIBS as the value for maxlib and
* allocate space for libs[] accordingly.
*/
int
accuratelib(int pos, int color, int maxlib, int *libs)
{
int liberties;
#ifdef USE_BOARD_CACHES
struct board_cache_entry *entry = &accuratelib_cache[pos][color - 1];
ASSERT1(board[pos] == EMPTY, pos);
ASSERT1(IS_STONE(color), pos);
if (!libs) {
/* First see if this result is cached. */
if (hashdata_is_equal(board_hash, entry->position_hash)
&& maxlib <= entry->threshold) {
return entry->liberties;
}
liberties = fastlib(pos, color, 0);
if (liberties >= 0) {
/* Since fastlib() always returns precise result and doesn't take
* `maxlib' into account, we set threshold to MAXLIBS so that this
* result is used regardless of any `maxlib' passed.
*/
entry->threshold = MAXLIBS;
entry->liberties = liberties;
entry->position_hash = board_hash;
return liberties;
}
}
liberties = do_accuratelib(pos, color, maxlib, libs);
/* If accuratelib() found less than `maxlib' liberties, then its
* result is certainly independent of `maxlib' and we set threshold
* to MAXLIBS.
*/
entry->threshold = liberties < maxlib ? MAXLIBS : maxlib;
entry->liberties = liberties;
entry->position_hash = board_hash;
#else /* not USE_BOARD_CACHES */
ASSERT1(board[pos] == EMPTY, pos);
ASSERT1(IS_STONE(color), pos);
if (!libs) {
liberties = fastlib(pos, color, 0);
if (liberties >= 0)
return liberties;
}
liberties = do_accuratelib(pos, color, maxlib, libs);
#endif /* not USE_BOARD_CACHES */
return liberties;
}
/* Does the real work of accuratelib(). */
static int
do_accuratelib(int pos, int color, int maxlib, int *libs)
{
int k, l;
int liberties = 0;
int lib;
int captured[4];
int captures = 0;
string_mark++;
liberty_mark++;
MARK_LIBERTY(pos);
for (k = 0; k < 4; k++) {
int pos2 = pos + delta[k];
if (UNMARKED_LIBERTY(pos2)) {
/* A trivial liberty */
if (libs)
libs[liberties] = pos2;
liberties++;
if (liberties >= maxlib)
return liberties;
MARK_LIBERTY(pos2);
}
else if (UNMARKED_COLOR_STRING(pos2, color)) {
/* An own neighbor string */
struct string_data *s = &string[string_number[pos2]];
struct string_liberties_data *sl = &string_libs[string_number[pos2]];
if (s->liberties <= MAX_LIBERTIES || maxlib <= MAX_LIBERTIES - 1) {
/* The easy case - we already have all (necessary) liberties of
* the string listed
*/
for (l = 0; l < s->liberties; l++) {
lib = sl->list[l];
if (UNMARKED_LIBERTY(lib)) {
if (libs)
libs[liberties] = lib;
liberties++;
if (liberties >= maxlib)
return liberties;
MARK_LIBERTY(lib);
}
}
}
else {
/* The harder case - we need to find all the liberties of the
* string by traversing its stones. We stop as soon as we have
* traversed all the stones or have reached maxlib. Unfortunately,
* we cannot use the trick from findlib() since some of the
* liberties may already have been marked.
*/
int stone = pos2;
do {
if (UNMARKED_LIBERTY(SOUTH(stone))) {
if (libs)
libs[liberties] = SOUTH(stone);
liberties++;
if (liberties >= maxlib)
return liberties;
MARK_LIBERTY(SOUTH(stone));
}
if (UNMARKED_LIBERTY(WEST(stone))) {
if (libs)
libs[liberties] = WEST(stone);
liberties++;
if (liberties >= maxlib)
return liberties;
MARK_LIBERTY(WEST(stone));
}
if (UNMARKED_LIBERTY(NORTH(stone))) {
if (libs)
libs[liberties] = NORTH(stone);
liberties++;
if (liberties >= maxlib)
return liberties;
MARK_LIBERTY(NORTH(stone));
}
if (UNMARKED_LIBERTY(EAST(stone))) {
if (libs)
libs[liberties] = EAST(stone);
liberties++;
if (liberties >= maxlib)
return liberties;
MARK_LIBERTY(EAST(stone));
}
stone = NEXT_STONE(stone);
} while (stone != pos2);
}
MARK_STRING(pos2);
}
else if (board[pos2] == OTHER_COLOR(color)
&& string[string_number[pos2]].liberties == 1) {
/* A capture. */
captured[captures++] = pos2;
}
}
/* Now we look at all the captures found in the previous step */
for (k = 0; k < captures; k++) {
lib = captured[k];
/* Add the stone adjacent to (pos) to the list of liberties if
* it is not also adjacent to an own marked string (otherwise,
* it will be added later).
*/
if (!MARKED_COLOR_STRING(SOUTH(lib), color)
&& !MARKED_COLOR_STRING(WEST(lib), color)
&& !MARKED_COLOR_STRING(NORTH(lib), color)
&& !MARKED_COLOR_STRING(EAST(lib), color)) {
if (libs)
libs[liberties] = lib;
liberties++;
if (liberties >= maxlib)
return liberties;
}
/* Check if we already know of this capture. */
for (l = 0; l < k; l++)
if (string_number[captured[l]] == string_number[lib])
break;
if (l == k) {
/* Traverse all the stones of the capture and add to the list
* of liberties those, which are adjacent to at least one own
* marked string.
*/
do {
if (MARKED_COLOR_STRING(SOUTH(lib), color)
|| MARKED_COLOR_STRING(WEST(lib), color)
|| MARKED_COLOR_STRING(NORTH(lib), color)
|| MARKED_COLOR_STRING(EAST(lib), color)) {
if (libs)
libs[liberties] = lib;
liberties++;
if (liberties >= maxlib)
return liberties;
}
lib = NEXT_STONE(lib);
} while (lib != captured[k]);
}
}
return liberties;
}
/* Find the number of common liberties of the two strings at str1 and str2.
*/
int
count_common_libs(int str1, int str2)
{
int all_libs1[MAXLIBS], *libs1;
int liberties1, liberties2;
int commonlibs = 0;
int k, n, tmp;
ASSERT_ON_BOARD1(str1);
ASSERT_ON_BOARD1(str2);
ASSERT1(IS_STONE(board[str1]), str1);
ASSERT1(IS_STONE(board[str2]), str2);
n = string_number[str1];
liberties1 = string[n].liberties;
if (liberties1 > string[string_number[str2]].liberties) {
n = string_number[str2];
liberties1 = string[n].liberties;
tmp = str1;
str1 = str2;
str2 = tmp;
}
if (liberties1 <= MAX_LIBERTIES) {
/* Speed optimization: don't copy liberties with findlib */
libs1 = string_libs[n].list;
n = string_number[str2];
liberties2 = string[n].liberties;
if (liberties2 <= MAX_LIBERTIES) {
/* Speed optimization: NEIGHBOR_OF_STRING is quite expensive */
liberty_mark++;
for (k = 0; k < liberties1; k++)
MARK_LIBERTY(libs1[k]);
libs1 = string_libs[n].list;
for (k = 0; k < liberties2; k++)
if (!UNMARKED_LIBERTY(libs1[k]))
commonlibs++;
return commonlibs;
}
}
else {
findlib(str1, MAXLIBS, all_libs1);
libs1 = all_libs1;
}
for (k = 0; k < liberties1; k++)
if (NEIGHBOR_OF_STRING(libs1[k], string_number[str2], board[str2]))
commonlibs++;
return commonlibs;
}
/* Find the common liberties of the two strings at str1 and str2. The
* locations of up to maxlib common liberties are written into libs[].
* The full number of common liberties is returned.
*
* If you want the locations of all common liberties, whatever their
* number, you should pass MAXLIBS as the value for maxlib and
* allocate space for libs[] accordingly.
*/
int
find_common_libs(int str1, int str2, int maxlib, int *libs)
{
int all_libs1[MAXLIBS], *libs1;
int liberties1, liberties2;
int commonlibs = 0;
int k, n, tmp;
ASSERT_ON_BOARD1(str1);
ASSERT_ON_BOARD1(str2);
ASSERT1(IS_STONE(board[str1]), str1);
ASSERT1(IS_STONE(board[str2]), str2);
ASSERT1(libs != NULL, str1);
n = string_number[str1];
liberties1 = string[n].liberties;
if (liberties1 > string[string_number[str2]].liberties) {
n = string_number[str2];
liberties1 = string[n].liberties;
tmp = str1;
str1 = str2;
str2 = tmp;
}
if (liberties1 <= MAX_LIBERTIES) {
/* Speed optimization: don't copy liberties with findlib */
libs1 = string_libs[n].list;
n = string_number[str2];
liberties2 = string[n].liberties;
if (liberties2 <= MAX_LIBERTIES) {
/* Speed optimization: NEIGHBOR_OF_STRING is quite expensive */
liberty_mark++;
for (k = 0; k < liberties1; k++)
MARK_LIBERTY(libs1[k]);
libs1 = string_libs[n].list;
for (k = 0; k < liberties2; k++)
if (!UNMARKED_LIBERTY(libs1[k])) {
if (commonlibs < maxlib)
libs[commonlibs] = libs1[k];
commonlibs++;
}
return commonlibs;
}
}
else {
findlib(str1, MAXLIBS, all_libs1);
libs1 = all_libs1;
}
for (k = 0; k < liberties1; k++)
if (NEIGHBOR_OF_STRING(libs1[k], string_number[str2], board[str2])) {
if (commonlibs < maxlib)
libs[commonlibs] = libs1[k];
commonlibs++;
}
return commonlibs;
}
/* Determine whether two strings have at least one common liberty.
* If they do and lib != NULL, one common liberty is returned in *lib.
*/
int
have_common_lib(int str1, int str2, int *lib)
{
int all_libs1[MAXLIBS], *libs1;
int liberties1;
int k, n, tmp;
ASSERT_ON_BOARD1(str1);
ASSERT_ON_BOARD1(str2);
ASSERT1(IS_STONE(board[str1]), str1);
ASSERT1(IS_STONE(board[str2]), str2);
n = string_number[str1];
liberties1 = string[n].liberties;
if (liberties1 > string[string_number[str2]].liberties) {
n = string_number[str2];
liberties1 = string[n].liberties;
tmp = str1;
str1 = str2;
str2 = tmp;
}
if (liberties1 <= MAX_LIBERTIES)
/* Speed optimization: don't copy liberties with findlib */
libs1 = string_libs[n].list;
else {
findlib(str1, MAXLIBS, all_libs1);
libs1 = all_libs1;
}
for (k = 0; k < liberties1; k++) {
if (NEIGHBOR_OF_STRING(libs1[k], string_number[str2], board[str2])) {
if (lib)
*lib = libs1[k];
return 1;
}
}
return 0;
}
/*
* Report the number of stones in a string.
*/
int
countstones(int str)
{
ASSERT_ON_BOARD1(str);
ASSERT1(IS_STONE(board[str]), str);
return COUNTSTONES(str);
}
/* Find the stones of the string at str. str must not be
* empty. The locations of up to maxstones stones are written into
* stones[]. The full number of stones is returned.
*/
int
findstones(int str, int maxstones, int *stones)
{
int s;
int size;
int pos;
int k;
ASSERT_ON_BOARD1(str);
ASSERT1(IS_STONE(board[str]), str);
s = string_number[str];
size = string[s].size;
/* Traverse the stones of the string, by following the cyclic chain. */
pos = FIRST_STONE(s);
for (k = 0; k < maxstones && k < size; k++) {
stones[k] = pos;
pos = NEXT_STONE(pos);
}
return size;
}
/* Counts how many stones in str1 are directly adjacent to str2.
* A limit can be given in the maxstones parameter so that the
* function returns immediately. See fast_defense() in reading.c
*/
int
count_adjacent_stones(int str1, int str2, int maxstones)
{
int s1, s2;
int size;
int pos;
int k;
int count = 0;
ASSERT_ON_BOARD1(str1);
ASSERT1(IS_STONE(board[str1]), str1);
ASSERT_ON_BOARD1(str2);
ASSERT1(IS_STONE(board[str2]), str2);
s1 = string_number[str1];
s2 = string_number[str2];
size = string[s1].size;
/* Traverse the stones of the string, by following the cyclic chain. */
pos = FIRST_STONE(s1);
for (k = 0; k < size && count < maxstones; k++) {
if (NEIGHBOR_OF_STRING(pos, s2, board[str2]))
count++;
pos = NEXT_STONE(pos);
}
return count;
}
/* chainlinks returns (in the (adj) array) the chains surrounding
* the string at (str). The number of chains is returned.
*/
int
chainlinks(int str, int adj[MAXCHAIN])
{
struct string_data *s;
struct string_neighbors_data *sn;
int k;
ASSERT1(IS_STONE(board[str]), str);
/* We already have the list ready, just copy it and fill in the
* desired information.
*/
s = &string[string_number[str]];
sn = &string_neighbors[string_number[str]];
for (k = 0; k < s->neighbors; k++)
adj[k] = string[sn->list[k]].origin;
return s->neighbors;
}
/* chainlinks2 returns (in adj array) those chains surrounding
* the string at str which have exactly lib liberties. The number
* of such chains is returned.
*/
int
chainlinks2(int str, int adj[MAXCHAIN], int lib)
{
struct string_data *s, *t;
struct string_neighbors_data *sn;
int k;
int neighbors;
ASSERT1(IS_STONE(board[str]), str);
/* We already have the list ready, just copy the strings with the
* right number of liberties.
*/
neighbors = 0;
s = &string[string_number[str]];
sn = &string_neighbors[string_number[str]];
for (k = 0; k < s->neighbors; k++) {
t = &string[sn->list[k]];
if (t->liberties == lib)
adj[neighbors++] = t->origin;
}
return neighbors;
}
/* chainlinks3 returns (in adj array) those chains surrounding
* the string at str, which have less or equal lib liberties.
* The number of such chains is returned.
*/
int
chainlinks3(int str, int adj[MAXCHAIN], int lib)
{
struct string_data *s, *t;
struct string_neighbors_data *sn;
int k;
int neighbors;
ASSERT1(IS_STONE(board[str]), str);
/* We already have the list ready, just copy the strings with the
* right number of liberties.
*/
neighbors = 0;
s = &string[string_number[str]];
sn = &string_neighbors[string_number[str]];
for (k = 0; k < s->neighbors; k++) {
t = &string[sn->list[k]];
if (t->liberties <= lib)
adj[neighbors++] = t->origin;
}
return neighbors;
}
/* extended_chainlinks() returns (in the (adj) array) the opponent
* strings being directly adjacent to (str) or having a common liberty
* with (str). The number of such strings is returned.
*
* If the both_colors parameter is true, also own strings sharing a
* liberty are returned.
*/
int
extended_chainlinks(int str, int adj[MAXCHAIN], int both_colors)
{
struct string_data *s;
struct string_neighbors_data *sn;
int n;
int k;
int r;
int libs[MAXLIBS];
int liberties;
ASSERT1(IS_STONE(board[str]), str);
/* We already have the list of directly adjacent strings ready, just
* copy it and mark the strings.
*/
s = &string[string_number[str]];
sn = &string_neighbors[string_number[str]];
string_mark++;
for (n = 0; n < s->neighbors; n++) {
adj[n] = string[sn->list[n]].origin;
MARK_STRING(adj[n]);
}
/* Get the liberties. */
liberties = findlib(str, MAXLIBS, libs);
/* Look for unmarked opponent strings next to a liberty and add the
* ones which are found to the output.
*/
for (r = 0; r < liberties; r++) {
for (k = 0; k < 4; k++) {
if ((board[libs[r] + delta[k]] == OTHER_COLOR(board[str])
|| (both_colors && board[libs[r] + delta[k]] == board[str]))
&& UNMARKED_STRING(libs[r] + delta[k])) {
adj[n] = string[string_number[libs[r] + delta[k]]].origin;
MARK_STRING(adj[n]);
n++;
}
}
}
return n;
}
/*
* Find the origin of a worm, i.e. the point with the
* smallest 1D board coordinate. The idea is to have a canonical
* reference point for a string.
*/
int
find_origin(int str)
{
ASSERT1(IS_STONE(board[str]), str);
return string[string_number[str]].origin;
}
/* Determine whether a move by color at (pos) would be a self atari,
* i.e. whether it would get more than one liberty. This function
* returns true also for the case of a suicide move.
*/
int
is_self_atari(int pos, int color)
{
int other = OTHER_COLOR(color);
/* number of empty neighbors */
int trivial_liberties = 0;
/* number of captured opponent strings */
int captures = 0;
/* Whether there is a friendly neighbor with a spare liberty. If it
* has more than one spare liberty we immediately return 0.
*/
int far_liberties = 0;
ASSERT_ON_BOARD1(pos);
ASSERT1(board[pos] == EMPTY, pos);
ASSERT1(IS_STONE(color), pos);
/* 1. Try first to solve the problem without much work. */
string_mark++;
if (LIBERTY(SOUTH(pos)))
trivial_liberties++;
else if (board[SOUTH(pos)] == color) {
if (LIBERTIES(SOUTH(pos)) > 2)
return 0;
if (LIBERTIES(SOUTH(pos)) == 2)
far_liberties++;
}
else if (board[SOUTH(pos)] == other
&& LIBERTIES(SOUTH(pos)) == 1 && UNMARKED_STRING(SOUTH(pos))) {
captures++;
MARK_STRING(SOUTH(pos));
}
if (LIBERTY(WEST(pos)))
trivial_liberties++;
else if (board[WEST(pos)] == color) {
if (LIBERTIES(WEST(pos)) > 2)
return 0;
if (LIBERTIES(WEST(pos)) == 2)
far_liberties++;
}
else if (board[WEST(pos)] == other
&& LIBERTIES(WEST(pos)) == 1 && UNMARKED_STRING(WEST(pos))) {
captures++;
MARK_STRING(WEST(pos));
}
if (LIBERTY(NORTH(pos)))
trivial_liberties++;
else if (board[NORTH(pos)] == color) {
if (LIBERTIES(NORTH(pos)) > 2)
return 0;
if (LIBERTIES(NORTH(pos)) == 2)
far_liberties++;
}
else if (board[NORTH(pos)] == other
&& LIBERTIES(NORTH(pos)) == 1 && UNMARKED_STRING(NORTH(pos))) {
captures++;
MARK_STRING(NORTH(pos));
}
if (LIBERTY(EAST(pos)))
trivial_liberties++;
else if (board[EAST(pos)] == color) {
if (LIBERTIES(EAST(pos)) > 2)
return 0;
if (LIBERTIES(EAST(pos)) == 2)
far_liberties++;
}
else if (board[EAST(pos)] == other
&& LIBERTIES(EAST(pos)) == 1 && UNMARKED_STRING(EAST(pos))) {
captures++;
#if 0
MARK_STRING(EAST(pos));
#endif
}
/* Each captured string is guaranteed to produce at least one
* liberty. These are disjoint from both trivial liberties and far
* liberties. The two latter may however coincide.
*/
if (trivial_liberties + captures >= 2)
return 0;
if ((far_liberties > 0) + captures >= 2)
return 0;
if (captures == 0 && far_liberties + trivial_liberties <= 1)
return 1;
/* 2. It was not so easy. We use accuratelib() in this case. */
return accuratelib(pos, color, 2, NULL) <= 1;
}
/*
* Returns true if pos is a liberty of the string at str.
*/
int
liberty_of_string(int pos, int str)
{
ASSERT_ON_BOARD1(pos);
ASSERT_ON_BOARD1(str);
if (IS_STONE(board[pos]))
return 0;
return NEIGHBOR_OF_STRING(pos, string_number[str], board[str]);
}
/*
* Returns true if pos is a second order liberty of the string at str.
*/
int
second_order_liberty_of_string(int pos, int str)
{
int k;
ASSERT_ON_BOARD1(pos);
ASSERT_ON_BOARD1(str);
for (k = 0; k < 4; k++)
if (board[pos + delta[k]] == EMPTY
&& NEIGHBOR_OF_STRING(pos + delta[k], string_number[str], board[str]))
return 1;
return 0;
}
/*
* Returns true if pos is adjacent to the string at str.
*/
int
neighbor_of_string(int pos, int str)
{
int color = board[str];
ASSERT1(IS_STONE(color), str);
ASSERT_ON_BOARD1(pos);
return NEIGHBOR_OF_STRING(pos, string_number[str], color);
}
/*
* Returns true if (pos) has a neighbor of color (color).
*/
int
has_neighbor(int pos, int color)
{
ASSERT_ON_BOARD1(pos);
ASSERT1(IS_STONE(color), pos);
return (board[SOUTH(pos)] == color
|| board[WEST(pos)] == color
|| board[NORTH(pos)] == color
|| board[EAST(pos)] == color);
}
/*
* Returns true if str1 and str2 belong to the same string.
*/
int
same_string(int str1, int str2)
{
ASSERT_ON_BOARD1(str1);
ASSERT_ON_BOARD1(str2);
ASSERT1(IS_STONE(board[str1]), str1);
ASSERT1(IS_STONE(board[str2]), str2);
return string_number[str1] == string_number[str2];
}
/*
* Returns true if the strings at str1 and str2 are adjacent.
*/
int
adjacent_strings(int str1, int str2)
{
int s1, s2;
int k;
ASSERT_ON_BOARD1(str1);
ASSERT_ON_BOARD1(str2);
ASSERT1(IS_STONE(board[str1]), str1);
ASSERT1(IS_STONE(board[str2]), str2);
s1 = string_number[str1];
s2 = string_number[str2];
for (k = 0; k < string[s1].neighbors; k++)
if (string_neighbors[s1].list[k] == s2)
return 1;
return 0;
}
/*
* Return true if the move (pos) by (color) is a ko capture
* (whether capture is legal on this move or not). If so,
* and if ko_pos is not a NULL pointer, then
* *ko_pos returns the location of the captured ko stone.
* If the move is not a ko capture, *ko_pos is set to 0.
*
* A move is a ko capture if and only if
* 1. All neighbors are opponent stones.
* 2. The number of captured stones is exactly one.
*/
int
is_ko(int pos, int color, int *ko_pos)
{
int other = OTHER_COLOR(color);
int captures = 0;
int kpos = 0;
ASSERT_ON_BOARD1(pos);
ASSERT1(color == WHITE || color == BLACK, pos);
if (ON_BOARD(SOUTH(pos))) {
if (board[SOUTH(pos)] != other)
return 0;
else if (LIBERTIES(SOUTH(pos)) == 1) {
kpos = SOUTH(pos);
captures += string[string_number[SOUTH(pos)]].size;
if (captures > 1)
return 0;
}
}
if (ON_BOARD(WEST(pos))) {
if (board[WEST(pos)] != other)
return 0;
else if (LIBERTIES(WEST(pos)) == 1) {
kpos = WEST(pos);
captures += string[string_number[WEST(pos)]].size;
if (captures > 1)
return 0;
}
}
if (ON_BOARD(NORTH(pos))) {
if (board[NORTH(pos)] != other)
return 0;
else if (LIBERTIES(NORTH(pos)) == 1) {
kpos = NORTH(pos);
captures += string[string_number[NORTH(pos)]].size;
if (captures > 1)
return 0;
}
}
if (ON_BOARD(EAST(pos))) {
if (board[EAST(pos)] != other)
return 0;
else if (LIBERTIES(EAST(pos)) == 1) {
kpos = EAST(pos);
captures += string[string_number[EAST(pos)]].size;
if (captures > 1)
return 0;
}
}
if (captures == 1) {
if (ko_pos)
*ko_pos = kpos;
return 1;
}
return 0;
}
/* Return true if pos is either a stone, which if captured would give
* ko, or if pos is an empty intersection adjacent to a ko stone.
*/
int
is_ko_point(int pos)
{
ASSERT_ON_BOARD1(pos);
if (board[pos] == EMPTY) {
int color;
if (ON_BOARD(SOUTH(pos)))
color = board[SOUTH(pos)];
else
color = board[NORTH(pos)];
if (IS_STONE(color) && is_ko(pos, OTHER_COLOR(color), NULL))
return 1;
}
else {
struct string_data *s = &string[string_number[pos]];
struct string_liberties_data *sl = &string_libs[string_number[pos]];
if (s->liberties == 1 && s->size == 1
&& is_ko(sl->list[0], OTHER_COLOR(s->color), NULL))
return 1;
}
return 0;
}
/* Return true if a move by color at pos is a superko violation
* according to the specified type of ko rules. This function does not
* detect simple ko unless it's also a superko violation.
*
* The superko detection is done by comparing board hashes from
* previous positions. For this to work correctly it's necessary to
* remove the contribution to the hash from the simple ko position.
* The move_history_hash array contains board hashes for previous
* positions, also without simple ko position contributions.
*/
static int
is_superko_violation(int pos, int color, enum ko_rules type)
{
Hash_data this_board_hash = board_hash;
Hash_data new_board_hash;
int k;
/* No superko violations if the ko rule is not a superko rule. */
if (type == NONE || type == SIMPLE)
return 0;
if (board_ko_pos != NO_MOVE)
hashdata_invert_ko(&this_board_hash, board_ko_pos);
really_do_trymove(pos, color);
new_board_hash = board_hash;
if (board_ko_pos != NO_MOVE)
hashdata_invert_ko(&new_board_hash, board_ko_pos);
undo_trymove();
/* The current position is only a problem with positional superko
* and a single stone suicide.
*/
if (type == PSK && hashdata_is_equal(this_board_hash, new_board_hash))
return 1;
for (k = move_history_pointer - 1; k >= 0; k--)
if (hashdata_is_equal(move_history_hash[k], new_board_hash)
&& (type == PSK
|| move_history_color[k] == OTHER_COLOR(color)))
return 1;
return 0;
}
/* Returns 1 if at least one string is captured when color plays at pos.
*/
int
does_capture_something(int pos, int color)
{
int other = OTHER_COLOR(color);
ASSERT1(board[pos] == EMPTY, pos);
if (board[SOUTH(pos)] == other && LIBERTIES(SOUTH(pos)) == 1)
return 1;
if (board[WEST(pos)] == other && LIBERTIES(WEST(pos)) == 1)
return 1;
if (board[NORTH(pos)] == other && LIBERTIES(NORTH(pos)) == 1)
return 1;
if (board[EAST(pos)] == other && LIBERTIES(EAST(pos)) == 1)
return 1;
return 0;
}
/* For each stone in the string at pos, set mx to value mark. */
void
mark_string(int str, signed char mx[BOARDMAX], signed char mark)
{
int pos = str;
ASSERT1(IS_STONE(board[str]), str);
do {
mx[pos] = mark;
pos = NEXT_STONE(pos);
} while (pos != str);
}
/* Returns true if at least one move has been played at pos
* at deeper than level 'cutoff' in the reading tree.
*/
int
move_in_stack(int pos, int cutoff)
{
int k;
for (k = cutoff; k < stackp; k++)
if (stack[k] == pos)
return 1;
return 0;
}
/* Retrieve a move from the move stack. */
void
get_move_from_stack(int k, int *move, int *color)
{
gg_assert(k < stackp);
*move = stack[k];
*color = move_color[k];
}
/* Return the number of stones of the indicated color(s) on the board.
* This only counts stones in the permanent position, not stones placed
* by trymove() or tryko(). Use stones_on_board(BLACK | WHITE) to get
* the total number of stones on the board.
*
* FIXME: This seems wrong, it uses the modified board, not the permanent
* one. /ab
*/
int
stones_on_board(int color)
{
static int stone_count_for_position = -1;
static int white_stones = 0;
static int black_stones = 0;
gg_assert(stackp == 0);
if (stone_count_for_position != position_number) {
int pos;
white_stones = 0;
black_stones = 0;
for (pos = BOARDMIN; pos < BOARDMAX; pos++) {
if (board[pos] == WHITE)
white_stones++;
else if (board[pos] == BLACK)
black_stones++;
}
stone_count_for_position = position_number;
}
return ((color & BLACK ? black_stones : 0) +
(color & WHITE ? white_stones : 0));
}
/* ===================== Statistics ============================= */
/* Clear statistics. */
void
reset_trymove_counter()
{
trymove_counter = 0;
}
/* Retrieve statistics. */
int
get_trymove_counter()
{
return trymove_counter;
}
/* ================================================================ */
/* Lower level functions */
/* ================================================================ */
/* This function should be called if the board is modified by other
* means than do_play_move() or undo_trymove().
*
* We have reached a new position. Increase the position counter and
* re-initialize the incremental strings.
*
* Set up incremental board structures and populate them with the
* strings available in the position given by board[]. Clear the stacks
* and start the mark numbers from zero. All undo information is lost
* by calling this function.
*/
static void
new_position(void)
{
int pos;
int s;
position_number++;
next_string = 0;
liberty_mark = 0;
string_mark = 0;
CLEAR_STACKS();
memset(string, 0, sizeof(string));
memset(string_libs, 0, sizeof(string_libs));
memset(string_neighbors, 0, sizeof(string_neighbors));
memset(ml, 0, sizeof(ml));
VALGRIND_MAKE_WRITABLE(next_stone, sizeof(next_stone));
/* propagate_string relies on non-assigned stones to have
* string_number -1.
*/
for (pos = BOARDMIN; pos < BOARDMAX; pos++)
if (ON_BOARD(pos))
string_number[pos] = -1;
/* Find the existing strings. */
for (pos = BOARDMIN; pos < BOARDMAX; pos++) {
if (!ON_BOARD(pos))
continue;
if (IS_STONE(board[pos]) && string_number[pos] == -1) {
string_number[pos] = next_string;
string[next_string].size = propagate_string(pos, pos);
string[next_string].color = board[pos];
string[next_string].origin = pos;
string[next_string].mark = 0;
next_string++;
PARANOID1(next_string < MAX_STRINGS, pos);
}
}
/* Fill in liberty and neighbor info. */
for (s = 0; s < next_string; s++) {
find_liberties_and_neighbors(s);
}
}
#if 0
/*
* Debug function. Dump all string information.
*/
static void
dump_incremental_board(void)
{
int pos;
int s;
int i;
for (pos = BOARDMIN; pos < BOARDMAX; pos++) {
if (!ON_BOARD(pos))
continue;
if (board[pos] == EMPTY)
fprintf(stderr, " . ");
else
fprintf(stderr, "%2d ", string_number[pos]);
fprintf(stderr, "\n");
}
for (s = 0; s < next_string; s++) {
if (board[string[s].origin] == EMPTY)
continue;
gprintf("%o%d %s %1m size %d, %d liberties, %d neighbors\n", s,
color_to_string(string[s].color),
string[s].origin, string[s].size,
string[s].liberties, string[s].neighbors);
gprintf("%ostones:");
pos = FIRST_STONE(s);
do {
gprintf("%o %1m", pos);
pos = NEXT_STONE(pos);
} while (!BACK_TO_FIRST_STONE(s, pos));
gprintf("%o\nliberties:");
for (i = 0; i < string[s].liberties; i++)
gprintf("%o %1m", string[s].libs[i]);
gprintf("%o\nneighbors:");
for (i = 0; i < string[s].neighbors; i++)
gprintf("%o %d(%1m)", string[s].neighborlist[i],
string[string[s].neighborlist[i]].origin);
gprintf("%o\n\n");
}
}
#endif
/* Build a string and its cyclic list representation from scratch.
* propagate_string(stone, str) adds the stone (stone) to the string
* (str) and recursively continues with not already included friendly
* neighbors. To start a new string at (stone), use
* propagate_string(stone, stone). The size of the string is returned.
*/
static int
propagate_string(int stone, int str)
{
int size = 1;
int k;
if (stone == str) {
/* Start a new string. */
next_stone[stone] = stone;
}
else {
/* Link the stone at (stone) to the string including (str) */
string_number[stone] = string_number[str];
next_stone[stone] = next_stone[str];
next_stone[str] = stone;
}
/* Look in all four directions for more stones to add. */
for (k = 0; k < 4; k++) {
int d = delta[k];
if (ON_BOARD(stone + d)
&& board[stone + d] == board[stone]
&& string_number[stone + d] == -1)
size += propagate_string(stone + d, str);
}
return size;
}
/* Build the lists of liberties and neighbors of a string from
* scratch. No information is pushed onto the stack by this function.
*/
static void
find_liberties_and_neighbors(int s)
{
int pos;
int other = OTHER_COLOR(string[s].color);
/* Clear the marks. */
liberty_mark++;
string_mark++;
/* Traverse the stones of the string, by following the cyclic chain. */
pos = FIRST_STONE(s);
do {
/* Look in each direction for new liberties or new neighbors. Mark
* already visited liberties and neighbors.
*/
if (UNMARKED_LIBERTY(SOUTH(pos))) {
ADD_AND_MARK_LIBERTY(s, SOUTH(pos));
}
else if (UNMARKED_COLOR_STRING(SOUTH(pos), other)) {
ADD_NEIGHBOR(s, SOUTH(pos));
MARK_STRING(SOUTH(pos));
}
if (UNMARKED_LIBERTY(WEST(pos))) {
ADD_AND_MARK_LIBERTY(s, WEST(pos));
}
else if (UNMARKED_COLOR_STRING(WEST(pos), other)) {
ADD_NEIGHBOR(s, WEST(pos));
MARK_STRING(WEST(pos));
}
if (UNMARKED_LIBERTY(NORTH(pos))) {
ADD_AND_MARK_LIBERTY(s, NORTH(pos));
}
else if (UNMARKED_COLOR_STRING(NORTH(pos), other)) {
ADD_NEIGHBOR(s, NORTH(pos));
MARK_STRING(NORTH(pos));
}
if (UNMARKED_LIBERTY(EAST(pos))) {
ADD_AND_MARK_LIBERTY(s, EAST(pos));
}
else if (UNMARKED_COLOR_STRING(EAST(pos), other)) {
ADD_NEIGHBOR(s, EAST(pos));
MARK_STRING(EAST(pos));
}
pos = NEXT_STONE(pos);
} while (!BACK_TO_FIRST_STONE(s, pos));
}
/* Update the liberties of a string from scratch, first pushing the
* old information.
*/
static void
update_liberties(int s)
{
int pos;
int k;
/* Push the old information. */
PUSH_VALUE(string[s].liberties);
for (k = 0; k < string[s].liberties && k < MAX_LIBERTIES; k++) {
PUSH_VALUE(string_libs[s].list[k]);
}
string[s].liberties = 0;
/* Clear the liberty mark. */
liberty_mark++;
/* Traverse the stones of the string, by following the cyclic chain. */
pos = FIRST_STONE(s);
do {
/* Look in each direction for new liberties. Mark already visited
* liberties.
*/
if (UNMARKED_LIBERTY(SOUTH(pos))) {
ADD_AND_MARK_LIBERTY(s, SOUTH(pos));
}
if (UNMARKED_LIBERTY(WEST(pos))) {
ADD_AND_MARK_LIBERTY(s, WEST(pos));
}
if (UNMARKED_LIBERTY(NORTH(pos))) {
ADD_AND_MARK_LIBERTY(s, NORTH(pos));
}
if (UNMARKED_LIBERTY(EAST(pos))) {
ADD_AND_MARK_LIBERTY(s, EAST(pos));
}
pos = NEXT_STONE(pos);
} while (!BACK_TO_FIRST_STONE(s, pos));
}
/* Remove a string from the list of neighbors and push the changed
* information.
*/
static void
remove_neighbor(int str_number, int n)
{
int k;
int done = 0;
struct string_data *s = &string[str_number];
struct string_neighbors_data *sn = &string_neighbors[str_number];
for (k = 0; k < s->neighbors; k++)
if (sn->list[k] == n) {
/* We need to push the last entry too because it may become
* destroyed later.
*/
PUSH_VALUE(sn->list[s->neighbors - 1]);
PUSH_VALUE(sn->list[k]);
PUSH_VALUE(s->neighbors);
sn->list[k] = sn->list[s->neighbors - 1];
s->neighbors--;
done = 1;
break;
}
gg_assert(done);
}
/* Remove one liberty from the list of liberties, pushing changed
* information. If the string had more liberties than the size of the
* list, rebuild the list from scratch.
*/
static void
remove_liberty(int str_number, int pos)
{
int k;
struct string_data *s = &string[str_number];
struct string_liberties_data *sl = &string_libs[str_number];
if (s->liberties > MAX_LIBERTIES)
update_liberties(str_number);
else {
for (k = 0; k < s->liberties; k++)
if (sl->list[k] == pos) {
/* We need to push the last entry too because it may become
* destroyed later.
*/
PUSH_VALUE(sl->list[s->liberties - 1]);
PUSH_VALUE(sl->list[k]);
PUSH_VALUE(s->liberties);
sl->list[k] = sl->list[s->liberties - 1];
s->liberties--;
break;
}
}
}
/* Remove a string from the board, pushing necessary information to
* restore it. Return the number of removed stones.
*/
static int
do_remove_string(int s)
{
int pos;
int k;
int size = string[s].size;
/* Traverse the stones of the string, by following the cyclic chain. */
pos = FIRST_STONE(s);
do {
/* Push color, string number and cyclic chain pointers. */
PUSH_VALUE(string_number[pos]);
PUSH_VALUE(next_stone[pos]);
DO_REMOVE_STONE(pos);
pos = NEXT_STONE(pos);
} while (!BACK_TO_FIRST_STONE(s, pos));
/* The neighboring strings have obtained some new liberties and lost
* a neighbor. For speed reasons we handle two most common cases
* when string size is 1 or 2 stones here instead of calling
* update_liberties().
*/
if (size == 1) {
for (k = 0; k < string[s].neighbors; k++) {
int neighbor = string_neighbors[s].list[k];
remove_neighbor(neighbor, s);
PUSH_VALUE(string[neighbor].liberties);
if (string[neighbor].liberties < MAX_LIBERTIES)
string_libs[neighbor].list[string[neighbor].liberties] = pos;
string[neighbor].liberties++;
}
}
else if (size == 2) {
int other = OTHER_COLOR(string[s].color);
int pos2 = NEXT_STONE(pos);
for (k = 0; k < string[s].neighbors; k++) {
int neighbor = string_neighbors[s].list[k];
remove_neighbor(neighbor, s);
PUSH_VALUE(string[neighbor].liberties);
if (NEIGHBOR_OF_STRING(pos, neighbor, other)) {
if (string[neighbor].liberties < MAX_LIBERTIES)
string_libs[neighbor].list[string[neighbor].liberties] = pos;
string[neighbor].liberties++;
}
if (NEIGHBOR_OF_STRING(pos2, neighbor, other)) {
if (string[neighbor].liberties < MAX_LIBERTIES)
string_libs[neighbor].list[string[neighbor].liberties] = pos2;
string[neighbor].liberties++;
}
}
}
else {
for (k = 0; k < string[s].neighbors; k++) {
remove_neighbor(string_neighbors[s].list[k], s);
update_liberties(string_neighbors[s].list[k]);
}
}
/* Update the number of captured stones. These are assumed to
* already have been pushed.
*/
if (string[s].color == WHITE)
white_captured += size;
else
black_captured += size;
return size;
}
/* We have played an isolated new stone and need to create a new
* string for it.
*/
static void
create_new_string(int pos)
{
int s;
int color = board[pos];
int other = OTHER_COLOR(color);
/* Get the next free string number. */
PUSH_VALUE(next_string);
s = next_string++;
PARANOID1(s < MAX_STRINGS, pos);
string_number[pos] = s;
/* Set up a size one cycle for the string. */
next_stone[pos] = pos;
/* Set trivially known values and initialize the rest to zero. */
string[s].color = color;
string[s].size = 1;
string[s].origin = pos;
string[s].liberties = 0;
string[s].neighbors = 0;
string[s].mark = 0;
/* Clear the string mark. */
string_mark++;
/* In each direction, look for a liberty or a nonmarked opponent
* neighbor. Mark visited neighbors. There is no need to mark the
* liberties since we can't find them twice. */
if (LIBERTY(SOUTH(pos))) {
ADD_LIBERTY(s, SOUTH(pos));
}
else if (UNMARKED_COLOR_STRING(SOUTH(pos), other)) {
int s2 = string_number[SOUTH(pos)];
/* Add the neighbor to our list. */
ADD_NEIGHBOR(s, SOUTH(pos));
/* Add us to our neighbor's list. */
PUSH_VALUE(string[s2].neighbors);
ADD_NEIGHBOR(s2, pos);
MARK_STRING(SOUTH(pos));
}
if (LIBERTY(WEST(pos))) {
ADD_LIBERTY(s, WEST(pos));
}
else if (UNMARKED_COLOR_STRING(WEST(pos), other)) {
int s2 = string_number[WEST(pos)];
/* Add the neighbor to our list. */
ADD_NEIGHBOR(s, WEST(pos));
/* Add us to our neighbor's list. */
PUSH_VALUE(string[s2].neighbors);
ADD_NEIGHBOR(s2, pos);
MARK_STRING(WEST(pos));
}
if (LIBERTY(NORTH(pos))) {
ADD_LIBERTY(s, NORTH(pos));
}
else if (UNMARKED_COLOR_STRING(NORTH(pos), other)) {
int s2 = string_number[NORTH(pos)];
/* Add the neighbor to our list. */
ADD_NEIGHBOR(s, NORTH(pos));
/* Add us to our neighbor's list. */
PUSH_VALUE(string[s2].neighbors);
ADD_NEIGHBOR(s2, pos);
MARK_STRING(NORTH(pos));
}
if (LIBERTY(EAST(pos))) {
ADD_LIBERTY(s, EAST(pos));
}
else if (UNMARKED_COLOR_STRING(EAST(pos), other)) {
int s2 = string_number[EAST(pos)];
/* Add the neighbor to our list. */
ADD_NEIGHBOR(s, EAST(pos));
/* Add us to our neighbor's list. */
PUSH_VALUE(string[s2].neighbors);
ADD_NEIGHBOR(s2, pos);
/* No need to mark since no visits left. */
#if 0
MARK_STRING(EAST(pos));
#endif
}
}
/* We have played a stone with exactly one friendly neighbor. Add the
* new stone to that string.
*/
static void
extend_neighbor_string(int pos, int s)
{
int k;
int liberties_updated = 0;
int color = board[pos];
int other = OTHER_COLOR(color);
/* Link in the stone in the cyclic list. */
int pos2 = string[s].origin;
next_stone[pos] = next_stone[pos2];
PUSH_VALUE(next_stone[pos2]);
next_stone[pos2] = pos;
/* Do we need to update the origin? */
if (pos < pos2) {
PUSH_VALUE(string[s].origin);
string[s].origin = pos;
}
string_number[pos] = s;
/* The size of the string has increased by one. */
PUSH_VALUE(string[s].size);
string[s].size++;
/* If s has too many liberties, we don't know where they all are and
* can't update the liberties with the algorithm we otherwise
* use. In that case we can only recompute the liberties from
* scratch.
*/
if (string[s].liberties > MAX_LIBERTIES) {
update_liberties(s);
liberties_updated = 1;
}
else {
/* The place of the new stone is no longer a liberty. */
remove_liberty(s, pos);
}
/* Mark old neighbors of the string. */
string_mark++;
for (k = 0; k < string[s].neighbors; k++)
string[string_neighbors[s].list[k]].mark = string_mark;
/* Look at the neighbor locations of pos for new liberties and/or
* neighbor strings.
*/
/* If we find a liberty, look two steps away to determine whether
* this already is a liberty of s.
*/
if (LIBERTY(SOUTH(pos))) {
if (!liberties_updated
&& !NON_SOUTH_NEIGHBOR_OF_STRING(SOUTH(pos), s, color))
ADD_LIBERTY(s, SOUTH(pos));
}
else if (UNMARKED_COLOR_STRING(SOUTH(pos), other)) {
int s2 = string_number[SOUTH(pos)];
PUSH_VALUE(string[s].neighbors);
ADD_NEIGHBOR(s, SOUTH(pos));
PUSH_VALUE(string[s2].neighbors);
ADD_NEIGHBOR(s2, pos);
MARK_STRING(SOUTH(pos));
}
if (LIBERTY(WEST(pos))) {
if (!liberties_updated
&& !NON_WEST_NEIGHBOR_OF_STRING(WEST(pos), s, color))
ADD_LIBERTY(s, WEST(pos));
}
else if (UNMARKED_COLOR_STRING(WEST(pos), other)) {
int s2 = string_number[WEST(pos)];
PUSH_VALUE(string[s].neighbors);
ADD_NEIGHBOR(s, WEST(pos));
PUSH_VALUE(string[s2].neighbors);
ADD_NEIGHBOR(s2, pos);
MARK_STRING(WEST(pos));
}
if (LIBERTY(NORTH(pos))) {
if (!liberties_updated
&& !NON_NORTH_NEIGHBOR_OF_STRING(NORTH(pos), s, color))
ADD_LIBERTY(s, NORTH(pos));
}
else if (UNMARKED_COLOR_STRING(NORTH(pos), other)) {
int s2 = string_number[NORTH(pos)];
PUSH_VALUE(string[s].neighbors);
ADD_NEIGHBOR(s, NORTH(pos));
PUSH_VALUE(string[s2].neighbors);
ADD_NEIGHBOR(s2, pos);
MARK_STRING(NORTH(pos));
}
if (LIBERTY(EAST(pos))) {
if (!liberties_updated
&& !NON_EAST_NEIGHBOR_OF_STRING(EAST(pos), s, color))
ADD_LIBERTY(s, EAST(pos));
}
else if (UNMARKED_COLOR_STRING(EAST(pos), other)) {
int s2 = string_number[EAST(pos)];
PUSH_VALUE(string[s].neighbors);
ADD_NEIGHBOR(s, EAST(pos));
PUSH_VALUE(string[s2].neighbors);
ADD_NEIGHBOR(s2, pos);
#if 0
MARK_STRING(EAST(pos));
#endif
}
}
/* Incorporate the string at pos with the string s.
*/
static void
assimilate_string(int s, int pos)
{
int k;
int last;
int s2 = string_number[pos];
string[s].size += string[s2].size;
/* Walk through the s2 stones and change string number. Also pick up
* the last stone in the cycle for later use.
*/
pos = FIRST_STONE(s2);
do {
PUSH_VALUE(string_number[pos]);
string_number[pos] = s;
last = pos;
pos = NEXT_STONE(pos);
} while (!BACK_TO_FIRST_STONE(s2, pos));
/* Link the two cycles together. */
{
int pos2 = string[s].origin;
PUSH_VALUE(next_stone[last]);
PUSH_VALUE(next_stone[pos2]);
next_stone[last] = next_stone[pos2];
next_stone[pos2] = string[s2].origin;
/* Do we need to update the origin? */
if (string[s2].origin < pos2)
string[s].origin = string[s2].origin;
}
/* Pick up the liberties of s2 that we don't already have.
* It is assumed that the liberties of s have been marked before
* this function is called.
*/
if (string[s2].liberties <= MAX_LIBERTIES) {
for (k = 0; k < string[s2].liberties; k++) {
int pos2 = string_libs[s2].list[k];
if (UNMARKED_LIBERTY(pos2)) {
ADD_AND_MARK_LIBERTY(s, pos2);
}
}
}
else {
/* If s2 had too many liberties the above strategy wouldn't be
* effective, since not all liberties are listed in
* libs[] the chain of stones for s2 is no
* longer available (it has already been merged with s) so we
* can't reconstruct the s2 liberties. Instead we capitulate and
* rebuild the list of liberties for s (including the neighbor
* strings assimilated so far) from scratch.
*/
liberty_mark++; /* Reset the mark. */
string[s].liberties = 0; /* To avoid pushing the current list. */
update_liberties(s);
}
/* Remove s2 as neighbor to the neighbors of s2 and instead add s if
* they don't already have added it. Also add the neighbors of s2 as
* neighbors of s, unless they already have been added. The already
* known neighbors of s are assumed to have been marked before this
* function is called.
*/
for (k = 0; k < string[s2].neighbors; k++) {
int t = string_neighbors[s2].list[k];
remove_neighbor(t, s2);
if (string[t].mark != string_mark) {
PUSH_VALUE(string[t].neighbors);
string_neighbors[t].list[string[t].neighbors++] = s;
string_neighbors[s].list[string[s].neighbors++] = t;
string[t].mark = string_mark;
}
}
}
/* Create a new string for the stone at pos and assimilate all
* friendly neighbor strings.
*/
static void
assimilate_neighbor_strings(int pos)
{
int s;
int color = board[pos];
int other = OTHER_COLOR(color);
/* Get the next free string number. */
PUSH_VALUE(next_string);
s = next_string++;
PARANOID1(s < MAX_STRINGS, pos);
string_number[pos] = s;
/* Set up a size one cycle for the string. */
next_stone[pos] = pos;
/* Set trivially known values and initialize the rest to zero. */
string[s].color = color;
string[s].size = 1;
string[s].origin = pos;
string[s].liberties = 0;
string[s].neighbors = 0;
/* Clear the marks. */
liberty_mark++;
string_mark++;
/* Mark ourselves. */
string[s].mark = string_mark;
/* Look in each direction for
*
* 1. liberty: Add if not already visited.
* 2. opponent string: Add it among our neighbors and us among its
* neighbors, unless already visited.
* 3. friendly string: Assimilate.
*/
if (UNMARKED_LIBERTY(SOUTH(pos))) {
ADD_AND_MARK_LIBERTY(s, SOUTH(pos));
}
else if (UNMARKED_COLOR_STRING(SOUTH(pos), other)) {
ADD_NEIGHBOR(s, SOUTH(pos));
PUSH_VALUE(string[string_number[SOUTH(pos)]].neighbors);
ADD_NEIGHBOR(string_number[SOUTH(pos)], pos);
MARK_STRING(SOUTH(pos));
}
else if (UNMARKED_COLOR_STRING(SOUTH(pos), color)) {
assimilate_string(s, SOUTH(pos));
}
if (UNMARKED_LIBERTY(WEST(pos))) {
ADD_AND_MARK_LIBERTY(s, WEST(pos));
}
else if (UNMARKED_COLOR_STRING(WEST(pos), other)) {
ADD_NEIGHBOR(s, WEST(pos));
PUSH_VALUE(string[string_number[WEST(pos)]].neighbors);
ADD_NEIGHBOR(string_number[WEST(pos)], pos);
MARK_STRING(WEST(pos));
}
else if (UNMARKED_COLOR_STRING(WEST(pos), color)) {
assimilate_string(s, WEST(pos));
}
if (UNMARKED_LIBERTY(NORTH(pos))) {
ADD_AND_MARK_LIBERTY(s, NORTH(pos));
}
else if (UNMARKED_COLOR_STRING(NORTH(pos), other)) {
ADD_NEIGHBOR(s, NORTH(pos));
PUSH_VALUE(string[string_number[NORTH(pos)]].neighbors);
ADD_NEIGHBOR(string_number[NORTH(pos)], pos);
MARK_STRING(NORTH(pos));
}
else if (UNMARKED_COLOR_STRING(NORTH(pos), color)) {
assimilate_string(s, NORTH(pos));
}
if (UNMARKED_LIBERTY(EAST(pos))) {
#if 0
ADD_AND_MARK_LIBERTY(s, EAST(pos));
#else
ADD_LIBERTY(s, EAST(pos));
#endif
}
else if (UNMARKED_COLOR_STRING(EAST(pos), other)) {
ADD_NEIGHBOR(s, EAST(pos));
PUSH_VALUE(string[string_number[EAST(pos)]].neighbors);
ADD_NEIGHBOR(string_number[EAST(pos)], pos);
#if 0
MARK_STRING(EAST(pos));
#endif
}
else if (UNMARKED_COLOR_STRING(EAST(pos), color)) {
assimilate_string(s, EAST(pos));
}
}
/* Suicide at `pos' (the function assumes that the move is indeed suicidal).
* Remove the neighboring friendly strings.
*/
static void
do_commit_suicide(int pos, int color)
{
if (board[SOUTH(pos)] == color)
do_remove_string(string_number[SOUTH(pos)]);
if (board[WEST(pos)] == color)
do_remove_string(string_number[WEST(pos)]);
if (board[NORTH(pos)] == color)
do_remove_string(string_number[NORTH(pos)]);
if (board[EAST(pos)] == color)
do_remove_string(string_number[EAST(pos)]);
/* Count the stone we "played" as captured. */
if (color == WHITE)
white_captured++;
else
black_captured++;
}
/* Play a move without legality checking. This is a low-level function,
* it assumes that the move is not a suicide. Such cases must be handled
* where the function is called.
*/
static void
do_play_move(int pos, int color)
{
int other = OTHER_COLOR(color);
int captured_stones = 0;
int neighbor_allies = 0;
int s = -1;
/* Clear string mark. */
string_mark++;
/* Put down the stone. We also set its string number to -1 for a while
* so that NEIGHBOR_OF_STRING() and friends don't get confused with the
* stone.
*/
DO_ADD_STONE(pos, color);
string_number[pos] = -1;
/* Look in all directions. Count the number of neighbor strings of the same
* color, remove captured strings and remove `pos' as liberty for opponent
* strings that are not captured.
*/
if (board[SOUTH(pos)] == color) {
neighbor_allies++;
s = string_number[SOUTH(pos)];
MARK_STRING(SOUTH(pos));
}
else if (board[SOUTH(pos)] == other) {
if (LIBERTIES(SOUTH(pos)) > 1) {
remove_liberty(string_number[SOUTH(pos)], pos);
MARK_STRING(SOUTH(pos));
}
else
captured_stones += do_remove_string(string_number[SOUTH(pos)]);
}
if (UNMARKED_COLOR_STRING(WEST(pos), color)) {
neighbor_allies++;
s = string_number[WEST(pos)];
MARK_STRING(WEST(pos));
}
else if (UNMARKED_COLOR_STRING(WEST(pos), other)) {
if (LIBERTIES(WEST(pos)) > 1) {
remove_liberty(string_number[WEST(pos)], pos);
MARK_STRING(WEST(pos));
}
else
captured_stones += do_remove_string(string_number[WEST(pos)]);
}
if (UNMARKED_COLOR_STRING(NORTH(pos), color)) {
neighbor_allies++;
s = string_number[NORTH(pos)];
MARK_STRING(NORTH(pos));
}
else if (UNMARKED_COLOR_STRING(NORTH(pos), other)) {
if (LIBERTIES(NORTH(pos)) > 1) {
remove_liberty(string_number[NORTH(pos)], pos);
MARK_STRING(NORTH(pos));
}
else
captured_stones += do_remove_string(string_number[NORTH(pos)]);
}
if (UNMARKED_COLOR_STRING(EAST(pos), color)) {
neighbor_allies++;
s = string_number[EAST(pos)];
#if 0
MARK_STRING(EAST(pos));
#endif
}
else if (UNMARKED_COLOR_STRING(EAST(pos), other)) {
if (LIBERTIES(EAST(pos)) > 1) {
remove_liberty(string_number[EAST(pos)], pos);
#if 0
MARK_STRING(EAST(pos));
#endif
}
else
captured_stones += do_remove_string(string_number[EAST(pos)]);
}
/* Choose strategy depending on the number of friendly neighbors. */
if (neighbor_allies == 0)
create_new_string(pos);
else if (neighbor_allies == 1) {
gg_assert(s >= 0);
extend_neighbor_string(pos, s);
return; /* can't be a ko, we're done */
}
else {
assimilate_neighbor_strings(pos);
return; /* can't be a ko, we're done */
}
/* Check whether this move was a ko capture and if so set
* board_ko_pos.
*
* No need to push board_ko_pos on the stack,
* because this has been done earlier.
*/
s = string_number[pos];
if (string[s].liberties == 1
&& string[s].size == 1
&& captured_stones == 1) {
/* In case of a double ko: clear old ko position first. */
if (board_ko_pos != NO_MOVE)
hashdata_invert_ko(&board_hash, board_ko_pos);
board_ko_pos = string_libs[s].list[0];
hashdata_invert_ko(&board_hash, board_ko_pos);
}
}
/* ================================================================ *
* The following functions don't actually belong here. They are
* only here because they are faster here where they have access to
* the incremental data structures.
* ================================================================ */
/* Help collect the data needed by order_moves() in reading.c.
* It's the caller's responsibility to initialize the result parameters.
*/
#define NO_UNROLL 0
void
incremental_order_moves(int move, int color, int str,
int *number_edges, int *number_same_string,
int *number_own, int *number_opponent,
int *captured_stones, int *threatened_stones,
int *saved_stones, int *number_open)
{
#if NO_UNROLL == 1
int pos;
int k;
/* Clear the string mark. */
string_mark++;
for (k = 0; k < 4; k++) {
pos = move + delta[k];
if (!ON_BOARD(pos))
(*number_edges)++;
else if (board[pos] == EMPTY)
(*number_open)++;
else {
int s = string_number[pos];
if (string_number[str] == s)
(*number_same_string)++;
if (board[pos] == color) {
(*number_own)++;
if (string[s].liberties == 1)
(*saved_stones) += string[s].size;
}
else {
(*number_opponent)++;
if (string[s].liberties == 1) {
int r;
struct string_data *t;
(*captured_stones) += string[s].size;
for (r = 0; r < string[s].neighbors; r++) {
t = &string[string[s].neighborlist[r]];
if (t->liberties == 1)
(*saved_stones) += t->size;
}
}
else if (string[s].liberties == 2 && UNMARKED_STRING(pos)) {
(*threatened_stones) += string[s].size;
MARK_STRING(pos);
}
}
}
}
#else
#define code1(arg) \
if (!ON_BOARD(arg)) \
(*number_edges)++; \
else if (board[arg] == EMPTY) \
(*number_open)++; \
else { \
int s = string_number[arg]; \
if (string_number[str] == s) \
(*number_same_string)++; \
if (board[arg] == color) { \
(*number_own)++; \
if (string[s].liberties == 1) \
(*saved_stones) += string[s].size; \
} \
else { \
(*number_opponent)++; \
if (string[s].liberties == 1) { \
int r; \
struct string_data *t; \
(*captured_stones) += string[s].size; \
for (r = 0; r < string[s].neighbors; r++) { \
t = &string[string_neighbors[s].list[r]]; \
if (t->liberties == 1) \
(*saved_stones) += t->size; \
} \
} \
else if (string[s].liberties == 2 && UNMARKED_STRING(arg)) { \
(*threatened_stones) += string[s].size; \
MARK_STRING(arg); \
} \
} \
}
/* Clear the string mark. */
string_mark++;
code1(SOUTH(move));
code1(WEST(move));
code1(NORTH(move));
code1(EAST(move));
#endif
}
int
square_dist(int pos1, int pos2)
{
int idist = I(pos1) - I(pos2);
int jdist = J(pos1) - J(pos2);
return idist*idist + jdist*jdist;
}
/*
* Local Variables:
* tab-width: 8
* c-basic-offset: 2
* End:
*/
|