1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
|
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\
* This is GNU Go, a Go program. Contact gnugo@gnu.org, or see *
* http://www.gnu.org/software/gnugo/ for more information. *
* *
* Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, *
* 2008 and 2009 by the Free Software Foundation. *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation - version 3 or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License in file COPYING for more details. *
* *
* You should have received a copy of the GNU General Public *
* License along with this program; if not, write to the Free *
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor, *
* Boston, MA 02111, USA. *
\* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
#include "gnugo.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "liberty.h"
#include "gg_utils.h"
#include "patterns.h"
#include "dfa.h"
/**************************************************************************/
/* Pattern profiling functions: */
/**************************************************************************/
#if PROFILE_PATTERNS
/* Initialize pattern profiling fields in one pattern struct array. */
static void
clear_profile(struct pattern *pattern)
{
for (; pattern->patn; ++pattern) {
pattern->hits = 0;
pattern->reading_nodes = 0;
pattern->dfa_hits = 0;
}
}
#endif
#if PROFILE_PATTERNS
/* Print profiling information for one pattern struct array. */
static void
print_profile(struct pattern *pattern, int *total_hits,
int *total_nodes, int *total_dfa_hits)
{
for (; pattern->patn; ++pattern)
if (pattern->hits > 0) {
*total_hits += pattern->hits;
*total_nodes += pattern->reading_nodes;
*total_dfa_hits += pattern->dfa_hits;
fprintf(stderr, "%6d %6d %9d %8.1f %s\n",
pattern->dfa_hits,
pattern->hits,
pattern->reading_nodes,
pattern->reading_nodes / (float) pattern->hits,
pattern->name);
}
}
#endif /* PROFILE_PATTERNS */
/* Initialize pattern profiling fields in pattern struct arrays. */
void
prepare_pattern_profiling()
{
#if PROFILE_PATTERNS
clear_profile(pat_db.patterns);
clear_profile(attpat_db.patterns);
clear_profile(defpat_db.patterns);
clear_profile(endpat_db.patterns);
clear_profile(conn_db.patterns);
clear_profile(influencepat_db.patterns);
clear_profile(barrierspat_db.patterns);
clear_profile(aa_attackpat_db.patterns);
clear_profile(owl_attackpat_db.patterns);
clear_profile(owl_vital_apat_db.patterns);
clear_profile(owl_defendpat_db.patterns);
clear_profile(fusekipat_db.patterns);
clear_profile(oracle_db.patterns);
#else
fprintf(stderr,
"Warning, no support for pattern profiling in this binary.\n");
#endif
}
/* Report result of pattern profiling. Only patterns with at least one
* match are listed.
*/
void
report_pattern_profiling()
{
#if PROFILE_PATTERNS
int hits = 0;
int dfa_hits = 0;
int nodes = 0;
print_profile(pat_db.patterns, &hits, &nodes, &dfa_hits);
print_profile(attpat_db.patterns, &hits, &nodes, &dfa_hits);
print_profile(defpat_db.patterns, &hits, &nodes, &dfa_hits);
print_profile(endpat_db.patterns, &hits, &nodes, &dfa_hits);
print_profile(conn_db.patterns, &hits, &nodes, &dfa_hits);
print_profile(influencepat_db.patterns, &hits, &nodes, &dfa_hits);
print_profile(barrierspat_db.patterns, &hits, &nodes, &dfa_hits);
print_profile(aa_attackpat_db.patterns, &hits, &nodes, &dfa_hits);
print_profile(owl_attackpat_db.patterns, &hits, &nodes, &dfa_hits);
print_profile(owl_vital_apat_db.patterns, &hits, &nodes, &dfa_hits);
print_profile(owl_defendpat_db.patterns, &hits, &nodes, &dfa_hits);
print_profile(fusekipat_db.patterns, &hits, &nodes, &dfa_hits);
print_profile(oracle_db.patterns, &hits, &nodes, &dfa_hits);
fprintf(stderr, "------ ---------\n");
fprintf(stderr, "%6d, %6d %9d\n", dfa_hits, hits, nodes);
#endif
}
/**************************************************************************/
/* Standard matcher: */
/**************************************************************************/
/* Forward declarations. */
static void fixup_patterns_for_board_size(struct pattern *pattern);
static void prepare_for_match(int color);
static void do_matchpat(int anchor, matchpat_callback_fn_ptr callback,
int color, struct pattern *database,
void *callback_data, signed char goal[BOARDMAX]);
static void matchpat_loop(matchpat_callback_fn_ptr callback,
int color, int anchor,
struct pattern_db *pdb, void *callback_data,
signed char goal[BOARDMAX], int anchor_in_goal);
/* Precomputed tables to allow rapid checks on the piece at
* the board. This table relies on the fact that color is
* 1 or 2.
*
* For pattern element i, require (board[pos] & andmask[i]) == valmask[i]
*
* .XO) For i=0,1,2, board[pos] & 3 is a no-op, so we check board[pos]
* == valmask
* x) For i=3, we are checking that board[pos] is not color, so AND
* color and we get 0 for either empty or OTHER_COLOR, but color
* if it contains color
* o) Works the other way round for checking it is not X.
*
*
* gcc allows the entries to be computed at run-time, but that is not ANSI.
*/
static const int and_mask[2][8] = {
/* . X O x o , a ! color */
{ 3, 3, 3, WHITE, BLACK, 3, 3, 3 }, /* BLACK */
{ 3, 3, 3, BLACK, WHITE, 3, 3, 3 } /* WHITE */
};
static const int val_mask[2][8] = {
{ EMPTY, BLACK, WHITE, 0, 0, EMPTY, EMPTY, EMPTY}, /* BLACK */
{ EMPTY, WHITE, BLACK, 0, 0, EMPTY, EMPTY, EMPTY} /* WHITE */
};
/* and a table for checking classes quickly
* class_mask[status][color] contains the mask to look for in class.
* ie. if pat[r].class & class_mask[dragon[pos].status][board[pos]]
* is not zero then we reject it
* Most elements if class_mask[] are zero - it is a sparse
* matrix containing
* CLASS_O in [DEAD][color]
* CLASS_O in [CRITICAL][color]
* CLASS_o in [ALIVE][color]
* CLASS_X in [DEAD][other]
* CLASS_x in [ALIVE][other]
*
* so eg. if we have a dead white dragon, and we
* are checking a pattern for black, then
* class_mask[DEAD][other] will contain CLASS_X
* Then we reject any patterns which have CLASS_X
* set in the class bits.
*
* Making it static guarantees that all fields are
* initially set to 0, and we overwrite the ones
* we care about each time.
*/
static unsigned int class_mask[NUM_DRAGON_STATUS][3];
/* In the current implementation, the edge constraints depend on
* the board size, because we pad width or height out to the
* board size. (This is because it is easy to find the corners
* of the rotated pattern, but it is harder to transform the
* bitmask of edge constraints.)
*
* But since version 1.103, board size is variable. Thus we
* make a first pass through the table once we know the board
* size.
*
* This should be called once for each pattern database.
*/
static void
fixup_patterns_for_board_size(struct pattern *pattern)
{
for (; pattern->patn; ++pattern)
if (pattern->edge_constraints != 0) {
/* If the patterns have been fixed up for a different board size
* earlier, we need to undo the modifications that were done
* below before we do them anew. The first time this function is
* called, this step is effectively a no-op.
*/
if (pattern->edge_constraints & NORTH_EDGE)
pattern->maxi = pattern->mini + pattern->height;
if (pattern->edge_constraints & SOUTH_EDGE)
pattern->mini = pattern->maxi - pattern->height;
if (pattern->edge_constraints & WEST_EDGE)
pattern->maxj = pattern->minj + pattern->width;
if (pattern->edge_constraints & EAST_EDGE)
pattern->minj = pattern->maxj - pattern->width;
/* we extend the pattern in the direction opposite the constraint,
* such that maxi (+ve) - mini (-ve) = board_size-1
* Note : the pattern may be wider than the board, so
* we need to be a bit careful !
*/
if (pattern->edge_constraints & NORTH_EDGE)
if (pattern->maxi < (board_size-1) + pattern->mini)
pattern->maxi = (board_size-1) + pattern->mini;
if (pattern->edge_constraints & SOUTH_EDGE)
if (pattern->mini > pattern->maxi - (board_size-1))
pattern->mini = pattern->maxi - (board_size-1);
if (pattern->edge_constraints & WEST_EDGE)
if (pattern->maxj < (board_size-1) + pattern->minj)
pattern->maxj = (board_size-1) + pattern->minj;
if (pattern->edge_constraints & EAST_EDGE)
if (pattern->minj > pattern->maxj - (board_size-1))
pattern->minj = pattern->maxj - (board_size-1);
}
}
/*
* prepare a pattern matching for color point of view
*/
static void
prepare_for_match(int color)
{
int other = OTHER_COLOR(color);
/* Basic sanity checks. */
gg_assert(color != EMPTY);
/* If we set one of class_mask[XXX][color] and
* class_mask[XXX][other], we have to explicitly set or reset the
* other as well, since 'color' may change between calls.
*/
class_mask[DEAD][color] = CLASS_O;
class_mask[DEAD][other] = CLASS_X;
class_mask[CRITICAL][color] = CLASS_O;
class_mask[CRITICAL][other] = 0; /* Need to reset this. */
class_mask[ALIVE][color] = CLASS_o;
class_mask[ALIVE][other] = CLASS_x;
}
/*
* Try all the patterns in the given array at (anchor). Invoke the
* callback for any that matches. Classes X,O,x,o are checked here. It
* is up to the callback to process the other classes, and any helper
* or autohelper functions.
*
* If the support of goal[BOARDMAX] is a subset of the board, patterns
* are rejected which do not involve this dragon. If goal is a null
* pointer, this parameter is ignored.
*/
static void
do_matchpat(int anchor, matchpat_callback_fn_ptr callback, int color,
struct pattern *pattern, void *callback_data,
signed char goal[BOARDMAX])
{
const int anchor_test = board[anchor] ^ color; /* see below */
int m = I(anchor);
int n = J(anchor);
int merged_val;
/* Basic sanity checks. */
ASSERT_ON_BOARD1(anchor);
/* calculate the merged value around [m][n] for the grid opt */
{
/* FIXME: Convert this to 2D (using delta[]) but be aware that you'll
* also need to make corresponding changes in mkpat.c!
*/
int i, j;
int shift = 30;
merged_val = 0;
for (i = m-1; i <= m+2; ++i)
for (j = n-1; j <= n+2; shift -= 2, ++j) {
unsigned int this;
if (!ON_BOARD2(i, j))
this = 3;
else if ((this = BOARD(i, j)) == 0)
continue;
else if (color == 2)
this = OTHER_COLOR(this);
merged_val |= (this << shift);
}
}
/* Try each pattern - NULL pattern marks end of list. Assume at least 1 */
gg_assert(pattern->patn);
do {
/*
* These days we always match all patterns.
*/
{
int end_transformation;
int ll; /* Iterate over transformations (rotations or reflections) */
int k; /* Iterate over elements of pattern */
int found_goal;
/* We can check the color of the anchor stone now.
* Roughly half the patterns are anchored at each
* color, and since the anchor stone is invariant under
* rotation, we can reject all rotations of a wrongly-anchored
* pattern in one go.
*
* Patterns are always drawn from O perspective in .db,
* so board[pos] is 'color' if the pattern is anchored
* at O, or 'other' for X.
* Since we require that this flag contains 3 for
* anchored_at_X, we can check that
* board[pos] == (color ^ anchored_at_X)
* which is equivalent to
* (board[pos] ^ color) == anchored_at_X)
* and the LHS is something we precomputed.
*/
if (anchor_test != pattern->anchored_at_X)
continue; /* does not match the anchor */
ll = 0; /* first transformation number */
end_transformation = pattern->trfno;
/* Ugly trick for dealing with 'O' symmetry. */
if (pattern->trfno == 5) {
ll = 2;
end_transformation = 6;
}
/* try each orientation transformation. Assume at least 1 */
do {
#if PROFILE_PATTERNS
int nodes_before;
#endif
#if GRID_OPT == 1
/* We first perform the grid check : this checks up to 16
* elements in one go, and allows us to rapidly reject
* patterns which do not match. While this check invokes a
* necessary condition, it is not a sufficient test, so more
* careful checks are still required, but this allows rapid
* rejection. merged_val should contain a combination of
* 16 board positions around m, n. The colours have been fixed
* up so that stones which are 'O' in the pattern are
* bit-pattern %01.
*/
if ((merged_val & pattern->and_mask[ll]) != pattern->val_mask[ll])
continue; /* large-scale match failed */
#endif /* GRID_OPT == 1 */
/* Next, we do the range check. This applies the edge
* constraints implicitly.
*/
{
int mi, mj, xi, xj;
TRANSFORM2(pattern->mini, pattern->minj, &mi, &mj, ll);
TRANSFORM2(pattern->maxi, pattern->maxj, &xi, &xj, ll);
/* {min,max}{i,j} are the appropriate corners of the original
* pattern, Once we transform, {m,x}{i,j} are still corners,
* but we don't know *which* corners.
* We could sort them, but it turns out to be cheaper
* to just test enough cases to be safe.
*/
DEBUG(DEBUG_MATCHER,
"---\nconsidering pattern '%s', rotation %d at %1m. Range %d,%d -> %d,%d\n",
pattern->name, ll, anchor, mi, mj, xi, xj);
/* now do the range-check */
if (!ON_BOARD2(m + mi, n + mj) || !ON_BOARD2(m + xi, n + xj))
continue; /* out of range */
}
/* Now iterate over the elements of the pattern. */
found_goal = 0;
for (k = 0; k < pattern->patlen; ++k) { /* match each point */
int pos; /* absolute coords of (transformed) pattern element */
int att = pattern->patn[k].att; /* what we are looking for */
/* Work out the position on the board of this pattern element. */
/* transform pattern real coordinate... */
pos = AFFINE_TRANSFORM(pattern->patn[k].offset, ll, anchor);
ASSERT_ON_BOARD1(pos);
/* ...and check that board[pos] matches (see above). */
if ((board[pos] & and_mask[color-1][att]) != val_mask[color-1][att])
goto match_failed;
if (goal != NULL && board[pos] != EMPTY && goal[pos])
found_goal = 1;
/* Check out the class_X, class_O, class_x, class_o
* attributes - see patterns.db and above.
*/
if ((pattern->class
& class_mask[dragon[pos].status][board[pos]]) != 0)
goto match_failed;
} /* loop over elements */
#if GRID_OPT == 2
/* Make sure the grid optimisation wouldn't have
rejected this pattern */
ASSERT2((merged_val & pattern->and_mask[ll])
== pattern->val_mask[ll], m, n);
#endif /* we don't trust the grid optimisation */
/* Make it here ==> We have matched all the elements to the board. */
if ((goal != NULL) && !found_goal)
goto match_failed;
#if PROFILE_PATTERNS
pattern->hits++;
nodes_before = stats.nodes;
#endif
/* A match! - Call back to the invoker to let it know. */
callback(anchor, color, pattern, ll, callback_data);
#if PROFILE_PATTERNS
pattern->reading_nodes += stats.nodes - nodes_before;
#endif
/* We jump to here as soon as we discover a pattern has failed. */
match_failed:
DEBUG(DEBUG_MATCHER,
"end of pattern '%s', rotation %d at %1m\n---\n",
pattern->name, ll, anchor);
} while (++ll < end_transformation); /* ll loop over symmetries */
} /* if not rejected by maxwt */
} while ((++pattern)->patn); /* loop over patterns */
}
/*
* Scan the board to get patterns anchored by anchor from color
* point of view.
* the board must be prepared by dfa_prepare_for_match(color) !
*/
static void
matchpat_loop(matchpat_callback_fn_ptr callback, int color, int anchor,
struct pattern_db *pdb, void *callback_data,
signed char goal[BOARDMAX], int anchor_in_goal)
{
int pos;
for (pos = BOARDMIN; pos < BOARDMAX; pos++) {
if (board[pos] == anchor && (!anchor_in_goal || goal[pos] != 0))
do_matchpat(pos, callback, color, pdb->patterns,
callback_data, goal);
}
}
/**************************************************************************/
/* DFA matcher: */
/**************************************************************************/
/* Set this to show the dfa board in action */
/* #define DFA_TRACE 1 */
/* Data. */
static int dfa_board_size = -1;
static int dfa_p[DFA_BASE * DFA_BASE];
/* This is used by the EXPECTED_COLOR macro. */
static const int convert[3][4] = {
{-1, -1, -1, -1}, /* not used */
{EMPTY, WHITE, BLACK, OUT_BOARD}, /* WHITE */
{EMPTY, BLACK, WHITE, OUT_BOARD} /* BLACK */
};
#define EXPECTED_COLOR(player_c, position_c) \
(convert[player_c][position_c])
/* Forward declarations. */
static void dfa_prepare_for_match(int color);
static int scan_for_patterns(dfa_rt_t *pdfa, int l, int *dfa_pos,
int *pat_list);
static void do_dfa_matchpat(dfa_rt_t *pdfa,
int anchor, matchpat_callback_fn_ptr callback,
int color, struct pattern *database,
void *callback_data, signed char goal[BOARDMAX],
int anchor_in_goal);
static void check_pattern_light(int anchor,
matchpat_callback_fn_ptr callback,
int color, struct pattern *pattern, int ll,
void *callback_data,
signed char goal[BOARDMAX],
int anchor_in_goal);
static void dfa_matchpat_loop(matchpat_callback_fn_ptr callback,
int color, int anchor,
struct pattern_db *pdb, void *callback_data,
signed char goal[BOARDMAX], int anchor_in_goal);
/***********************************************************************/
/* prepare the dfa board (gnugo initialization) */
void
dfa_match_init(void)
{
build_spiral_order();
if (owl_vital_apat_db.pdfa != NULL)
DEBUG(DEBUG_MATCHER, "owl_vital_apat --> using dfa\n");
if (owl_attackpat_db.pdfa != NULL)
DEBUG(DEBUG_MATCHER, "owl_attackpat --> using dfa\n");
if (owl_defendpat_db.pdfa != NULL)
DEBUG(DEBUG_MATCHER, "owl_defendpat --> using dfa\n");
if (pat_db.pdfa != NULL)
DEBUG(DEBUG_MATCHER, "pat --> using dfa\n");
if (attpat_db.pdfa != NULL)
DEBUG(DEBUG_MATCHER, "attpat --> using dfa\n");
if (defpat_db.pdfa != NULL)
DEBUG(DEBUG_MATCHER, "defpat --> using dfa\n");
if (endpat_db.pdfa != NULL)
DEBUG(DEBUG_MATCHER, "endpat --> using dfa\n");
if (conn_db.pdfa != NULL)
DEBUG(DEBUG_MATCHER, "conn --> using dfa\n");
if (influencepat_db.pdfa != NULL)
DEBUG(DEBUG_MATCHER, "influencepat --> using dfa\n");
if (barrierspat_db.pdfa != NULL)
DEBUG(DEBUG_MATCHER, "barrierspat --> using dfa\n");
if (fusekipat_db.pdfa != NULL)
DEBUG(DEBUG_MATCHER, "barrierspat --> using dfa\n");
/* force out_board initialization */
dfa_board_size = -1;
}
/*
* copy the board on a private board with adapted colors
* and adapted size
*/
static void
dfa_prepare_for_match(int color)
{
int i, j;
int pos;
if (dfa_board_size != board_size) {
dfa_board_size = board_size;
/* clean up the board */
for (pos = 0; pos < DFA_BASE * DFA_BASE; pos++)
dfa_p[pos] = OUT_BOARD;
}
/* copy the board */
for (i = 0; i < dfa_board_size; i++)
for (j = 0; j < dfa_board_size; j++)
dfa_p[DFA_POS(i, j)] = EXPECTED_COLOR(color, BOARD(i, j));
prepare_for_match(color);
}
#if 0
/* Debug function. */
static void
dump_dfa_board(int m, int n)
{
int i, j;
for (i = 0; i < dfa_board_size; i++) {
for (j = 0; j < dfa_board_size; j++) {
if (i != m || j != n)
fprintf(stderr, "%1d", dfa_p[DFA_POS(i, j)]);
else
fprintf(stderr, "*");
}
fprintf(stderr, "\n");
}
}
#endif
/*
* Scan the board with a DFA to get all patterns matching at
* `dfa_pos' with transformation l. Store patterns indexes
* `pat_list'. Return the number of patterns found.
*/
static int
scan_for_patterns(dfa_rt_t *pdfa, int l, int *dfa_pos, int *pat_list)
{
int delta;
int state = 1; /* initial state */
int row = 0; /* initial row */
int id = 0; /* position in id_list */
do {
/* collect patterns indexes */
int att = pdfa->states[state].att;
while (att != 0) {
pat_list[id] = pdfa->indexes[att].val;
id++;
att = pdfa->indexes[att].next;
}
/* go to next state */
delta = pdfa->states[state].next[dfa_pos[spiral[row][l]]];
state += delta;
row++;
} while (delta != 0); /* while not on error state */
return id;
}
/* Perform pattern matching with DFA filtering. */
static void
do_dfa_matchpat(dfa_rt_t *pdfa,
int anchor, matchpat_callback_fn_ptr callback,
int color, struct pattern *database,
void *callback_data, signed char goal[BOARDMAX],
int anchor_in_goal)
{
int k;
int ll; /* Iterate over transformations (rotations or reflections) */
int patterns[DFA_MAX_MATCHED + 8];
int num_matched = 0;
int *dfa_pos = dfa_p + DFA_POS(I(anchor), J(anchor));
/* Basic sanity checks. */
ASSERT_ON_BOARD1(anchor);
/* One scan by transformation */
for (ll = 0; ll < 8; ll++) {
num_matched += scan_for_patterns(pdfa, ll, dfa_pos,
patterns + num_matched);
patterns[num_matched++] = -1;
}
ASSERT1(num_matched <= DFA_MAX_MATCHED + 8, anchor);
/* Constraints and other tests. */
for (ll = 0, k = 0; ll < 8; k++) {
int matched;
if (patterns[k] == -1) {
ll++;
continue;
}
matched = patterns[k];
#if PROFILE_PATTERNS
database[matched].dfa_hits++;
#endif
check_pattern_light(anchor, callback, color, database + matched,
ll, callback_data, goal, anchor_in_goal);
}
}
/*
* Do the pattern matching for a given pattern and a given
* transformation ll.
* (does not recompute what dfa filtering has already done)
*/
static void
check_pattern_light(int anchor, matchpat_callback_fn_ptr callback, int color,
struct pattern *pattern, int ll, void *callback_data,
signed char goal[BOARDMAX], int anchor_in_goal)
{
int k; /* Iterate over elements of pattern */
int found_goal = 0;
#if PROFILE_PATTERNS
int nodes_before;
#endif
if (0)
gprintf("check_pattern_light @ %1m rot:%d pattern: %s\n",
anchor, ll, pattern->name);
/* Throw out duplicating orientations of symmetric patterns. */
if (pattern->trfno == 5) {
if (ll < 2 || ll >= 6)
return;
}
else {
if (ll >= pattern->trfno)
return;
}
/* Now iterate over the elements of the pattern. */
for (k = 0; k < pattern->patlen; k++) {
/* match each point */
int pos; /* absolute (board) co-ords of
(transformed) pattern element */
/* transform pattern real coordinate... */
pos = AFFINE_TRANSFORM(pattern->patn[k].offset, ll, anchor);
ASSERT_ON_BOARD1(pos);
if (!anchor_in_goal) {
/* goal check */
if (goal != NULL && board[pos] != EMPTY && goal[pos])
found_goal = 1;
}
/* class check */
ASSERT1(dragon[pos].status < 4, anchor);
if ((pattern->class & class_mask[dragon[pos].status][board[pos]]) != 0)
goto match_failed;
} /* loop over elements */
/* Make it here ==> We have matched all the elements to the board. */
if (!anchor_in_goal) {
if (goal != NULL && !found_goal)
goto match_failed;
}
#if PROFILE_PATTERNS
pattern->hits++;
nodes_before = stats.nodes;
#endif
/* A match! - Call back to the invoker to let it know. */
callback(anchor, color, pattern, ll, callback_data);
#if PROFILE_PATTERNS
pattern->reading_nodes += stats.nodes - nodes_before;
#endif
/* We jump to here as soon as we discover a pattern has failed. */
match_failed:
DEBUG(DEBUG_MATCHER, "end of pattern '%s', rotation %d at %1m\n---\n",
pattern->name, ll, anchor);
} /* check_pattern_light */
/*
* Scan the board to get patterns anchored by anchor from color
* point of view.
* the board must be prepared by dfa_prepare_for_match(color) !
*/
static void
dfa_matchpat_loop(matchpat_callback_fn_ptr callback, int color, int anchor,
struct pattern_db *pdb, void *callback_data,
signed char goal[BOARDMAX], int anchor_in_goal)
{
int pos;
for (pos = BOARDMIN; pos < BOARDMAX; pos++) {
if (board[pos] == anchor && (!anchor_in_goal || goal[pos] != 0))
do_dfa_matchpat(pdb->pdfa, pos, callback, color, pdb->patterns,
callback_data, goal, anchor_in_goal);
}
}
/**************************************************************************/
/* Main functions: */
/**************************************************************************/
typedef void (*loop_fn_ptr_t)(matchpat_callback_fn_ptr callback,
int color, int anchor,
struct pattern_db *pdb, void *callback_data,
signed char goal[BOARDMAX], int anchor_in_goal);
typedef void (*prepare_fn_ptr_t)(int color);
/* same as the old matchpat but for all the board with
* preparation.
*
* 4 possible values for color argument:
* WHITE or BLACK: matchpat is called from this color point of view.
* ANCHOR_COLOR : matchpat is called from the anchor's point of view.
* ANCHOR_OTHER : matchpat is called from the opposite color of the
* anchor's point of view.
*/
void
matchpat(matchpat_callback_fn_ptr callback, int color,
struct pattern_db *pdb, void *callback_data,
signed char goal[BOARDMAX])
{
matchpat_goal_anchor(callback, color, pdb, callback_data, goal,
pdb->fixed_anchor);
}
void
matchpat_goal_anchor(matchpat_callback_fn_ptr callback, int color,
struct pattern_db *pdb, void *callback_data,
signed char goal[BOARDMAX], int anchor_in_goal)
{
loop_fn_ptr_t loop = matchpat_loop;
prepare_fn_ptr_t prepare = prepare_for_match;
/* check board size */
if (pdb->fixed_for_size != board_size) {
fixup_patterns_for_board_size(pdb->patterns);
pdb->fixed_for_size = board_size;
}
/* select pattern matching strategy */
if (pdb->pdfa != NULL) {
loop = dfa_matchpat_loop;
prepare = dfa_prepare_for_match;
}
/* select strategy */
switch (color) {
case ANCHOR_COLOR:
{ /* match pattern for the color of their anchor */
prepare(WHITE);
loop(callback, WHITE, WHITE, pdb, callback_data, goal, anchor_in_goal);
prepare(BLACK);
loop(callback, BLACK, BLACK, pdb, callback_data, goal, anchor_in_goal);
}
break;
case ANCHOR_OTHER:
{ /* match pattern for the opposite color of their anchor */
prepare(WHITE);
loop(callback, WHITE, BLACK, pdb, callback_data, goal, anchor_in_goal);
prepare(BLACK);
loop(callback, BLACK, WHITE, pdb, callback_data, goal, anchor_in_goal);
}
break;
default:
{ /* match all patterns for color */
prepare(color);
loop(callback, color, WHITE, pdb, callback_data, goal, anchor_in_goal);
loop(callback, color, BLACK, pdb, callback_data, goal, anchor_in_goal);
}
}
}
static int
fullboard_transform(int pos, int trans)
{
int dx = I(pos) - (board_size-1)/2;
int dy = J(pos) - (board_size-1)/2;
int x, y;
gg_assert(POS((board_size-1)/2, (board_size-1)/2) + DELTA(dx, dy) == pos);
TRANSFORM2(dx, dy, &x, &y, trans);
return POS(x + (board_size-1)/2, y + (board_size-1)/2);
}
/* A dedicated matcher which can only do fullboard matching on
* odd-sized boards, optimized for fuseki patterns.
*/
void
fullboard_matchpat(fullboard_matchpat_callback_fn_ptr callback, int color,
struct fullboard_pattern *pattern)
{
int ll; /* Iterate over transformations (rotations or reflections) */
/* We transform around the center point. */
int number_of_stones_on_board = stones_on_board(BLACK | WHITE);
static int color_map[gg_max(WHITE, BLACK) + 1];
/* One hash value for each rotation/reflection: */
Hash_data current_board_hash[8];
/* Basic sanity check. */
gg_assert(color != EMPTY);
gg_assert(board_size % 2 == 1);
color_map[EMPTY] = EMPTY;
if (color == WHITE) {
color_map[WHITE] = WHITE;
color_map[BLACK] = BLACK;
}
else {
color_map[WHITE] = BLACK;
color_map[BLACK] = WHITE;
}
/* Get hash data of all rotations/reflections of current board position. */
for (ll = 0; ll < 8; ll++) {
Intersection p[BOARDSIZE];
int pos;
for (pos = 0; pos < BOARDSIZE; pos++)
if (ON_BOARD(pos))
p[pos] = color_map[board[fullboard_transform(pos, ll)]];
else
p[pos] = GRAY;
if (ON_BOARD(board_ko_pos))
hashdata_recalc(¤t_board_hash[ll], p,
fullboard_transform(board_ko_pos, ll));
else
hashdata_recalc(¤t_board_hash[ll], p, NO_MOVE);
}
/* Try each pattern - NULL pattern name marks end of list. */
for (; pattern->name; pattern++) {
if (pattern->number_of_stones != number_of_stones_on_board)
continue;
/* Try each orientation transformation. */
for (ll = 0; ll < 8; ll++)
if (hashdata_is_equal(current_board_hash[ll], pattern->fullboard_hash)) {
/* A match! - Call back to the invoker to let it know. */
int pos = AFFINE_TRANSFORM(pattern->move_offset, ll,
POS((board_size-1)/2, (board_size-1)/2));
callback(pos, pattern, ll);
}
}
}
/**************************************************************************/
/* Corner matcher */
/**************************************************************************/
/* These arrays specify anchor corner for each transformation. They _must_
* be in line with transformation2[][] array in patterns/transform.c.
*/
static const int corner_x[8] = {0, 0, 1, 1, 1, 1, 0, 0};
static const int corner_y[8] = {0, 1, 1, 0, 1, 0, 0, 1};
/* The number of stones in "corner area" for each board position. For example,
* corner area for position E3 when anchoring at A1 corner, looks like this:
*
* |........ In general, NUM_STONES(pos) is the number of stones
* |........ which are closer to the corner (stone at pos, if any,
* 3 |#####... counts too) than pos. Note, that say G2 is not closer
* |#####... to the corner than E3, the reverse isn't true either.
* 1 |#####... Their distances are "incomparable" since E < G but
* +-------- 3 > 2.
* A E
*
* Note that we need these values in at most MAX_BOARD x MAX_BOARD array.
* However, it may be anchored at any corner of the board, so if the board is
* small, we may calculate NUM_STONES() at negative coordinates.
*/
static int num_stones[2*BOARDMAX];
#define NUM_STONES(pos) num_stones[(pos) + BOARDMAX]
/* Stone locations are stored in this array. They might be needed by callback
* function.
*/
static int pattern_stones[BOARDMAX];
/* Recursively performs corner matching. This function checks whether
* `num_variation' variations pointed by `variation' parameter match.
* If any of them does, the function calls itself recursively. If any
* pattern corresponding to those variations matches, it notifies
* callback function.
*/
static void
do_corner_matchpat(int num_variations, struct corner_variation *variation,
int match_color, corner_matchpat_callback_fn_ptr callback,
int callback_color, int trans, int anchor, int stones)
{
for (; --num_variations >= 0; variation++) {
int move = AFFINE_TRANSFORM(variation->move_offset, trans, anchor);
int color_check = match_color ^ variation->xor_att;
struct corner_pattern *pattern = variation->pattern;
if (pattern && color_check == callback_color) {
int second_corner
= AFFINE_TRANSFORM(pattern->second_corner_offset, trans, anchor);
if (NUM_STONES(second_corner) == stones
&& (!pattern->symmetric || trans < 4)) {
/* We have found a matching pattern. */
ASSERT1(board[move] == EMPTY, move);
callback(move, callback_color, pattern, trans, pattern_stones, stones);
continue;
}
}
if (variation->num_variations
&& NUM_STONES(move) == variation->num_stones
&& board[move] == color_check) {
/* A matching variation. */
pattern_stones[stones] = move;
do_corner_matchpat(variation->num_variations, variation->variations,
match_color, callback, callback_color,
trans, anchor, stones + 1);
}
}
}
/* Perform corner matching at all four corners and both possible
* transformations at each corner. `callback' is notified if any
* matching pattern is found.
*/
void
corner_matchpat(corner_matchpat_callback_fn_ptr callback, int color,
struct corner_db *database)
{
int k;
for (k = 0; k < 8; k++) {
int anchor = POS(corner_x[k] * (board_size - 1),
corner_y[k] * (board_size - 1));
int i;
int j;
int dx = TRANSFORM(OFFSET(1, 0), k);
int dy = TRANSFORM(OFFSET(0, 1), k);
int pos;
struct corner_variation *variation = database->top_variations;
/* Fill in the NUM_STONES() array. We use `max_width' and `max_height'
* fields of database structure to stop working as early as possible.
*/
NUM_STONES(anchor) = IS_STONE(board[anchor]);
pos = anchor;
for (i = 1; i < database->max_height; i++) {
pos += dx;
if (!ON_BOARD(pos)) {
do {
NUM_STONES(pos) = BOARDMAX;
pos += dx;
} while (++i < database->max_height);
break;
}
NUM_STONES(pos) = NUM_STONES(pos - dx) + IS_STONE(board[pos]);
}
pos = anchor;
for (j = 1; j < database->max_width; j++) {
pos += dy;
if (!ON_BOARD(pos)) {
do {
NUM_STONES(pos) = BOARDMAX;
pos += dy;
} while (++j < database->max_width);
break;
}
NUM_STONES(pos) = NUM_STONES(pos - dy) + IS_STONE(board[pos]);
}
for (i = 1; i < database->max_height; i++) {
pos = anchor + i * dy;
for (j = 1; j < database->max_width; j++) {
pos += dx;
NUM_STONES(pos) = NUM_STONES(pos - dx) + NUM_STONES(pos - dy)
- NUM_STONES(pos - dx - dy);
if (ON_BOARD1(pos) && IS_STONE(board[pos]))
NUM_STONES(pos)++;
}
}
/* Try to match top variations. If any of them matches, we call
* do_corner_matchpat() to recurse that variation's tree.
*/
for (i = 0; i < database->num_top_variations; i++) {
int move = AFFINE_TRANSFORM(variation->move_offset, k, anchor);
if (NUM_STONES(move) == 1 && IS_STONE(board[move])) {
pattern_stones[0] = move;
do_corner_matchpat(variation->num_variations, variation->variations,
board[move], callback, color, k, anchor, 1);
}
variation++;
}
}
}
/*
* Local Variables:
* tab-width: 8
* c-basic-offset: 2
* End:
*/
|