File: filllib.c

package info (click to toggle)
gnugo 3.8-4
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 17,312 kB
  • ctags: 4,228
  • sloc: ansic: 56,439; perl: 3,771; lisp: 2,789; sh: 730; makefile: 700; python: 682; awk: 113; sed: 22
file content (630 lines) | stat: -rw-r--r-- 18,881 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\
 * This is GNU Go, a Go program. Contact gnugo@gnu.org, or see       *
 * http://www.gnu.org/software/gnugo/ for more information.          *
 *                                                                   *
 * Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,   *
 * 2008 and 2009 by the Free Software Foundation.                    *
 *                                                                   *
 * This program is free software; you can redistribute it and/or     *
 * modify it under the terms of the GNU General Public License as    *
 * published by the Free Software Foundation - version 3 or          *
 * (at your option) any later version.                               *
 *                                                                   *
 * This program is distributed in the hope that it will be useful,   *
 * but WITHOUT ANY WARRANTY; without even the implied warranty of    *
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the     *
 * GNU General Public License in file COPYING for more details.      *
 *                                                                   *
 * You should have received a copy of the GNU General Public         *
 * License along with this program; if not, write to the Free        *
 * Software Foundation, Inc., 51 Franklin Street, Fifth Floor,       *
 * Boston, MA 02111, USA.                                            *
\* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */


#include "gnugo.h"

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "liberty.h"

static int find_backfilling_move(int move, int color, int *backfill_move,
				 int forbidden_moves[BOARDMAX]);
static int filllib_confirm_safety(int move, int color, int *defense_point);

/* Determine whether a point is adjacent to at least one own string which
 * isn't dead.
 */
static int
living_neighbor(int pos, int color)
{
  int k;
  for (k = 0; k < 4; k++) {
    if (board[pos + delta[k]] == color
	&& dragon[pos + delta[k]].status != DEAD)
      return 1;
  }

  return 0;
}


/* Determine whether (pos) effectively is a black or white point.
 * The test for inessentiality is to avoid filling the liberties
 * around a killing nakade string.
 */
static void
analyze_neighbor(int pos, int *found_black, int *found_white)
{
  switch (board[pos]) {
    case EMPTY:
      if (!(*found_black)
	  && living_neighbor(pos, BLACK)
	  && safe_move(pos, WHITE) != WIN)
	*found_black = 1;
      
      if (!(*found_white)
	  && living_neighbor(pos, WHITE)
	  && safe_move(pos, BLACK) != WIN)
	*found_white = 1;
      
      break;

    case BLACK:
      if (!worm[pos].inessential && DRAGON2(pos).safety != INESSENTIAL) {
	if (dragon[pos].status == ALIVE
	    || dragon[pos].status == UNKNOWN)
	  *found_black = 1;
	else
	  *found_white = 1;
      }
      break;

    case WHITE:
      if (!worm[pos].inessential && DRAGON2(pos).safety != INESSENTIAL) {
	if (dragon[pos].status == ALIVE
	    || dragon[pos].status == UNKNOWN)
	  *found_white = 1;
	else
	  *found_black = 1;
      }
      break;
  }
}


/* If no move of value can be found to play, this seeks to fill a
 * common liberty, backfilling or back-capturing if necessary. When
 * backfilling we take care to start from the right end, in the case
 * that several backfilling moves are ultimately necessary.
 *
 * If a move for color is found, return 1, otherwise return 0.
 * The move is returned in (*move).
 */

int 
fill_liberty(int *move, int color)
{
  int k;
  int pos;
  int other = OTHER_COLOR(color);
  int defense_point;
  int potential_color[BOARDMAX];

  /* We first make a fast scan for intersections which are potential
   * candidates for liberty filling. This is not very accurate, but it
   * does filter out intersections which could never pass the real
   * tests below but might still require a lot of tactical reading in
   * the process.
   */
  memset(potential_color, 0, sizeof(potential_color));
  for (pos = BOARDMIN; pos < BOARDMAX; pos++) {
    if (!IS_STONE(board[pos]))
      continue;

    if (worm[pos].inessential || DRAGON2(pos).safety == INESSENTIAL)
      continue;
    
    if (dragon[pos].status != ALIVE) {
      for (k = 0; k < 4; k++) {
	int pos2 = pos + delta[k];
	if (board[pos2] == EMPTY)
	  potential_color[pos2] |= OTHER_COLOR(board[pos]);
      }
    }
    
    if (dragon[pos].status != DEAD) {
      for (k = 0; k < 12; k++) {
	int d = delta[k%8];
	
	if (k >= 8) {
	  if (board[pos + d] != EMPTY)
	    continue;
	  d *= 2;
	}
	if (board[pos + d] == EMPTY)
	  potential_color[pos + d] |= board[pos];
      }
    }
  }
  
  
  for (pos = BOARDMIN; pos < BOARDMAX; pos++) {
    /* It seems we can't trust an empty liberty to be gray-colored
     * either as a cave or as a cavity. Instead we look for empty
     * intersections with at least one neighbor of each color, where
     * dead stones count as enemy stones. We also count empty
     * neighbors to either color if the opponent can't play there.
     */
    int found_white = 0;
    int found_black = 0;
    
    if (board[pos] != EMPTY)
      continue;

    /* Quick rejection based on preliminary test above. */
    if (potential_color[pos] != GRAY)
      continue;
    
    /* Loop over the neighbors. */
    for (k = 0; k < 4; k++) {
      int d = delta[k];
      if (ON_BOARD(pos + d))
	analyze_neighbor(pos + d, &found_black, &found_white);
    }
    
    /* Do we have neighbors of both colors? */
    if (!(found_white && found_black))
      continue;
    
    /* Ok, we wish to play here, but maybe we can't. The following
     * cases may occur:
     * 1. Move is legal and safe.
     * 2. Move is legal but not safe because it's in the middle of a seki.
     * 3. Move is legal but not safe, can be played after backfilling.
     * 4. Move is an illegal ko recapture.
     * 5. Move is illegal but can be played after back-captures.
     * 6. Move would violate confirm_safety.
     */
    
    DEBUG(DEBUG_FILLLIB, "Filllib: Considering move at %1m.\n", pos);
    
    /* Legal and tactically safe, play it if it passes
     * confirm_safety test, i.e. that it isn't a blunder which
     * causes problems for other strings.
     */
    if (safe_move(pos, color) == WIN) {
      DEBUG(DEBUG_FILLLIB, "Filllib: Tactically safe.\n");
      if (filllib_confirm_safety(pos, color, &defense_point)) {
	/* Safety confirmed. */
	DEBUG(DEBUG_FILLLIB, "Filllib: Safety confirmed.\n");
	*move = pos;
	return 1;
      }
      else if (defense_point != NO_MOVE && is_legal(defense_point, color)) {
	/* Safety not confirmed because the move at (pos) would set
	 * up a double threat. (defense_point) is assumed to defend
	 * against this threat.
	 *
	 * FIXME: We should verify that (defense_point) really is effective.
	 */
	DEBUG(DEBUG_FILLLIB,
	      "Filllib: Safety not confirmed, but %1m defends.\n",
	      defense_point);
	*move = defense_point;
	return 1;
      }
      else {
	/* The move causes problems somewhere else on the board, so
	 * we have to discard it. If everything works right this
	 * should not happen at this time.
	 */
	DEBUG(DEBUG_FILLLIB, "Filllib: Safety not confirmed, discarded.\n");
	TRACE("Warning: Blunder detected in fill_liberty().\n");
	continue;
      }
    }
    
    /* Try to play the move. */
    if (trymove(pos, color, "fill_liberty", NO_MOVE)) {
      int forbidden_moves[BOARDMAX];
      popgo();
      /* Legal, but not safe. Look for backfilling move. */
      DEBUG(DEBUG_FILLLIB,
	    "Filllib: Legal but not safe, looking for backfilling move.\n");

      memset(forbidden_moves, 0, sizeof(forbidden_moves));
      while (find_backfilling_move(pos, color, move, forbidden_moves)) {
	/* Mark as forbidden in case we need another turn in the loop. */
	forbidden_moves[*move] = 1;
	
	DEBUG(DEBUG_FILLLIB, "Filllib: Backfilling move at %1m.\n", *move);
	/* In certain positions it may happen that an illegal move
	 * is found. This probably only can happen if we try to play
	 * a move inside a lost semeai. Anyway we should discard the
	 * move.
	 */
	if (!is_legal(*move, color)) {
	  DEBUG(DEBUG_FILLLIB, "Filllib: Was illegal, discarded.\n");
	  *move = NO_MOVE;
	  continue;
	}
	
	/* If the move turns out to be strategically unsafe, or
	 * setting up a double threat elsewhere, also discard it.
	 */
	if (!filllib_confirm_safety(*move, color, &defense_point)) {
	  DEBUG(DEBUG_FILLLIB,
		"Filllib: Safety not confirmed, discarded.\n");
	  *move = NO_MOVE;
	  continue;
	}
	
	/* Seems to be ok. */
	return 1;
      }

      /* No acceptable backfilling move found.
       * If we captured some stones, this move should be ok anyway.
       */
      if (does_capture_something(pos, color)) {
	DEBUG(DEBUG_FILLLIB,
	      "Filllib: Not tactically safe, but captures stones.\n");
	if (!filllib_confirm_safety(pos, color, &defense_point)) {
	  DEBUG(DEBUG_FILLLIB,
		"Filllib: Safety not confirmed, discarded.\n");
	  continue;
	}
	*move = pos;
	return 1;
      }
    }
    else {
      /* Move is illegal. Look for an attack on one of the neighbor
       * worms. If found, return that move for back-capture.
       */
      DEBUG(DEBUG_FILLLIB, "Filllib: Illegal, looking for back-capture.\n");
      for (k = 0; k < 4; k++) {
	int d = delta[k];
	if (board[pos + d] == other
	    && worm[pos + d].attack_codes[0] == WIN) {
	  *move = worm[pos + d].attack_points[0];
	  DEBUG(DEBUG_FILLLIB, "Filllib: Found at %1m.\n", *move);
	  return 1;
	}
      }
      
      DEBUG(DEBUG_FILLLIB,
	    "Filllib: Nothing found, looking for ko back-capture.\n");
      for (k = 0; k < 4; k++) {
	int d = delta[k];
	if (board[pos + d] == other
	    && worm[pos + d].attack_codes[0] != 0
	    && is_legal(worm[pos + d].attack_points[0], color)) {
	  *move = worm[pos + d].attack_points[0];
	  DEBUG(DEBUG_FILLLIB, "Filllib: Found at %1m.\n", *move);
	  return 1;
	}
      }

      DEBUG(DEBUG_FILLLIB,
	    "Filllib: Nothing found, looking for threat to back-capture.\n");
      for (k = 0; k < 4; k++) {
	int d = delta[k];
	if (board[pos + d] == other
	    && worm[pos + d].attack_codes[0] != 0) {
	  /* Just pick some other liberty. */
	  /* FIXME: Something is odd about this code. */
	  int libs[2];
	  if (findlib(pos + d, 2, libs) > 1) {
	    if (is_legal(libs[0], color))
	      *move = libs[0];
	    else if (is_legal(libs[1], color))
	      *move = libs[1];
	    else
	      continue;
	    
	    DEBUG(DEBUG_FILLLIB, "Filllib: Found at %1m.\n", *move);
	    return 1;
	  }
	}
      }
    }
  }
  
  /* Nothing found. */
  DEBUG(DEBUG_FILLLIB, "Filllib: No move found.\n");
  return 0;
}


/* The strategy for finding a backfilling move is to first identify
 * moves that
 *
 * 1. defends the position obtained after playing (move).
 * 2. captures a stone adjacent to our neighbors to (move), before
 *    (move) is played.
 *
 * Then we check which of these are legal before (move) is played. If
 * there is at least one, we take one of these arbitrarily as a
 * backfilling move.
 *
 * Now it may happen that (move) still isn't a safe move. In that case
 * we recurse to find a new backfilling move. To do things really
 * correctly we should also give the opponent the opportunity to keep
 * up the balance of the position by letting him do a backfilling move
 * of his own. Maybe this could also be arranged by recursing this
 * function. Currently we only do a half-hearted attempt to find
 * opponent moves.
 *
 * The purpose of the forbidden_moves[] array is to get a new
 * backfilling move if the first one later was found to be unsafe,
 * like backfilling for J5 at F9 in filllib:45. With F9 marked as
 * forbidden the correct move at G9 is found.
 */
static int adjs[MAXCHAIN];
static int libs[MAXLIBS];

static int
find_backfilling_move(int move, int color, int *backfill_move,
		      int forbidden_moves[BOARDMAX])
{
  int k;
  int liberties;
  int neighbors;
  int found_one = 0;
  int apos = NO_MOVE;
  int bpos = NO_MOVE;
  int extra_pop = 0;
  int success = 0;
  int acode;
  int saved_move = NO_MOVE;
  int opponent_libs;
  
  DEBUG(DEBUG_FILLLIB, "find_backfilling_move for %C %1m\n", color, move);
  if (debug & DEBUG_FILLLIB)
    dump_stack();
  
  /* Play (move) and identify all liberties and adjacent strings. */
  if (!trymove(move, color, "find_backfilling_move", move))
    return 0; /* This shouldn't happen, I believe. */

  /* The move wasn't safe, so there must be an attack for the
   * opponent. Save it for later use.
   */
  acode = attack(move, &apos);
  gg_assert(acode != 0 && apos != NO_MOVE);
  
  /* Find liberties. */
  liberties = findlib(move, MAXLIBS, libs);

  /* Find neighbors. */
  neighbors = chainlinks(move, adjs);

  /* Remove (move) again. */
  popgo();
  
  /* It's most fun to capture stones. Start by trying to take some
   * neighbor off the board. If the attacking move does not directly
   * reduce the number of liberties of the attacked string we don't
   * trust it but keep it around if we don't find anything else. (See
   * filllib:17 for a position where this matters.)
   *
   * It is also necessary to take care to first attack the string with
   * the fewest liberties, which can probably be removed the fastest.
   * See filllib:37 for an example (J5 tactically attacks K7 but the
   * correct move is H5).
   *
   * FIXME: It seems we have to return immediately when we find an
   * attacking move, because recursing for further backfilling might
   * lead to moves which complete the capture but cannot be played
   * before the attacking move itself. This is not ideal but probably
   * good enough.
   *
   * In order to avoid losing unnecessary points while capturing dead
   * stones, we try first to capture stones in atari, second defending
   * at a liberty, and third capture stones with two or more
   * liberties. See filllib:43 for a position where capturing dead
   * stones (B10 or C8) loses a point compared to defending at a
   * liberty (C6).
   */
  for (opponent_libs = 1; opponent_libs <= 1; opponent_libs++) {
    for (k = 0; k < neighbors; k++) {
      if (opponent_libs < 5 && countlib(adjs[k]) != opponent_libs)
	continue;
      if (attack(adjs[k], &bpos) == WIN) {
	if (forbidden_moves[bpos])
	  continue;
	if (liberty_of_string(bpos, adjs[k])) {
	  *backfill_move = bpos;
	  return 1;
	}
	else
	  saved_move = bpos;
      }
    }
  }
  
  /* Otherwise look for a safe move at a liberty. */
  if (!found_one) {
    for (k = 0; k < liberties; k++) {
      if (!forbidden_moves[libs[k]] && safe_move(libs[k], color) == WIN) {
	*backfill_move = libs[k];
	found_one = 1;
	break;
      }
    }
  }

  if (!found_one) {
    for (opponent_libs = 2; opponent_libs <= 5; opponent_libs++) {
      for (k = 0; k < neighbors; k++) {
	if (opponent_libs < 5 && countlib(adjs[k]) != opponent_libs)
	  continue;
	if (attack(adjs[k], &bpos) == WIN) {
	  if (forbidden_moves[bpos])
	    continue;
	  if (liberty_of_string(bpos, adjs[k])) {
	    *backfill_move = bpos;
	    return 1;
	  }
	  else
	    saved_move = bpos;
	}
      }
    }
  }
  
  /* If no luck so far, try with superstring liberties. */
  if (!found_one) {
    trymove(move, color, "find_backfilling_move", move);
    find_proper_superstring_liberties(move, &liberties, libs, 0);
    popgo();
    for (k = 0; k < liberties; k++) {
      if (!forbidden_moves[libs[k]] && safe_move(libs[k], color) == WIN) {
	*backfill_move = libs[k];
	found_one = 1;
	break;
      }
    }
  }

  /* If no luck so far, try attacking superstring neighbors. */
  if (!found_one) {
    trymove(move, color, "find_backfilling_move", move);
    superstring_chainlinks(move, &neighbors, adjs, 4);
    popgo();
    for (k = 0; k < neighbors; k++) {
      if (attack(adjs[k], &bpos) == WIN) {
	if (!forbidden_moves[bpos] && liberty_of_string(bpos, adjs[k])) {
	  *backfill_move = bpos;
	  return 1;
	}
      }
    }
  }

  if (found_one) {
    ASSERT1(!forbidden_moves[*backfill_move], *backfill_move);
  
    if (!trymove(*backfill_move, color, "find_backfilling_move", move))
      return 0; /* This really shouldn't happen. */
    
    /* Allow opponent to get a move in here. */
    if (trymove(apos, OTHER_COLOR(color), "find_backfilling_move", move))
      extra_pop = 1;
    
    /* If still not safe, recurse to find a new backfilling move. */
    if (safe_move(move, color) == WIN)
      success = 1;
    else
      success = find_backfilling_move(move, color, backfill_move,
				      forbidden_moves);

    /* Pop move(s) and return. */
    if (extra_pop)
      popgo();
    popgo();
  }

  if (!success && saved_move != NO_MOVE) {
    ASSERT1(!forbidden_moves[saved_move], saved_move);
    *backfill_move = saved_move;
    success = 1;
  }

  if (!success)
    *backfill_move = NO_MOVE;
  
  return success;
}


/* Confirm that (move) is a safe move for color. In addition to
 * calling the global confirm_safety(), this function also calls the
 * owl code to verify the strategical viability of the move.
 */
static int
filllib_confirm_safety(int move, int color, int *defense_point)
{
  int k;
  int apos = NO_MOVE;
  int save_verbose;

  gg_assert(stackp == 0);
  gg_assert(defense_point != NULL);
  *defense_point = NO_MOVE;

  /* Before we can call the owl code, we need to find a neighbor of
   * our color.
   */
  for (k = 0; k < 4; k++)
    if (board[move + delta[k]] == color) {
      apos = move + delta[k];
      break;
    }

  /* If none found, look for a neighbor of an attacked adjacent string. */
  if (apos == NO_MOVE)
    for (k = 0; k < 4; k++) {
      int pos2 = move + delta[k];
      if (board[pos2] == OTHER_COLOR(color)
	  && !play_attack_defend_n(color, 0, 1, move, pos2)) {
	int adj;
	adj = chainlinks(pos2, adjs);
	/* It seems unlikely that we would ever get no adjacent strings
         * here, but if it should happen we simply give up and say the
         * move is unsafe.
	 */
	if (adj == 0)
	  return 0;
	
	apos = adjs[0];
	break;
      }
    }

  /* Next attempt are diagonal neighbors. */
  if (apos == NO_MOVE) {
    for (k = 4; k < 8; k++)
      if (board[move + delta[k]] == color) {
	apos = move + delta[k];
	break;
      }
  }

  /* And two steps away. */
  if (apos == NO_MOVE) {
    for (k = 0; k < 4; k++)
      if (board[move + 2 * delta[k]] == color) {
	apos = move + 2 * delta[k];
	break;
      }
  }
  
  /* We should have found something by now. If not something's
   * probably broken elsewhere. Declare the move unsafe if it happens.
   */
  if (apos == NO_MOVE)
    return 0;

  /* Ask the owl code whether this move is strategically viable. */
  
  save_verbose = verbose;
  if (verbose > 0)
    verbose--;
  if (!owl_does_defend(move, apos, NULL))
    return 0;
  verbose = save_verbose;
  
  return confirm_safety(move, color, defense_point, NULL);
}


/*
 * Local Variables:
 * tab-width: 8
 * c-basic-offset: 2
 * End:
 */