1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761
|
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\
* This is GNU Go, a Go program. Contact gnugo@gnu.org, or see *
* http://www.gnu.org/software/gnugo/ for more information. *
* *
* Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, *
* 2008 and 2009 by the Free Software Foundation. *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation - version 3 or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License in file COPYING for more details. *
* *
* You should have received a copy of the GNU General Public *
* License along with this program; if not, write to the Free *
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor, *
* Boston, MA 02111, USA. *
\* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
#include "gnugo.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "liberty.h"
#include "eyes.h"
#include "gg_utils.h"
#define MAXEYE 20
/* This structure is used in communication between read_eye() and
* recognize_eye().
*/
struct vital_points {
int attacks[4 * MAXEYE];
int defenses[4 * MAXEYE];
int num_attacks;
int num_defenses;
};
static void
compute_primary_domains(int color, int domain[BOARDMAX],
int lively[BOARDMAX],
int false_margins[BOARDMAX],
int first_time);
static void count_neighbours(struct eye_data eyedata[BOARDMAX]);
static int is_lively(int owl_call, int pos);
static int false_margin(int pos, int color, int lively[BOARDMAX]);
static void originate_eye(int origin, int pos,
int *esize, int *msize,
struct eye_data eye[BOARDMAX]);
static int read_eye(int pos, int *attack_point, int *defense_point,
struct eyevalue *value,
struct eye_data eye[BOARDMAX],
struct half_eye_data heye[BOARDMAX],
int add_moves);
static int recognize_eye(int pos, int *attack_point, int *defense_point,
struct eyevalue *value,
struct eye_data eye[BOARDMAX],
struct half_eye_data heye[BOARDMAX],
struct vital_points *vp);
static void guess_eye_space(int pos, int effective_eyesize, int margins,
int bulk_score, struct eye_data eye[BOARDMAX],
struct eyevalue *value, int *pessimistic_min);
static void reset_map(int size);
static void first_map(int *map_value);
static int next_map(int *q, int map[MAXEYE]);
static void print_eye(struct eye_data eye[BOARDMAX],
struct half_eye_data heye[BOARDMAX], int pos);
static void add_false_eye(int pos, struct eye_data eye[BOARDMAX],
struct half_eye_data heye[BOARDMAX]);
static float topological_eye(int pos, int color,
struct eye_data my_eye[BOARDMAX],
struct half_eye_data heye[BOARDMAX]);
static float evaluate_diagonal_intersection(int m, int n, int color,
int *attack_point,
int *defense_point,
struct eye_data my_eye[BOARDMAX]);
/* These are used during the calculations of eye spaces. */
static int black_domain[BOARDMAX];
static int white_domain[BOARDMAX];
/* Used internally by mapping functions. */
static int map_size;
static signed char used_index[MAXEYE];
/*
* make_domains() is called from make_dragons() and from
* owl_determine_life(). It marks the black and white domains
* (eyeshape regions) and collects some statistics about each one.
*/
void
make_domains(struct eye_data b_eye[BOARDMAX],
struct eye_data w_eye[BOARDMAX],
int owl_call)
{
int k;
int pos;
int lively[BOARDMAX];
int false_margins[BOARDMAX];
memset(black_domain, 0, sizeof(black_domain));
memset(white_domain, 0, sizeof(white_domain));
memset(false_margins, 0, sizeof(false_margins));
if (b_eye)
memset(b_eye, 0, BOARDMAX * sizeof(b_eye[0]));
if (w_eye)
memset(w_eye, 0, BOARDMAX * sizeof(w_eye[0]));
/* Initialize eye data and compute the lively array. */
for (pos = BOARDMIN; pos < BOARDMAX; pos++)
if (ON_BOARD(pos))
lively[pos] = is_lively(owl_call, pos);
/* Compute the domains of influence of each color. */
compute_primary_domains(BLACK, black_domain, lively, false_margins, 1);
compute_primary_domains(WHITE, white_domain, lively, false_margins, 0);
/* Now we fill out the arrays b_eye and w_eye with data describing
* each eye shape.
*/
for (pos = BOARDMIN; pos < BOARDMAX; pos++) {
if (!ON_BOARD(pos))
continue;
if (board[pos] == EMPTY || !lively[pos]) {
if (black_domain[pos] == 0 && white_domain[pos] == 0) {
if (w_eye)
w_eye[pos].color = GRAY;
if (b_eye)
b_eye[pos].color = GRAY;
}
else if (black_domain[pos] == 1 && white_domain[pos] == 0 && b_eye) {
b_eye[pos].color = BLACK;
for (k = 0; k < 4; k++) {
int apos = pos + delta[k];
if (ON_BOARD(apos) && white_domain[apos] && !black_domain[apos]) {
b_eye[pos].marginal = 1;
break;
}
}
}
else if (black_domain[pos] == 0 && white_domain[pos] == 1 && w_eye) {
w_eye[pos].color = WHITE;
for (k = 0; k < 4; k++) {
int apos = pos + delta[k];
if (ON_BOARD(apos) && black_domain[apos] && !white_domain[apos]) {
w_eye[pos].marginal = 1;
break;
}
}
}
else if (black_domain[pos] == 1 && white_domain[pos] == 1) {
if (b_eye) {
for (k = 0; k < 4; k++) {
int apos = pos + delta[k];
if (ON_BOARD(apos) && black_domain[apos]
&& !white_domain[apos]) {
b_eye[pos].marginal = 1;
b_eye[pos].color = BLACK;
break;
}
}
if (k == 4)
b_eye[pos].color = GRAY;
}
if (w_eye) {
for (k = 0; k < 4; k++) {
int apos = pos + delta[k];
if (ON_BOARD(apos) && white_domain[apos]
&& !black_domain[apos]) {
w_eye[pos].marginal = 1;
w_eye[pos].color = WHITE;
break;
}
}
if (k == 4)
w_eye[pos].color = GRAY;
}
}
}
}
/* The eye spaces are all found. Now we need to find the origins. */
partition_eyespaces(b_eye, BLACK);
partition_eyespaces(w_eye, WHITE);
}
/* Find connected eyespace components and compute relevant statistics. */
void
partition_eyespaces(struct eye_data eye[BOARDMAX], int color)
{
int pos;
if (!eye)
return;
for (pos = BOARDMIN; pos < BOARDMAX; pos++)
if (ON_BOARD(pos))
eye[pos].origin = NO_MOVE;
for (pos = BOARDMIN; pos < BOARDMAX; pos++) {
if (!ON_BOARD(pos))
continue;
if (eye[pos].origin == NO_MOVE && eye[pos].color == color) {
int esize = 0;
int msize = 0;
originate_eye(pos, pos, &esize, &msize, eye);
eye[pos].esize = esize;
eye[pos].msize = msize;
}
}
/* Now we count the number of neighbors and marginal neighbors
* of each vertex.
*/
count_neighbours(eye);
}
/* Compute the domains of influence of each color, used in determining
* eye shapes. NOTE: the term influence as used here is distinct from the
* influence in influence.c.
*
* For this algorithm the strings which are not lively are invisible. Ignoring
* these, the algorithm assigns friendly influence to:
*
* (1) every vertex which is occupied by a (lively) friendly stone,
* (2) every empty vertex adjoining a (lively) friendly stone,
* (3) every empty vertex for which two adjoining vertices (not
* on the first line) in the (usually 8) surrounding ones have friendly
* influence, with two CAVEATS explained below.
*
* Thus in the following diagram, e would be assigned friendly influence
* if a and b have friendly influence, or a and d. It is not sufficent
* for b and d to have friendly influence, because they are not adjoining.
*
* uabc
* def
* ghi
*
* The constraint that the two adjoining vertices not lie on the first
* line prevents influence from leaking under a stone on the third line.
*
* The first CAVEAT alluded to above is that even if a and b have friendly
* influence, this does not cause e to have friendly influence if there
* is a lively opponent stone at d. This constraint prevents
* influence from leaking past knight's move extensions.
*
* The second CAVEAT is that even if a and b have friendly influence
* this does not cause e to have influence if there are lively opponent
* stones at u and at c. This prevents influence from leaking past
* nikken tobis (two space jumps).
*
* The corner vertices are handled slightly different.
*
* +---
* |ab
* |cd
*
* We get friendly influence at a if we have friendly influence
* at b or c and no lively unfriendly stone at b, c or d.
*
*/
#define sufficient_influence(pos, apos, bpos) \
(ON_BOARD(bpos) && influence[bpos] > threshold[pos] - influence[apos])
static void
compute_primary_domains(int color, int domain[BOARDMAX],
int lively[BOARDMAX],
int false_margins[BOARDMAX],
int first_time)
{
int other = OTHER_COLOR(color);
int i, j, k;
int pos, pos2;
int own, enemy;
signed char threshold[BOARDMAX];
signed char influence[BOARDMAX];
int list[BOARDMAX];
int size = 0, lastchange = 0;
memset(threshold, 0, sizeof(threshold));
memset(influence, 0, sizeof(influence));
/* In the first pass we
* 1. Give influence to lively own stones and their neighbors.
* (Cases (1) and (2) above.)
* 2. Fill influence[] and threshold[] arrays with initial values.
*/
for (pos = BOARDMIN; pos < BOARDMAX; pos++) {
if (!ON_BOARD(pos))
continue;
if (lively[pos]) {
if (board[pos] == color) {
domain[pos] = 1; /* Case (1) above. */
influence[pos] = 1;
}
else
influence[pos] = -1;
continue;
}
own = enemy = 0;
for (k = 0; k < 4; k++) {
pos2 = pos + delta[k];
if (ON_BOARD(pos2) && lively[pos2]) {
if (board[pos2] == color)
own = 1;
else
enemy = 1;
}
}
if (own) {
/* To explain the asymmetry between the first time around
* this loop and subsequent ones, a false margin is adjacent
* to both B and W lively stones, so it's found on the first
* pass through the loop.
*/
if (first_time) {
if (board[pos] == EMPTY && (false_margin(pos, color, lively)
|| false_margin(pos, other, lively)))
false_margins[pos] = 1;
else {
domain[pos] = 1;
influence[pos] = 1;
}
}
else if (board[pos] != EMPTY || !false_margins[pos]) {
domain[pos] = 1;
influence[pos] = 1;
}
}
else
list[size++] = pos;
if (enemy) {
threshold[pos] = 1;
influence[pos]--;
}
else if (is_edge_vertex(pos))
influence[pos]--;
}
/* Now we loop over the board until no more vertices can be added to
* the domain through case (3) above.
*/
if (size) {
k = size;
while (1) {
if (!k)
k = size;
pos = list[--k];
/* Case (3) above. */
if (sufficient_influence(pos, SOUTH(pos), SE(pos))
|| sufficient_influence(pos, SOUTH(pos), SW(pos))
|| sufficient_influence(pos, EAST(pos), SE(pos))
|| sufficient_influence(pos, EAST(pos), NE(pos))
|| sufficient_influence(pos, WEST(pos), SW(pos))
|| sufficient_influence(pos, WEST(pos), NW(pos))
|| sufficient_influence(pos, NORTH(pos), NW(pos))
|| sufficient_influence(pos, NORTH(pos), NE(pos))) {
domain[pos] = 1;
influence[pos]++;
if (!--size)
break;
if (k < size)
list[k] = list[size];
else
k--;
lastchange = k;
}
else if (k == lastchange)
break; /* Looped the whole list and found nothing new */
}
}
if (0 && (debug & DEBUG_EYES)) {
start_draw_board();
for (i = 0; i < board_size; i++)
for (j = 0; j < board_size; j++) {
draw_color_char(i, j, domain[POS(i, j)] ? '1' : '0', GG_COLOR_BLACK);
}
end_draw_board();
}
}
static void
count_neighbours(struct eye_data eyedata[BOARDMAX])
{
int pos;
int k;
for (pos = BOARDMIN; pos < BOARDMAX; pos++) {
if (!ON_BOARD(pos) || eyedata[pos].origin == NO_MOVE)
continue;
eyedata[pos].esize = eyedata[eyedata[pos].origin].esize;
eyedata[pos].msize = eyedata[eyedata[pos].origin].msize;
eyedata[pos].neighbors = 0;
eyedata[pos].marginal_neighbors = 0;
for (k = 0; k < 4; k++) {
int pos2 = pos + delta[k];
if (ON_BOARD(pos2) && eyedata[pos2].origin == eyedata[pos].origin) {
eyedata[pos].neighbors++;
if (eyedata[pos2].marginal)
eyedata[pos].marginal_neighbors++;
}
}
}
}
static int
is_lively(int owl_call, int pos)
{
if (board[pos] == EMPTY)
return 0;
if (owl_call)
return owl_lively(pos);
else
return (!worm[pos].inessential
&& (worm[pos].attack_codes[0] == 0
|| worm[pos].defense_codes[0] != 0));
}
/* In the following situation, we do not wish the vertex at 'a'
* included in the O eye space:
*
* OOOOXX
* OXaX..
* ------
*
* This eyespace should parse as (X), not (X!). Thus the vertex
* should not be included in the eyespace if it is adjacent to
* an X stone which is alive, yet X cannot play safely at a.
* The function returns 1 if this situation is found at
* (pos) for color O.
*
* The condition above is true, curiously enough, also for the
* following case:
* A group has two eyes, one of size 1 and one which is critical 1/2.
* It also has to have less than 4 external liberties, since the
* reading has to be able to capture the group tactically. In that
* case, the eye of size one will be treated as a false marginal.
* Thus we have to exclude this case, which is done by requiring (pos)
* to be adjacent to both white and black stones. Since this test is
* least expensive, we start with it.
*
* As a second optimization we require that one of the other colored
* neighbors is not lively. This should cut down on the number of
* calls to attack() and safe_move().
*/
static int
false_margin(int pos, int color, int lively[BOARDMAX])
{
int other = OTHER_COLOR(color);
int neighbors = 0;
int k;
int all_lively;
int potential_false_margin;
/* Require neighbors of both colors. */
for (k = 0; k < 4; k++)
if (ON_BOARD(pos + delta[k]))
neighbors |= board[pos + delta[k]];
if (neighbors != (WHITE | BLACK))
return 0;
/* At least one opponent neighbor should be not lively. */
all_lively = 1;
for (k = 0; k < 4; k++)
if (board[pos + delta[k]] == other && !lively[pos + delta[k]])
all_lively = 0;
if (all_lively)
return 0;
potential_false_margin = 0;
for (k = 0; k < 4; k++) {
int apos = pos + delta[k];
if (board[apos] != other || !lively[apos])
continue;
if (stackp == 0 && worm[apos].attack_codes[0] == 0)
potential_false_margin = 1;
if (stackp > 0 && !attack(apos, NULL))
potential_false_margin = 1;
}
if (potential_false_margin && safe_move(pos, other) == 0) {
DEBUG(DEBUG_EYES, "False margin for %C at %1m.\n", color, pos);
return 1;
}
return 0;
}
/*
* originate_eye(pos, pos, *esize, *msize, eye) creates an eyeshape
* with origin pos. esize and msize return the size and the number of
* marginal vertices. The repeated variables (pos) are due to the
* recursive definition of the function.
*/
static void
originate_eye(int origin, int pos,
int *esize, int *msize,
struct eye_data eye[BOARDMAX])
{
int k;
ASSERT_ON_BOARD1(origin);
ASSERT_ON_BOARD1(pos);
gg_assert(esize != NULL);
gg_assert(msize != NULL);
eye[pos].origin = origin;
(*esize)++;
if (eye[pos].marginal)
(*msize)++;
for (k = 0; k < 4; k++) {
int pos2 = pos + delta[k];
if (ON_BOARD(pos2)
&& eye[pos2].color == eye[pos].color
&& eye[pos2].origin == NO_MOVE
&& (!eye[pos2].marginal || !eye[pos].marginal))
originate_eye(origin, pos2, esize, msize, eye);
}
}
/*
* propagate_eye(origin) copies the data at the (origin) to the
* rest of the eye (invariant fields only).
*/
void
propagate_eye(int origin, struct eye_data eye[BOARDMAX])
{
int pos;
for (pos = BOARDMIN; pos < BOARDMAX; pos++)
if (ON_BOARD(pos) && eye[pos].origin == origin) {
eye[pos].color = eye[origin].color;
eye[pos].esize = eye[origin].esize;
eye[pos].msize = eye[origin].msize;
eye[pos].origin = eye[origin].origin;
eye[pos].value = eye[origin].value;
}
}
/* Find the dragon or dragons surrounding an eye space. Up to
* max_dragons dragons adjacent to the eye space are added to
* the dragon array, and the number of dragons found is returned.
*/
int
find_eye_dragons(int origin, struct eye_data eye[BOARDMAX], int eye_color,
int dragons[], int max_dragons)
{
int mx[BOARDMAX];
int num_dragons = 0;
int pos;
memset(mx, 0, sizeof(mx));
DEBUG(DEBUG_MISCELLANEOUS, "find_eye_dragons: %1m %C\n", origin, eye_color);
for (pos = BOARDMIN; pos < BOARDMAX; pos++) {
if (board[pos] == eye_color
&& mx[dragon[pos].origin] == 0
&& ((ON_BOARD(SOUTH(pos))
&& eye[SOUTH(pos)].origin == origin
&& !eye[SOUTH(pos)].marginal)
|| (ON_BOARD(WEST(pos))
&& eye[WEST(pos)].origin == origin
&& !eye[WEST(pos)].marginal)
|| (ON_BOARD(NORTH(pos))
&& eye[NORTH(pos)].origin == origin
&& !eye[NORTH(pos)].marginal)
|| (ON_BOARD(EAST(pos))
&& eye[EAST(pos)].origin == origin
&& !eye[EAST(pos)].marginal))) {
DEBUG(DEBUG_MISCELLANEOUS,
" dragon: %1m %1m\n", pos, dragon[pos].origin);
mx[dragon[pos].origin] = 1;
if (dragons != NULL && num_dragons < max_dragons)
dragons[num_dragons] = dragon[pos].origin;
num_dragons++;
}
}
return num_dragons;
}
/* Print debugging data for the eyeshape at (i,j). Useful with GDB.
*/
static void
print_eye(struct eye_data eye[BOARDMAX], struct half_eye_data heye[BOARDMAX],
int pos)
{
int m, n;
int pos2;
int mini, maxi;
int minj, maxj;
int origin = eye[pos].origin;
gprintf("Eyespace at %1m: color=%C, esize=%d, msize=%d\n",
pos, eye[pos].color, eye[pos].esize, eye[pos].msize);
for (pos2 = BOARDMIN; pos2 < BOARDMAX; pos2++) {
if (!ON_BOARD(pos2))
continue;
if (eye[pos2].origin != pos)
continue;
if (eye[pos2].marginal && IS_STONE(board[pos2]))
gprintf("%1m (X!)\n", pos2);
else if (is_halfeye(heye, pos2) && IS_STONE(board[pos2])) {
if (heye[pos2].value == 3.0)
gprintf("%1m (XH)\n", pos2);
else
gprintf("%1m (XH) (topological eye value = %f)\n", pos2,
heye[pos2].value);
}
else if (!eye[pos2].marginal && IS_STONE(board[pos2]))
gprintf("%1m (X)\n", pos2);
else if (eye[pos2].marginal && board[pos2] == EMPTY)
gprintf("%1m (!)\n", pos2);
else if (is_halfeye(heye, pos2) && board[pos2] == EMPTY) {
if (heye[pos2].value == 3.0)
gprintf("%1m (H)\n", pos2);
else
gprintf("%1m (H) (topological eye value = %f)\n", pos2,
heye[pos2].value);
}
else
gprintf("%1m\n", pos2);
}
gprintf("\n");
/* Determine the size of the eye. */
mini = board_size;
maxi = -1;
minj = board_size;
maxj = -1;
for (m = 0; m < board_size; m++)
for (n = 0; n < board_size; n++) {
if (eye[POS(m, n)].origin != origin)
continue;
if (m < mini) mini = m;
if (m > maxi) maxi = m;
if (n < minj) minj = n;
if (n > maxj) maxj = n;
}
/* Prints the eye shape. A half eye is shown by h, if empty or H, if an
* enemy is present. Note that each half eye has a marginal point which is
* not printed, so the representation here may have less points than the
* matching eye pattern in eyes.db. Printing a marginal for the half eye
* would be nice, but difficult to implement.
*/
for (m = mini; m <= maxi; m++) {
gprintf(""); /* Get the indentation right. */
for (n = minj; n <= maxj; n++) {
int pos2 = POS(m, n);
if (eye[pos2].origin == origin) {
if (board[pos2] == EMPTY) {
if (eye[pos2].marginal)
gprintf("%o!");
else if (is_halfeye(heye, pos2))
gprintf("%oh");
else
gprintf("%o.");
}
else if (is_halfeye(heye, pos2))
gprintf("%oH");
else
gprintf("%oX");
}
else
gprintf("%o ");
}
gprintf("\n");
}
}
/*
* Given an eyespace with origin (pos), this function computes the
* minimum and maximum numbers of eyes the space can yield. If max and
* min are different, then vital points of attack and defense are also
* generated.
*
* If add_moves == 1, this function may add a move_reason for (color) at
* a vital point which is found by the function. If add_moves == 0,
* set color == EMPTY.
*/
void
compute_eyes(int pos, struct eyevalue *value,
int *attack_point, int *defense_point,
struct eye_data eye[BOARDMAX],
struct half_eye_data heye[BOARDMAX], int add_moves)
{
if (attack_point)
*attack_point = NO_MOVE;
if (defense_point)
*defense_point = NO_MOVE;
if (debug & DEBUG_EYES) {
print_eye(eye, heye, pos);
DEBUG(DEBUG_EYES, "\n");
}
/* Look up the eye space in the graphs database. */
if (read_eye(pos, attack_point, defense_point, value, eye, heye, add_moves))
return;
/* Ideally any eye space that hasn't been matched yet should be two
* secure eyes. Until the database becomes more complete we have
* some additional heuristics to guess the values of unknown
* eyespaces.
*/
if (eye[pos].esize - 2*eye[pos].msize > 3)
set_eyevalue(value, 2, 2, 2, 2);
else if (eye[pos].esize - 2*eye[pos].msize > 0)
set_eyevalue(value, 1, 1, 1, 1);
else
set_eyevalue(value, 0, 0, 0, 0);
}
/*
* This function works like compute_eyes(), except that it also gives
* a pessimistic view of the chances to make eyes. Since it is intended
* to be used from the owl code, the option to add move reasons has
* been removed.
*/
void
compute_eyes_pessimistic(int pos, struct eyevalue *value,
int *pessimistic_min,
int *attack_point, int *defense_point,
struct eye_data eye[BOARDMAX],
struct half_eye_data heye[BOARDMAX])
{
static int bulk_coefficients[5] = {-1, -1, 1, 4, 12};
int pos2;
int margins = 0;
int halfeyes = 0;
int margins_adjacent_to_margin = 0;
int effective_eyesize;
int bulk_score = 0;
signed char chainlinks[BOARDMAX];
/* Stones inside eyespace which do not coincide with a false eye or
* a halfeye.
*/
int interior_stones = 0;
memset(chainlinks, 0, BOARDMAX);
for (pos2 = BOARDMIN; pos2 < BOARDMAX; pos2++) {
int k;
if (!ON_BOARD(pos2) || eye[pos2].origin != pos)
continue;
if (eye[pos2].marginal || is_halfeye(heye, pos2)) {
margins++;
if (eye[pos2].marginal && eye[pos2].marginal_neighbors > 0)
margins_adjacent_to_margin++;
if (is_halfeye(heye, pos2))
halfeyes++;
}
else if (IS_STONE(board[pos2]))
interior_stones++;
bulk_score += bulk_coefficients[(int) eye[pos2].neighbors];
for (k = 0; k < 4; k++) {
int neighbor = pos2 + delta[k];
if (board[neighbor] == eye[pos].color) {
if (!chainlinks[neighbor]) {
bulk_score += 4;
mark_string(neighbor, chainlinks, 1);
}
}
else if (!ON_BOARD(neighbor))
bulk_score += 2;
}
}
/* This is a measure based on the simplified assumption that both
* players only cares about playing the marginal eye spaces. It is
* used later to guess the eye value for unidentified eye shapes.
*/
effective_eyesize = (eye[pos].esize + halfeyes - 2*margins
- margins_adjacent_to_margin);
if (attack_point)
*attack_point = NO_MOVE;
if (defense_point)
*defense_point = NO_MOVE;
if (debug & DEBUG_EYES) {
print_eye(eye, heye, pos);
DEBUG(DEBUG_EYES, "\n");
}
/* Look up the eye space in the graphs database. */
if (read_eye(pos, attack_point, defense_point, value,
eye, heye, 0)) {
*pessimistic_min = min_eyes(value) - margins;
/* A single point eye which is part of a ko can't be trusted. */
if (eye[pos].esize == 1
&& is_ko(pos, OTHER_COLOR(eye[pos].color), NULL))
*pessimistic_min = 0;
DEBUG(DEBUG_EYES, " graph matching - %s, pessimistic_min=%d\n",
eyevalue_to_string(value), *pessimistic_min);
}
/* Ideally any eye space that hasn't been matched yet should be two
* secure eyes. Until the database becomes more complete we have
* some additional heuristics to guess the values of unknown
* eyespaces.
*/
else {
guess_eye_space(pos, effective_eyesize, margins, bulk_score, eye,
value, pessimistic_min);
DEBUG(DEBUG_EYES, " guess_eye - %s, pessimistic_min=%d\n",
eyevalue_to_string(value), *pessimistic_min);
}
if (*pessimistic_min < 0) {
*pessimistic_min = 0;
DEBUG(DEBUG_EYES, " pessimistic min revised to 0\n");
}
/* An eyespace with at least two interior stones is assumed to be
* worth at least one eye, regardless of previous considerations.
*/
if (*pessimistic_min < 1 && interior_stones >= 2) {
*pessimistic_min = 1;
DEBUG(DEBUG_EYES, " pessimistic min revised to 1 (interior stones)\n");
}
if (attack_point
&& *attack_point == NO_MOVE
&& max_eyes(value) != *pessimistic_min) {
/* Find one marginal vertex and set as attack and defense point.
*
* We make some effort to find the best marginal vertex by giving
* priority to ones with more than one neighbor in the eyespace.
* We prefer non-halfeye margins and ones which are not self-atari
* for the opponent. Margins not on the edge are also favored.
*/
int best_attack_point = NO_MOVE;
int best_defense_point = NO_MOVE;
float score = 0.0;
for (pos2 = BOARDMIN; pos2 < BOARDMAX; pos2++) {
if (ON_BOARD(pos2) && eye[pos2].origin == pos) {
float this_score = 0.0;
int this_attack_point = NO_MOVE;
int this_defense_point = NO_MOVE;
if (eye[pos2].marginal && board[pos2] == EMPTY) {
this_score = eye[pos2].neighbors;
this_attack_point = pos2;
this_defense_point = pos2;
if (is_self_atari(pos2, OTHER_COLOR(eye[pos].color)))
this_score -= 0.5;
if (is_edge_vertex(pos2))
this_score -= 0.1;
}
else if (is_halfeye(heye, pos2)) {
this_score = 0.75;
this_defense_point = heye[pos2].defense_point[0];
this_attack_point = heye[pos2].attack_point[0];
}
else
continue;
if (gg_normalize_float2int(this_score, 0.01)
> gg_normalize_float2int(score, 0.01)) {
best_attack_point = this_attack_point;
best_defense_point = this_defense_point;
score = this_score;
}
}
}
if (score > 0.0) {
if (defense_point)
*defense_point = best_defense_point;
if (attack_point)
*attack_point = best_attack_point;
}
}
if (defense_point && *defense_point != NO_MOVE) {
ASSERT_ON_BOARD1(*defense_point);
}
if (attack_point && *attack_point != NO_MOVE) {
ASSERT_ON_BOARD1(*attack_point);
}
}
static void
guess_eye_space(int pos, int effective_eyesize, int margins,
int bulk_score, struct eye_data eye[BOARDMAX],
struct eyevalue *value, int *pessimistic_min)
{
if (effective_eyesize > 3) {
set_eyevalue(value, 2, 2, 2, 2);
*pessimistic_min = 1;
if ((margins == 0 && effective_eyesize > 7)
|| (margins > 0 && effective_eyesize > 9)) {
int eyes = 2 + (effective_eyesize - 2 * (margins > 0) - 8) / 2;
int threshold = (4 * (eye[pos].esize - 2)
+ (effective_eyesize - 8) * (effective_eyesize - 9));
DEBUG(DEBUG_EYES, "size: %d(%d), threshold: %d, bulk score: %d\n",
eye[pos].esize, effective_eyesize, threshold, bulk_score);
if (bulk_score > threshold && effective_eyesize < 15)
eyes = gg_max(2, eyes - ((bulk_score - threshold) / eye[pos].esize));
if (bulk_score < threshold + eye[pos].esize || effective_eyesize >= 15)
*pessimistic_min = eyes;
set_eyevalue(value, eyes, eyes, eyes, eyes);
}
}
else if (effective_eyesize > 0) {
set_eyevalue(value, 1, 1, 1, 1);
if (margins > 0)
*pessimistic_min = 0;
else
*pessimistic_min = 1;
}
else {
if (eye[pos].esize - margins > 2)
set_eyevalue(value, 0, 0, 1, 1);
else
set_eyevalue(value, 0, 0, 0, 0);
*pessimistic_min = 0;
}
}
/* This function does some minor reading to improve the results of
* recognize_eye(). Currently, it has two duties. One is to read
* positions like this:
*
* .XXXX| with half eye with proper eye
* XXOOO|
* XO.O.| . (1 eye) . (2 eyes)
* XXOa.| !.. .*
* -----+
*
* recognize_eye() sees the eyespace of the white dragon as shown
* (there's a half eye at a and it is considered the same as '!.' by
* the optics code). Normally, that eye shape gives only one secure
* eye, and owl thinks that the white dragon is dead unconditionally.
* This function tries to turn such ko-dependent half eyes into proper
* eyes and chooses the best alternative. Note that we don't have any
* attack/defense codes here, since owl will determine them itself.
*
* Another one is related to some cases when replacing half eyes with
* '!.' doesn't work. E.g. consider this eye (optics:328):
*
* XXXOO eye graph is 310:
* X..X.
* XOXX. !.! (second '!' is due to the halfeye)
* OXO..
* O.O..
*
* When this function detects such a half eye that can be attacked
* and/or defended inside its eyespace, it tries to turn it into a
* proper eye and see what happens. In case it gives an improvement
* for attacker and/or defender, the function keeps new result but
* only if new vital points are also vital points for the half eye.
* The heuristics used here might need improvements since they are
* based on a single game position.
*
* If add_moves != 0, this function may add move reasons for (color)
* at the vital points which are found by recognize_eye(). If add_moves
* == 0, set color to be EMPTY.
*/
static int
read_eye(int pos, int *attack_point, int *defense_point,
struct eyevalue *value, struct eye_data eye[BOARDMAX],
struct half_eye_data heye[BOARDMAX],
int add_moves)
{
int eye_color;
int k;
int pos2;
int combination_halfeye = NO_MOVE;
int combination_attack = NO_MOVE;
int combination_defense = NO_MOVE;
int num_ko_halfeyes = 0;
int ko_halfeye = NO_MOVE;
struct vital_points vp;
struct vital_points ko_vp;
struct vital_points *best_vp = &vp;
eye_color = recognize_eye(pos, attack_point, defense_point, value,
eye, heye, &vp);
if (!eye_color)
return 0;
/* Find ko half eyes and "combination" half eyes if any. */
for (pos2 = BOARDMIN; pos2 < BOARDMAX; pos2++) {
if (ON_BOARD(pos2)
&& eye[pos2].origin == pos
&& heye[pos2].type == HALF_EYE) {
if (combination_halfeye == NO_MOVE) {
int apos = NO_MOVE;
int dpos = NO_MOVE;
for (k = 0; k < heye[pos2].num_attacks; k++) {
if (eye[heye[pos2].attack_point[k]].origin == pos) {
apos = heye[pos2].attack_point[k];
break;
}
}
for (k = 0; k < heye[pos2].num_defenses; k++) {
if (eye[heye[pos2].defense_point[k]].origin == pos) {
dpos = heye[pos2].defense_point[k];
break;
}
}
if (apos || dpos) {
combination_halfeye = pos2;
combination_attack = apos;
combination_defense = dpos;
}
}
if (heye[pos2].value < 3.0) {
num_ko_halfeyes++;
ko_halfeye = pos2;
}
}
}
/* In case we have a "combination" half eye, turn it into a proper eye
* vertex for a while and see what happens.
*/
if (combination_halfeye != NO_MOVE) {
int result;
int apos = NO_MOVE;
int dpos = NO_MOVE;
struct eyevalue combination_value;
struct vital_points combination_vp;
heye[combination_halfeye].type = 0;
result = recognize_eye(pos, &apos, &dpos, &combination_value, eye,
heye, &combination_vp);
heye[combination_halfeye].type = HALF_EYE;
if (result) {
if (combination_attack
&& min_eyes(value) > min_eyes(&combination_value)) {
/* FIXME: I'm not sure we can ever get here. */
for (k = 0; k < combination_vp.num_attacks; k++) {
if (combination_vp.attacks[k] == combination_attack) {
value->a = combination_value.a;
value->b = combination_value.b;
*attack_point = apos;
best_vp->num_attacks = 1;
best_vp->attacks[0] = combination_attack;
break;
}
}
}
if (combination_defense
&& max_eyes(value) < max_eyes(&combination_value)) {
/* Turning the half eye into a proper eye gives an improvement.
* However, we can only accept this result if there is a vital
* point that defends both the half eye and the whole eyespace.
*/
for (k = 0; k < combination_vp.num_defenses; k++) {
if (combination_vp.defenses[k] == combination_defense) {
value->c = combination_value.c;
value->d = combination_value.d;
*defense_point = dpos;
best_vp->num_defenses = 1;
best_vp->defenses[0] = combination_defense;
break;
}
}
}
if (min_eyes(value) != max_eyes(value)) {
ASSERT1(combination_attack || combination_defense, combination_halfeye);
if (*attack_point == NO_MOVE) {
*attack_point = combination_attack;
if (*attack_point == NO_MOVE)
*attack_point = combination_defense;
}
if (*defense_point == NO_MOVE) {
*defense_point = combination_defense;
if (*defense_point == NO_MOVE)
*defense_point = combination_defense;
}
}
}
}
/* The same with ko half eye (we cannot win two kos at once, therefore we
* give up if there is more than one ko half eye).
*/
if (num_ko_halfeyes == 1) {
int result;
int apos = NO_MOVE;
int dpos = NO_MOVE;
struct eyevalue ko_value;
heye[ko_halfeye].type = 0;
result = recognize_eye(pos, &apos, &dpos, &ko_value, eye,
heye, &ko_vp);
heye[ko_halfeye].type = HALF_EYE;
if (result && max_eyes(value) < max_eyes(&ko_value)) {
/* It is worthy to win the ko. */
*value = ko_value;
*attack_point = apos;
*defense_point = dpos;
best_vp = &ko_vp;
}
}
if (add_moves) {
struct vital_eye_points *vital;
if (eye_color == WHITE)
vital = white_vital_points;
else
vital = black_vital_points;
for (k = 0; k < best_vp->num_defenses && k < MAX_EYE_ATTACKS; k++)
vital[pos].defense_points[k] = best_vp->defenses[k];
for (k = 0; k < best_vp->num_attacks && k < MAX_EYE_ATTACKS; k++)
vital[pos].attack_points[k] = best_vp->attacks[k];
}
return 1;
}
/* recognize_eye(pos, *attack_point, *defense_point, *max, *min, eye_data,
* half_eye_data, color, vp), where pos is the origin of an eyespace, returns
* owner of eye (his color) if there is a pattern in eyes.db matching the
* eyespace, or 0 if no match is found. If there is a key point for attack,
* (*attack_point) is set to its location, or NO_MOVE if there is none.
* Similarly (*defense_point) is the location of a vital defense point.
* *value is set according to the pattern found. Vital attack/defense points
* exist if and only if min_eyes(value) != max_eyes(value).
*/
static int
recognize_eye(int pos, int *attack_point, int *defense_point,
struct eyevalue *value,
struct eye_data eye[BOARDMAX],
struct half_eye_data heye[BOARDMAX],
struct vital_points *vp)
{
int pos2;
int eye_color;
int eye_size = 0;
int num_marginals = 0;
int vpos[MAXEYE];
signed char marginal[MAXEYE], edge[MAXEYE], neighbors[MAXEYE];
int graph;
int map[MAXEYE];
int best_score;
int r;
gg_assert(attack_point != NULL);
gg_assert(defense_point != NULL);
/* Set `eye_color' to the owner of the eye. */
eye_color = eye[pos].color;
if (eye[pos].esize-eye[pos].msize > 8)
return 0;
if (eye[pos].msize > MAXEYE)
return 0;
/* Create list of eye vertices */
for (pos2 = BOARDMIN; pos2 < BOARDMAX; pos2++) {
if (!ON_BOARD(pos2))
continue;
if (eye[pos2].origin == pos) {
vpos[eye_size] = pos2;
marginal[eye_size] = eye[pos2].marginal;
if (marginal[eye_size])
num_marginals++;
neighbors[eye_size] = eye[pos2].neighbors;
if (0) {
if (marginal[eye_size])
TRACE("(%1m)", vpos[eye_size]);
else
TRACE(" %1m ", vpos[eye_size]);
TRACE("\n");
}
if (is_corner_vertex(pos2))
edge[eye_size] = 2;
else if (is_edge_vertex(pos2))
edge[eye_size] = 1;
else
edge[eye_size] = 0;
if (is_halfeye(heye, pos2)) {
neighbors[eye_size]++; /* Increase neighbors of half eye. */
eye_size++;
/* Use a virtual marginal vertex for mapping purposes. We set it
* to be at NO_MOVE so it won't accidentally count as a
* neighbor for another vertex. Note that the half eye precedes
* the virtual marginal vertex in the list.
*/
vpos[eye_size] = NO_MOVE;
marginal[eye_size] = 1;
num_marginals++;
edge[eye_size] = 0;
neighbors[eye_size] = 1;
}
eye_size++;
}
}
/* We attempt to construct a map from the graph to the eyespace
* preserving the adjacency structure. If this can be done, we've
* identified the eyeshape.
*/
for (graph = 0; graphs[graph].vertex != NULL; graph++) {
int q;
if (graphs[graph].esize != eye_size
|| graphs[graph].msize != num_marginals)
continue;
reset_map(eye_size);
q = 0;
first_map(&map[0]);
while (1) {
struct eye_vertex *gv = &graphs[graph].vertex[q];
int mv = map[q];
int ok = 1;
if (0)
TRACE("q=%d: %d %d %d %d %d %d\n",
q, map[0], map[1], map[2], map[3], map[4], map[5]);
if (neighbors[mv] != gv->neighbors
|| marginal[mv] != gv->marginal
|| edge[mv] < gv->edge)
ok = 0;
if (ok) {
if (IS_STONE(board[vpos[mv]])) {
if (!(gv->flags & CAN_CONTAIN_STONE))
ok = 0;
}
/* Virtual half eye marginals also fall here since they are off
* board.
*/
else if (!(gv->flags & CAN_BE_EMPTY))
ok = 0;
}
if (ok) {
int k;
for (k = 0; k < gv->neighbors; k++) {
if (gv->n[k] < q) {
int mn = map[gv->n[k]];
/* Two eye vertices are neighbours if they are adjacent on the
* board or one of them is a half eye and the other is its
* virtual marginal vertex (and follows it in vpos[] array).
*/
if (vpos[mv] != SOUTH(vpos[mn])
&& vpos[mv] != WEST(vpos[mn])
&& vpos[mv] != NORTH(vpos[mn])
&& vpos[mv] != EAST(vpos[mn])
&& (mv != mn - 1
|| vpos[mv] == NO_MOVE
|| heye[vpos[mv]].type != HALF_EYE)
&& (mn != mv - 1
|| vpos[mn] == NO_MOVE
|| heye[vpos[mn]].type != HALF_EYE)) {
ok = 0;
break;
}
}
}
}
if (!ok) {
if (!next_map(&q, map))
break;
if (0)
gprintf(" q=%d, esize=%d: %d %d %d %d %d\n",
q, eye_size,
map[0], map[1], map[2], map[3], map[4]);
}
else {
q++;
if (q == eye_size)
break; /* A match! */
first_map(&map[q]);
}
}
if (q == eye_size) {
/* We have found a match! Now sort out the vital moves. */
*value = graphs[graph].value;
vp->num_attacks = 0;
vp->num_defenses = 0;
if (eye_move_urgency(value) > 0) {
/* Collect all attack and defense points in the pattern. */
int k;
for (k = 0; k < eye_size; k++) {
struct eye_vertex *ev = &graphs[graph].vertex[k];
if (ev->flags & EYE_ATTACK_POINT) {
/* Check for a marginal vertex matching a half eye virtual
* marginal. This is the case if a half eye preceeds the
* current vertex in the list.
*/
if (ev->marginal
&& map[k] > 0
&& vpos[map[k] - 1] != NO_MOVE
&& is_halfeye(heye, vpos[map[k] - 1])) {
/* Add all diagonals as vital. */
int ix;
struct half_eye_data *he = &heye[vpos[map[k] - 1]];
for (ix = 0; ix < he->num_attacks; ix++)
vp->attacks[vp->num_attacks++] = he->attack_point[ix];
}
else
vp->attacks[vp->num_attacks++] = vpos[map[k]];
}
if (ev->flags & EYE_DEFENSE_POINT) {
/* Check for a half eye virtual marginal vertex. */
if (ev->marginal
&& map[k] > 0
&& vpos[map[k] - 1] != NO_MOVE
&& is_halfeye(heye, vpos[map[k] - 1])) {
/* Add all diagonals as vital. */
int ix;
struct half_eye_data *he = &heye[vpos[map[k] - 1]];
for (ix = 0; ix < he->num_defenses; ix++)
vp->defenses[vp->num_defenses++] = he->defense_point[ix];
}
else
vp->defenses[vp->num_defenses++] = vpos[map[k]];
}
}
gg_assert(vp->num_attacks > 0 && vp->num_defenses > 0);
/* We now have all vital attack and defense points listed but
* we are also expected to single out of one of each to return
* in *attack_point and *defense_point. Since sometimes those
* are the only vital points considered, we want to choose the
* best ones, in the sense that they minimize the risk for
* error in the eye space analysis.
*
* One example is this position
*
* |..XXXX
* |XXX..X
* |..!O.X
* |OO.O.X
* |.O.!XX
* +------
*
* where O has an eyespace of the !..! type. The graph
* matching finds that both marginal vertices are vital points
* but here the one at 3-3 fails to defend. (For attack both
* points work but the 3-3 one is still worse since it leaves
* a ko threat.)
*
* In order to differentiate between the marginal points we
* count the number of straight and diagonal neighbors within
* the eye space. In the example above both have one straight
* neighbor each but the edge margin wins because it also has
* a diagonal margin.
*/
best_score = -10;
for (k = 0; k < vp->num_attacks; k++) {
int apos = vp->attacks[k];
int score = 0;
for (r = 0; r < 8; r++)
if (ON_BOARD(apos + delta[r])
&& eye[apos + delta[r]].color == eye[pos].color
&& !eye[apos + delta[r]].marginal) {
score++;
if (r < 4) {
score++;
if (board[apos + delta[r]] != EMPTY)
score++;
}
}
/* If a vital point is not adjacent to any point in the eye
* space, it must be a move to capture or defend a string
* related to a halfeye, e.g. the move * in this position,
*
* ......|
* .XXXX.|
* .X.O..|
* .XO.OO|
* .*XO..|
* ------+
*
* Playing this is probably a good idea.
*/
if (score == 0)
score += 2;
if (0)
gprintf("attack point %1m score %d\n", apos, score);
if (score > best_score) {
*attack_point = apos;
best_score = score;
}
}
best_score = -10;
for (k = 0; k < vp->num_defenses; k++) {
int dpos = vp->defenses[k];
int score = 0;
for (r = 0; r < 8; r++)
if (ON_BOARD(dpos + delta[r])
&& eye[dpos + delta[r]].color == eye[pos].color
&& !eye[dpos + delta[r]].marginal) {
score++;
if (r < 4) {
score++;
if (board[dpos + delta[r]] != EMPTY)
score++;
}
}
/* If possible, choose a non-sacrificial defense point.
* Compare white T8 and T6 in lazarus:21.
*/
if (safe_move(dpos, eye_color) != WIN)
score -= 5;
/* See comment to the same code for attack points. */
if (score == 0)
score += 2;
if (0)
gprintf("defense point %1m score %d\n", dpos, score);
if (score > best_score) {
*defense_point = dpos;
best_score = score;
}
}
DEBUG(DEBUG_EYES, " vital points: %1m (attack) %1m (defense)\n",
*attack_point, *defense_point);
DEBUG(DEBUG_EYES, " pattern matched: %d\n", graphs[graph].patnum);
}
TRACE("eye space at %1m of type %d\n", pos, graphs[graph].patnum);
return eye_color;
}
}
return 0;
}
/* a MAP is a map of the integers 0,1,2, ... ,q into
* 0,1, ... , esize-1 where q < esize. This determines a
* bijection of the first q+1 elements of the graph into the
* eyespace. The following three functions work with maps.
*/
/* Reset internal data structure used by first_map() and
* next_map() functions.
*/
static void
reset_map(int size)
{
map_size = size;
memset(used_index, 0, size * sizeof(used_index[0]));
}
/* The function first_map finds the smallest valid
* value of a map element.
*/
static void
first_map(int *map_value)
{
int k = 0;
while (used_index[k])
k++;
used_index[k] = 1;
*map_value = k;
}
/* The function next_map produces the next map in lexicographical
* order. If no next map can be found, q is decremented, then we
* try again. If the entire map is lexicographically last, the
* function returns false.
*/
static int
next_map(int *q, int map[MAXEYE])
{
int k;
do {
used_index[map[*q]] = 0;
for (k = map[*q]; ++k < map_size;) {
if (!used_index[k]) {
used_index[k] = 1;
map[*q] = k;
return 1;
}
}
(*q)--;
} while (*q >= 0);
return 0;
}
/* add_false_eye() turns a proper eyespace into a margin. */
static void
add_false_eye(int pos, struct eye_data eye[BOARDMAX],
struct half_eye_data heye[BOARDMAX])
{
int k;
ASSERT1(heye[pos].type == FALSE_EYE, pos);
DEBUG(DEBUG_EYES, "false eye found at %1m\n", pos);
if (eye[pos].color == GRAY || eye[pos].marginal != 0)
return;
eye[pos].marginal = 1;
eye[eye[pos].origin].msize++;
for (k = 0; k < 4; k++)
if (ON_BOARD(pos + delta[k])
&& eye[pos + delta[k]].origin == eye[pos].origin)
eye[pos + delta[k]].marginal_neighbors++;
propagate_eye(eye[pos].origin, eye);
}
/* These functions are used from constraints to identify eye spaces,
* primarily for late endgame moves.
*/
int
is_eye_space(int pos)
{
return (white_eye[pos].color == WHITE
|| black_eye[pos].color == BLACK);
}
int
is_proper_eye_space(int pos)
{
return ((white_eye[pos].color == WHITE && !white_eye[pos].marginal)
|| (black_eye[pos].color == BLACK && !black_eye[pos].marginal));
}
/* Return the maximum number of eyes that can be obtained from the
* eyespace at (i, j). This is most useful in order to determine
* whether the eyespace can be assumed to produce any territory at
* all.
*/
int
max_eye_value(int pos)
{
int max_white = 0;
int max_black = 0;
if (white_eye[pos].color == WHITE)
max_white = max_eyes(&white_eye[pos].value);
if (black_eye[pos].color == BLACK)
max_black = max_eyes(&black_eye[pos].value);
return gg_max(max_white, max_black);
}
int
is_marginal_eye_space(int pos)
{
return (white_eye[pos].marginal || black_eye[pos].marginal);
}
int
is_halfeye(struct half_eye_data heye[BOARDMAX], int pos)
{
return heye[pos].type == HALF_EYE;
}
int
is_false_eye(struct half_eye_data heye[BOARDMAX], int pos)
{
return heye[pos].type == FALSE_EYE;
}
/* Find topological half eyes and false eyes by analyzing the
* diagonal intersections, as described in the Texinfo
* documentation (Eyes/Eye Topology).
*/
void
find_half_and_false_eyes(int color, struct eye_data eye[BOARDMAX],
struct half_eye_data heye[BOARDMAX],
int find_mask[BOARDMAX])
{
int eye_color = color;
int pos;
float sum;
for (pos = BOARDMIN; pos < BOARDMAX; pos++) {
/* skip eyespaces which owl doesn't want to be searched */
if (!ON_BOARD(pos) || (find_mask && find_mask[eye[pos].origin] <= 1))
continue;
/* skip every vertex which can't be a false or half eye */
if (eye[pos].color != eye_color
|| eye[pos].marginal
|| eye[pos].neighbors > 1)
continue;
sum = topological_eye(pos, color, eye, heye);
if (sum >= 4.0) {
/* false eye */
heye[pos].type = FALSE_EYE;
if (eye[pos].esize == 1
|| is_legal(pos, OTHER_COLOR(color))
|| board[pos] == OTHER_COLOR(color))
add_false_eye(pos, eye, heye);
}
else if (sum > 2.0) {
/* half eye */
heye[pos].type = HALF_EYE;
ASSERT1(heye[pos].num_attacks > 0, pos);
ASSERT_ON_BOARD1(heye[pos].attack_point[0]);
ASSERT1(heye[pos].num_defenses > 0, pos);
ASSERT_ON_BOARD1(heye[pos].defense_point[0]);
}
}
}
/* See Texinfo documentation (Eyes:Eye Topology). Returns:
* - 2 or less if (pos) is a proper eye for (color);
* - between 2 and 3 if the eye can be made false only by ko
* - 3 if (pos) is a half eye;
* - between 3 and 4 if the eye can be made real only by ko
* - 4 or more if (pos) is a false eye.
*
* Attack and defense points for control of the diagonals are stored
* in the heye[] array.
*
* my_eye is the eye space information with respect to (color).
*/
static float
topological_eye(int pos, int color,
struct eye_data my_eye[BOARDMAX],
struct half_eye_data heye[BOARDMAX])
{
float sum = 0.0;
float val;
int num_attacks = 0;
int num_defenses = 0;
int attack_values[4];
int defense_values[4];
int k;
int r;
int attack_point;
int defense_point;
int attack_value;
int defense_value;
memset(attack_values, 0, sizeof(attack_values));
memset(defense_values, 0, sizeof(defense_values));
/* Loop over the diagonal directions. */
for (k = 4; k < 8; k++) {
int diag = pos + delta[k];
val = evaluate_diagonal_intersection(I(pos) + deltai[k],
J(pos) + deltaj[k], color,
&attack_point, &defense_point,
my_eye);
/*
* Eyespaces with cutting points are problematic. In this position
*
* .....XXXXX
* XXXXX.OO.X
* X.OOOO.O.X
* X.O.XXXO.X
* ----------
*
* the eyespace will be .XXX. which evaluates to two eyes (seki)
* unless countermeasures are taken.
*
* This can be worked around in the topological analysis by
* sometimes setting the diagonal value to 2.0 for vertices inside
* the eyespace which are occupied by opponent stones. More
* precisely all of the following conditions must hold:
*
* a) The value is not already 2.0.
* a) The (potential) eyepoint is empty.
* b) The diagonal is occupied by an opponent string,
* c) which is also adjacent to the (potential) eye and
* d) at least three stones long.
* e) The (potential) eye is not on the edge (to steer clear of all the
* hairy cases that are handled by eyes.db anyway).
* f) At least two own strings are adjacent to the (potential) eye.
* g) At least one of the own strings adjacent to the (potential) eye has
* only one liberty which is an eye space and not decided false, yet.
*
* With this revision the eyespace above becomes .XXXh or
* equivalently .XXX.! which is almost evaluated correctly, eye
* value 0122 instead of the correct 1122. Compared to the
* previous value 2222 it's a major improvement.
*
* FIXME: This approach has a number of shortcomings.
*
* 1. d) is kind of arbitrary and there may be exceptional
* cases.
*
* 2. This diagonal value modification should not apply to
* two diagonals of the same strings inside the eyespace.
* E.g. if we have a partial eyespace looking like
*
* .OOO.
* OO.OO
* OXXXO
*
* it doesn't make sense to mark the middle vertex as a
* false eye. Possibly this doesn't make any difference
* in practice but it's at the very least confusing.
*
* 3. Actually it doesn't make sense to mark vertices as
* false otherwise either due to these revisions (half
* eyes make good sense though) as can be seen if a
* stone is added to the initial diagram,
*
* .....XXXXX
* XXXXXXOO.X
* X.OOOO.O.X
* X.O.XXXO.X
* ----------
*
* Now the eyespace instead becomes .XXX! which has the
* eye value 0011 but if X tries to attack the eye O
* suddenly gets two solid eyes!
*
* The correct analysis would be to remove the vertex
* from the eyespace rather than turning it into a false
* eye. Then we would have the eyespace .XXX which is
* correctly evaluated to one eye (eye value 1112).
*
* The problem with this is that removing eye points is
* messy. It can surely be done but currently there is
* no support in the code for doing that. It has existed
* at an earlier time but was removed because the
* implementation was not robust enough and there was no
* longer any apparent need for it. To correct this
* problem is sufficient reason to reimplement that
* functionality.
*
* 4. The test of condition g) has a result which
* potentially depends on the ordering of the eyespaces
* and thus presumably on the orientation of the board.
* It might make more sense to examine whether the
* string neighbors more than one empty vertex in the
* same eyespace.
*/
if (val < 2.0 && board[pos] == EMPTY && board[diag] == OTHER_COLOR(color)
&& !is_edge_vertex(pos) && neighbor_of_string(pos, diag)
&& countstones(diag) >= 3) {
int strings[3];
int string_count;
int s;
string_count = 0;
for (r = 0; r < 4; r++) {
int str;
str = pos + delta[r];
if (board[str] != color)
continue;
ASSERT1(string_count < 3, pos);
for (s = 0; s < string_count; s++)
if (same_string(str, strings[s]))
break;
if (s != string_count)
continue;
strings[string_count++] = str;
}
if (string_count > 1) {
for (s = 0; s < string_count; s++) {
int libs[MAX_LIBERTIES];
int adj_eye_count;
int lib_count;
adj_eye_count = 0;
lib_count = findlib(strings[s], MAX_LIBERTIES, libs);
if (lib_count > MAX_LIBERTIES)
continue;
for (r = 0; r < lib_count && adj_eye_count < 2; r++)
if (my_eye[libs[r]].color == OTHER_COLOR(color)
&& !my_eye[libs[r]].marginal)
adj_eye_count++;
if (adj_eye_count < 2) {
val = 2.0;
break;
}
}
}
}
sum += val;
if (val > 0.0 && val < 2.0) {
/* Diagonals off the edge has value 1.0 but no attack or defense
* point.
*/
if (attack_point != NO_MOVE && defense_point != NO_MOVE) {
ASSERT_ON_BOARD1(attack_point);
ASSERT_ON_BOARD1(defense_point);
/* Store these in sorted (descending) order. We remap val
* differently for attack and defense points according to:
*
* val attack_value defense_value
* --- ------------ -------------
* 1.0 3 3
* <1.0 2 1
* >1.0 1 2
*
* This means that we primarily want to take control of
* diagonals without ko and secondarily of diagonals we can
* take unconditionally but not the opponent.
*/
if (val == 1.0) {
attack_value = 3;
defense_value = 3;
}
else if (val < 1.0) {
attack_value = 2;
defense_value = 1;
}
else {
attack_value = 1;
defense_value = 2;
}
for (r = 0; r < 4; r++) {
if (attack_values[r] < attack_value) {
int tmp_value = attack_values[r];
int tmp_point;
if (tmp_value)
tmp_point = heye[pos].attack_point[r];
else
tmp_point = 0;
attack_values[r] = attack_value;
heye[pos].attack_point[r] = attack_point;
attack_value = tmp_value;
attack_point = tmp_point;
}
if (defense_values[r] < defense_value) {
int tmp_value = defense_values[r];
int tmp_point;
if (tmp_value)
tmp_point = heye[pos].defense_point[r];
else
tmp_point = 0;
defense_values[r] = defense_value;
heye[pos].defense_point[r] = defense_point;
defense_value = tmp_value;
defense_point = tmp_point;
}
}
num_attacks++;
num_defenses++;
}
}
}
/* Remove attacks and defenses with smaller value than the best
* ones. (These might be useful to save as well, but not unless we
* also store the attack/defense values in the half_eye_data.)
*/
for (r = 0; r < num_attacks; r++) {
if (attack_values[r] < attack_values[0]) {
num_attacks = r;
break;
}
}
for (r = 0; r < num_defenses; r++) {
if (defense_values[r] < defense_values[0]) {
num_defenses = r;
break;
}
}
heye[pos].num_attacks = num_attacks;
heye[pos].num_defenses = num_defenses;
heye[pos].value = sum;
return sum;
}
/* Evaluate an intersection (m, n) which is diagonal to an eye space,
* as described in the Texinfo documentation (Eyes/Eye Topology).
*
* Returns:
*
* 0 if both coordinates are off the board
* 1 if one coordinate is off the board
*
* 0 if (color) has control over the vertex
* a if (color) can take control over the vertex unconditionally and
* the opponent can take control by winning a ko.
* 1 if both (color) and the opponent can take control of the vertex
* unconditionally
* b if (color) can take control over the vertex by winning a ko and
* the opponent can take control unconditionally.
* 2 if the opponent has control over the vertex
*
* The values a and b are discussed in the documentation. We are
* currently using a = 0.75 and b = 1.25.
*
* Notice that it's necessary to pass the coordinates separately
* instead of as a 1D coordinate. The reason is that the 1D mapping
* can't uniquely identify "off the corner" points.
*
* my_eye has to be the eye_data with respect to color.
*/
static float
evaluate_diagonal_intersection(int m, int n, int color,
int *attack_point, int *defense_point,
struct eye_data my_eye[BOARDMAX])
{
float value = 0;
int other = OTHER_COLOR(color);
int pos = POS(m, n);
int acode = 0;
int apos = NO_MOVE;
int dcode = 0;
int dpos = NO_MOVE;
int off_edge = 0;
const float a = 0.75;
const float b = 2 - a;
*attack_point = NO_MOVE;
*defense_point = NO_MOVE;
/* Check whether intersection is off the board. We must do this for
* each board coordinate separately because points "off the corner"
* are special cases.
*/
if (m < 0 || m >= board_size)
off_edge++;
if (n < 0 || n >= board_size)
off_edge++;
/* Must return 0 if both coordinates out of bounds. */
if (off_edge > 0)
return (float) (off_edge % 2);
/* Discard points within own eyespace, unless marginal or ko point.
*
* Comment: For some time discardment of points within own eyespace
* was contingent on this being the same eyespace as that of the
* examined vertex. This caused problems, e.g. in this position,
*
* |........
* |XXXXX...
* |OOOOX...
* |aO.OX...
* |OXXOX...
* |.XXOX...
* +--------
*
* where the empty vertex at a was evaluated as a false eye and the
* whole group as dead (instead of living in seki).
*
* The reason for the requirement of less than two marginal
* neighbors is this position:
*
* |.XXXX...
* |.OOOX...
* |O..OX...
* |aOO.X...
* |O..XX...
* |..O.X...
* |.X..X...
* |..XXX...
*
* where the empty vertex at a should not count as a solid eye.
* (The eyespace diagonally below a looks like this:
* .!
* !
* so we can clearly see why having two marginal vertices makes a
* difference.)
*/
if (my_eye[pos].color == color
&& !my_eye[pos].marginal
&& my_eye[pos].marginal_neighbors < 2
&& !(board[pos] == EMPTY && does_capture_something(pos, other)))
return 0.0;
if (board[pos] == EMPTY) {
int your_safety = safe_move(pos, other);
apos = pos;
dpos = pos;
/* We should normally have a safe move, but occasionally it may
* happen that it's not safe. There are complications, however,
* with a position like this:
*
* .XXXX|
* XXOO.|
* XO.O.|
* XXO.O|
* -----+
*
* Therefore we ignore our own safety if opponent's safety depends
* on ko.
*/
if (your_safety == 0)
value = 0.0;
else if (your_safety != WIN)
value = a;
else { /* So your_safety == WIN. */
int our_safety = safe_move(pos, color);
if (our_safety == 0) {
int k;
value = 2.0;
/* This check is intended to fix a certain special case, but might
* be helpful in other situations as well. Consider this position,
* happened in owl reading deep enough:
*
* |XXXXX
* |XOOXX
* |O.OOX
* |.OXX.
* +-----
*
* Without this check, the corner eye is considered false, not half-
* eye. Thus, owl thinks that the capture gains at most one eye and
* gives up.
*/
for (k = 4; k < 8; k++) {
int diagonal = pos + delta[k];
int lib;
if (board[diagonal] == other && findlib(diagonal, 1, &lib) == 1) {
if (lib != pos && does_secure(color, lib, pos)) {
value = 1.0;
apos = lib;
break;
}
}
}
}
else if (our_safety == WIN)
value = 1.0;
else /* our_safety depends on ko. */
value = b;
}
}
else if (board[pos] == color) {
/* This stone had better be safe, otherwise we wouldn't have an
* eyespace in the first place.
*/
value = 0.0;
}
else if (board[pos] == other) {
if (stackp == 0) {
acode = worm[pos].attack_codes[0];
apos = worm[pos].attack_points[0];
dcode = worm[pos].defense_codes[0];
dpos = worm[pos].defense_points[0];
}
else
attack_and_defend(pos, &acode, &apos, &dcode, &dpos);
/* Must test acode first since dcode only is reliable if acode is
* non-zero.
*/
if (acode == 0)
value = 2.0;
else if (dcode == 0)
value = 0.0;
else if (acode == WIN && dcode == WIN)
value = 1.0;
else if (acode == WIN && dcode != WIN)
value = a;
else if (acode != WIN && dcode == WIN)
value = b;
else if (acode != WIN && dcode != WIN)
value = 1.0; /* Both contingent on ko. Probably can't happen. */
}
if (value > 0.0 && value < 2.0) {
/* FIXME:
* Usually there are several attack and defense moves that would
* be equally valid. It's not good that we make an arbitrary
* choice at this point.
*/
ASSERT_ON_BOARD1(apos);
ASSERT_ON_BOARD1(dpos);
/* Notice:
* The point to ATTACK the half eye is the point which DEFENDS
* the stones on the diagonal intersection and vice versa. Thus
* we must switch attack and defense points here.
* If the vertex is empty, dpos == apos and it doesn't matter
* whether we switch.
*/
*attack_point = dpos;
*defense_point = apos;
}
return value;
}
/* Conservative relative of topological_eye(). Essentially the same
* algorithm is used, but only tactically safe opponent strings on
* diagonals are considered. This may underestimate the false/half eye
* status, but it should never be overestimated.
*/
int
obvious_false_eye(int pos, int color)
{
int i = I(pos);
int j = J(pos);
int k;
int diagonal_sum = 0;
for (k = 4; k < 8; k++) {
int di = deltai[k];
int dj = deltaj[k];
if (!ON_BOARD2(i+di, j) && !ON_BOARD2(i, j+dj))
diagonal_sum--;
if (!ON_BOARD2(i+di, j+dj))
diagonal_sum++;
else if (BOARD(i+di, j+dj) == OTHER_COLOR(color)
&& !attack(POS(i+di, j+dj), NULL))
diagonal_sum += 2;
}
return diagonal_sum >= 4;
}
/* Set the parameters into struct eyevalue as follows:
a = number of eyes if attacker plays first twice
b = number of eyes if attacker plays first
c = number of eyes if defender plays first
d =number of eyes if defender plays first twice
*/
void
set_eyevalue(struct eyevalue *e, int a, int b, int c, int d)
{
e->a = a;
e->b = b;
e->c = c;
e->d = d;
}
/* Number of eyes if attacker plays first twice (the threat of the first
* move by attacker).
*/
int
min_eye_threat(struct eyevalue *e)
{
return e->a;
}
/* Number of eyes if attacker plays first followed by alternating play. */
int
min_eyes(struct eyevalue *e)
{
return e->b;
}
/* Number of eyes if defender plays first followed by alternating play. */
int
max_eyes(struct eyevalue *e)
{
return e->c;
}
/* Number of eyes if defender plays first twice (the threat of the first
* move by defender).
*/
int
max_eye_threat(struct eyevalue *e)
{
return e->d;
}
/* Add the eyevalues *e1 and *e2, leaving the result in *sum. It is
* safe to let sum be the same as e1 or e2.
*/
void
add_eyevalues(struct eyevalue *e1, struct eyevalue *e2, struct eyevalue *sum)
{
struct eyevalue res;
res.a = gg_min(gg_min(e1->a + e2->c, e1->c + e2->a),
gg_max(e1->a + e2->b, e1->b + e2->a));
res.b = gg_min(gg_max(e1->b + e2->b, gg_min(e1->a + e2->d, e1->b + e2->c)),
gg_max(e1->b + e2->b, gg_min(e1->d + e2->a, e1->c + e2->b)));
res.c = gg_max(gg_min(e1->c + e2->c, gg_max(e1->d + e2->a, e1->c + e2->b)),
gg_min(e1->c + e2->c, gg_max(e1->a + e2->d, e1->b + e2->c)));
res.d = gg_max(gg_max(e1->d + e2->b, e1->b + e2->d),
gg_min(e1->d + e2->c, e1->c + e2->d));
/* The rules above give 0011 + 0002 = 0012, which is incorrect. Thus
* we need this annoying exception.
*/
if ((e1->d - e1->c == 2 && e2->c - e2->b == 1)
|| (e1->c - e1->b == 1 && e2->d - e2->c == 2)) {
res.d = gg_max(gg_min(e1->c + e2->d, e1->d + e2->b),
gg_min(e1->d + e2->c, e1->b + e2->d));
}
/* The temporary storage in res is necessary if sum is the same as
* e1 or e2.
*/
sum->a = res.a;
sum->b = res.b;
sum->c = res.c;
sum->d = res.d;
}
/* The impact on the number of eyes (counting up to two) if a vital
* move is made. The possible values are
* 0 - settled eye, no vital move
* 2 - 1/2 eye or 3/2 eyes
* 3 - 3/4 eyes or 5/4 eyes
* 4 - 1* eyes (a chimera)
*/
int
eye_move_urgency(struct eyevalue *e)
{
int a = gg_min(e->a, 2);
int b = gg_min(e->b, 2);
int c = gg_min(e->c, 2);
int d = gg_min(e->d, 2);
if (b == c)
return 0;
else
return d + c - b - a;
}
/* Produces a string representing the eyevalue.
*
* Note: the result string is stored in a statically allocated buffer
* which will be overwritten the next time this function is called.
*/
char *
eyevalue_to_string(struct eyevalue *e)
{
static char result[30];
if (e->a < 10 && e->b < 10 && e->c < 10 && e->d < 10)
gg_snprintf(result, 29, "%d%d%d%d", e->a, e->b, e->c, e->d);
else
gg_snprintf(result, 29, "[%d,%d,%d,%d]", e->a, e->b, e->c, e->d);
return result;
}
/* Test whether the optics code evaluates an eyeshape consistently. */
void
test_eyeshape(int eyesize, int *eye_vertices)
{
int k;
int n, N;
int mx[BOARDMAX];
int pos;
int str = NO_MOVE;
int attack_code;
int attack_point;
int defense_code;
int defense_point;
int save_verbose;
struct board_state starting_position;
/* Clear the board and initialize the engine properly. */
clear_board();
reset_engine();
/* Mark the eyespace in the mx array. */
memset(mx, 0, sizeof(mx));
for (k = 0; k < eyesize; k++) {
ASSERT_ON_BOARD1(eye_vertices[k]);
mx[eye_vertices[k]] = 1;
}
/* Play white stones surrounding the eyespace, including diagonals. */
for (pos = BOARDMIN; pos < BOARDMAX; pos++) {
if (!ON_BOARD(pos) || mx[pos] == 1)
continue;
for (k = 0; k < 8; k++) {
if (ON_BOARD(pos + delta[k]) && mx[pos + delta[k]] == 1) {
play_move(pos, WHITE);
str = pos;
break;
}
}
}
/* Play black stones surrounding the white group, but leaving all
* liberties empty.
*/
for (pos = BOARDMIN; pos < BOARDMAX; pos++) {
if (mx[pos] == 1 || board[pos] != EMPTY || liberty_of_string(pos, str))
continue;
for (k = 0; k < 8; k++) {
if (ON_BOARD(pos + delta[k])
&& liberty_of_string(pos + delta[k], str)) {
play_move(pos, BLACK);
break;
}
}
}
/* Show the board if verbose is on. Then turn off traces so we don't
* get any from make_worms(), make_dragons(), or the owl reading.
*/
if (verbose)
showboard(0);
save_verbose = verbose;
verbose = 0;
/* Store this position so we can come back to it. */
store_board(&starting_position);
/* Loop over all configurations of black stones inserted in the
* eyeshape. There are N = 2^(eyesize) configurations and we can
* straightforwardly use binary representation to enumerate them.
*/
N = 1 << eyesize;
for (n = 0; n < N; n++) {
int valid = 1;
int internal_stones = 0;
restore_board(&starting_position);
/* Play the stones for this configuration. */
for (k = 0; k < eyesize; k++) {
if (n & (1 << k)) {
if (!is_legal(eye_vertices[k], BLACK)) {
valid = 0;
break;
}
play_move(eye_vertices[k], BLACK);
internal_stones++;
}
}
if (!valid)
continue;
if (save_verbose > 1)
showboard(0);
/* Now we are ready to test the consistency. This is most easily
* done with help from the owl code. First we must prepare for
* this though.
*/
examine_position(EXAMINE_DRAGONS_WITHOUT_OWL, 0);
attack_code = owl_attack(str, &attack_point, NULL, NULL);
if (attack_code == 0) {
/* The owl code claims there is no attack. We test this by
* trying to attack on all empty spaces in the eyeshape.
*/
for (k = 0; k < eyesize; k++) {
if (board[eye_vertices[k]] == EMPTY
&& is_legal(eye_vertices[k], BLACK)
&& owl_does_attack(eye_vertices[k], str, NULL)) {
gprintf("%1m alive, but %1m attacks:\n", str, eye_vertices[k]);
showboard(0);
gprintf("\n");
}
}
/* Furthermore, if the eyespace is almost filled, white should
* be able to play on the remaining eyespace point and still be
* alive.
*/
if (internal_stones == eyesize - 1) {
for (k = 0; k < eyesize; k++) {
if (board[eye_vertices[k]] == EMPTY
&& !owl_does_defend(eye_vertices[k], str, NULL)) {
gprintf("%1m alive, but almost filled with nakade:\n", str);
showboard(0);
}
}
}
}
else {
defense_code = owl_defend(str, &defense_point, NULL, NULL);
if (defense_code == 0) {
/* The owl code claims there is no defense. We test this by
* trying to defend on all empty spaces in the eyeshape.
*/
for (k = 0; k < eyesize; k++) {
if (board[eye_vertices[k]] == EMPTY
&& is_legal(eye_vertices[k], WHITE)
&& owl_does_defend(eye_vertices[k], str, NULL)) {
gprintf("%1m dead, but %1m defends:\n", str, eye_vertices[k]);
showboard(0);
gprintf("\n");
}
}
}
else {
/* The owl code claims the dragon is critical. Verify the
* attack and defense points.
*/
if (board[attack_point] != EMPTY
|| !is_legal(attack_point, BLACK)) {
gprintf("Bad attack point %1m:\n", attack_point);
showboard(0);
}
else if (!owl_does_attack(attack_point, str, NULL)) {
gprintf("Attack point %1m failed:\n", attack_point);
showboard(0);
}
if (board[defense_point] != EMPTY
|| !is_legal(defense_point, WHITE)) {
gprintf("Bad defense point %1m:\n", defense_point);
showboard(0);
}
else if (!owl_does_defend(defense_point, str, NULL)) {
gprintf("Defense point %1m failed:\n", defense_point);
showboard(0);
}
}
}
}
verbose = save_verbose;
}
/********************************************************************
* The following static functions are helpers for analyze_eyegraph()
* further down. The purpose is to evaluate eye graphs according to
* the rules for local games, as described in doc/eyes.texi.
*
* The technique to do this is to convert the eye evaluation problem
* into a tactical style life and death reading problem. Tactical in
* the sense of needing to decide whether certain stones can be
* captured, but not in the sense of the tactical reading that five
* liberties are considered safe.
*
* We illustrate how this works with an example. Consider the eye shape
*
* !
* .X
* !...
*
* The basic idea is to embed the eyespace in a perfectly connected
* group without additional eyes or eye potential. This is most easily
* done by the somewhat brutal trick to fill the entire board with
* stones. We let the group consist of white stones (O) and get this
* result, disregarding the two marginal eye vertices:
*
* A B C D E F G H J K L M N O P Q R S T
* 19 O O O O O O O O O O O O O O O O O O O 19
* 18 O O O O O O O O O O O O O O O O O O O 18
* 17 O O O O O O O O O O O O O O O O O O O 17
* 16 O O O O O O O O O O O O O O O O O O O 16
* 15 O O O O O O O O O O O O O O O O O O O 15
* 14 O O O O O O O O O O O O O O O O O O O 14
* 13 O O O O O O O O O O O O O O O O O O O 13
* 12 O O O O O O O O . O O O O O O O O O O 12
* 11 O O O O O O O . X O O O O O O O O O O 11
* 10 O O O O O O . . . . O O O O O O O O O 10
* 9 O O O O O O O O O O O O O O O O O O O 9
* 8 O O O O O O O O O O O O O O O O O O O 8
* 7 O O O O O O O O O O O O O O O O O O O 7
* 6 O O O O O O O O O O O O O O O O O O O 6
* 5 O O O O O O O O O O O O O O O O O O O 5
* 4 O O O O O O O O O O O O O O O O O O O 4
* 3 O O O O O O O O O O O O O O O O O O O 3
* 2 O O O O O O O O O O O O O O O O O O O 2
* 1 O O O O O O O O O O O O O O O O O O O 1
* A B C D E F G H J K L M N O P Q R S T
*
* The question now is whether black can capture all the white stones
* under alternating play where only white may pass. However, first we
* need to make the top and leftmost eye vertices marginal. This is
* done by inserting small invincible black groups in the sea of white
* stones, in contact with the marginal vertices.
*
* A B C D E F G H J K L M N O P Q R S T
* 19 . O O O O O O O O O O O O O O O O O O 19
* 18 O O O O O O O O X X X O O O O O O O O 18
* 17 O O O O O O O O X . X O O O O O O O O 17
* 16 O O O O O O O O X X X O O O O O O O O 16
* 15 O O O O O O O O X . X O O O O O O O O 15
* 14 O O O O O O O O X X X O O O O O O O O 14
* 13 O O O O O O O O X O O O O O O O O O O 13
* 12 O O O O O O O O . O O O O O O O O O O 12
* 11 O O O O O O O . X O O O O O O O O O O 11
* 10 O O O O O O . . . . O O O O O O O O O 10
* 9 O O O O O O X O O O O O O O O O O O O 9
* 8 O O O O X X X O O O O O O O O O O O O 8
* 7 O O O O X . X O O O O O O O O O O O O 7
* 6 O O O O X X X O O O O O O O O O O O O 6
* 5 O O O O X . X O O O O O O O O O O O O 5
* 4 . O O O X X X O O O O O O O O O O O O 4
* 3 X X . O O O O O O O O O O O O O O O O 3
* 2 X . X O O O O O O O O O O O O O O O O 2
* 1 . X X O O O O O O O O O O O O O O O O 1
* A B C D E F G H J K L M N O P Q R S T
*
* In this diagram we have also added an invincible black group in the
* lower left corner in order to add two outer liberties (at A4 and
* C3) for the white group (this is sometimes needed for the tactical
* life and death reading to make sense). Furthermore there is an
* extra eye at A19. This is used when we want to distinguish between
* 0 and 1 (or 2) eyes since the tactical life and death reading by
* itself only cares about two eyes or not. When trying to distinguish
* between 1 (or 0) and 2 eyes we first fill in A19 again.
*
* Depending on the tactical life and death status with or without the
* extra eye we can determine the number of eyes. By evaluating
* tactical life and death status after having made a move we can also
* identify ko threats and critical moves.
*
* This code is organized as follows:
*
* analyze_eyegraph() converts the eyegraph into the tactical board
* position as demonstrated, then calls evaluate_eyespace() to its eye
* value.
*
* white_area() is a helper to add a small invincible black group on
* the board.
*
* evaluate_eyespace() calls tactical_life() and itself recursively to
* determine the eye value and the critical points.
*
* tactical_life() determines whether the white stones on the board
* (assumed to be a single string) can be captured under alternating
* play.
*
* tactical_life_attack() and tactical_life_defend() are two mutually
* recursive functions which perform the actual reading for
* tactical_life().
*
* Worth to mention in this overview is also the cache used for
* tactical_life_attack() and tactical_life_defend(). Since we have a
* limited number of vertices (eye space points + two outer liberties
* + possibly an extra eye) to play on we use a complete cache with a
* unique entry for every possible configuration of stones on the
* considered vertices.
*
* For each cache entry four bits are used, two for attack results and
* two four defense results. Each of these can take the values 0-3
* with the following interpretations:
* 0 - not yet considered
* 1 - result is being computed
* 2 - result has been computed and was a failure (0)
* 3 - result has been computed and was a success (1)
*/
/* Like trymove() except that it does a superko check. This does,
* however, only disallow repetition (besides simple ko) if the move
* does not capture any stones.
*/
static int
eyegraph_trymove(int pos, int color, const char *message, int str)
{
static Hash_data remembered_board_hashes[MAXSTACK];
int k;
int does_capture = does_capture_something(pos, color);
remembered_board_hashes[stackp] = board_hash;
if (!trymove(pos, color, message, str))
return 0;
if (does_capture)
return 1;
for (k = 0; k < stackp; k++)
if (hashdata_is_equal(board_hash, remembered_board_hashes[k])) {
popgo();
return 0;
}
return 1;
}
static int
eyegraph_is_margin_or_outer_liberty(int vertex)
{
int k;
int r;
int num_libs;
int libs[MAXLIBS];
int eyes;
for (k = 0; k < 4; k++) {
if (board[vertex + delta[k]] == BLACK) {
eyes = 0;
num_libs = findlib(vertex + delta[k], MAXLIBS, libs);
for (r = 0; r < num_libs; r++)
if (is_suicide(libs[r], WHITE))
eyes++;
if (eyes >= 2)
return 1;
}
}
return 0;
}
static int
eyegraph_order_moves(int num_vertices, int *vertices, int color_to_move, int *moves)
{
int num_moves = 0;
int scores[BOARDMAX];
int move;
int score;
int k;
int r;
for (k = 0; k < num_vertices; k++) {
if (k >= num_vertices - 3) {
/* Never useful for white to fill in outer liberties or a second eye. */
if (color_to_move == WHITE)
break;
/* No use playing the second outer liberty before the first one. */
if (k == num_vertices - 2 && board[vertices[num_vertices - 3]] == EMPTY)
continue;
}
move = vertices[k];
score = 0;
if (board[move] != EMPTY)
continue;
if (eyegraph_is_margin_or_outer_liberty(move)) {
if (k < num_vertices - 3)
score = 5; /* margin */
else
score = -10; /* outer liberty */
}
if (accuratelib(move, color_to_move, 2, NULL) == 1)
score -= 3;
for (r = 0; r < 4; r++) {
if (board[move + delta[r]] == EMPTY)
score += 2;
else if (board[move + delta[r]] == BLACK)
score += 3;
}
moves[num_moves] = move;
scores[num_moves] = score;
num_moves++;
}
for (k = 0; k < num_moves; k++) {
int maxscore = scores[k];
int max_at = 0;
/* Find the move with the biggest score. */
for (r = k + 1; r < num_moves; r++) {
if (scores[r] > maxscore) {
maxscore = scores[r];
max_at = r;
}
}
/* Now exchange the move at k with the move at max_at.
* Don't forget to exchange the scores as well.
*/
if (max_at != 0) {
int temp = moves[max_at];
moves[max_at] = moves[k];
moves[k] = temp;
temp = scores[max_at];
scores[max_at] = scores[k];
scores[k] = temp;
}
}
return num_moves;
}
/* Place a small invincible black group on the board.
* It is required that previously there were white stones at all
* involved vertices and on the surrounding vertices.
*
* Returns 1 if a group was placed, 0 otherwise.
*/
static int
white_area(int mx[BOARDMAX], int pos, int up, int right, int marginpos,
int distance)
{
int u, v;
int k;
int edge = is_edge_vertex(marginpos);
for (k = 1; k < distance; k++)
if (!ON_BOARD(marginpos + k * up)
|| mx[marginpos + k * up] != WHITE)
return 0;
for (u = -1; u <= 4; u++)
for (v = -1; v <= 4; v++) {
int pos2 = pos + u * up + v * right;
if (!ON_BOARD(pos2)) {
if (!edge)
return 0;
else if (u >= 0 && u <= 3 && v >= 0 && v <= 3)
return 0;
else if (I(pos2) != I(NORTH(marginpos))
&& I(pos2) != I(SOUTH(marginpos))
&& J(pos2) != J(WEST(marginpos))
&& J(pos2) != J(EAST(marginpos)))
return 0;
}
else if (mx[pos2] != WHITE)
return 0;
}
for (u = 0; u <= 3; u++)
for (v = 0; v <= 3; v++) {
int pos2 = pos + u * up + v * right;
mx[pos2] = BLACK;
}
mx[pos + up + right] = EMPTY;
mx[pos + 2 * up + 2 * right] = EMPTY;
return 1;
}
#define EYEGRAPH_RETURN(result, trace) \
do { \
if (sgf_dumptree) \
sgftreeAddComment(sgf_dumptree, (trace)); \
return (result); \
} while (0);
static int tactical_life_defend(int str, int num_vertices, int *vertices,
unsigned char *results);
/* Determine whether black can capture all white stones. */
static int
tactical_life_attack(int str, int num_vertices, int *vertices,
unsigned char *results)
{
int k;
int hash = 0;
int cached_result;
int result;
int num_moves;
int moves[BOARDMAX];
/* Compute hash value to index the result cache with. */
for (k = 0; k < num_vertices; k++) {
hash *= 3;
hash += board[vertices[k]];
}
hash *= 2;
hash += (board_ko_pos != NO_MOVE);
/* Is the result known from the cache? */
cached_result = results[hash] & 3;
if (0) {
showboard(0);
gprintf("%d %d (%d)\n", hash, cached_result, results[hash]);
}
if (cached_result == 2)
EYEGRAPH_RETURN(0, "tactical_life_attack: 0 (cached)");
if (cached_result == 3)
EYEGRAPH_RETURN(1, "tactical_life_attack: win (cached)");
if (cached_result == 1)
EYEGRAPH_RETURN(1, "tactical_life_attack: win (open node in cache)");
/* Mark this entry in the cache as currently being computed. */
results[hash] |= 1;
/* Try to play on all relevant vertices. */
num_moves = eyegraph_order_moves(num_vertices, vertices,
OTHER_COLOR(board[str]), moves);
for (k = 0; k < num_moves; k++) {
int move = moves[k];
if (eyegraph_trymove(move, OTHER_COLOR(board[str]),
"tactical_life_attack", str)) {
/* We were successful if the white stones were captured or if no
* defense can be found.
*/
if (board[str] == EMPTY)
result = 1;
else
result = !tactical_life_defend(str, num_vertices, vertices, results);
popgo();
if (result == 1) {
/* Store the result (success) in the cache. */
results[hash] = (results[hash] & (~3)) | 3;
EYEGRAPH_RETURN(1, "tactical_life_attack: win");
}
}
}
/* Store the result (failure) in the cache. */
results[hash] = (results[hash] & (~3)) | 2;
EYEGRAPH_RETURN(0, "tactical_life_attack: 0");
}
/* Determine whether white can live with all stones. */
static int
tactical_life_defend(int str, int num_vertices, int *vertices,
unsigned char *results)
{
int k;
int hash = 0;
int cached_result;
int result;
int num_moves;
int moves[BOARDMAX];
/* Compute hash value to index the result cache with. */
for (k = 0; k < num_vertices; k++) {
hash *= 3;
ASSERT1(board[vertices[k]] <= 2, vertices[k]);
hash += board[vertices[k]];
}
hash *= 2;
hash += (board_ko_pos != NO_MOVE);
/* Is the result known from the cache? */
cached_result = (results[hash] >> 2) & 3;
if (0) {
showboard(0);
gprintf("%d %d (%d)\n", hash, cached_result, results[hash]);
}
if (cached_result == 2)
EYEGRAPH_RETURN(0, "tactical_life_defend: 0 (cached)");
if (cached_result == 3)
EYEGRAPH_RETURN(1, "tactical_life_defend: win (cached)");
if (cached_result == 1)
EYEGRAPH_RETURN(1, "tactical_life_defend: win (node open in cache)");
/* Mark this entry in the cache as currently being computed. */
results[hash] |= (1 << 2);
/* Try to play on all relevant vertices. */
num_moves = eyegraph_order_moves(num_vertices, vertices, board[str], moves);
for (k = 0; k < num_moves; k++) {
int move = moves[k];
if ((!is_suicide(move, OTHER_COLOR(board[str]))
|| does_capture_something(move, board[str]))
&& eyegraph_trymove(move, board[str], "tactical_life_defend", str)) {
/* We were successful if no attack can be found. */
result = !tactical_life_attack(str, num_vertices, vertices, results);
popgo();
if (result == 1) {
/* Store the result (success) in the cache. */
results[hash] = (results[hash] & (~12)) | (3 << 2);
EYEGRAPH_RETURN(1, "tactical_life_defend: win");
}
}
}
/* If no move worked, also try passing. */
if (!tactical_life_attack(str, num_vertices, vertices, results)) {
/* Store the result (success) in the cache. */
results[hash] = (results[hash] & (~12)) | (3 << 2);
EYEGRAPH_RETURN(1, "tactical_life_defend: win");
}
/* Store the result (failure) in the cache. */
results[hash] = (results[hash] & (~12)) | (2 << 2);
EYEGRAPH_RETURN(0, "tactical_life_defend: 0");
}
/* Determine the tactical life and death status of all white stones.
* Also find all attack and defense moves. The parameter have_eye
* determines whether the extra eye in the upper left corner should be
* used or filled in before starting reading.
*/
static void
tactical_life(int have_eye, int num_vertices, int *vertices,
int *attack_code, int *num_attacks, int *attack_points,
int *defense_code, int *num_defenses, int *defense_points,
unsigned char *results)
{
int k;
int str;
int num_moves;
int moves[BOARDMAX];
gg_assert(attack_code != NULL && defense_code != NULL);
/* We know that the large white group includes A18. This is the
* vertex we test to determine whether the white stones have been
* captured.
*/
str = POS(1, 0);
if (board[str] == EMPTY) {
/* The stones have already been captured, too late to defend. */
*attack_code = WIN;
*defense_code = 0;
return;
}
/* Fill in the extra eye if have_eye is 0. If filling in would be
* suicide the white stones can be considered dead.
*/
if (!have_eye) {
if (!eyegraph_trymove(POS(0, 0), WHITE, "tactical_life-A", NO_MOVE)) {
*attack_code = WIN;
*defense_code = 0;
return;
}
}
*attack_code = 0;
*defense_code = 0;
/* Call tactical_life_attack() and tactical_life_defend() to
* determine status.
*/
if (tactical_life_attack(str, num_vertices, vertices, results)) {
*attack_code = WIN;
if (tactical_life_defend(str, num_vertices, vertices, results))
*defense_code = WIN;
}
else
*defense_code = WIN;
/* If the status is critical, try to play at each relevant vertex
* and call tactical_life_defend() or tactical_life_attack() to
* determine whether the move works as attack or defense.
*/
if (*attack_code != 0 && *defense_code != 0) {
if (num_attacks != NULL && attack_points != NULL) {
*num_attacks = 0;
num_moves = eyegraph_order_moves(num_vertices, vertices,
OTHER_COLOR(board[str]), moves);
for (k = 0; k < num_moves; k++) {
int move = moves[k];
if (eyegraph_trymove(move, OTHER_COLOR(board[str]), "tactical_life-B",
str)) {
if (board[str] == EMPTY
|| !tactical_life_defend(str, num_vertices, vertices, results))
attack_points[(*num_attacks)++] = move;
popgo();
}
}
}
if (num_defenses != NULL && defense_points != NULL) {
*num_defenses = 0;
num_moves = eyegraph_order_moves(num_vertices, vertices, board[str],
moves);
for (k = 0; k < num_moves; k++) {
int move = moves[k];
if (eyegraph_trymove(move, board[str], "tactical_life-C", str)) {
if (!tactical_life_attack(str, num_vertices, vertices, results))
defense_points[(*num_defenses)++] = move;
popgo();
}
}
}
}
/* Unfill the extra eye if we didn't use it. */
if (!have_eye)
popgo();
}
/* Determine the eye value of the eyespace for the big white group on
* the board and vital moves. The possible eye values are documented
* in the preamble to eyes.db. By calling tactical_life() multiple
* times, with and without using an extra eye, we can compute the eye
* values. To determine ko threats and vital moves, tactical_life() is
* called again after trying to play on one of the relevant vertices.
* In order to find out whether ko threats really are effective and to
* distinguish between 0122/1122 and 0012/0011 eye values (see
* discussion on pattern 6141 in the preamble of eyes.db), we may also
* need to recursively call ourselves after a move has been made.
*/
static void
evaluate_eyespace(struct eyevalue *result, int num_vertices, int *vertices,
int *num_vital_attacks, int *vital_attacks,
int *num_vital_defenses, int *vital_defenses,
unsigned char *tactical_life_results)
{
int k;
int attack_code;
int num_attacks;
int attack_points[BOARDMAX];
int defense_code;
int num_defenses;
int defense_points[BOARDMAX];
int attack_code2;
int num_attacks2;
int attack_points2[BOARDMAX];
int defense_code2;
struct eyevalue result2;
int num_vital_attacks2;
int vital_attacks2[BOARDMAX];
int num_vital_defenses2;
int vital_defenses2[BOARDMAX];
int num_moves;
int moves[BOARDMAX];
*num_vital_attacks = 0;
*num_vital_defenses = 0;
/* Determine tactical life without an extra eye. */
tactical_life(0, num_vertices, vertices,
&attack_code, &num_attacks, attack_points,
&defense_code, &num_defenses, defense_points,
tactical_life_results);
if (attack_code == 0) {
/* Alive without extra eye.
* Possible results: 0222, 1222, 2222
*
* Determine whether there are ko threats and how serious.
*/
int a = 2;
if (sgf_dumptree)
sgftreeAddComment(sgf_dumptree, "Alive without extra eye.\n");
num_moves = eyegraph_order_moves(num_vertices, vertices, BLACK, moves);
for (k = 0; k < num_moves; k++) {
int acode, dcode;
int move = moves[k];
if (eyegraph_trymove(move, BLACK, "evaluate_eyespace-A", NO_MOVE)) {
tactical_life(0, num_vertices, vertices, &acode, NULL, NULL,
&dcode, NULL, NULL, tactical_life_results);
if (acode != 0) {
tactical_life(1, num_vertices, vertices, &acode, NULL, NULL,
&dcode, NULL, NULL, tactical_life_results);
if (acode != 0) {
if (a == 1)
*num_vital_attacks = 0;
a = 0;
vital_attacks[(*num_vital_attacks)++] = move;
if (sgf_dumptree)
sgftreeAddComment(sgf_dumptree,
"Ko threat to remove both eyes.\n");
}
else {
if (a != 0) {
vital_attacks[(*num_vital_attacks)++] = move;
a = 1;
}
if (sgf_dumptree)
sgftreeAddComment(sgf_dumptree, "Ko threat to remove one eye.\n");
}
}
popgo();
}
}
set_eyevalue(result, a, 2, 2, 2);
if (sgf_dumptree) {
if (a == 0)
sgftreeAddComment(sgf_dumptree, "Eyevalue 0222.\n");
else if (a == 1)
sgftreeAddComment(sgf_dumptree, "Eyevalue 1222.\n");
else
sgftreeAddComment(sgf_dumptree, "Eyevalue 2222.\n");
}
}
else if (defense_code != 0) {
/* Critical without extra eye.
* Possible results: 0022, 0122, 1122
*/
if (sgf_dumptree)
sgftreeAddComment(sgf_dumptree, "Critical without extra eye.\n");
tactical_life(1, num_vertices, vertices,
&attack_code2, &num_attacks2, attack_points2,
&defense_code2, NULL, NULL, tactical_life_results);
for (k = 0; k < num_defenses; k++)
vital_defenses[(*num_vital_defenses)++] = defense_points[k];
if (attack_code2 == WIN) {
/* A chimera. 0022. */
set_eyevalue(result, 0, 0, 2, 2);
for (k = 0; k < num_attacks2; k++)
vital_attacks[(*num_vital_attacks)++] = attack_points2[k];
if (sgf_dumptree)
sgftreeAddComment(sgf_dumptree, "Eyevalue: 0022.\n");
}
else {
int a = 1;
for (k = 0; k < num_attacks; k++) {
int move = attack_points[k];
if (eyegraph_trymove(move, BLACK, "evaluate_eyespace-B", NO_MOVE)) {
evaluate_eyespace(&result2, num_vertices, vertices,
&num_vital_attacks2, vital_attacks2,
&num_vital_defenses2, vital_defenses2,
tactical_life_results);
/* If result2 is 0011 for some move we have 0122 as final
* result, otherwise 1122.
*/
if (min_eyes(&result2) == 0
&& max_eyes(&result2) == 1
&& max_eye_threat(&result2) == 1) {
if (a == 1)
*num_vital_attacks = 0;
a = 0;
vital_attacks[(*num_vital_attacks)++] = move;
}
else if (a == 1)
vital_attacks[(*num_vital_attacks)++] = move;
popgo();
}
}
set_eyevalue(result, a, 1, 2, 2);
if (sgf_dumptree) {
if (a == 0)
sgftreeAddComment(sgf_dumptree, "Eyevalue: 0122.\n");
else
sgftreeAddComment(sgf_dumptree, "Eyevalue: 1122.\n");
}
}
}
else {
/* Dead without extra eye.
* Possible results: 0000, 0001, 0002, 0011, 0012, 0111, 0112, 1111, 1112
*
* Now determine tactical life with an extra eye.
*/
if (sgf_dumptree)
sgftreeAddComment(sgf_dumptree, "Dead without extra eye.\n");
tactical_life(1, num_vertices, vertices,
&attack_code, &num_attacks, attack_points,
&defense_code, &num_defenses, defense_points,
tactical_life_results);
if (attack_code == 0) {
/* Alive with extra eye.
* Possible results: 0111, 0112, 1111, 1112
*/
int a = 1;
int d = 1;
if (sgf_dumptree)
sgftreeAddComment(sgf_dumptree, "Alive with extra eye.\n");
num_moves = eyegraph_order_moves(num_vertices, vertices, BLACK, moves);
for (k = 0; k < num_moves; k++) {
int acode, dcode;
int move = moves[k];
if (eyegraph_trymove(move, BLACK, "evaluate_eyespace-C", NO_MOVE)) {
tactical_life(1, num_vertices, vertices, &acode, NULL, NULL,
&dcode, NULL, NULL, tactical_life_results);
if (acode != 0) {
evaluate_eyespace(&result2, num_vertices, vertices,
&num_vital_attacks2, vital_attacks2,
&num_vital_defenses2, vital_defenses2,
tactical_life_results);
/* This is either 0011 or 0012. Only the first is acceptable. */
if (max_eye_threat(&result2) == 1) {
vital_attacks[(*num_vital_attacks)++] = move;
a = 0;
if (sgf_dumptree)
sgftreeAddComment(sgf_dumptree, "Attacking ko threat.\n");
}
}
popgo();
}
}
num_moves = eyegraph_order_moves(num_vertices, vertices, WHITE, moves);
for (k = 0; k < num_moves; k++) {
int acode, dcode;
int move = moves[k];
if (eyegraph_trymove(move, WHITE, "evaluate_eyespace-D", NO_MOVE)) {
tactical_life(0, num_vertices, vertices, &acode, NULL, NULL,
&dcode, NULL, NULL, tactical_life_results);
if (dcode != 0) {
evaluate_eyespace(&result2, num_vertices, vertices,
&num_vital_attacks2, vital_attacks2,
&num_vital_defenses2, vital_defenses2,
tactical_life_results);
/* This is either 1122 or 0122. Only the first is acceptable. */
if (min_eye_threat(&result2) == 1) {
vital_defenses[(*num_vital_defenses)++] = move;
d = 2;
if (sgf_dumptree)
sgftreeAddComment(sgf_dumptree, "Defending ko threat.\n");
}
}
popgo();
}
}
set_eyevalue(result, a, 1, 1, d);
if (sgf_dumptree) {
if (a == 0 && d == 1)
sgftreeAddComment(sgf_dumptree, "Eyevalue 0111.\n");
else if (a == 0 && d == 2)
sgftreeAddComment(sgf_dumptree, "Eyevalue 0112.\n");
else if (a == 1 && d == 1)
sgftreeAddComment(sgf_dumptree, "Eyevalue 1111.\n");
else
sgftreeAddComment(sgf_dumptree, "Eyevalue 1112.\n");
}
}
else if (defense_code != 0) {
/* Critical with extra eye.
* Possible results: 0011, 0012
*/
int d = 1;
if (sgf_dumptree)
sgftreeAddComment(sgf_dumptree, "Critical with extra eye.\n");
for (k = 0; k < num_attacks; k++)
vital_attacks[(*num_vital_attacks)++] = attack_points[k];
for (k = 0; k < num_defenses; k++) {
int move = defense_points[k];
if (eyegraph_trymove(move, WHITE, "evaluate_eyespace-E", NO_MOVE)) {
evaluate_eyespace(&result2, num_vertices, vertices,
&num_vital_attacks2, vital_attacks2,
&num_vital_defenses2, vital_defenses2,
tactical_life_results);
/* If result2 is 1122 for some move we have 0012 as final
* result, otherwise 0011.
*/
if (min_eye_threat(&result2) == 1
&& min_eyes(&result2) == 1
&& max_eyes(&result2) == 2) {
if (d == 1)
*num_vital_defenses = 0;
d = 2;
vital_defenses[(*num_vital_defenses)++] = move;
}
else if (d == 1)
vital_defenses[(*num_vital_defenses)++] = move;
popgo();
}
}
set_eyevalue(result, 0, 0, 1, d);
if (sgf_dumptree) {
if (d == 1)
sgftreeAddComment(sgf_dumptree, "Eyevalue: 0011.\n");
else
sgftreeAddComment(sgf_dumptree, "Eyevalue: 0012.\n");
}
}
else {
/* Dead with extra eye.
* Possible results: 0000, 0001, 0002
*
* Determine whether there are ko threats and how serious.
*/
int d = 0;
if (sgf_dumptree)
sgftreeAddComment(sgf_dumptree, "Dead with extra eye.\n");
num_moves = eyegraph_order_moves(num_vertices, vertices, WHITE, moves);
for (k = 0; k < num_moves; k++) {
int acode, dcode;
int move = moves[k];
if (eyegraph_trymove(move, WHITE, "evaluate_eyespace-F", NO_MOVE)) {
tactical_life(1, num_vertices, vertices, &acode, NULL, NULL,
&dcode, NULL, NULL, tactical_life_results);
if (dcode != 0) {
tactical_life(0, num_vertices, vertices, &acode, NULL, NULL,
&dcode, NULL, NULL, tactical_life_results);
if (dcode != 0) {
if (d == 1)
*num_vital_defenses = 0;
d = 2;
vital_defenses[(*num_vital_defenses)++] = move;
if (sgf_dumptree)
sgftreeAddComment(sgf_dumptree,
"Ko threat to make two eyes.\n");
}
else {
if (d != 2) {
vital_defenses[(*num_vital_defenses)++] = move;
d = 1;
}
if (sgf_dumptree)
sgftreeAddComment(sgf_dumptree,
"Ko threat to make one eye.\n");
}
}
popgo();
}
}
set_eyevalue(result, 0, 0, 0, d);
if (sgf_dumptree) {
if (d == 0)
sgftreeAddComment(sgf_dumptree, "Eyevalue 0000.\n");
else if (d == 1)
sgftreeAddComment(sgf_dumptree, "Eyevalue 0001.\n");
else
sgftreeAddComment(sgf_dumptree, "Eyevalue 0002.\n");
}
}
}
}
/* Add small invincible black groups in contact with the marginal
* vertices, without destroying the connectivity of the white stones.
*
*/
static int
add_margins(int num_margins, int *margins, int mx[BOARDMAX])
{
int k;
int i, j;
int old_mx[BOARDMAX];
int pos;
if (num_margins == 0)
return 1;
memcpy(old_mx, mx, sizeof(old_mx));
pos = margins[num_margins - 1];
for (k = 0; k < 4; k++) {
int up = delta[k];
int right = delta[(k + 1) % 4];
if (!ON_BOARD(pos + up))
continue;
if (mx[pos + up] == WHITE
&& (!ON_BOARD(pos + up + right) || mx[pos + up + right] == WHITE)
&& (!ON_BOARD(pos + up - right) || mx[pos + up - right] == WHITE)) {
for (i = -3; i <= 0; i++) {
for (j = 2; j < 6; j++) {
if (white_area(mx, pos + j * up + i * right, up, right, pos, j)) {
int s = 1;
while (mx[pos + s * up] == WHITE) {
mx[pos + s * up] = BLACK;
s++;
}
if (add_margins(num_margins - 1, margins, mx))
return 1;
else
memcpy(mx, old_mx, sizeof(old_mx));
}
}
}
}
}
return 0;
}
/* Analyze an eye graph to determine the eye value and vital moves.
*
* The eye graph is given by a string which is encoded with "%" for
* newlines and "O" for spaces. E.g., the eye graph
*
* !
* .X
* !...
*
* is encoded as "OO!%O.X%!...". (The encoding is needed for the GTP
* interface to this function.)
*
* The result is an eye value and a (nonencoded) pattern showing the
* vital moves, using the same notation as eyes.db. In the example above
* we would get the eye value 0112 and the graph (showing ko threat moves)
*
* @
* .X
* !.*.
*
* If the eye graph cannot be realized, 0 is returned, 1 otherwise.
*/
int
analyze_eyegraph(const char *coded_eyegraph, struct eyevalue *value,
char *analyzed_eyegraph)
{
int k;
int i, j;
int mini, minj;
int mx[BOARDMAX];
char mg[BOARDMAX];
int pos;
int num_vital_attacks;
int vital_attacks[BOARDMAX]; /* Way larger than necessary. */
int num_vital_defenses;
int vital_defenses[BOARDMAX]; /* Way larger than necessary. */
int maxwidth;
int current_width;
int num_rows;
int horizontal_edge;
int vertical_edge;
int num_margins;
int margins[BOARDMAX]; /* Way larger than necessary. */
int num_vertices;
int vertices[BOARDMAX]; /* Way larger than necessary. */
int table_size;
unsigned char *tactical_life_results;
if (0)
gprintf("Analyze eyegraph %s\n", coded_eyegraph);
/* Mark the eyespace in the mx array. We construct the position in
* the mx array and copy it to the actual board later.
*/
for (pos = BOARDMIN; pos < BOARDMAX; pos++)
if (ON_BOARD(pos))
mx[pos] = WHITE;
/* Find out the size of the eye graph pattern so that we can center
* it properly.
*/
maxwidth = 0;
current_width = 0;
num_rows = 1;
horizontal_edge = -1;
vertical_edge = -1;
for (k = 0; k < (int) strlen(coded_eyegraph); k++) {
if (coded_eyegraph[k] == '\n')
continue;
if (coded_eyegraph[k] == '%') {
num_rows++;
if (current_width > maxwidth)
maxwidth = current_width;
current_width = 0;
}
else {
if (coded_eyegraph[k] == '-')
horizontal_edge = num_rows - 1;
else if (coded_eyegraph[k] == '|')
vertical_edge = current_width;
current_width++;
}
}
if (current_width > maxwidth)
maxwidth = current_width;
/* Cut out the eyespace from the solid white string. */
num_margins = 0;
num_vertices = 0;
if (horizontal_edge == 0)
mini = -1;
else if (horizontal_edge > 0)
mini = board_size - num_rows + 1;
else
mini = (board_size - num_rows) / 2;
if (vertical_edge == 0)
minj = -1;
else if (vertical_edge > 0)
minj = board_size - maxwidth + 1;
else
minj = (board_size - maxwidth) / 2;
i = mini;
j = minj;
for (k = 0; k < (int) strlen(coded_eyegraph); k++) {
char c = coded_eyegraph[k];
if (c == '\n')
continue;
if (c == '%') {
i++;
j = minj - 1;
}
else if (c == 'X' || c == '$')
mx[POS(i, j)] = BLACK;
else if (c == '.' || c == '*' || c == '<' || c == '>'
|| c == '!' || c == '@' || c == '(' || c == ')')
mx[POS(i, j)] = EMPTY;
if (c == '!' || c == '@' || c == '(' || c == ')' || c == '$')
margins[num_margins++] = POS(i, j);
if (c != '|' && c != '-' && c != '+' && c != '%'
&& ON_BOARD(POS(i, j)) && mx[POS(i, j)] != WHITE)
vertices[num_vertices++] = POS(i, j);
j++;
}
/* Add an invincible black group in the lower left plus two outer
* liberties for the white string. However, if the eyespace is
* placed in or near the lower left corner, we put this group in the
* upper right instead.
*/
pos = POS(board_size - 2, 1);
if ((vertical_edge == 0 && horizontal_edge != 0)
|| (horizontal_edge > 0 && vertical_edge <= 0))
pos = POS(1, board_size - 2);
mx[pos] = EMPTY;
mx[NORTH(pos)] = BLACK;
mx[NW(pos)] = BLACK;
mx[NE(pos)] = EMPTY;
mx[WEST(pos)] = BLACK;
mx[EAST(pos)] = BLACK;
mx[SW(pos)] = EMPTY;
mx[SOUTH(pos)] = BLACK;
mx[SE(pos)] = BLACK;
if (ON_BOARD(NN(pos)))
mx[NN(pos)] = EMPTY;
else
mx[SS(pos)] = EMPTY;
/* Add the two outer liberties in the lower left or upper right to
* the list of vertices.
*/
if (ON_BOARD(NN(pos))) {
vertices[num_vertices++] = NE(pos);
vertices[num_vertices++] = NN(pos);
}
else {
vertices[num_vertices++] = SW(pos);
vertices[num_vertices++] = SS(pos);
}
/* Add an extra eye in the upper left corner. */
mx[POS(0, 0)] = EMPTY;
vertices[num_vertices++] = POS(0, 0);
if (!add_margins(num_margins, margins, mx))
return 0;
/* Copy the mx array over to the board. */
clear_board();
for (pos = BOARDMIN; pos < BOARDMAX; pos++)
if (ON_BOARD(pos)) {
if (mx[pos] == WHITE)
add_stone(pos, WHITE);
else if (mx[pos] == BLACK)
add_stone(pos, BLACK);
}
if (verbose)
showboard(0);
/* If there are any isolated O stones, those should also be added to
* the playable vertices.
*/
for (pos = BOARDMIN; pos < BOARDMAX; pos++)
if (board[pos] == WHITE && !same_string(pos, POS(1, 0))) {
vertices[num_vertices] = vertices[num_vertices - 1];
vertices[num_vertices - 1] = vertices[num_vertices - 2];
vertices[num_vertices - 2] = vertices[num_vertices - 3];
vertices[num_vertices - 3] = pos;
num_vertices++;
}
if (verbose) {
int k;
gprintf("\nPlayable vertices:\n");
for (k = 0; k < num_vertices; k++)
gprintf("%1m ", vertices[k]);
gprintf("\n\n");
}
/* Disable this test if you need to evaluate larger eyespaces, have
* no shortage of memory, and know what you're doing.
*/
if (num_vertices > 17) {
gprintf("analyze_eyegraph: too large eyespace, %d vertices\n",
num_vertices);
gg_assert(num_vertices <= 17);
}
/* The cache must have 2*3^num_vertices entries. */
table_size = 2;
for (k = 0; k < num_vertices; k++)
table_size *= 3;
/* Allocate memory for the cache. */
tactical_life_results = malloc(table_size);
if (!tactical_life_results) {
gprintf("analyze_eyegraph: failed to allocate %d bytes\n", table_size);
gg_assert(tactical_life_results != NULL);
}
memset(tactical_life_results, 0, table_size);
if (sgf_dumptree)
sgffile_printboard(sgf_dumptree);
/* Evaluate the eyespace on the board. */
evaluate_eyespace(value, num_vertices, vertices,
&num_vital_attacks, vital_attacks,
&num_vital_defenses, vital_defenses,
tactical_life_results);
/* Return the cache memory. */
free(tactical_life_results);
if (verbose) {
gprintf("Eyevalue: %s\n", eyevalue_to_string(value));
for (k = 0; k < num_vital_attacks; k++)
gprintf(" vital attack point %1m\n", vital_attacks[k]);
for (k = 0; k < num_vital_defenses; k++)
gprintf(" vital defense point %1m\n", vital_defenses[k]);
}
/* Encode the attack and defense points with symbols in the mg[] array. */
memset(mg, ' ', sizeof(mg));
for (k = 0; k < num_vertices - 2; k++)
mg[vertices[k]] = (board[vertices[k]] == BLACK ? 'X' : '.');
for (k = 0; k < num_margins; k++)
mg[margins[k]] = (mg[margins[k]] == 'X' ? '$' : '!');
for (k = 0; k < num_vital_attacks; k++)
mg[vital_attacks[k]] = (mg[vital_attacks[k]] == '!' ? '(' : '<');
for (k = 0; k < num_vital_defenses; k++) {
int pos = vital_defenses[k];
if (mg[pos] == '.')
mg[pos] = '>';
else if (mg[pos] == '!')
mg[pos] = ')';
else if (mg[pos] == '<')
mg[pos] = '*';
else if (mg[pos] == '(')
mg[pos] = '@';
}
/* Return the central part of the mg[] array (corresponding to the
* input eye graph).
*/
k = 0;
for (i = mini; i < mini + num_rows; i++) {
for (j = minj; j < minj + maxwidth; j++) {
if ((i < 0 || i >= board_size) && (j < 0 || j >= board_size))
analyzed_eyegraph[k++] = '+';
else if (i < 0 || i >= board_size)
analyzed_eyegraph[k++] = '-';
else if (j < 0 || j >= board_size)
analyzed_eyegraph[k++] = '|';
else
analyzed_eyegraph[k++] = mg[POS(i, j)];
}
analyzed_eyegraph[k++] = '\n';
}
analyzed_eyegraph[k - 1] = 0;
return 1;
}
/*
* Local Variables:
* tab-width: 8
* c-basic-offset: 2
* End:
*/
|