1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207
|
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\
* This is GNU Go, a Go program. Contact gnugo@gnu.org, or see *
* http://www.gnu.org/software/gnugo/ for more information. *
* *
* Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, *
* 2008 and 2009 by the Free Software Foundation. *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation - version 3 or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License in file COPYING for more details. *
* *
* You should have received a copy of the GNU General Public *
* License along with this program; if not, write to the Free *
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor, *
* Boston, MA 02111, USA. *
\* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
#include "gnugo.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "liberty.h"
static int do_aftermath_genmove(int color,
int under_control[BOARDMAX],
int do_capture_dead_stones);
static int
all_own_neighbors_inessential(int pos, int color)
{
int k;
for (k = 0; k < 4; k++)
if (board[pos + delta[k]] == color
&& DRAGON2(pos + delta[k]).safety != INESSENTIAL
&& (DRAGON2(pos + delta[k]).safety != ALIVE
|| DRAGON2(pos + delta[k]).owl_status != DEAD))
return 0;
return 1;
}
/* Does a move by color at pos make one of the neighboring points into
* a solid one-point eye?
*/
static int make_solid_eye(int pos, int color)
{
int k;
int r;
for (k = 0; k < 4; k++) {
int eyepos = pos + delta[k];
if (board[eyepos] == EMPTY
|| (board[eyepos] == OTHER_COLOR(color)
&& countlib(eyepos) == 1)) {
/* For a solid one-point eye all four neighbors must be own
* stones. But one is about to be played so we need three in the
* center, two on the edge and one in the corner.
*
* We also need a sufficient number of own diagonals; three in
* the center, two on the edge, and one in the corner.
*
* Notice that the same numbers are needed for both neighbors
* and diagonals and if we start counting at 2 in the corner and
* at 1 on the edge, we need to reach 3 everywhere on the board.
*/
int own_neighbors = is_edge_vertex(pos) + is_corner_vertex(pos);
int own_diagonals = own_neighbors;
for (r = 0; r < 8; r++) {
if (board[eyepos + delta[r]] == color) {
if (r < 4)
own_neighbors++;
else
own_diagonals++;
}
}
if (own_neighbors == 3 && own_diagonals >= 3)
return 1;
}
}
return 0;
}
/* External interface to do_aftermath_genmove().
*
* If the suggested move turns out not to be allowed we just return
* pass. This is not ideal but also not a big deal. If
* do_aftermath_genmove() is ever redesigned that would be a good time
* to integrate allowed_moves.
*/
int
aftermath_genmove(int color, int do_capture_dead_stones,
int allowed_moves[BOARDMAX])
{
int move = do_aftermath_genmove(color, NULL, do_capture_dead_stones);
if (move != PASS_MOVE && allowed_moves && !allowed_moves[move])
move = PASS_MOVE;
return move;
}
/* Generate a move to definitely settle the position after the game
* has been finished. The purpose of this is to robustly determine
* life and death status and to distinguish between life in seki and
* life with territory.
*
* The strategy is basically to turn all own living stones into
* invincible ones and remove from the board all dead opponent stones.
* Stones which cannot be removed, nor turned invincible, are alive in
* seki.
*
* If do_capture_dead_stones is 0, opponent stones are not necessarily
* removed from the board. This happens if they become unconditionally
* dead anyway.
*
* Moves are generated in the following order of priority:
* -1. Play a move which is listed as a replacement for an
* unconditionally meaningless move. This is guaranteed to extend
* the unconditionally settled part of the board. Only do this if
* the meaningless move is not connected through open space to an
* invincible string.
* 0. Play edge liberties in certain positions. This is not really
* necessary, but often it can simplify the tactical and strategical
* reading substantially, making subsequent moves faster to generate.
* 1a. Capture an opponent string in atari and adjacent to own invincible
* string. Moves leading to ko or snapback are excluded.
* 1b. If do_capture_dead_stones, play a non-self-atari move adjacent
* to an unconditionally dead opponent string.
* 1c. If do_capture_dead_stones, play a liberty of an opponent string
* where the liberty is adjacent to own invincible string.
* 2. Extend an invincible string to a liberty of an opponent string.
* 3. Connect a non-invincible string to an invincible string.
* 4. Extend an invincible string towards an opponent string or an own
* non-invincible string.
* 5. Split a big eyespace of an alive own dragon without invincible
* strings into smaller pieces. Do not play self-atari here.
* 6. Play a liberty of a dead opponent dragon.
*
* Steps 2--4 are interleaved to try to optimize the efficiency of the
* moves. In step 5 too, efforts are made to play efficient moves. By
* efficient we here mean moves which are effectively settling the
* position and simplify the tactical and strategical reading for
* subsequent moves.
*
* Steps 1--4 are guaranteed to be completely safe. Step 0 and 5
* should also be risk-free. Step 6 on the other hand definitely
* isn't. Consider for example this position:
*
* .XXXXX.
* XXOOOXX
* XOO.OOX
* XOXXXOX
* XO.XXOX
* -------
*
* In order to remove the O stones, it is necessary to play on one of
* the inner liberties, but one of them lets O live. Thus we have to
* check carefully for blunders at this step.
*
* Update: Step 0 is only safe against blunders if care is taken not
* to get into a shortage of liberties.
* Step 5 also has some risks. Consider this position:
*
* |XXXXX.
* |OOOOXX
* |..O.OX
* |OX*OOX
* +------
*
* Playing at * allows X to make seki.
*
* IMPORTANT RESTRICTION:
* Before calling this function it is mandatory to call genmove() or
* genmove_conservative(). For this function to be meaningful, the
* genmove() call should return pass.
*/
static int
do_aftermath_genmove(int color,
int under_control[BOARDMAX],
int do_capture_dead_stones)
{
int k;
int other = OTHER_COLOR(color);
int distance[BOARDMAX];
int score[BOARDMAX];
float owl_hotspot[BOARDMAX];
float reading_hotspot[BOARDMAX];
int dragons[BOARDMAX];
int something_found;
int closest_opponent = NO_MOVE;
int closest_own = NO_MOVE;
int d;
int move = NO_MOVE;
int pos = NO_MOVE;
int best_score;
int best_scoring_move;
owl_hotspots(owl_hotspot);
reading_hotspots(reading_hotspot);
/* As a preparation we compute a distance map to the invincible strings. */
for (pos = BOARDMIN; pos < BOARDMAX; pos++) {
if (!ON_BOARD(pos))
continue;
else if (board[pos] == color && worm[pos].invincible)
distance[pos] = 0;
else if (!do_capture_dead_stones
&& ((board[pos] == other
&& worm[pos].unconditional_status == DEAD)
|| (board[pos] == color
&& worm[pos].unconditional_status == ALIVE)))
distance[pos] = 0;
else
distance[pos] = -1;
}
d = 0;
do {
something_found = 0;
for (pos = BOARDMIN; pos < BOARDMAX; pos++) {
if (ON_BOARD(pos) && distance[pos] == -1) {
for (k = 0; k < 4; k++) {
int pos2 = pos + delta[k];
if (!ON_BOARD(pos2))
continue;
if ((d == 0 || board[pos2] == EMPTY)
&& distance[pos2] == d) {
if (d > 0 && board[pos] == other) {
distance[pos] = d + 1;
if (closest_opponent == NO_MOVE)
closest_opponent = pos;
}
else if (d > 0 && board[pos] == color) {
distance[pos] = d + 1;
if (closest_own == NO_MOVE)
closest_own = pos;
}
else if (board[pos] == EMPTY) {
distance[pos] = d + 1;
something_found = 1;
}
break;
}
}
}
}
d++;
} while (something_found);
if (under_control) {
for (pos = BOARDMIN; pos < BOARDMAX; pos++) {
if (!ON_BOARD(pos))
continue;
else if (distance[pos] == -1)
under_control[pos] = 0;
else
under_control[pos] = 1;
}
}
if (debug & DEBUG_AFTERMATH) {
int m, n;
for (m = 0; m < board_size; m++) {
for (n = 0; n < board_size; n++) {
pos = POS(m, n);
if (distance[pos] > 0)
fprintf(stderr, "%2d", distance[pos]);
else if (distance[pos] == 0) {
if (board[pos] == WHITE)
gprintf(" o");
else if (board[pos] == BLACK)
gprintf(" x");
else
gprintf(" ?");
}
else {
if (board[pos] == WHITE)
gprintf(" O");
else if (board[pos] == BLACK)
gprintf(" X");
else
gprintf(" .");
}
}
gprintf("\n");
}
gprintf("Closest opponent %1m", closest_opponent);
if (closest_opponent != NO_MOVE)
gprintf(", distance %d\n", distance[closest_opponent]);
else
gprintf("\n");
gprintf("Closest own %1m", closest_own);
if (closest_own != NO_MOVE)
gprintf(", distance %d\n", distance[closest_own]);
else
gprintf("\n");
}
/* Case -1. */
for (pos = BOARDMIN; pos < BOARDMAX; pos++) {
int replacement_move;
if (board[pos] == EMPTY
&& distance[pos] == -1
&& unconditionally_meaningless_move(pos, color, &replacement_move)
&& replacement_move != NO_MOVE) {
DEBUG(DEBUG_AFTERMATH, "Replacement move for %1m at %1m\n", pos,
replacement_move);
return replacement_move;
}
}
/* Case 0. This is a special measure to avoid a certain kind of
* tactical reading inefficiency.
*
* Here we play on edge liberties in the configuration
*
* XO.
* .*.
* ---
*
* to stop X from "leaking" out along the edge. Sometimes this can
* save huge amounts of tactical reading for later moves.
*/
best_scoring_move = NO_MOVE;
best_score = 5;
for (pos = BOARDMIN; pos < BOARDMAX; pos++) {
int libs;
if (board[pos] != EMPTY
|| distance[pos] == 0)
continue;
libs = approxlib(pos, color, 3, NULL);
if (libs < 3)
continue;
if (is_self_atari(pos, other))
continue;
for (k = 0; k < 4; k++) {
int dir = delta[k];
int right = delta[(k+1)%4];
if (!ON_BOARD(pos - dir)
&& board[pos + dir] == color
&& board[pos + dir + right] == other
&& board[pos + dir - right] == other
&& (libs > countlib(pos + dir)
|| (libs > 4
&& libs == countlib(pos + dir)))
&& (DRAGON2(pos + dir).safety == INVINCIBLE
|| DRAGON2(pos + dir).safety == STRONGLY_ALIVE)) {
int this_score = 20 * (owl_hotspot[pos] + reading_hotspot[pos]);
if (this_score > best_score) {
best_score = this_score;
best_scoring_move = pos;
}
}
}
}
if (best_scoring_move != NO_MOVE
&& safe_move(best_scoring_move, color) == WIN) {
DEBUG(DEBUG_AFTERMATH, "Closing edge at %1m\n", best_scoring_move);
return best_scoring_move;
}
/* Case 1a. */
for (pos = BOARDMIN; pos < BOARDMAX; pos++) {
int lib;
if (board[pos] == other
&& worm[pos].unconditional_status != DEAD
&& countlib(pos) == 1
&& ((ON_BOARD(SOUTH(pos)) && distance[SOUTH(pos)] == 0)
|| (ON_BOARD(WEST(pos)) && distance[WEST(pos)] == 0)
|| (ON_BOARD(NORTH(pos)) && distance[NORTH(pos)] == 0)
|| (ON_BOARD(EAST(pos)) && distance[EAST(pos)] == 0))) {
findlib(pos, 1, &lib);
/* Make sure we don't play into a ko or a (proper) snapback. */
if (countstones(pos) > 1 || !is_self_atari(lib, color)) {
return lib;
}
}
}
/* Case 1b. Play liberties of unconditionally dead stones, but never
* self-atari. For efficiency against stubborn opponents, we want to
* split up the empty space as much as possible. Therefore we look
* among this class of moves for one with a maximum number of
* adjacent empty spaces and opponent stones.
*/
if (do_capture_dead_stones) {
best_score = 0;
best_scoring_move = NO_MOVE;
for (pos = BOARDMIN; pos < BOARDMAX; pos++) {
/* Look at empty points which are connectable to some invincible
* string through empty space.
*/
if (board[pos] == EMPTY
&& distance[pos] >= 0) {
int valid_move = 0;
int this_score = 0;
for (k = 0; k < 4; k++) {
int pos2 = pos + delta[k];
if (board[pos2] == EMPTY)
this_score += 2;
else if (board[pos2] == other
&& worm[pos2].unconditional_status == DEAD) {
this_score++;
valid_move = 1;
}
}
if (valid_move
&& this_score > best_score
&& !is_self_atari(pos, color)) {
best_score = this_score;
best_scoring_move = pos;
}
}
}
if (best_score > 0)
return best_scoring_move;
}
/* Case 1c. */
if (do_capture_dead_stones) {
for (pos = BOARDMIN; pos < BOARDMAX; pos++) {
if (board[pos] == EMPTY
&& distance[pos] == 1
&& has_neighbor(pos, other)) {
return pos;
}
}
}
/* Cases 2--4. */
if (closest_opponent != NO_MOVE || closest_own != NO_MOVE) {
if (closest_own == NO_MOVE
|| (capture_all_dead
&& closest_opponent != NO_MOVE
&& distance[closest_opponent] < distance[closest_own]))
move = closest_opponent;
else
move = closest_own;
/* if we're about to play at distance 1, try to optimize the move. */
if (distance[move] == 2) {
signed char mx[BOARDMAX];
signed char mark = 0;
memset(mx, 0, sizeof(mx));
best_score = 0;
best_scoring_move = move;
for (pos = BOARDMIN; pos < BOARDMAX; pos++) {
int score = 0;
int move_ok = 0;
if (!ON_BOARD(pos) || distance[pos] != 1)
continue;
mark++;
for (k = 0; k < 4; k++) {
int pos2 = pos + delta[k];
if (!ON_BOARD(pos2))
continue;
if (distance[pos2] < 1)
score--;
else if (board[pos2] == EMPTY)
score++;
else if (mx[pos2] == mark)
score--;
else {
if (board[pos2] == color) {
move_ok = 1;
score += 7;
if (countstones(pos2) > 2)
score++;
if (countstones(pos2) > 4)
score++;
if (countlib(pos2) < 4)
score++;
if (countlib(pos2) < 3)
score++;
}
else {
int deltalib = (approxlib(pos, other, MAXLIBS, NULL)
- countlib(pos2));
move_ok = 1;
score++;
if (deltalib >= 0)
score++;
if (deltalib > 0)
score++;
}
mark_string(pos2, mx, mark);
}
}
if (is_suicide(pos, other))
score -= 3;
if (0)
gprintf("Score %1m = %d\n", pos, score);
if (move_ok && score > best_score) {
best_score = score;
best_scoring_move = pos;
}
}
move = best_scoring_move;
}
while (distance[move] > 1) {
for (k = 0; k < 4; k++) {
int pos2 = move + delta[k];
if (ON_BOARD(pos2)
&& board[pos2] == EMPTY
&& distance[pos2] == distance[move] - 1) {
move = pos2;
break;
}
}
}
return move;
}
/* Case 5.
* If we reach here, either all strings of a dragon are invincible
* or no string is. Next we try to make alive dragons invincible by
* splitting big eyes into smaller ones. Our strategy is to search
* for an empty vertex with as many eye points as possible adjacent
* and with at least one alive but not invincible stone adjacent or
* diagonal.
*/
for (pos = BOARDMIN; pos < BOARDMAX; pos++) {
int eyespace_neighbors = 0;
int own_neighbors = 0;
int own_diagonals = 0;
int opponent_dragons = 0;
int own_worms = 0;
int safety = UNKNOWN;
int bonus = 0;
int mx[BOARDMAX];
score[pos] = 0;
if (board[pos] != EMPTY || distance[pos] != -1)
continue;
/* Do not play self-atari here. */
if (is_self_atari(pos, color))
continue;
memset(mx, 0, sizeof(mx));
for (k = 0; k < 8; k++) {
int pos2 = pos + delta[k];
if (!ON_BOARD(pos2))
continue;
if (board[pos2] == EMPTY) {
if (k < 4)
eyespace_neighbors++;
continue;
}
if (board[pos2] == other) {
int origin = dragon[pos2].origin;
if (k < 4) {
if (dragon[pos2].status == ALIVE) {
safety = DEAD;
break;
}
else if (!mx[origin]) {
eyespace_neighbors++;
opponent_dragons++;
}
}
if (!mx[origin] && dragon[pos2].status == DEAD) {
bonus++;
if (k < 4
&& countlib(pos2) <= 2
&& countstones(pos2) >= 3)
bonus++;
if (k < 4 && countlib(pos2) == 1)
bonus += 3;
}
mx[origin] = 1;
}
else if (board[pos2] == color) {
dragons[pos] = pos2;
if (safety == UNKNOWN && dragon[pos2].status == ALIVE)
safety = ALIVE;
if (DRAGON2(pos2).safety == INVINCIBLE)
safety = INVINCIBLE;
if (k < 4) {
int apos = worm[pos2].origin;
if (!mx[apos]) {
own_worms++;
if (countstones(apos) == 1)
bonus += 2;
if (countlib(apos) < 6
&& approxlib(pos, color, 5, NULL) < countlib(apos))
bonus -= 5;
mx[apos] = 1;
}
if (countlib(apos) <= 2) {
int r;
int important = 0;
int safe_atari = 0;
for (r = 0; r < 4; r++) {
d = delta[r];
if (!ON_BOARD(apos+d))
continue;
if (board[apos+d] == other
&& dragon[apos+d].status == DEAD)
important = 1;
else if (board[apos+d] == EMPTY
&& !is_self_atari(apos+d, other))
safe_atari = 1;
}
if (approxlib(pos, color, 3, NULL) > 2) {
bonus++;
if (important) {
bonus += 2;
if (safe_atari)
bonus += 2;
}
}
}
own_neighbors++;
}
else
own_diagonals++;
}
}
if (safety == DEAD || safety == UNKNOWN
|| eyespace_neighbors == 0
|| (own_neighbors + own_diagonals) == 0)
continue;
if (bonus < 0)
bonus = 0;
/* Big bonus for making a small solid eye while splitting the
* eyespace. Don't bother optimizing for making two solid eyes,
* unconditional replacement moves (case -1) will take care of
* that.
*
* Additional bonus if adjacent to an opponent dragon and we are
* asked to remove all dead opponent stones.
*/
if (eyespace_neighbors >= 2)
if (make_solid_eye(pos, color)) {
bonus += 20;
if (do_capture_dead_stones && opponent_dragons > 0)
bonus += 10;
}
score[pos] = 4 * eyespace_neighbors + bonus;
if (safety == INVINCIBLE) {
score[pos] += own_neighbors;
if (own_neighbors < 2)
score[pos] += own_diagonals;
if (own_worms > 1 && eyespace_neighbors >= 1)
score[pos] += 10 + 5 * (own_worms - 2);
}
else if (eyespace_neighbors > 2)
score[pos] += own_diagonals;
/* Splitting bonus. */
if (opponent_dragons > 1)
score[pos] += 10 * (opponent_dragons - 1);
/* Hotspot bonus. */
{
int owl_hotspot_bonus = (int) (20.0 * owl_hotspot[pos]);
int reading_hotspot_bonus = (int) (20.0 * reading_hotspot[pos]);
int hotspot_bonus = owl_hotspot_bonus + reading_hotspot_bonus;
/* Don't allow the hotspot bonus to turn a positive score into
* a non-positive one.
*/
if (score[pos] > 0 && score[pos] + hotspot_bonus <= 0)
hotspot_bonus = 1 - score[pos];
score[pos] += hotspot_bonus;
if (1 && (debug & DEBUG_AFTERMATH))
gprintf("Score %1M = %d (hotspot bonus %d + %d)\n", pos, score[pos],
owl_hotspot_bonus, reading_hotspot_bonus);
}
/* Avoid taking ko. */
if (is_ko(pos, color, NULL))
score[pos] = (score[pos] + 1) / 2;
}
while (1) {
int bb;
best_score = 0;
move = NO_MOVE;
for (pos = BOARDMIN; pos < BOARDMAX; pos++) {
if (ON_BOARD(pos) && score[pos] > best_score) {
best_score = score[pos];
move = pos;
}
}
if (move == NO_MOVE)
break;
bb = dragons[move];
if (is_illegal_ko_capture(move, color)
|| !safe_move(move, color)
|| (DRAGON2(bb).safety != INVINCIBLE
&& DRAGON2(bb).safety != STRONGLY_ALIVE
&& owl_does_defend(move, bb, NULL) != WIN)
|| (!confirm_safety(move, color, NULL, NULL))) {
score[move] = 0;
}
else {
/* If we're getting short of liberties, we must be more careful.
* Check that no adjacent string or dragon gets more alive by
* the move.
*/
int libs = approxlib(move, color, 5, NULL);
int move_ok = 1;
if (libs < 5) {
for (k = 0; k < 4; k++) {
if (board[move + delta[k]] == color
&& countlib(move + delta[k]) > libs)
break;
}
if (k < 4) {
if (trymove(move, color, "aftermath-B", move + delta[k])) {
int adjs[MAXCHAIN];
int neighbors;
int r;
neighbors = chainlinks(move, adjs);
for (r = 0; r < neighbors; r++) {
if (worm[adjs[r]].attack_codes[0] != 0
&& (find_defense(adjs[r], NULL)
> worm[adjs[r]].defense_codes[0])) {
DEBUG(DEBUG_AFTERMATH,
"Blunder: %1m becomes tactically safer after %1m\n",
adjs[r], move);
move_ok = 0;
}
}
popgo();
for (r = 0; r < neighbors && move_ok; r++) {
if (dragon[adjs[r]].status == DEAD
&& !owl_does_attack(move, adjs[r], NULL)) {
DEBUG(DEBUG_AFTERMATH,
"Blunder: %1m becomes more alive after %1m\n",
adjs[r], move);
move_ok = 0;
}
}
}
}
}
if (!move_ok)
score[move] = 0;
else {
DEBUG(DEBUG_AFTERMATH, "Splitting eyespace at %1m\n", move);
return move;
}
}
}
/* Case 6.
* Finally we try to play on liberties of remaining DEAD opponent
* dragons, carefully checking against mistakes.
*/
for (pos = BOARDMIN; pos < BOARDMAX; pos++) {
int target;
int cc = NO_MOVE;
int self_atari_ok = 0;
if (board[pos] != EMPTY || distance[pos] != -1)
continue;
target = NO_MOVE;
for (k = 0; k < 8; k++) {
int pos2 = pos + delta[k];
if (!ON_BOARD(pos2))
continue;
if (board[pos2] == other
&& dragon[pos2].status != ALIVE
&& dragon[pos2].status != UNKNOWN
&& (do_capture_dead_stones
|| worm[pos2].unconditional_status != DEAD)
&& DRAGON2(pos2).safety != INESSENTIAL) {
if (k < 4 || all_own_neighbors_inessential(pos, color)) {
target = pos2;
break;
}
}
}
if (target == NO_MOVE)
continue;
/* At this point, (pos) is a move that potentially may capture
* a dead opponent string at (target).
*/
if (!trymove(pos, color, "aftermath-A", target))
continue;
/* It is frequently necessary to sacrifice own stones in order
* to force the opponent's stones to be removed from the board,
* e.g. by adding stones to fill up a nakade shape. However, we
* should only play into a self atari if the sacrificed stones
* are classified as INESSENTIAL. Thus it would be ok for O to
* try a self atari in this position:
*
* |OOOO
* |XXXO
* |..XO
* |OOXO
* +----
*
* but not in this one:
*
* |XXX..
* |OOXX.
* |.OOXX
* |XXOOX
* |.O.OX
* +-----
*/
self_atari_ok = 1;
for (k = 0; k < 4; k++) {
if (board[pos + delta[k]] == color
&& DRAGON2(pos + delta[k]).safety != INESSENTIAL) {
self_atari_ok = 0;
cc = pos + delta[k];
break;
}
}
/* Copy the potential move to (move). */
move = pos;
/* If the move is a self atari, but that isn't okay, try to
* recursively find a backfilling move which later makes the
* potential move possible.
*/
if (!self_atari_ok) {
while (countlib(pos) == 1) {
int lib;
findlib(pos, 1, &lib);
move = lib;
if (!trymove(move, color, "aftermath-B", target))
break;
}
if (countlib(pos) == 1)
move = NO_MOVE;
}
while (stackp > 0)
popgo();
if (move == NO_MOVE)
continue;
/* Make sure that the potential move really isn't a self
* atari. In the case of a move found after backfilling this
* could happen (because the backfilling moves happened to
* capture some stones). The position of the move may even be
* occupied.
*/
if (!self_atari_ok && (board[move] != EMPTY || is_self_atari(move, color)))
continue;
/* Consult the owl code to determine whether the considered move
* really is effective. Blunders should be detected here.
*/
if (owl_does_attack(move, target, NULL) == WIN) {
/* If we have an adjacent own dragon, which is not inessential,
* verify that it remains safe.
*/
if (cc != NO_MOVE && !owl_does_defend(move, cc, NULL)) {
int resulta, resultb;
owl_analyze_semeai_after_move(move, color, target, cc,
&resulta, &resultb, NULL, 1, NULL, 1);
if (resulta != 0)
continue;
}
/* If we don't allow self atari, also call confirm safety to
* avoid setting up combination attacks.
*/
if (!self_atari_ok && !confirm_safety(move, color, NULL, NULL))
continue;
DEBUG(DEBUG_AFTERMATH, "Filling opponent liberty at %1m\n", move);
return move;
}
}
/* Case 7.
* In very rare cases it turns out we need yet another pass. An
* example is this position:
*
* |.....
* |OOOO.
* |XXXO.
* |.OXO.
* |O.XO.
* +-----
*
* Here the X stones are found tactically dead and therefore the
* corner O stones have been amalgamated with the surrounding
* stones. Since the previous case only allows sacrificing
* INESSENTIAL stones, it fails to take X off the board.
*
* The solution is to look for tactically attackable opponent stones
* that still remain on the board but should be removed.
*/
for (pos = BOARDMIN; pos < BOARDMAX; pos++) {
if (board[pos] == other
&& (worm[pos].unconditional_status == UNKNOWN
|| do_capture_dead_stones)
&& (DRAGON2(pos).safety == DEAD
|| DRAGON2(pos).safety == TACTICALLY_DEAD)
&& worm[pos].attack_codes[0] != 0
&& !is_illegal_ko_capture(worm[pos].attack_points[0], color)) {
DEBUG(DEBUG_AFTERMATH, "Tactically attack %1m at %1m\n",
pos, worm[pos].attack_points[0]);
return worm[pos].attack_points[0];
}
}
/* No move found. */
return PASS_MOVE;
}
/* This is a substitute for genmove_conservative() which only does
* what is required when doing the aftermath. Notice though that this
* generates an "ordinary" move, in contrast to aftermath_genmove().
* Usually this should turn up a pass, but when it doesn't it's
* important not to miss the move.
*/
static int
reduced_genmove(int color)
{
float value;
int save_verbose;
float our_score;
int move;
/* no move is found yet. */
move = PASS_MOVE;
value = 0.0;
/* Prepare pattern matcher and reading code. */
reset_engine();
/* Find out information about the worms and dragons. */
examine_position(EXAMINE_ALL, 1);
/* The score will be used to determine when we are safely
* ahead. So we want the most conservative score.
*/
if (color == WHITE)
our_score = black_score;
else
our_score = -white_score;
gg_assert(stackp == 0);
/*
* Ok, information gathering is complete. Now start to find some moves!
*/
/* Pick up moves that we know of already. */
save_verbose = verbose;
if (verbose > 0)
verbose--;
collect_move_reasons(color);
verbose = save_verbose;
/* Look for combination attacks and defenses against them. */
combinations(color);
gg_assert(stackp == 0);
/* Review the move reasons and estimate move values. */
if (review_move_reasons(&move, &value, color, 0.0, our_score, NULL, 0))
TRACE("Move generation likes %1m with value %f\n", move, value);
gg_assert(stackp == 0);
/* If no move is found then pass. */
if (move == PASS_MOVE)
TRACE("I pass.\n");
else
TRACE("reduced_genmove() recommends %1m with value %f\n", move, value);
return move;
}
/* Preliminary function for playing through the aftermath. */
static void
do_play_aftermath(int color, struct aftermath_data *a,
SGFTree *aftermath_sgftree)
{
int move;
int pass = 0;
int moves = 0;
int color_to_play = color;
DEBUG(DEBUG_AFTERMATH, "The aftermath starts.\n");
/* Disable computing worm and owl threats. */
disable_threat_computation = 1;
/* Disable matching of endgame patterns. */
disable_endgame_patterns = 1;
while (pass < 2 && moves < board_size * board_size) {
int reading_nodes = get_reading_node_counter();
int owl_nodes = get_owl_node_counter();
move = reduced_genmove(color_to_play);
if (move == PASS_MOVE) {
int save_verbose = verbose;
if (verbose > 0)
verbose--;
move = do_aftermath_genmove(color_to_play,
(color_to_play == WHITE ?
a->white_control : a->black_control),
0);
verbose = save_verbose;
}
play_move(move, color_to_play);
if (aftermath_sgftree)
sgftreeAddPlay(aftermath_sgftree, color_to_play, I(move), J(move));
moves++;
DEBUG(DEBUG_AFTERMATH, "%d %C move %1m (nodes %d, %d total %d, %d)\n",
movenum, color_to_play, move, get_owl_node_counter() - owl_nodes,
get_reading_node_counter() - reading_nodes,
get_owl_node_counter(), get_reading_node_counter());
if (move != PASS_MOVE)
pass = 0;
else
pass++;
color_to_play = OTHER_COLOR(color_to_play);
}
/* Reenable worm and dragon threats and endgame patterns. */
disable_threat_computation = 0;
disable_endgame_patterns = 0;
}
static struct aftermath_data aftermath;
static void
play_aftermath(int color, SGFTree *aftermath_sgftree)
{
int pos;
struct board_state saved_board;
struct aftermath_data *a = &aftermath;
static int current_board[BOARDMAX];
static int current_color = EMPTY;
int cached_board = 1;
gg_assert(color == BLACK || color == WHITE);
if (current_color != color) {
current_color = color;
cached_board = 0;
}
for (pos = BOARDMIN; pos < BOARDMAX; pos++) {
if (ON_BOARD(pos) && board[pos] != current_board[pos]) {
current_board[pos] = board[pos];
cached_board = 0;
}
}
/* If this is exactly the same position as the one we analyzed the
* last time, the content of the aftermath struct is up to date.
*/
if (cached_board)
return;
a->white_captured = white_captured;
a->black_captured = black_captured;
a->white_prisoners = 0;
a->black_prisoners = 0;
a->white_territory = 0;
a->black_territory = 0;
a->white_area = 0;
a->black_area = 0;
store_board(&saved_board);
do_play_aftermath(color, a, aftermath_sgftree);
restore_board(&saved_board);
for (pos = BOARDMIN; pos < BOARDMAX; pos++) {
if (!ON_BOARD(pos))
continue;
if (a->black_control[pos]) {
a->black_area++;
if (board[pos] == WHITE) {
a->black_territory++;
a->white_prisoners++;
a->final_status[pos] = DEAD;
}
else if (board[pos] == EMPTY) {
a->black_territory++;
a->final_status[pos] = BLACK_TERRITORY;
}
else
a->final_status[pos] = ALIVE;
}
else if (a->white_control[pos]) {
a->white_area++;
if (board[pos] == BLACK) {
a->white_territory++;
a->black_prisoners++;
a->final_status[pos] = DEAD;
}
else if (board[pos] == EMPTY) {
a->white_territory++;
a->final_status[pos] = WHITE_TERRITORY;
}
else
a->final_status[pos] = ALIVE;
}
else {
if (board[pos] == EMPTY)
a->final_status[pos] = DAME;
else {
a->final_status[pos] = ALIVE_IN_SEKI;
if (board[pos] == WHITE)
a->white_area++;
else
a->black_area++;
}
}
}
if (debug & DEBUG_AFTERMATH) {
gprintf("White captured: %d\n", a->white_captured);
gprintf("Black captured: %d\n", a->black_captured);
gprintf("White prisoners: %d\n", a->white_prisoners);
gprintf("Black prisoners: %d\n", a->black_prisoners);
gprintf("White territory: %d\n", a->white_territory);
gprintf("Black territory: %d\n", a->black_territory);
gprintf("White area: %d\n", a->white_area);
gprintf("Black area: %d\n", a->black_area);
}
}
float
aftermath_compute_score(int color, SGFTree *tree)
{
struct aftermath_data *a = &aftermath;
play_aftermath(color, tree);
if (chinese_rules)
return (a->white_area
- a->black_area
+ komi
+ handicap);
else
return (a->white_territory
+ a->black_captured
+ a->black_prisoners
- (a->black_territory
+ a->white_captured
+ a->white_prisoners)
+ komi);
}
/* Report the final status of a vertex on the board.
* Possible results are ALIVE, DEAD, ALIVE_IN_SEKI, WHITE_TERRITORY,
* BLACK_TERRITORY, and DAME.
*/
enum dragon_status
aftermath_final_status(int color, int pos)
{
ASSERT_ON_BOARD1(pos);
play_aftermath(color, NULL);
return aftermath.final_status[pos];
}
/*
* Local Variables:
* tab-width: 8
* c-basic-offset: 2
* End:
*/
|