File: utils.c

package info (click to toggle)
gnugo 3.8-4
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 17,312 kB
  • ctags: 4,228
  • sloc: ansic: 56,439; perl: 3,771; lisp: 2,789; sh: 730; makefile: 700; python: 682; awk: 113; sed: 22
file content (2004 lines) | stat: -rw-r--r-- 54,454 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\
 * This is GNU Go, a Go program. Contact gnugo@gnu.org, or see       *
 * http://www.gnu.org/software/gnugo/ for more information.          *
 *                                                                   *
 * Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,   *
 * 2008 and 2009 by the Free Software Foundation.                    *
 *                                                                   *
 * This program is free software; you can redistribute it and/or     *
 * modify it under the terms of the GNU General Public License as    *
 * published by the Free Software Foundation - version 3 or          *
 * (at your option) any later version.                               *
 *                                                                   *
 * This program is distributed in the hope that it will be useful,   *
 * but WITHOUT ANY WARRANTY; without even the implied warranty of    *
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the     *
 * GNU General Public License in file COPYING for more details.      *
 *                                                                   *
 * You should have received a copy of the GNU General Public         *
 * License along with this program; if not, write to the Free        *
 * Software Foundation, Inc., 51 Franklin Street, Fifth Floor,       *
 * Boston, MA 02111, USA.                                            *
\* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */

#include "gnugo.h"

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stdarg.h>
#include <math.h>

#include "liberty.h"
#include "sgftree.h"
#include "random.h"
#include "gg_utils.h"
#include "patterns.h"

/*
 * Change the status of all the stones in the dragon at (dr).
 */

void
change_dragon_status(int dr, enum dragon_status status)
{
  int pos;
  int origin = dragon[dr].origin;

  for (pos = BOARDMIN; pos < BOARDMAX; pos++)
    if (ON_BOARD(pos)) {
      if (dragon[pos].origin == origin)
	dragon[pos].status = status;
    }
}


/*
 * Check whether a move at (move) stops the enemy from playing at (apos).
 */

int
defend_against(int move, int color, int apos)
{
  if (trymove(move, color, "defend_against", NO_MOVE)) {
    if (safe_move(apos, OTHER_COLOR(color)) == 0) {
      popgo();
      return 1;
    }
    popgo();
  }
  return 0;
}


/* 
 * Returns true if color can cut at (pos), or if connection through (pos)
 * is inhibited. This information is collected by find_cuts(), using the B
 * patterns in the connections database.
 */

int
cut_possible(int pos, int color)
{
  return (cutting_points[pos] & OTHER_COLOR(color)) != 0;
}


/*
 * does_attack(move, str) returns the result code for an attack on the
 * string 'str' by the move 'move'. However, if the move does not
 * improve the attack result compared to tenuki, 0 is returned. In
 * particular if the string is already captured, does_attack() always
 * returns 0.
 */

int
does_attack(int move, int str)
{
  int color = board[str];
  int other = OTHER_COLOR(color);
  int result = 0;
  int acode = 0;
  int dcode = 0;
  int spos = NO_MOVE;
  
  attack_and_defend(str, &acode, NULL, &dcode, &spos);
  if (acode != 0 && dcode == 0)
    return 0;
  
  if (trymove(move, other, "does_attack-A", str)) {
    if (!board[str])
      result = WIN;
    else
      result = REVERSE_RESULT(find_defense(str, NULL));
    if (result != 0) {
      increase_depth_values();
      if (spos != NO_MOVE && trymove(spos, color, "does_attack-B", str)) {
	if (board[str]) {
	  int new_result = attack(str, NULL);
	  if (new_result < result)
	    result = new_result;
	}
	popgo();
      }
      decrease_depth_values();
    }
    popgo();
  }

  if (result < acode)
    result = 0;
  
  return result;
}


/*
 * does_defend(move, str) returns true if the move at (move)
 * defends (str). This means that it defends the string, and that
 * (str) can be captured if no defense is made.
 *
 * FIXME: Make does_defend() ko aware like does_attack().
 */

int
does_defend(int move, int str)
{
  int color = board[str];
  int other = OTHER_COLOR(color);
  int result = 0;
  int spos = NO_MOVE;

  if (!attack(str, &spos))
    return 0;

  gg_assert(spos != NO_MOVE);
  
  if (trymove(move, color, "does_defend-A", str)) {
    if (!attack(str, NULL)) {
      result = 1;
      increase_depth_values();
      if (trymove(spos, other, "does_defend-B", str)) {
	if (!board[str] || !find_defense(str, NULL))
	  result = 0;
	popgo();
      }
      decrease_depth_values();
    }
    popgo();
  }

  return result;
}


/* 
 * Example: somewhere(WHITE, 2, apos, bpos, cpos).
 * 
 * Returns true if one of the vertices listed
 * satisfies board[pos]==color. Here num_moves is the
 * number of moves. If check_alive is true, the dragon is not allowed
 * to be dead. This check is only valid if stackp==0.
 */

int
somewhere(int color, int check_alive, int num_moves, ...)
{
  va_list ap;
  int pos;
  int k;

  gg_assert(stackp == 0 || !check_alive);
  
  va_start(ap, num_moves);
  for (k = 0; k < num_moves; k++) {
    pos = va_arg(ap, int);

    if (board[pos] == color
	&& (!check_alive || dragon[pos].status != DEAD)) {
      va_end(ap);
      return 1;
    }
  }

  va_end(ap);
  return 0;
}

/* Search along the edge for the first visible stone. Start at apos
 * and move in the direction of bpos. Return 1 if the first visible
 * stone is of the given color. It is required that apos and bpos are
 * at the same distance from the edge.
 *
 * FIXME: The detection of the first visible stone is quite crude and
 * probably needs to be improved.
 */
int
visible_along_edge(int color, int apos, int bpos)
{
  int ai = I(apos);
  int aj = J(apos);
  int bi = I(bpos);
  int bj = J(bpos);
  int pos;
  int forward;
  int up;
  ASSERT1((ai == bi) ^ (aj == bj), apos);

  if (ai == bi) {
    if (aj > bj)
      forward = WEST(0);
    else
      forward = EAST(0);

    if (ai < board_size/2) {
      pos = POS(0, bj);
      up = SOUTH(0);
    }
    else {
      pos = POS(board_size - 1, bj);
      up = NORTH(0);
    }
  }
  else {
    if (ai > bi)
      forward = NORTH(0);
    else
      forward = SOUTH(0);

    if (aj < board_size/2) {
      pos = POS(bi, 0);
      up = EAST(0);
    }
    else {
      pos = POS(bi, board_size - 1);
      up = WEST(0);
    }
  }
  
  for (; ON_BOARD(pos); pos += forward) {
    int k;
    for (k = 4; k >= 0; k--) {
      ASSERT_ON_BOARD1(pos + k * up);
      if (board[pos + k * up] == color)
	return 1;
      else if (board[pos + k * up] == OTHER_COLOR(color))
	return 0;
    }
  }

  return 0;
}

/* Is the board symmetric (or rather antisymmetric) with respect to
 * mirroring in tengen after a specific move has been played? If the
 * move is PASS_MOVE, check the current board.
 *
 * If strict is set we require that each stone is matched by a stone
 * of the opposite color at the mirrored vertex. Otherwise we only
 * require that each stone is matched by a stone of either color.
 */
int
test_symmetry_after_move(int move, int color, int strict)
{
  int pos;
  int result = 1;

  if (move != PASS_MOVE) {
    if (board[move] != EMPTY)
      return 0;
    if (!trymove(move, color, "find_mirror_move", NO_MOVE))
      return 0;
  }
  
  for (pos = BOARDMIN; pos < MIRROR_MOVE(pos); pos++) {
    int sum;
    if (!ON_BOARD(pos))
      continue;
    
    sum = board[pos] + board[MIRROR_MOVE(pos)];
    if (sum != EMPTY + EMPTY && sum != BLACK + WHITE) {
      if (strict || sum == EMPTY + WHITE || sum == EMPTY + BLACK) {
	result = 0;
	break;
      }
    }
  }

  if (move != PASS_MOVE)
    popgo();
  
  return result;
}


/* The function play_break_through_n() plays a sequence of moves,
 * alternating between the players and starting with color. After
 * having played through the sequence, the three last coordinate pairs
 * gives a position to be analyzed by break_through(), to see whether
 * either color has managed to enclose some stones and/or connected
 * his own stones. If any of the three last positions is empty, it's
 * assumed that the enclosure has failed, as well as the attempt to
 * connect.
 *
 * If one or more of the moves to play turns out to be illegal for
 * some reason, the rest of the sequence is played anyway, and
 * break_through() is called as if nothing special happened.
 *
 * Like break_through(), this function returns 1 if the attempt to
 * break through was succesful and 2 if it only managed to cut
 * through.
 */
   
int
play_break_through_n(int color, int num_moves, ...)
{
  va_list ap;
  int mcolor = color;
  int success = 0;
  int i;
  int played_moves = 0;
  int apos;
  int xpos;
  int ypos;
  int zpos;
  
  va_start(ap, num_moves);

  /* Do all the moves with alternating colors. */
  for (i = 0; i < num_moves; i++) {
    apos = va_arg(ap, int);

    if (apos != NO_MOVE
	&& (trymove(apos, mcolor, "play_break_through_n", NO_MOVE)
	    || tryko(apos, mcolor, "play_break_through_n")))
      played_moves++;
    mcolor = OTHER_COLOR(mcolor);
  }

  /* Now do the real work. */
  xpos = va_arg(ap, int);
  ypos = va_arg(ap, int);
  zpos = va_arg(ap, int);
    
  /* Temporarily increase the depth values with the number of explicitly
   * placed stones.
   */
#if 0
  modify_depth_values(played_moves);
#endif
  
  if (board[xpos] == EMPTY
      || board[ypos] == EMPTY
      || board[zpos] == EMPTY)
    success = 1;
  else
    success = break_through(xpos, ypos, zpos);

#if 0
  modify_depth_values(-played_moves);
#endif
  
  /* Pop all the moves we could successfully play. */
  for (i = 0; i < played_moves; i++)
    popgo();

  va_end(ap);
  return success;
}


/* The function play_attack_defend_n() plays a sequence of moves,
 * alternating between the players and starting with color. After
 * having played through the sequence, the last coordinate pair gives
 * a target to attack or defend, depending on the value of do_attack.
 * If there is no stone present to attack or defend, it is assumed
 * that it has already been captured. If one or more of the moves to
 * play turns out to be illegal for some reason, the rest of the
 * sequence is played anyway, and attack/defense is tested as if
 * nothing special happened.
 *
 * A typical use for these functions is to set up a ladder in an
 * autohelper and see whether it works or not.
 */
   
int
play_attack_defend_n(int color, int do_attack, int num_moves, ...)
{
  va_list ap;
  int mcolor = color;
  int success = 0;
  int i;
  int played_moves = 0;
  int apos;
  int zpos;
  
  va_start(ap, num_moves);

  /* Do all the moves with alternating colors. */
  for (i = 0; i < num_moves; i++) {
    apos = va_arg(ap, int);

    if (apos != NO_MOVE
	&& (trymove(apos, mcolor, "play_attack_defend_n", NO_MOVE)
	    || tryko(apos, mcolor, "play_attack_defend_n")))
      played_moves++;
    mcolor = OTHER_COLOR(mcolor);
  }

  /* Now do the real work. */
  zpos = va_arg(ap, int);

  /* Temporarily increase the depth values with the number of explicitly
   * placed stones.
   *
   * This improves the reading of pattern constraints but
   * unfortunately tends to be too expensive. For the time being it is
   * disabled.
   */
#if 0
  modify_depth_values(played_moves);
#endif
  
  if (do_attack) {
    if (board[zpos] == EMPTY)
      success = WIN;
    else
      success = attack(zpos, NULL);
  }
  else {
    if (board[zpos] == EMPTY)
      success = 0;
    else {
      int dcode = find_defense(zpos, NULL);
      if (dcode == 0 && !attack(zpos, NULL))
	success = WIN;
      else
	success = dcode;
    }
  }

#if 0
  modify_depth_values(-played_moves);
#endif
  
  /* Pop all the moves we could successfully play. */
  for (i = 0; i < played_moves; i++)
    popgo();

  va_end(ap);
  return success;
}


/* The function play_attack_defend2_n() plays a sequence of moves,
 * alternating between the players and starting with color. After
 * having played through the sequence, the two last coordinate pairs
 * give two targets to simultaneously attack or defend, depending on
 * the value of do_attack. If there is no stone present to attack or
 * defend, it is assumed that it has already been captured. If one or
 * more of the moves to play turns out to be illegal for some reason,
 * the rest of the sequence is played anyway, and attack/defense is
 * tested as if nothing special happened.
 *
 * A typical use for these functions is to set up a crosscut in an
 * autohelper and see whether at least one cutting stone can be
 * captured.
 */
   
int
play_attack_defend2_n(int color, int do_attack, int num_moves, ...)
{
  va_list ap;
  int mcolor = color;
  int success = 0;
  int i;
  int played_moves = 0;
  int apos;
  int ypos;
  int zpos;
  
  va_start(ap, num_moves);

  /* Do all the moves with alternating colors. */
  for (i = 0; i < num_moves; i++) {
    apos = va_arg(ap, int);

    if (apos != NO_MOVE
	&& (trymove(apos, mcolor, "play_attack_defend_n", NO_MOVE)
	    || tryko(apos, mcolor, "play_attack_defend_n")))
      played_moves++;
    mcolor = OTHER_COLOR(mcolor);
  }

  /* Now do the real work. */
  ypos = va_arg(ap, int);
  zpos = va_arg(ap, int);

  /* Temporarily increase the depth values with the number of explicitly
   * placed stones.
   */
#if 0
  modify_depth_values(played_moves);
#endif
  

  /* FIXED: tm - returns ko results correctly (3.1.22) */
  if (do_attack) {
    if (board[ypos] == EMPTY || board[zpos] == EMPTY)
      success = WIN;
    else
      success = attack_either(ypos, zpos);
  }
  else {
    if (board[ypos] == EMPTY || board[zpos] == EMPTY)
      success = 0;
    else
      success = defend_both(ypos, zpos);
  }

#if 0
  modify_depth_values(-played_moves);
#endif
  
  /* Pop all the moves we could successfully play. */
  for (i = 0; i < played_moves; i++)
    popgo();

  va_end(ap);
  return success;
}


/* The function play_connect_n() plays a sequence of moves,
 * alternating between the players and starting with color. After
 * having played through the sequence, the two last coordinates
 * give two targets that should be connected or disconnected, depending on
 * the value of do_connect. If there is no stone present to connect or
 * disconnect, it is assumed that the connection has failed. If one or
 * more of the moves to play turns out to be illegal for some reason,
 * the rest of the sequence is played anyway, and connection/disconnection
 * is tested as if nothing special happened.
 */

int 
play_connect_n(int color, int do_connect, int num_moves, ...)
{
  va_list ap;
  int mcolor = color;
  int success = 0;
  int i;
  int played_moves = 0;
  int apos;
  int ypos;
  int zpos;

  va_start(ap, num_moves);

  /* Do all the moves with alternating colors. */
  for (i = 0; i < num_moves; i++) {
    apos = va_arg(ap, int);

    if (apos != NO_MOVE
	&& (trymove(apos, mcolor, "play_connect_n", NO_MOVE)
	    || tryko(apos, mcolor, "play_connect_n")))
      played_moves++;
    mcolor = OTHER_COLOR(mcolor);
  }

  /* Now do the real work. */
  ypos = va_arg(ap, int);
  zpos = va_arg(ap, int);

  /* Temporarily increase the depth values with the number of explicitly
   * placed stones.
   *
   * This improves the reading of pattern constraints but
   * unfortunately tends to be too expensive. For the time being it is
   * disabled.
   */
#if 0
  modify_depth_values(played_moves);
#endif
  
  /* See if ypos and zpos can be connected (or disconnected). */
  if (do_connect) {
    if (board[ypos] == EMPTY || board[zpos] == EMPTY)
      success = 0;
    else
      success = string_connect(ypos, zpos, NULL);
  }
  else {
    if (board[ypos] == EMPTY || board[zpos] == EMPTY)
      success = WIN;
    else
      success = disconnect(ypos, zpos, NULL);
  }

#if 0
  modify_depth_values(-played_moves);
#endif
  
  /* Pop all the moves we could successfully play. */
  for (i = 0; i < played_moves; i++)
    popgo();

  va_end(ap);
  return success;
}


/* The function play_lib_n() plays a sequence of moves, alternating
 * between the players and starting with color. After having played
 * through the sequence, the last coordinate gives a target for liberty
 * counting. The number of liberties is returned.
 *
 * If only one move is to be played and that stone is the target,
 * accuratelib (or approxlib if appropriate) is more efficient.
 */

int 
play_lib_n(int color, int num_moves, ...)
{
  va_list ap;
  int mcolor = color;
  int libs = 0;
  int i;
  int played_moves = 0;
  int apos;
  int ypos;

  va_start(ap, num_moves);

  /* Do all the moves with alternating colors. */
  for (i = 0; i < num_moves; i++) {
    apos = va_arg(ap, int);

    if (apos != NO_MOVE
	&& (trymove(apos, mcolor, "play_connect_n", NO_MOVE)
	    || tryko(apos, mcolor, "play_connect_n")))
      played_moves++;
    mcolor = OTHER_COLOR(mcolor);
  }

  /* Now do the real work. */
  ypos = va_arg(ap, int);
  if (board[ypos] == EMPTY)
    libs = 0;
  else
    libs = countlib(ypos);
  
  /* Pop all the moves we could successfully play. */
  for (i = 0; i < played_moves; i++)
    popgo();

  va_end(ap);
  return libs;
}



/* 
 * It is assumed in reading a ladder if stackp >= depth that
 * as soon as a bounding stone is in atari, the string is safe.
 * It is used similarly at other places in reading.c to implement simplifying
 * assumptions when stackp is large. DEPTH is the default value of depth.
 *
 * Unfortunately any such scheme invites the ``horizon effect.'' Increasing
 * DEPTH will make the program stronger and slower.
 *
 */

/* Tactical reading using C functions */
#define DEPTH                16
#define BRANCH_DEPTH         13
#define BACKFILL_DEPTH       12
#define BACKFILL2_DEPTH       5
#define BREAK_CHAIN_DEPTH     7
#define SUPERSTRING_DEPTH     7
#define FOURLIB_DEPTH         7
#define KO_DEPTH              8

#if 0
#undef FOURLIB_DEPTH
#define FOURLIB_DEPTH         9
#endif


#define AA_DEPTH              6

/* Pattern based reading */
#define OWL_DISTRUST_DEPTH    6
#define OWL_BRANCH_DEPTH      8
#define OWL_READING_DEPTH    20
#define SEMEAI_BRANCH_DEPTH  12
#define SEMEAI_BRANCH_DEPTH2  6

/* Connecton reading */
#define CONNECT_NODE_LIMIT 2000
#define CONNECT_DEPTH        64
#define CONNECT_DEPTH2       20

#define BREAKIN_NODE_LIMIT  400
#define BREAKIN_DEPTH	     14

/* Set the various reading depth parameters. If mandated_depth_value
 * is not -1 that value is used; otherwise the depth values are
 * set as a function of level. The parameter mandated_depth_value
 * can be set at the command line to force a particular value of
 * depth; normally it is -1.
 */

void
set_depth_values(int level, int report_levels)
{
  static int node_limits[] = {500, 500, 450, 400, 400, 325, 275,
			      200, 150, 100, 75, 50};
  int depth_level;

  /*
   * Other policies depending on level:
   * owl.c:         >=  9: use vital attack pattern database
   *                >=  8: increase depth values in owl_substantial
   *                >=  8: don't turn off owl_phase in semeai reading
   * reading.c:     >=  8: Use superstrings and do more backfilling.
   * value_moves.c: >=  6: try to find more owl attacks/defenses
   * breakin.c:     >= 10: try to find break-ins. (*)
   * worm.c:        >= 10: detect unconditionally meaningless moves
   *
   * The break-in code (*) is particularly expensive. 
   *
   * Speedups between levels 9 and 10 and between levels 7 and 8
   * are obtained by turning off services, and between these
   * levels no changes are made in the depths. The parameter
   * depth_level is the correction compared to the default settings at level
   * 10 for most reading depths.
   */
  if (level >= 10)
    depth_level = level - 10;
  else if (level == 9)
    depth_level = 0;
  else if (level == 8)
    depth_level = -1;
  else 
    depth_level = level - 8;

  depth                = gg_max(6, DEPTH 	    + depth_level);
  branch_depth         = gg_max(3, BRANCH_DEPTH	    + depth_level);
  backfill_depth       = gg_max(2, BACKFILL_DEPTH    + depth_level);
  backfill2_depth      = gg_max(1, BACKFILL2_DEPTH   + depth_level);
  break_chain_depth    = gg_max(2, BREAK_CHAIN_DEPTH + depth_level);
  if (level >= 8)
    owl_distrust_depth = gg_max(1, (2 * OWL_DISTRUST_DEPTH + depth_level) / 2);
  else
    owl_distrust_depth = gg_max(1, (2 * OWL_DISTRUST_DEPTH - 1
				    + depth_level) / 2);
  owl_branch_depth     = gg_max(2, (2 * OWL_BRANCH_DEPTH   + depth_level) / 2);
  owl_reading_depth    = gg_max(5, (2 * OWL_READING_DEPTH  + depth_level) / 2);

  /* Atari-atari depth levels are unchanged only between levels 7/8, 9/10: */
  if (level >= 10)
    aa_depth = gg_max(0, AA_DEPTH + (level - 10));
  else if (level == 9)
    aa_depth = gg_max(0, AA_DEPTH);
  else if (level >= 7)
    aa_depth = gg_max(0, AA_DEPTH - 1);
  else
    aa_depth = gg_max(0, AA_DEPTH - (8 - level));

  /* Exceptions:
   * fourlib_depth: This is constant from levels 7 to 10.
   * superstring_depth: set to 0 below level 8.
   */
  if (level >= 10)
    ko_depth            = gg_max(1, KO_DEPTH + (level - 10));
  else if (level == 9)
    ko_depth            = gg_max(1, KO_DEPTH);
  else if (level >= 7)
    ko_depth            = gg_max(1, KO_DEPTH - 1);
  else
    ko_depth            = gg_max(1, KO_DEPTH + (level - 8));

  if (level >= 10)
    fourlib_depth       = gg_max(1, FOURLIB_DEPTH + (level - 10));
  else if (level >= 7)
    fourlib_depth       = gg_max(1, FOURLIB_DEPTH);
  else
    fourlib_depth       = gg_max(1, FOURLIB_DEPTH + (level - 7));

  if (level >= 8)
    superstring_depth = gg_max(1, SUPERSTRING_DEPTH);
  else
    superstring_depth = 0;

  if (level >= 10)
    owl_node_limit      = OWL_NODE_LIMIT * pow(1.5, depth_level);
  else {
    owl_node_limit      = (OWL_NODE_LIMIT * node_limits[10 - level] /
			   node_limits[0]);
    owl_node_limit      = gg_max(20, owl_node_limit);
  }

  semeai_branch_depth  = gg_max(2, (2*SEMEAI_BRANCH_DEPTH  + depth_level) / 2);
  semeai_branch_depth2 = gg_max(2, (2*SEMEAI_BRANCH_DEPTH2 + depth_level) / 2);
  semeai_node_limit    = SEMEAI_NODE_LIMIT * pow(1.5, depth_level);

  connect_depth         = gg_max(2, CONNECT_DEPTH  + 2 * depth_level);
  connect_depth2        = gg_max(2, CONNECT_DEPTH2 + 2 * depth_level);
  connection_node_limit = CONNECT_NODE_LIMIT * pow(1.45, depth_level);
  breakin_depth 	= gg_max(2, BREAKIN_DEPTH + 2 * depth_level);
  breakin_node_limit 	= BREAKIN_NODE_LIMIT * pow(1.5, depth_level);

  if (mandated_depth != -1)
    depth = mandated_depth;
  if (mandated_backfill_depth != -1)
    backfill_depth = mandated_backfill_depth;
  if (mandated_backfill2_depth != -1)
    backfill2_depth = mandated_backfill2_depth;
  if (mandated_break_chain_depth != -1)
    break_chain_depth = mandated_break_chain_depth;
  if (mandated_superstring_depth != -1)
    superstring_depth = mandated_superstring_depth;
  if (mandated_branch_depth != -1)
    branch_depth = mandated_branch_depth;
  if (mandated_fourlib_depth != -1)
    fourlib_depth = mandated_fourlib_depth;
  if (mandated_ko_depth != -1)
    ko_depth = mandated_ko_depth;
  if (mandated_aa_depth != -1)
    aa_depth = mandated_aa_depth;
  if (mandated_owl_distrust_depth != -1)
    owl_distrust_depth = mandated_owl_distrust_depth;
  if (mandated_owl_branch_depth != -1)
    owl_branch_depth = mandated_owl_branch_depth;
  if (mandated_owl_reading_depth != -1)
    owl_reading_depth = mandated_owl_reading_depth;
  if (mandated_owl_node_limit != -1)
    owl_node_limit = mandated_owl_node_limit;
  if (mandated_semeai_node_limit != -1)
    semeai_node_limit = mandated_semeai_node_limit;

  depth_offset = 0;
  
  if (report_levels) {
    fprintf(stderr, "at level %d:\n\n\
depth: %d\n\
branch_depth: %d\n\
backfill_depth: %d\n\
backfill2_depth: %d\n\
break_chain_depth: %d\n\
owl_distrust_depth: %d\n\
owl_branch_depth: %d\n\
owl_reading_depth: %d\n\
aa_depth: %d\n\
ko_depth: %d\n\
fourlib_depth: %d\n\
superstring_depth: %d\n\
owl_node_limit: %d\n\
semeai_branch_depth: %d\n\
semeai_branch_depth2: %d\n\
semeai_node_limit: %d\n\
connect_depth: %d\n\
connect_depth2: %d\n\
connection_node_limit: %d\n\
breakin_depth: %d\n\
breakin_node_limit: %d\n\n",
	    level, depth, branch_depth, backfill_depth, backfill2_depth,
	    break_chain_depth, owl_distrust_depth, owl_branch_depth,
	    owl_reading_depth, aa_depth, ko_depth, fourlib_depth,
	    superstring_depth, owl_node_limit, semeai_branch_depth, 
	    semeai_branch_depth2, semeai_node_limit, connect_depth, 
            connect_depth2, connection_node_limit, breakin_depth, 
	    breakin_node_limit);
  }
}


static int depth_modification = 0;

/*
 * Modify the various tactical reading depth parameters. This is
 * typically used to avoid horizon effects. By temporarily increasing
 * the depth values when trying some move, one can avoid that an
 * irrelevant move seems effective just because the reading hits a
 * depth limit earlier than it did when reading only on relevant
 * moves.
 */

void
modify_depth_values(int n)
{
  depth              += n;
  backfill_depth     += n;
  backfill2_depth    += n;
  break_chain_depth  += n;
  superstring_depth  += n;
  branch_depth       += n;
  fourlib_depth      += n;
  ko_depth           += n;
  breakin_depth	     += n;
  depth_offset       += n;
  depth_modification += n;
}

void
increase_depth_values(void)
{
  modify_depth_values(1);
}

void
decrease_depth_values(void)
{
  modify_depth_values(-1);
}

int
get_depth_modification(void)
{
  return depth_modification;
}


/*******************
 * Detect blunders *
 *******************/

static int detect_owl_blunder(int move, int color, int *defense_point,
			      signed char safe_stones[BOARDMAX], int liberties,
			      float *return_value, int save_verbose);

static void detect_tactical_blunder(int move, int color, int *defense_point,
				    signed char safe_stones[BOARDMAX],
				    int liberties, int *libs,
				    float *return_value, int save_verbose);

/* Check that the move at color doesn't involve any kind of blunder,
 * regardless of size.
 */
int
confirm_safety(int move, int color, int *defense_point,
	       signed char safe_stones[BOARDMAX])
{
  return (blunder_size(move, color, defense_point, safe_stones) == 0.0);
}

/* This function will detect some blunders. If the move reduces the
 * number of liberties of an adjacent friendly string, there is a
 * danger that the move could backfire, so the function checks that no
 * friendly worm which was formerly not attackable becomes attackable,
 * and it checks that no opposing worm which was not defendable
 * becomes defendable.
 *
 * It returns the estimated size of the blunder, or 0.0 if nothing
 * bad has happened.
 *
 * The array safe_stones[] contains the stones that are supposedly
 * safe after (move). It may be NULL.
 *
 * For use when called from fill_liberty, this function may optionally
 * return a point of defense, which, if taken, will presumably make
 * the move at (move) safe on a subsequent turn.
 */

float
blunder_size(int move, int color, int *defense_point,
	     signed char safe_stones[BOARDMAX])
{
  int libs[5];
  int liberties = accuratelib(move, color, 5, libs);
  int trouble = 0;
  int save_verbose = verbose;
  float return_value = 0.0;
  int atari;
  signed char defense_moves[BOARDMAX];
  
  if (defense_point)
    *defense_point = NO_MOVE;

  TRACE("Checking safety of a %s move at %1m\n", color_to_string(color), move);

  if (verbose > 0)
    verbose--;

  /* We start by checking whether we have accidentally killed an own
   * dragon.
   */
  trouble = detect_owl_blunder(move, color, defense_point,
			       safe_stones, liberties,
			       &return_value, save_verbose);
  

  /* Next we see whether the move has caused tactical complications.
   * The trouble variable is set if a string next to the move with few
   * liberties has not gained liberties by the move.
   */
  if (trouble)
    detect_tactical_blunder(move, color, defense_point, safe_stones,
			    liberties, libs, &return_value, save_verbose);

  /* FIXME: We would also need a detect_semeai_blunder() to check
   * against moves which make the outcome of a semeai worse, e.g. by
   * letting the opponent live in seki.
   */

  
  /* Finally we call the atari-atari code to see whether the move has
   * set up some combination attack that didn't exist before. We do
   * this last to avoid duplicate blunder reports.
   */
  atari = atari_atari_blunder_size(color, move, defense_moves, safe_stones);
  if (atari) {
    if (defense_point) {
      /* FIXME: Choose defense point more systematically. */
      int pos;
      *defense_point = NO_MOVE;
      for (pos = BOARDMIN; pos < BOARDMAX; pos++)
	if (ON_BOARD(pos) && defense_moves[pos]) {
	  *defense_point = pos;
	  break;
	}
    }
    verbose = save_verbose;
    TRACE("Combination attack appears.\n");
    return_value += (float) atari;
  }

  verbose = save_verbose;
  return return_value;
}

/* Check whether we have accidentally killed an own dragon adjacent to
 * move. If this happens, we mark its stones as no longer safe, and
 * remember the dragon's size.
 */

static int
detect_owl_blunder(int move, int color, int *defense_point,
		   signed char safe_stones[BOARDMAX], int liberties,
		   float *return_value, int save_verbose)
{
  int k;
  int ii;
  int trouble = 0;
  int dragon_analyzed[4] = {0, 0, 0, 0};
  int current_verbose = verbose;
  
  for (k = 0; k < 4; k++) {
    int bpos = move + delta[k];
    int j;
    /* We get worried if there is a liberty problem (and in this case
     * there might also be tactical trouble), or if we play inside
     * our eye space and the dragon is only just alive.
     */
    if (board[bpos] != color)
      continue;
    if (liberties <= worm[bpos].liberties
	&& liberties <= 4)
      trouble = 1;
    else
      if (min_eyes(&(DRAGON2(bpos).genus)) > 2
	  || !is_proper_eye_space(move))
	continue;

    /* Don't test the same dragon twice. */
    for (j = 0; j < k; j++)
      if (dragon_analyzed[j] == dragon[bpos].origin)
	break;
    if (j < k)
      continue;
    dragon_analyzed[k] = dragon[bpos].origin;

    /* Don't reanalyze if (move) is an owl defense for (bpos). */
    if (safe_stones && safe_stones[bpos] == OWL_SAVED_STONE)
      continue;

    if ((dragon[bpos].status == ALIVE
	 || (safe_stones 
	     && safe_stones[bpos]))
	&& DRAGON2(bpos).safety != INVINCIBLE
	&& DRAGON2(bpos).safety != STRONGLY_ALIVE) {
      int kworm = NO_MOVE;
      int acode = owl_confirm_safety(move, bpos, defense_point, &kworm);

      /* If owl couldn't confirm safety, maybe semeai can. */
      if (acode != WIN) {
	int r;
	for (r = 0; r < DRAGON2(bpos).neighbors; r++) {
	  int neighbor = dragon2[DRAGON2(bpos).adjacent[r]].origin;
	  int resultb;
	  if (board[neighbor] == color)
	    continue;
	  owl_analyze_semeai_after_move(move, color, neighbor, bpos,
					NULL, &resultb, NULL, 1, NULL, 0);
	  if (resultb == 0)
	    acode = WIN;
	}
      }
      
      if (acode == 0) {
	verbose = save_verbose;
	TRACE("Dragon at %1m becomes attackable.\n", bpos);
	verbose = current_verbose;
	*return_value += 2.0 * dragon[bpos].effective_size;
	if (safe_stones)
	  mark_dragon(bpos, safe_stones, 0);
      }
      else if (acode == LOSS) {
	verbose = save_verbose;
	TRACE("Dragon at %1m becomes attackable.\n", bpos);
	verbose = current_verbose;
	if (kworm == move) {
	  int l;
	  /* the worm origin was messed by our own move */
	  for (l = 0; l < 4; l++) {
	    int kworm = move + delta[l];
	    if (board[kworm] == color) {
	      *return_value += 2.0 * worm[kworm].effective_size;
	      if (safe_stones)
		for (ii = BOARDMIN; ii < BOARDMAX; ii++)
		  if (ON_BOARD(ii) && worm[ii].origin == worm[kworm].origin)
		    safe_stones[ii] = 0;
	    }
	  }
	}
	else {
	  *return_value += 2.0 * worm[kworm].effective_size;
	  if (safe_stones)
	    for (ii = BOARDMIN; ii < BOARDMAX; ii++)
	      if (ON_BOARD(ii) && worm[ii].origin == worm[kworm].origin)
		safe_stones[ii] = 0;
	}
      }
    }
  }

  return trouble;
}

/* Check whether a move causes any unexpected and unwelcome changes in
 * the tactical status of worms all over the board.
 */
static void
detect_tactical_blunder(int move, int color, int *defense_point,
			signed char safe_stones[BOARDMAX],
			int liberties, int *libs,
			float *return_value, int save_verbose)
{
  int other = OTHER_COLOR(color);
  int pos;
  int ii;
  int current_verbose = verbose;

  if (!trymove(move, color, NULL, NO_MOVE))
    return;
  
  /* Need to increase the depth values during this reading to avoid
   * horizon effects.
   */
  increase_depth_values();
  
  for (pos = BOARDMIN; pos < BOARDMAX; pos++) {
    if (!IS_STONE(board[pos])
	|| worm[pos].origin != pos
	|| pos == move)
      continue;
    
    /* First, we look for a new tactical attack.
     * FIXME: Verify that the tactically attacked stone matters. See
     *        e.g. the D6 move in filllib:51 which invites a harmless
     *        tactical attack of A4.
     */
    if (board[pos] == color
	&& ((safe_stones && safe_stones[pos])
	    || (!safe_stones && worm[pos].attack_codes[0] == 0))
	&& attack(pos, NULL)) {
      /* A safe worm of ours has become attackable. */
      if (defense_point) {
	find_defense(pos, defense_point);
	/* Check that this move is legal and effective also on the
	 * original board, otherwise find a tactical defense there
	 * instead.
	 */
	popgo();
	
	if (!is_legal(*defense_point, color)
	    || play_attack_defend_n(color, 1, 1, *defense_point, pos))
	  find_defense(pos, defense_point);
	
	/* Redo the move, we know that it won't fail. */
	trymove(move, color, NULL, NO_MOVE);
      }
      verbose = save_verbose;
      TRACE("After %1m Worm at %1m becomes attackable.\n", move, pos);
      verbose = current_verbose;
      *return_value += worm[pos].effective_size;
      if (safe_stones) /* Can't use mark_string. */
	for (ii = BOARDMIN; ii < BOARDMAX; ii++)
	  if (worm[ii].origin == worm[pos].origin)
	    safe_stones[ii] = 0;
    }
    else if (board[pos] == other
	     && worm[pos].origin == pos
	     && worm[pos].attack_codes[0] != 0
	     && worm[pos].defense_codes[0] == 0
	     && find_defense(pos, NULL)) {
      /* A dead opponent's worm has become defendable.
       * Also ask the owl code whether the string can live
       * strategically. To do this we need to temporarily undo
       * the trymove().
       */
      int owl_attacks;
      int defense_effective = 0;
      
      popgo();
      decrease_depth_values();
      owl_attacks = owl_does_attack(move, pos, NULL);
      if (owl_attacks != WIN) {
	*return_value += 2 * worm[pos].effective_size;
	defense_effective = 1;
	verbose = save_verbose;
	TRACE("After %1m worm at %1m becomes defendable - A.\n", move, pos);
	verbose = current_verbose;
      }
      else if (dragon[pos].status != ALIVE) {
	/* Before redoing the trymove we also check whether the worm now
	 * has a semeai defense. See blunder:26 for an example.
	 *
	 * If the worm already was alive in seki, it is generally okay
	 * that it also becomes tactically safe when the outer
	 * liberties are filled, see e.g. blunder:32,34. Thus the
	 * check above.
	 */
	int k;
	int adj[MAXCHAIN];
	int num_adj;
	num_adj = extended_chainlinks(pos, adj, 0);
	for (k = 0; k < num_adj; k++) {
	  int neighbor = adj[k];
	  int resulta;
	  owl_analyze_semeai_after_move(move, color, pos, neighbor,
					&resulta, NULL, NULL, 1, NULL, 1);
	  if (resulta != 0) {
	    *return_value += 2 * worm[pos].effective_size;
	    defense_effective = 1;
	    verbose = save_verbose;
	    TRACE("After %1m worm at %1m becomes defendable - B.\n",
		  move, pos);
	    verbose = current_verbose;
	    break;
	  }
	}
      }
      
      trymove(move, color, NULL, NO_MOVE);
      increase_depth_values();
      
      if (defense_effective && defense_point) {
	int dpos;
	if (attack(pos, &dpos)) {
	  *defense_point = dpos;
	  /* Check that this move is legal and effective also on the
           * original board, otherwise find a tactical attack there
           * instead.
	   */
	  popgo();
	  
	  if (!is_legal(dpos, color)
	      || play_attack_defend_n(color, 0, 1, dpos, pos))
	    attack(pos, defense_point);

	  /* Redo the move, we know that it won't fail. */
	  trymove(move, color, NULL, NO_MOVE);
	}
	else {
	  verbose = save_verbose;
	  TRACE("No attack found (unexpectedly) on %1m after move at %1m.\n",
		pos, move);
	  verbose = current_verbose;
	}
      }
    }
  }

  /* Look for double atari style complications of the move.
   *
   * FIXME: Since we have an atari_atari check in blunder_size(), do
   * we still need to do this step?
   */
  if (liberties == 2) {
    float d_a_blunder_size;
    if (double_atari(libs[0], other, &d_a_blunder_size, safe_stones)) {
      if (defense_point && safe_move(libs[0], color) == WIN)
	*defense_point = libs[0];
      *return_value += d_a_blunder_size;
      verbose = save_verbose;
      TRACE("Double threat appears at %1m.\n", libs[0]);
      verbose = current_verbose;
    }
    else if (double_atari(libs[1], other, &d_a_blunder_size, safe_stones)) {
      if (defense_point && safe_move(libs[1], color) == WIN)
	*defense_point = libs[1];
      *return_value += d_a_blunder_size;
      verbose = save_verbose;
      TRACE("Double threat appears at %1m.\n", libs[1]);
      verbose = current_verbose;
    }
  }
  
  /* Reset the depth values. */
  decrease_depth_values();

  popgo();
}


/* Returns true if a move by (color) fits the following shape:
 * 
 *
 *    X*        (O=color)
 *    OX
 * 
 * capturing one of the two X strings. The name is a slight
 * misnomer since this includes attacks which are not necessarily
 * double ataris, though the common double atari is the most
 * important special case.
 * 
 * If safe_stones != NULL, then only attacks on stones marked as safe are
 * tried.
 *
 * The value of the double atari attack is returned in *value (unless
 * value is NULL), and the attacked stones are marked unsafe.
 */

int
double_atari(int move, int color, float *value,
	     signed char safe_stones[BOARDMAX])
{
  int other = OTHER_COLOR(color);
  int k;
  int m = I(move);
  int n = J(move);

  if (!ON_BOARD(move))
    return 0;

  /* Loop over the diagonal directions. */
  for (k = 4; k < 8; k++) {
    int dm = deltai[k];
    int dn = deltaj[k];
    
    /* because (m, n) and (m+dm, n+dn) are opposite
     * corners of a square, ON_BOARD2(m, n) && ON_BOARD2(m+dm, n+dn)
     * implies ON_BOARD2(m+dm, n) and ON_BOARD2(n, n+dn)
     *
     * Only try to attack supposedly safe stones.
     */
    if (BOARD(m+dm, n+dn) == color
	&& BOARD(m, n+dn) == other
	&& BOARD(m+dm, n) == other
	&& (!safe_stones
	    || (safe_stones[POS(m, n+dn)] && safe_stones[POS(m+dm, n)]))
	&& trymove(move, color, "double_atari", NO_MOVE)) {
      if (countlib(move) > 1
	  && (BOARD(m, n+dn) == EMPTY || BOARD(m+dm, n) == EMPTY 
	      || !defend_both(POS(m, n+dn), POS(m+dm, n)))) {
	popgo();
	if (value) {
	  if (worm[POS(m, n+dn)].effective_size
	      > worm[POS(m+dm, n)].effective_size) {
	    *value = 2.0 * worm[POS(m, n+dn)].effective_size;
	    if (safe_stones)
	      mark_string(POS(m, n+dn), safe_stones, 0);
	  }
	  else {
	    *value = 2.0 * worm[POS(m+dm, n)].effective_size;
	    if (safe_stones)
	      mark_string(POS(m+dm, n), safe_stones, 0);
	  }
	}
	return 1;
      }
      popgo();
    }
  }
  
  return 0;
}
    

/* Returns true if a move by (color) plays into a snapback. */
int
playing_into_snapback(int move, int color)
{
  int libs[2];
  int k;
  
  if (approxlib(move, color, 1, NULL) != 0
      || accuratelib(move, color, 2, libs) != 1)
    return 0;

  for (k = 0; k < 4; k++)
    if (board[move + delta[k]] == color
	&& adjacent_strings(libs[0], move + delta[k]))
      return 1;

  return 0;
}


/* Score the game and determine the winner */

void
who_wins(int color, FILE *outfile)
{
  float result;

  silent_examine_position(EXAMINE_DRAGONS);

#if 0
  float white_score;
  float black_score;
  int winner;
#endif

  if (color != BLACK && color != WHITE)
    color = BLACK;

#if 0
  /* Use the aftermath code to compute the final score. (Slower but
   * more reliable.) 
   */
  result = aftermath_compute_score(color, NULL);
  if (result > 0.0)
    winner = WHITE;
  else {
    winner = BLACK;
    result = -result;
  }
#endif

  result = (white_score + black_score)/2.0;
  if (result == 0.0)
    fprintf(outfile, "Result: jigo   ");
  else
    fprintf(outfile, "Result: %c+%.1f   ",
	    (result > 0.0) ? 'W' : 'B', gg_abs(result));
}



/* Find the stones of an extended string, where the extensions are
 * through the following kinds of connections:
 *
 * 1. Solid connections (just like ordinary string).
 *
 *    OO
 *
 * 2. Diagonal connection or one space jump through an intersection
 *    where an opponent move would be suicide or self-atari.
 *
 *    ...
 *    O.O
 *    XOX
 *    X.X
 *
 * 3. Bamboo joint.
 *
 *    OO
 *    ..
 *    OO
 *
 * 4. Diagonal connection where both adjacent intersections are empty.
 *
 *    .O
 *    O.
 *
 * 5. Connection through adjacent or diagonal tactically captured stones.
 *    Connections of this type are omitted when the superstring code is
 *    called from reading.c, but included when the superstring code is
 *    called from owl.c
 */

static void
do_find_superstring(int str, int *num_stones, int *stones,
		    int *num_lib, int *libs, int maxlibs,
		    int *num_adj, int *adjs, int liberty_cap,
		    int proper, int type);

static void
superstring_add_string(int str,
		       int *num_my_stones, int *my_stones,
		       int *num_stones, int *stones,
		       int *num_libs, int *libs, int maxlibs,
		       int *num_adj, int *adjs, int liberty_cap,
		       signed char mx[BOARDMAX],
		       signed char ml[BOARDMAX],
		       signed char ma[BOARDMAX],
		       int do_add);

void
find_superstring(int str, int *num_stones, int *stones)
{
  do_find_superstring(str, num_stones, stones,
		      NULL, NULL, 0,
		      NULL, NULL, 0,
		      0, 1);
}

/* This is the same as find_superstring, except that connections of
 * type 5 are omitted. This is used in semeai analysis.
 */
void
find_superstring_conservative(int str, int *num_stones, int *stones)
{
  do_find_superstring(str, num_stones, stones,
		      NULL, NULL, 0,
		      NULL, NULL, 0,
		      0, 0);
}


/* This function computes the superstring at (str) as described above,
 * but omitting connections of type 5. Then it constructs a list of
 * liberties of the superstring which are not already liberties of
 * (str).
 *
 * If liberty_cap is nonzero, only liberties of substrings of the
 * superstring which have fewer than liberty_cap liberties are
 * generated.
 */

void
find_superstring_liberties(int str,
			   int *num_libs, int *libs, int liberty_cap)
{
  do_find_superstring(str, NULL, NULL,
		      num_libs, libs, MAX_LIBERTIES,
		      NULL, NULL, liberty_cap,
		      0, 0);
}

/* This function is the same as find_superstring_liberties, but it
 * omits those liberties of the string (str), presumably since
 * those have already been treated elsewhere.
 *
 * If liberty_cap is nonzero, only liberties of substrings of the
 * superstring which have at most liberty_cap liberties are
 * generated.
 */

void
find_proper_superstring_liberties(int str, 
				  int *num_libs, int *libs, 
				  int liberty_cap)
{
  do_find_superstring(str, NULL, NULL,
		      num_libs, libs, MAX_LIBERTIES,
		      NULL, NULL, liberty_cap,
		      1, 0);
}

/* This function computes the superstring at (str) as described above,
 * but omitting connections of type 5. Then it constructs a list of
 * liberties of the superstring which are not already liberties of
 * (str).
 *
 * If liberty_cap is nonzero, only liberties of substrings of the
 * superstring which have fewer than liberty_cap liberties are
 * generated.
 */

void
find_superstring_stones_and_liberties(int str,
				      int *num_stones, int *stones,
				      int *num_libs, int *libs,
				      int liberty_cap)
{
  do_find_superstring(str, num_stones, stones,
		      num_libs, libs, MAX_LIBERTIES,
		      NULL, NULL, liberty_cap,
		      0, 0);
}

/* analogous to chainlinks, this function finds boundary chains of the
 * superstring at (str), including those which are boundary chains of
 * (str) itself. If liberty_cap != 0, only those boundary chains with
 * <= liberty_cap liberties are reported.
 */

void
superstring_chainlinks(int str, 
		       int *num_adj, int adjs[MAXCHAIN],
		       int liberty_cap)
{
  do_find_superstring(str, NULL, NULL,
		      NULL, NULL, 0,
		      num_adj, adjs, liberty_cap,
		      0, 2);
}


/* analogous to chainlinks, this function finds boundary chains of the
 * superstring at (str), omitting those which are boundary chains of
 * (str) itself. If liberty_cap != 0, only those boundary chains with
 * <= liberty_cap liberties are reported.
 */

void
proper_superstring_chainlinks(int str,
			      int *num_adj, int adjs[MAXCHAIN],
			      int liberty_cap)
{
  do_find_superstring(str, NULL, NULL,
		      NULL, NULL, 0,
		      num_adj, adjs, liberty_cap,
		      1, 2);
}

/* Do the real work finding the superstring and recording stones,
 * liberties, and/or adjacent strings.
 */
static void
do_find_superstring(int str, int *num_stones, int *stones,
		    int *num_libs, int *libs, int maxlibs,
		    int *num_adj, int *adjs, int liberty_cap,
		    int proper, int type)
{
  int num_my_stones;
  int my_stones[MAX_BOARD * MAX_BOARD];
  
  signed char mx[BOARDMAX]; /* stones */
  signed char ml[BOARDMAX]; /* liberties */
  signed char ma[BOARDMAX]; /* adjacent strings */

  int k, l, r;
  int color = board[str];
  int other = OTHER_COLOR(color);

  memset(mx, 0, sizeof(mx));
  memset(ml, 0, sizeof(ml));
  memset(ma, 0, sizeof(ma));

  if (num_stones)
    *num_stones = 0;
  if (num_libs)
    *num_libs = 0;
  if (num_adj)
    *num_adj = 0;

  /* Include the string itself in the superstring. Only record stones,
   * liberties, and/or adjacent strings if proper==0.
   */
  num_my_stones = 0;
  superstring_add_string(str, &num_my_stones, my_stones,
			 num_stones, stones,
			 num_libs, libs, maxlibs,
			 num_adj, adjs, liberty_cap,
			 mx, ml, ma,
			 !proper);

  /* Loop over all found stones, looking for more strings to include
   * in the superstring. The loop is automatically extended over later
   * found stones as well.
   */
  for (r = 0; r < num_my_stones; r++) {
    int pos = my_stones[r];

    for (k = 0; k < 4; k++) {
      /* List of relative coordinates. (pos) is marked by *.
       *
       *  ef.
       *  gb.
       *  *ac
       *  .d.
       *
       */
      int right = delta[k];
      int up = delta[(k+1)%4];
      
      int apos = pos + right;
      int bpos = pos + right + up;
      int cpos = pos + 2*right;
      int dpos = pos + right - up;
      int epos = pos + 2*up;
      int fpos = pos + right + 2*up;
      int gpos = pos + up;
      int unsafe_move;
      
      if (!ON_BOARD(apos))
	continue;
      
      /* Case 1. Nothing to do since stones are added string by string. */
            
      /* Case 2. */
      if (board[apos] == EMPTY) {
	if (type == 2)
	  unsafe_move = (approxlib(apos, other, 2, NULL) < 2);
	else
	  unsafe_move = is_self_atari(apos, other);
	
	if (unsafe_move && type == 1 && is_ko(apos, other, NULL))
	  unsafe_move = 0;
	
	if (unsafe_move) {
	  if (board[bpos] == color && !mx[bpos])
	    superstring_add_string(bpos, &num_my_stones, my_stones,
				   num_stones, stones,
				   num_libs, libs, maxlibs,
				   num_adj, adjs, liberty_cap,
				   mx, ml, ma, 1);
	  if (board[cpos] == color && !mx[cpos])
	    superstring_add_string(cpos, &num_my_stones, my_stones,
				   num_stones, stones,
				   num_libs, libs, maxlibs,
				   num_adj, adjs, liberty_cap,
				   mx, ml, ma, 1);
	  if (board[dpos] == color && !mx[dpos])
	    superstring_add_string(dpos, &num_my_stones, my_stones,
				   num_stones, stones,
				   num_libs, libs, maxlibs,
				   num_adj, adjs, liberty_cap,
				   mx, ml, ma, 1);
	}
      }
      
      /* Case 3. */
      /* Notice that the order of these tests is significant. We must
       * check bpos before fpos and epos to avoid accessing memory
       * outside the board array. (Notice that fpos is two steps away
       * from pos, which we know is on the board.)
       */
      if (board[apos] == color && board[bpos] == EMPTY
	  && board[fpos] == color && board[epos] == color && !mx[epos]
	  && board[gpos] == EMPTY)
	superstring_add_string(epos, &num_my_stones, my_stones,
			       num_stones, stones,
			       num_libs, libs, maxlibs,
			       num_adj, adjs, liberty_cap,
			       mx, ml, ma, 1);
      /* Don't bother with f, it is part of the string just added. */
      
      /* Case 4. */
      if (board[bpos] == color && !mx[bpos]
	  && board[apos] == EMPTY && board[gpos] == EMPTY)
	superstring_add_string(bpos, &num_my_stones, my_stones,
			       num_stones, stones,
			       num_libs, libs, maxlibs,
			       num_adj, adjs, liberty_cap,
			       mx, ml, ma, 1);
      
      /* Case 5. */
      if (type == 1)
	for (l = 0; l < 2; l++) {
	  int upos;
	  
	  if (l == 0) {
	    /* adjacent lunch */
	    upos = apos;
	  }
	  else {
	    /* diagonal lunch */
	    upos = bpos;
	  }
	  
	  if (board[upos] != other)
	    continue;
	  
	  upos = find_origin(upos);
	  
	  /* Only do the reading once. */
	  if (mx[upos] == 1)
	    continue;
	  
	  mx[upos] = 1;
	  
	  if (attack(upos, NULL)
	      && !find_defense(upos, NULL)) {
	    int lunch_stones[MAX_BOARD*MAX_BOARD];
	    int num_lunch_stones = findstones(upos, MAX_BOARD*MAX_BOARD,
					      lunch_stones);
	    int m, n;
	    for (m = 0; m < num_lunch_stones; m++)
	      for (n = 0; n < 8; n++) {
		int vpos = lunch_stones[m] + delta[n];
		if (board[vpos] == color && !mx[vpos])
		  superstring_add_string(vpos,
					 &num_my_stones, my_stones,
					 num_stones, stones,
					 num_libs, libs, maxlibs,
					 num_adj, adjs, liberty_cap,
					 mx, ml, ma, 1);
	      }
	  }
	}
      if (num_libs && maxlibs > 0 && *num_libs >= maxlibs)
	return;
    }
  }
}

/* Add a new string to a superstring. Record stones, liberties, and
 * adjacent strings as asked for.
 */
static void
superstring_add_string(int str,
		       int *num_my_stones, int *my_stones,
		       int *num_stones, int *stones,
		       int *num_libs, int *libs, int maxlibs,
		       int *num_adj, int *adjs, int liberty_cap,
		       signed char mx[BOARDMAX],
		       signed char ml[BOARDMAX],
		       signed char ma[BOARDMAX],
		       int do_add)
{
  int num_my_libs;
  int my_libs[MAXLIBS];
  int num_my_adj;
  int my_adjs[MAXCHAIN];
  int new_stones;
  int k;
  
  ASSERT1(mx[str] == 0, str);

  /* Pick up the stones of the new string. */
  new_stones = findstones(str, board_size * board_size,
			  &(my_stones[*num_my_stones]));
  
  mark_string(str, mx, 1);
  if (stones) {
    gg_assert(num_stones);
    for (k = 0; k < new_stones; k++) {
      if (do_add) {
	stones[*num_stones] = my_stones[*num_my_stones + k];
	(*num_stones)++;
      }
    }
  }
  (*num_my_stones) += new_stones;

  /* Pick up the liberties of the new string. */
  if (libs) {
    gg_assert(num_libs);
    /* Get the liberties of the string. */
    num_my_libs = findlib(str, MAXLIBS, my_libs);

    /* Remove this string from the superstring if it has too many
     * liberties.
     */
    if (liberty_cap > 0 && num_my_libs > liberty_cap)
      (*num_my_stones) -= new_stones;

    for (k = 0; k < num_my_libs; k++) {
      if (ml[my_libs[k]])
	continue;
      ml[my_libs[k]] = 1;
      if (do_add && (liberty_cap == 0 || num_my_libs <= liberty_cap)) {
	libs[*num_libs] = my_libs[k];
	(*num_libs)++;
	if (*num_libs == maxlibs)
	  break;
      }
    }
  }

  /* Pick up adjacent strings to the new string. */
  if (adjs) {
    gg_assert(num_adj);
    num_my_adj = chainlinks(str, my_adjs);
    for (k = 0; k < num_my_adj; k++) {
      if (liberty_cap > 0 && countlib(my_adjs[k]) > liberty_cap)
	continue;
      if (ma[my_adjs[k]])
	continue;
      ma[my_adjs[k]] = 1;
      if (do_add) {
	adjs[*num_adj] = my_adjs[k];
	(*num_adj)++;
      }
    }
  }
}

/* Internal timers for assessing time spent on various tasks. */
#define NUMBER_OF_TIMERS 4
static double timers[NUMBER_OF_TIMERS];

/* Start a timer. */
void
start_timer(int n)
{
  gg_assert(n >= 0 && n < NUMBER_OF_TIMERS);
  if (!showtime)
    return;

  timers[n] = gg_cputime();
}

/* Report time spent and restart the timer. Make no report if elapsed
 * time is less than mintime.
 */
double
time_report(int n, const char *occupation, int move, double mintime)
{
  double t;
  double dt;
  gg_assert(n >= 0 && n < NUMBER_OF_TIMERS);

  if (!showtime)
    return 0.0;

  t = gg_cputime();
  dt = t - timers[n];
  if (dt > mintime) {
    gprintf("%s", occupation);
    if (move != NO_MOVE)
      gprintf("%1m", move);
    fprintf(stderr, ": %.2f sec\n", dt);
  }
  timers[n] = t;
  return dt;
}

void
clearstats()
{
  stats.nodes                    = 0;
  stats.read_result_entered      = 0;
  stats.read_result_hits         = 0;
  stats.trusted_read_result_hits = 0;
}
  
void
showstats()
{
  gprintf("Nodes:                    %d\n", stats.nodes);
  gprintf("Read results entered:     %d\n", stats.read_result_entered);
  gprintf("Read result hits:         %d\n", stats.read_result_hits);
  gprintf("Trusted read result hits: %d\n", stats.trusted_read_result_hits);
}


/* Set up a compiled in pattern database for use by the Monte Carlo
 * code. If name is NULL, the first pattern database is used.
 *
 * The reason why this function and the next are placed here rather
 * than in montecarlo.c is to keep that file free from dependency on
 * patterns.h.
 */
int
choose_mc_patterns(char *name)
{
  int k;
  for (k = 0; mc_pattern_databases[k].name; k++) {
    if (!name || strcmp(name, mc_pattern_databases[k].name) == 0) {
      mc_init_patterns(mc_pattern_databases[k].values);
      return 1;
    }
  }

  return 0;
}

/* List compiled in Monte Carlo pattern databases. */
void
list_mc_patterns(void)
{
  int k;
  printf("Available builtin Monte Carlo local patterns:\n\n");
  for (k = 0; mc_pattern_databases[k].name; k++) {
    if (k == 0)
      printf("* %s (default)\n", mc_pattern_databases[k].name);
    else
      printf("* %s\n", mc_pattern_databases[k].name);
  }
  printf("\nUse \"--mc-patterns name\" to choose one of these.\n");
  printf("Use \"--mc-load-patterns filename\" to directly load a pattern database.\n");
}

/*
 * Local Variables:
 * tab-width: 8
 * c-basic-offset: 2
 * End:
 */