1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
|
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *\
* This is GNU Go, a Go program. Contact gnugo@gnu.org, or see *
* http://www.gnu.org/software/gnugo/ for more information. *
* *
* Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, *
* 2008 and 2009 by the Free Software Foundation. *
* *
* This program is free software; you can redistribute it and/or *
* modify it under the terms of the GNU General Public License as *
* published by the Free Software Foundation - version 3 or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License in file COPYING for more details. *
* *
* You should have received a copy of the GNU General Public *
* License along with this program; if not, write to the Free *
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor, *
* Boston, MA 02111, USA. *
\* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/* Extract fuseki patterns from the initial moves of a collection
* of games.
*
* This program finds the most common positions from the initial moves
* of a collection of games, and generates patterns in patterns.db
* format for the most common moves in these positions.
*
* Positions are identified by Zobrist hash values, completely
* ignoring the risk for hash collisions. In order to take all
* symmetries into account, we compute 8 hash values, one for each
* transformation of the board. Rather than playing on 8 boards in
* parallel, we construct 8 transformed copies of the Zobrist hash
* tables and compute one hash value for each of these. To get a
* transformation invariant hash, we finally sort the 8 hash values.
*
* Example:
* extract_fuseki sgflist 9 8 400
*
* generates (up to) 400 patterns, considering the 8 first moves of
* the 9x9 games listed in the file sgflist, and writes the patterns
* to stdout. sgflist is a file containing sgf filenames, one per line.
*
* The generated patterns may look like, e.g.
* Pattern Fuseki33
* # 3/18
*
* |.........
* |.........
* |...*.X...
* |.........
* |....O....
* |.........
* |.........
* |.........
* |.........
* +---------
*
* :8,-,value(3)
*
* The comment line gives the information that this position has been
* found 18 times among the analyzed games, and 3 out of these 18 times,
* the move * has been played. The same number 3 is entered as pattern
* value on the colon line for use by the fuseki module.
*/
/*
* Notes on the statistics:
*
* The statistics code assumes that every input file is valid. Use
* the output file option to sort out which input files are valid, and
* check output for problems. Rerun after fixing/removing invalid files.
*
* Outcome is defined by RE in sgf. Files without a parsable RE, or which
* do not have a winner, are invalid and need to be excluded.
*
* Pearson chi squared at 5% is used to test significance of
* differences among moves at a given position. Moves excluded by
* popularity rules are grouped together and considered as one. A
* positive result means that among all possible moves in a position,
* there's a difference somewhere. The next question is where. One
* clue comes from dchisq, which is the contribution to the overall
* chi squared for each move, with larger meaning higher impact on
* significance of overall result. Another comes from post hoc tests.
* Each pair of moves from a position with a statistically significant
* impact of move choice is compared, again with Pearson chi squared
* at 5%, and the positive tests printed. No correction is done for
* multiple tests. Pairs with less than 6 total moves are not tested,
* so it's possible for there to be a significant overall result
* without any positive post hocs. In this case, the overall result is
* doubtful as well.
*
* If the interest is solely in statistics, using min_pos_freq to
* avoid positions without enough data to hope for significance makes
* sense: 6 at a minimum.
*
* Note that the popularity exclusion rules can result in patterns being
* left in the db which have no parent in the db.
*
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <limits.h>
#include <math.h>
#include "liberty.h"
#include "gg_utils.h"
#include "random.h"
#include "../sgf/sgftree.h"
#define USAGE "\n\
Usage: extract_fuseki files boardsize moves patterns handicap strength half_board min_pos_freq min_move_percent min_move_freq [output file]\n\
files: The name of a file listing sgf files to examine,\n\
one filename per line.\n\
boardsize: Only consider games with this size.\n\
moves: Number of moves considered in each game.\n\
handicap: 0 - no handicap, 1 - any game, 2-9 - two to nine handicap stones\n\
10 any handicap game\n\
strength: The lowest strength of the players (1k-30k)\n\
half_board: 0 - full board patterns, 1 - half board patterns\n\
min_pos_freq: how many times a position must occur before patterns\n\
from it are generated\n\
min_move_percent: minimum popularity relative to most popular move \n\
(counted by unique players) required of a move \n\
in a given position before it gets a pattern\n\
min_move_freq: minimum number of unique players who must play a move\n\
before it gets a pattern\n\
output file: Optional (if this exists, extract_fuseki will sort the games instead)\n\
"
/* Maximum length of sgf filename. */
#define BUFSIZE 1000
/* Number of moves to consider in each game, given as argument.*/
int moves_per_game;
/* Flag checking the setting for generating half board patterns */
int half_board_patterns = 0;
/* Maximum number of patterns to generate */
#define MAX_PATTERNS_TO_EXTRACT 100000
/* Handicap value, given as argument.*/
int handicap_value;
/* Lowest strength, given as argument.*/
int player_strength;
/* Min # of times a position must be seen before moves from it become
* patterns.
* Might want this larger to ensure reasonable statistics, 6 or more, say
* or smaller to hit every move down to unique games, 2 say;
* or even keep churning out moves with 1.
*
* Given as argument.
*/
int min_position_freq;
/* popularity arguments */
double min_move_percent;
int min_move_freq;
/* Number of games to analyze. */
int number_of_games;
/* Dynamically allocated array marking the games that could not be
* used for some reason.
*/
int *unused_games;
/* WARN 1 warns about unused games. */
/* WARN 2 also notes assumptions about metainfo. */
#define WARN 1
/* Dynamically allocated list of sgf file names. */
char **sgf_names;
/* Zobrist hash tables, rotated and reflected into all 8 transformations. */
unsigned int O_hash[8][MAX_BOARD][MAX_BOARD];
unsigned int X_hash[8][MAX_BOARD][MAX_BOARD];
unsigned int move_hash[8][MAX_BOARD][MAX_BOARD];
/* A board is hashed 8 times, once for each transformation, and these
* numbers are sorted into a transformation invariant hash.
*/
struct invariant_hash {
unsigned int values[8];
};
/* This is defined in engine/matchpat.c */
extern const int transformations[8][2][2];
/* A situation is the combination of a board position and the move to
* be made. We use the invariant hashes excluding and including the move
* as identification. If are interested in positions, we only use the first
* hash value.
*
* We ignore the possibility of a hash collision.
*
* outcome is the color which won the game
* player is the (hashed) name of the player who made the move
*/
struct situation {
struct invariant_hash pre;
struct invariant_hash post;
int outcome;
unsigned int player;
};
/* Dynamically allocated table of situations encountered in the analysis. */
struct situation *situation_table;
int number_of_situations;
/* Data type for frequencies of e.g. situations or positions. 'index'
* is the index into situation_table.
*/
struct frequency {
int index;
int n;
int n_win;
int n_player;
};
/* Position frequency table. */
struct frequency *frequency_table;
int number_of_distinct_positions;
/* The most common situations are called winners. These are the ones
* we generate patterns for.
*
* 'index' is normally an index into situation_table, or -1 for
* special aggregate entry (with no pattern) to collect stats for
* unpopular moves
*
* pre is hash[0], and must be stored here for aggregate
*/
struct winner {
int index;
unsigned int pre;
int position_frequency;
int move_frequency;
int n_player;
int position_success;
int move_success;
char pattern[MAX_BOARD][MAX_BOARD];
};
/* Dynamically allocated table of winners. */
struct winner *winning_moves;
int number_of_winning_moves;
/* critical values of chisquare distribution with n degrees of freedom */
/* p < 0.05
*/
double chisquarecrit05[] = {
3.8415, 5.9915, 7.8147, 9.4877, 11.0705, 12.5916, 14.0671, 15.5073,
16.9190, 18.3070, 19.6751, 21.0261, 22.3620, 23.6848, 24.9958, 26.2962,
27.5871, 28.8693, 30.1435, 31.4104, 32.67057, 33.92444, 35.17246,
36.41503, 37.65248, 38.88514, 40.11327, 41.33714, 42.55697, 43.77297,
44.98534, 46.19426, 47.39988, 48.60237, 49.80185, 50.99846, 52.19232,
53.38354, 54.57223, 55.75848, 56.94239, 58.12404, 59.30351, 60.48089,
61.65623, 62.82962, 64.00111, 65.17077, 66.33865, 67.50481};
/* p < 0.10, should be same size as 05 */
double chisquarecrit10[] = {
2.7055, 4.6052, 6.2514, 7.7794, 9.2364, 10.6446, 12.0170, 13.3616,
14.6837, 15.9872, 17.2750, 18.5493, 19.8119, 21.0641, 22.3071, 23.5418,
24.7690, 25.9894, 27.2036, 28.4120, 29.61509, 30.81328, 32.00690,
33.19624, 34.38159, 35.56317, 36.74122, 37.91592, 39.08747, 40.25602,
41.42174, 42.58475, 43.74518, 44.90316, 46.05879, 47.21217, 48.36341,
49.51258, 50.65977, 51.80506, 52.94851, 54.09020, 55.23019, 56.36854,
57.50530, 58.64054, 59.77429, 60.90661, 62.03754, 63.16712};
double chisquarecrit01[] = {
6.63489660102121, 9.21034037197618, 11.3448667301444, 13.2767041359876,
15.086272469389, 16.8118938297709, 18.4753069065824, 20.0902350296632,
21.6659943334619, 23.2092511589544, 24.7249703113183, 26.2169673055359,
27.6882496104570, 29.1412377406728, 30.5779141668925, 31.9999269088152,
33.4086636050046, 34.8053057347051, 36.1908691292701, 37.5662347866250,
38.9321726835161, 40.2893604375938, 41.6383981188585, 42.9798201393516,
44.3141048962192, 45.6416826662832, 46.9629421247514, 48.2782357703155,
49.5878844728988, 50.8921813115171, 52.1913948331919, 53.4857718362354,
54.7755397601104, 56.0609087477891, 57.3420734338592, 58.619214501687,
59.8925000450869, 61.1620867636897, 62.4281210161849, 63.6907397515645,
64.9500713352112, 66.2062362839932, 67.4593479223258, 68.7095129693454,
69.9568320658382, 71.2014002483115, 72.4433073765482, 73.6826385201058,
74.9194743084782, 76.1538912490127};
double chisquarecrit001[] = {
10.8275661706627, 13.8155105579643, 16.2662361962381, 18.4668269529032,
20.5150056524329, 22.4577444848253, 24.3218863478569, 26.1244815583761,
27.8771648712566, 29.5882984450744, 31.26413362024, 32.9094904073602,
34.5281789748709, 36.1232736803981, 37.6972982183538, 39.2523547907685,
40.7902167069025, 42.31239633168, 43.8201959645175, 45.3147466181259,
46.7970380415613, 48.2679422908352, 49.7282324664315, 51.1785977773774,
52.6196557761728, 54.0519623885766, 55.4760202057452, 56.8922853933536,
58.3011734897949, 59.7030643044299, 61.0983060810581, 62.4872190570885,
63.870098522345, 65.2472174609424, 66.618828843701, 67.9851676260242,
69.3464524962412, 70.702887411505, 72.0546629519878, 73.401957518991,
74.7449383984238, 76.0837627077, 77.418578241314, 78.749524228043,
80.076732010819, 81.40032565871, 82.720422519124, 84.0371337172235,
85.350564608593, 86.6608151904032};
/*
* Append the files that are sorted to a specific file
*/
static void
write_sgf_filenames(const char *name, char *filenames[])
{
int n;
FILE *namefile = fopen(name, "a");
if (!namefile) {
fprintf(stderr, "Fatal error, couldn't open %s.\n", name);
exit(EXIT_FAILURE);
}
for (n = 0; n < number_of_games; n++) {
if (unused_games[n] == 0)
fprintf(namefile, "%s\n", filenames[n]);
}
}
/* Read the sgf file names. These are assumed to be stored one per
* line in the file with the name given by 'name'. The sgf file names
* are copied into dynamically allocated memory by strdup() and
* pointers to the names are stored into the 'filenames[]' array. It
* is assumed that 'filenames' has been allocated sufficiently large
* before this this function is called. If 'filenames' is NULL, the
* sgf file names are only counted. The number of sgf file names is
* returned.
*/
static int
read_sgf_filenames(const char *name, char *filenames[])
{
int n;
char buf[BUFSIZE];
FILE *namefile = fopen(name, "r");
if (!namefile) {
fprintf(stderr, "Fatal error, couldn't open %s.\n", name);
exit(EXIT_FAILURE);
}
n = 0;
while (fgets(buf, BUFSIZE, namefile) != NULL) {
if (filenames != NULL) {
if (buf[strlen(buf) - 2] == '\r') {
buf[strlen(buf) - 2] = '\0';
/* Delete carriage return character, if any. */
}
else {
buf[strlen(buf) - 1] = '\0';
/* Delete newline character. */
}
filenames[n] = strdup(buf);
if (filenames[n] == NULL) {
fprintf(stderr, "Fatal error, strdup() failed.\n");
exit(EXIT_FAILURE);
}
}
n++;
}
return n;
}
/* Fill one of the zobrist hash tables with random numbers. */
static void
init_zobrist_table(unsigned int hash[8][MAX_BOARD][MAX_BOARD])
{
unsigned int k;
int m, n;
int i, j;
int mid = board_size/2;
for (m = 0; m < board_size; m++)
for (n = 0; n < board_size; n++) {
hash[0][m][n] = 0;
for (k = 0; 32*k < CHAR_BIT*sizeof(hash[0][0][0]); k++)
hash[0][m][n] |= gg_urand() << k*32;
}
/* Fill in all transformations of the hash table. */
for (k = 1; k < 8; k++)
for (m = 0; m < board_size; m++)
for (n = 0; n < board_size; n++) {
TRANSFORM2(m-mid, n-mid, &i, &j, k);
hash[k][m][n] = hash[0][i+mid][j+mid];
}
/* Debug output. */
if (0) {
for (k = 0; k < 8; k++) {
for (m = 0; m < board_size; m++) {
for (n = 0; n < board_size; n++)
fprintf(stderr, "%8x ", hash[k][m][n]);
fprintf(stderr, "\n");
}
fprintf(stderr, "\n");
fprintf(stderr, "\n");
}
}
}
/* Initialize all Zobrist hash tables with random numbers. */
static void
init_zobrist_numbers(void)
{
gg_srand(1);
init_zobrist_table(O_hash);
init_zobrist_table(X_hash);
init_zobrist_table(move_hash);
}
/* Initialize the situation_table array. */
static void
init_situations(void)
{
situation_table = calloc(moves_per_game * number_of_games,
sizeof(*situation_table));
if (!situation_table) {
fprintf(stderr, "Fatal error, failed to allocate situations table.\n");
exit(EXIT_FAILURE);
}
number_of_situations = 0;
}
/* Compare two hash values. Used for sorting the hash values in the
* invariant hash.
*/
static int
compare_numbers(const void *a, const void *b)
{
unsigned int aa = *((const unsigned int *) a);
unsigned int bb = *((const unsigned int *) b);
if (aa > bb)
return 1;
if (aa < bb)
return -1;
return 0;
}
/* Compute hash values for all transformations of the position
* currently in the p[][] array. The hash values are not sorted by
* this function.
*/
static void
common_hash_board(struct invariant_hash *hash, int color_to_play)
{
int m, n;
int k;
for (k = 0; k < 8; k++)
hash->values[k] = 0;
for (m = 0; m < board_size; m++)
for (n = 0; n < board_size; n++) {
for (k = 0; k < 8; k++) {
if (BOARD(m, n) == color_to_play)
hash->values[k] ^= O_hash[k][m][n];
else if (BOARD(m, n) != EMPTY)
hash->values[k] ^= X_hash[k][m][n];
}
}
}
/* Compute invariant hash for the current position. */
static void
hash_board(struct invariant_hash *hash, int color_to_play)
{
common_hash_board(hash, color_to_play);
/* Sort the 8 hash values. */
gg_sort(hash->values, 8, sizeof(hash->values[0]), compare_numbers);
}
/* Compute invariant hash for the current situation, i.e. position
* plus a move to be made.
*/
static void
hash_board_and_move(struct invariant_hash *hash, int color_to_play,
int m, int n)
{
int k;
common_hash_board(hash, color_to_play);
for (k = 0; k < 8; k++)
hash->values[k] ^= move_hash[k][m][n];
/* Notice that we of course must wait with sorting until we have
* added the move to the hash values.
*/
gg_sort(hash->values, 8, sizeof(hash->values[0]), compare_numbers);
}
/* the so called X31 hash from gtk, for hashing strings */
static unsigned int
hash_string(const char *v)
{
unsigned int h = 0;
while (*v != '\0') {
h = (h << 5) - h + *v;
v++;
}
return h;
}
/* Adapted from play_sgf_tree() in engine/sgfutils.c. Returns the
* next move from the game record in (*m, *n) and color in *color. If
* handicap stones are encountered, these are put on the board
* immediately. Return value is 1 if another move was found in the
* game record, 0 otherwise.
*/
static int
get_move_from_sgf(SGFNode *node, int *m, int *n, int *color)
{
SGFProperty *prop;
int i, j;
for (prop = node->props; prop; prop = prop->next) {
if (!prop || !prop->name || !node) {
/* something wrong with the SGF file properties */
if (1)
fprintf(stderr, "Something wrong with the SGF file properties.\n");
return 0;
}
switch (prop->name) {
case SGFAB:
get_moveXY(prop, &i, &j, board_size);
/* Put handicap stones on the board at once. */
add_stone(POS(i, j), BLACK);
break;
case SGFAW:
if (0)
fprintf(stderr, "Warning: white stone added.\n");
return 0;
break;
case SGFPL:
if (0)
fprintf(stderr, "Warning: PL property encountered.\n");
return 0;
break;
case SGFW:
case SGFB:
*color = (prop->name == SGFW) ? WHITE : BLACK;
if (!get_moveXY(prop, m, n, board_size)) {
if (0)
fprintf(stderr, "Warning: failed to get move coordinates.\n");
return 0;
}
return 1;
break;
}
}
return 0;
}
/* Add a situation to the situation_table array. */
static void
add_situation(struct invariant_hash *pre, struct invariant_hash *post,
int outcome, unsigned int player)
{
situation_table[number_of_situations].pre = *pre;
situation_table[number_of_situations].post = *post;
situation_table[number_of_situations].outcome = outcome;
situation_table[number_of_situations].player = player;
number_of_situations++;
}
/* Compare two situations. Used (indirectly, see compare_situations2)
* for sorting the situation_table array
* and when building frequency tables for the different moves at the
* same position.
*/
static int
compare_situations(const void *a, const void *b)
{
const struct situation *aa = a;
const struct situation *bb = b;
int k;
for (k = 0; k < 8; k++) {
if (aa->pre.values[k] > bb->pre.values[k])
return 1;
if (aa->pre.values[k] < bb->pre.values[k])
return -1;
}
for (k = 0; k < 8; k++) {
if (aa->post.values[k] > bb->post.values[k])
return 1;
if (aa->post.values[k] < bb->post.values[k])
return -1;
}
return 0;
}
static int
compare_situations2(const void *a, const void *b)
{
const struct situation *aa = a;
const struct situation *bb = b;
int r = compare_situations(a, b);
if (r != 0)
return r;
if (aa->player > bb->player)
return 1;
if (aa->player < bb->player)
return -1;
return 0;
}
/* Compare two positions. Used when building frequency table for the
* different positions encountered.
*/
static int
compare_positions(const void *a, const void *b)
{
const struct situation *aa = a;
const struct situation *bb = b;
int k;
for (k = 0; k < 8; k++) {
if (aa->pre.values[k] > bb->pre.values[k])
return 1;
if (aa->pre.values[k] < bb->pre.values[k])
return -1;
}
return 0;
}
/* Compare two frequency table entries. The returned values are
* "backwards" because we always want to sort frequencies in falling
* order.
*
* The first version counts every game equally, the second version
* counts a game only once per unique player.
*/
static int
compare_frequencies(const void *a, const void *b)
{
const struct frequency *aa = a;
const struct frequency *bb = b;
if (aa->n < bb->n)
return 1;
if (aa->n > bb->n)
return -1;
return 0;
}
static int
compare_frequencies2(const void *a, const void *b)
{
const struct frequency *aa = a;
const struct frequency *bb = b;
if (aa->n_player < bb->n_player)
return 1;
if (aa->n_player > bb->n_player)
return -1;
return 0;
}
/*
* find_region answers in what region the move is.
* There are 9 regions, corners, sides and center.
*/
static int
find_region(int m, int n)
{
if (m < 7) {
if (n < 7)
return 0;
else if (n > 11)
return 1;
else if (n > 6 && m < 5)
return 6;
}
else if (m > 11) {
if (n < 7)
return 2;
else if (n > 11)
return 3;
else if (n > 6 && m > 13)
return 7;
}
else if (m > 6) {
if (n < 5)
return 4;
else if (n > 13)
return 5;
}
/* otherwise in center */
return 8;
}
/* If this situation is listed among the winners, fill in the pattern
* entry of the winner struct.
*/
static void
store_pattern_if_winner(struct invariant_hash *pre,
struct invariant_hash *post,
int color, int m, int n)
{
int k;
struct situation s;
int region = 8;
int i, j;
int move_number = 1;
s.pre = *pre;
s.post = *post;
for (k = 0; k < number_of_winning_moves; k++) {
if (winning_moves[k].index != -1
&& compare_situations(&situation_table[winning_moves[k].index],
&s) == 0) {
/* This is a winner. Record the pattern. */
for (i = 0; i < board_size; i++)
for (j = 0; j < board_size; j++) {
if (BOARD(i, j) == EMPTY)
winning_moves[k].pattern[i][j] = '.';
else if (BOARD(i, j) == color) {
winning_moves[k].pattern[i][j] = 'O';
move_number++;
}
else if ((color == WHITE && BOARD(i, j) == BLACK)
|| (color == BLACK && BOARD(i, j) == WHITE)) {
winning_moves[k].pattern[i][j] = 'X';
move_number++;
}
else { /* something is wrong */
fprintf(stderr, "Error in store_pattern_if_winner: %d\n", k);
winning_moves[k].pattern[i][j] = '.';
}
}
winning_moves[k].pattern[m][n] = '*';
/* Add ? in areas far away from the move. */
if (half_board_patterns == 1 && move_number > 3 && board_size == 19)
region = find_region(m, n);
if (region != 8) {
for (i = 0; i < board_size; i++) {
for (j = 0; j < board_size; j++) {
if (region == 0) {
if (i + j > 23)
winning_moves[k].pattern[i][j] = '?';
}
else if (region == 1) {
if (i - j > 5)
winning_moves[k].pattern[i][j] = '?';
}
else if (region == 2) {
if (i + board_size - j < 14)
winning_moves[k].pattern[i][j] = '?';
}
else if (region == 3) {
if (i + j < 13)
winning_moves[k].pattern[i][j] = '?';
}
else if (region == 4) {
if (j > 10)
winning_moves[k].pattern[i][j] = '?';
}
else if (region == 5) {
if (j < 8)
winning_moves[k].pattern[i][j] = '?';
}
else if (region == 6) {
if (i > 10)
winning_moves[k].pattern[i][j] = '?';
}
else if (region == 7) {
if (i < 8)
winning_moves[k].pattern[i][j] = '?';
}
}
}
}
}
}
}
/* Play through the initial moves of a game. If 'collect_statistics'
* is set, store all encountered situations in the situation_table
* array. 'collect_statistics' will be set to the color which won the
* game. Otherwise, see if there are any winners among the situations
* and store the corresponding pattern so that it can subsequently be
* printed. Return 0 if there was some problem with the game record,
* e.g. fewer moves than expected.
*/
static int
examine_game(SGFNode *sgf, int collect_statistics)
{
int k;
int m, n;
SGFNode *node = sgf;
struct invariant_hash prehash;
struct invariant_hash posthash;
int color;
char *PW, *PB;
unsigned int white_player, black_player;
if (!sgfGetCharProperty(sgf, "PW", &PW))
white_player = hash_string("");
else
white_player = hash_string(PW);
if (!sgfGetCharProperty(sgf, "PB", &PB))
black_player = hash_string("");
else
black_player = hash_string(PB);
/* Call the engine to clear the board. */
clear_board();
/* Loop through the first moves_per_game moves of each game. */
for (k = 0; k < moves_per_game && node != NULL; node = node->child) {
if (!get_move_from_sgf(node, &m, &n, &color)) {
if (k > 0) {
/* something is wrong with the file */
if (0)
fprintf(stderr, "move number:%d\n", k);
return 0;
}
continue;
}
gg_assert(m >= 0 && m < board_size && n >= 0 && n <= board_size);
hash_board(&prehash, color);
hash_board_and_move(&posthash, color, m, n);
if (collect_statistics != EMPTY)
add_situation(&prehash, &posthash, collect_statistics == color,
color == WHITE ? white_player : black_player);
else
store_pattern_if_winner(&prehash, &posthash, color, m, n);
play_move(POS(m, n), color);
/* Debug output. */
if (0) {
int l;
for (l = 0; l < 8; l++)
fprintf(stderr, "%8x ", prehash.values[l]);
fprintf(stderr, " ");
for (l = 0; l < 8; l++)
fprintf(stderr, "%8x ", posthash.values[l]);
fprintf(stderr, "\n");
showboard(0);
}
k++;
}
if (!node) {
if (0)
fprintf(stderr, "Node error\n");
return 0;
}
return 1;
}
/* Tests if the player has enough strength in the game to be interesting
* for the library
*/
static int
enough_strength(char *strength)
{
int length = 0;
int i = 0;
int kyu = 30;
if (player_strength >= 30)
return 1;
length = strlen(strength);
/* check if dan or pro player */
for (i = 0; i < length; i++)
if (strength[i] == 'd' || strength[i] == 'D'
|| strength[i] == 'p' || strength[i] == 'P')
return 1;
/* get the kyu strength as an integer */
for (i = 0; i < length; i++) {
if (strength[i] == 'k')
strength[i] = '\0';
kyu = atoi(strength);
if (kyu == 0) {
if (player_strength >= 30)
return 1;
else
return 0;
}
}
if (kyu <= player_strength)
return 1;
/* not enough strength */
return 0;
}
/*
* used by both sort_games and collect_situations to
* check validity of a game record
* 0 means failure for any reason
* 1 means probably okay, without going through moves
*/
static int
check_game(SGFNode *sgf, char *sgfname)
{
int handicap, size;
char *WR, *BR; /* white rank */
char thirty_kyu[] = "30k";
char *RE;
size = 19;
if (!sgfGetIntProperty(sgf, "SZ", &size)) {
if (WARN > 1)
fprintf(stderr, "Warning: no SZ in sgf file %s , assuming size %d\n",
sgfname, size);
}
if (size != board_size) {
if (WARN)
fprintf(stderr, "Warning: wrong size of board %d in sgf file %s .\n",
size, sgfname);
return 0;
}
/* No handicap games */
if (handicap_value == 0) {
if (sgfGetIntProperty(sgf, "HA", &handicap) && handicap > 1) {
if (WARN)
fprintf(stderr,
"No handicap games allowed, sgf file %s has handicap %d\n",
sgfname, handicap);
return 0;
}
}
/* Only handicap games */
if (handicap_value > 1) {
if (!sgfGetIntProperty(sgf, "HA", &handicap)) {
if (WARN)
fprintf(stderr, "Sgf file %s is not a handicap game\n", sgfname);
return 0;
}
/* only specific handicap games */
if (handicap_value != 10 && handicap != handicap_value) {
if (WARN)
fprintf(stderr,
"Sgf file %s has wrong number of handicap stones %d\n",
sgfname, handicap);
return 0;
}
/* any reasonable handicap games */
if (handicap_value == 10 && (handicap < 2 || handicap > 9)) {
if (WARN)
fprintf(stderr,
"Sgf file %s has wrong/weird number of handicap stones %d\n",
sgfname, handicap);
return 0;
}
}
/* Examine strength of players in the game and compare it
* with minimum player strength.
*/
BR = thirty_kyu;
if (!sgfGetCharProperty(sgf, "BR", &BR)) {
if (WARN > 1)
fprintf(stderr, "No black strength in sgf file %s assuming %s\n",
sgfname, BR);
}
if (!enough_strength(BR)) {
if (WARN)
fprintf(stderr, "Wrong black strength %s in sgf file %s\n", BR, sgfname);
return 0;
}
WR = thirty_kyu;
if (!sgfGetCharProperty(sgf, "WR", &WR)) {
if (WARN > 1)
fprintf(stderr, "No white strength in sgf file %s assuming %s\n",
sgfname, WR);
}
if (!enough_strength(WR)) {
if (WARN)
fprintf(stderr, "Wrong white strength %s in sgf file %s\n", WR, sgfname);
return 0;
}
/* Must have result. */
if (!sgfGetCharProperty(sgf, "RE", &RE)) {
if (WARN)
fprintf(stderr, "No result in game %s\n", sgfname);
return 0;
}
if (strncmp(RE, "B+", 2) != 0 && strncmp(RE, "W+", 2) != 0) {
if (WARN)
fprintf(stderr, "Couldn't parse winner in result %s from game %s\n",
RE, sgfname);
return 0;
}
/* Looks okay. */
return 1;
}
/*
* Sort out the games that can be used.
*/
static void
sort_games(void)
{
int k;
for (k = 0; k < number_of_games; k++) {
SGFNode *sgf;
/* Progress output. */
if (k % 500 == 0)
fprintf(stderr, "Sorting number %d, %s\n", k, sgf_names[k]);
sgf = readsgffilefuseki(sgf_names[k], 0);
if (!sgf) {
if (WARN)
fprintf(stderr, "Warning: Couldn't open sgf file %s number %d.\n",
sgf_names[k], k);
unused_games[k] = 1; /* the game could not be used */
continue;
}
if (!check_game(sgf, sgf_names[k]))
unused_games[k] = 1;
/* Free memory of SGF file */
sgfFreeNode(sgf);
}
}
/* Play through the initial moves of all games and collect hash values
* for the encountered situations.
*/
static void
collect_situations(void)
{
int k;
int winner; /* who won the game in question */
init_situations();
for (k = 0; k < number_of_games; k++) {
SGFNode *sgf;
char *RE;
/* Progress output. */
if (k % 500 == 0)
fprintf(stderr, "Reading number %d, %s\n", k, sgf_names[k]);
sgf = readsgffilefuseki(sgf_names[k], moves_per_game);
if (!sgf) {
if (WARN)
fprintf(stderr, "Warning: Couldn't open sgf file %s.\n", sgf_names[k]);
unused_games[k] = 1; /* the game could not be used */
continue;
}
if (!check_game(sgf, sgf_names[k])) {
unused_games[k] = 1;
sgfFreeNode(sgf);
continue;
}
if (!sgfGetCharProperty(sgf, "RE", &RE)) {
gg_assert(0);
}
if (strncmp(RE, "B+", 2) == 0)
winner = BLACK;
else if (strncmp(RE, "W+", 2) == 0)
winner = WHITE;
else {
gg_assert(0);
}
if (!examine_game(sgf, winner)) {
if (WARN)
fprintf(stderr, "Warning: Problem with sgf file %s\n", sgf_names[k]);
unused_games[k] = 1; /* the game could not be used */
}
/* Free memory of SGF file */
sgfFreeNode(sgf);
}
}
/* Find the most common positions and moves, for which we want to
* generate patterns.
*/
static void
analyze_statistics(void)
{
int k;
/* Sort all the collected situations. */
gg_sort(situation_table, number_of_situations, sizeof(*situation_table),
compare_situations2);
/* Debug output. */
if (0) {
int i, k;
for (i = 0; i < number_of_situations; i++) {
fprintf(stderr, "%4d ", i);
for (k = 0; k < 8; k++)
fprintf(stderr, "%8x ", situation_table[i].pre.values[k]);
fprintf(stderr, " ");
for (k = 0; k < 8; k++)
fprintf(stderr, "%8x ", situation_table[i].post.values[k]);
fprintf(stderr, "\n");
}
}
/* Set up frequency table. */
frequency_table = calloc(number_of_situations, sizeof(*frequency_table));
if (!frequency_table) {
fprintf(stderr, "Fatal error, failed to allocate frequency table.\n");
exit(EXIT_FAILURE);
}
number_of_distinct_positions = 0;
/* Make frequency analysis of the positions before the moves. */
for (k = 0; k < number_of_situations; k++) {
if (k == 0 || compare_positions(&situation_table[k],
&situation_table[k-1]) != 0) {
frequency_table[number_of_distinct_positions].index = k;
frequency_table[number_of_distinct_positions].n = 0;
frequency_table[number_of_distinct_positions].n_win = 0;
frequency_table[number_of_distinct_positions].n_player = 0;
number_of_distinct_positions++;
}
frequency_table[number_of_distinct_positions-1].n++;
frequency_table[number_of_distinct_positions-1].n_win += situation_table[k].outcome;
if (frequency_table[number_of_distinct_positions-1].n == 1
|| situation_table[k].player != situation_table[k-1].player)
frequency_table[number_of_distinct_positions-1].n_player++;
}
/* Sort the frequency table, in falling order. */
gg_sort(frequency_table, number_of_distinct_positions,
sizeof(*frequency_table), compare_frequencies);
/* Debug output. */
if (0) {
int l;
for (l = 0; l < number_of_distinct_positions; l++) {
fprintf(stderr, "%4d %5d\n", frequency_table[l].n,
frequency_table[l].index);
}
}
/* Set up winners array. */
winning_moves = calloc(MAX_PATTERNS_TO_EXTRACT, sizeof(*winning_moves));
if (!winning_moves) {
fprintf(stderr, "Fatal error, failed to allocate winning moves table.\n");
exit(EXIT_FAILURE);
}
number_of_winning_moves = 0;
/* Starting with the most common position, find the most common
* moves for each position, until the number of patterns to be
* generated is reached.
*/
for (k = 0; k < number_of_distinct_positions; k++) {
int index = frequency_table[k].index;
int i;
/* Build a new frequency table for the different moves in this position. */
struct frequency move_frequencies[MAX_BOARD * MAX_BOARD];
int number_of_moves = 0;
/* A position must occur a minimum before we analyze and record
* the moves from it.
*/
if (frequency_table[k].n < min_position_freq)
break;
for (i = index; ;i++) {
if (i == number_of_situations
|| (i > index
&& compare_positions(&situation_table[i],
&situation_table[i-1]) != 0))
break;
if (i == index || compare_situations(&situation_table[i],
&situation_table[i-1]) != 0) {
move_frequencies[number_of_moves].index = i;
move_frequencies[number_of_moves].n = 0;
move_frequencies[number_of_moves].n_win = 0;
move_frequencies[number_of_moves].n_player = 0;
number_of_moves++;
}
move_frequencies[number_of_moves-1].n++;
move_frequencies[number_of_moves-1].n_win += situation_table[i].outcome;
if (move_frequencies[number_of_moves-1].n == 1
|| situation_table[i].player != situation_table[i-1].player)
move_frequencies[number_of_moves-1].n_player++;
}
/* Sort the moves, in falling order. */
gg_sort(move_frequencies, number_of_moves,
sizeof(*move_frequencies), compare_frequencies2);
/* Debug output. */
if (0) {
for (i = 0; i < number_of_moves; i++) {
fprintf(stderr, "%4d %3d %4d\n", index, move_frequencies[i].n,
move_frequencies[i].index);
}
}
/* Add the moves to the list of winners. */
for (i = 0; i < number_of_moves; i++) {
/* This is where the cut-off of moves is decided
* based on popularity from command line arguments.
*/
if (0.01 * min_move_percent*move_frequencies[0].n_player
> move_frequencies[i].n_player
|| move_frequencies[i].n_player < min_move_freq) {
winning_moves[number_of_winning_moves].index = -1;
winning_moves[number_of_winning_moves].pre =
situation_table[frequency_table[k].index].pre.values[0];
winning_moves[number_of_winning_moves].position_frequency =
frequency_table[k].n;
winning_moves[number_of_winning_moves].n_player = 0;
winning_moves[number_of_winning_moves].move_frequency = 0;
winning_moves[number_of_winning_moves].position_success =
frequency_table[k].n_win;
winning_moves[number_of_winning_moves].move_success = 0;
while (i < number_of_moves) {
gg_assert(0.01 * min_move_percent*move_frequencies[0].n_player
> move_frequencies[i].n_player
|| move_frequencies[i].n_player < min_move_freq);
gg_assert(situation_table[move_frequencies[i].index].pre.values[0]
== winning_moves[number_of_winning_moves].pre);
winning_moves[number_of_winning_moves].n_player +=
move_frequencies[i].n_player;
winning_moves[number_of_winning_moves].move_frequency +=
move_frequencies[i].n;
winning_moves[number_of_winning_moves].move_success +=
move_frequencies[i].n_win;
i++;
}
number_of_winning_moves++;
continue;
}
winning_moves[number_of_winning_moves].index = move_frequencies[i].index;
winning_moves[number_of_winning_moves].pre =
situation_table[frequency_table[k].index].pre.values[0];
winning_moves[number_of_winning_moves].position_frequency =
frequency_table[k].n;
winning_moves[number_of_winning_moves].move_frequency =
move_frequencies[i].n;
winning_moves[number_of_winning_moves].n_player =
move_frequencies[i].n_player;
winning_moves[number_of_winning_moves].position_success =
frequency_table[k].n_win;
winning_moves[number_of_winning_moves].move_success =
move_frequencies[i].n_win;
number_of_winning_moves++;
if (number_of_winning_moves == MAX_PATTERNS_TO_EXTRACT)
break;
}
if (number_of_winning_moves == MAX_PATTERNS_TO_EXTRACT)
break;
}
/* Debug output. */
if (0) {
int i;
for (i = 0; i < number_of_winning_moves; i++) {
fprintf(stderr, "%4d %3d %3d\n",
winning_moves[i].index,
winning_moves[i].position_frequency,
winning_moves[i].move_frequency);
}
}
}
/* Scan through the games a second time to pick up the patterns
* corresponding to the winning moves.
*/
static void
generate_patterns(void)
{
int k;
SGFNode *sgf;
for (k = 0; k < number_of_games; k++) {
/* Progress output. */
if (k % 500 == 0)
fprintf(stderr, "Generating number %d, %s\n", k, sgf_names[k]);
/* Check if this game is a valid game. */
if (unused_games[k]) {
if (0)
fprintf(stderr, "Not used\n");
continue;
}
sgf = readsgffilefuseki(sgf_names[k], moves_per_game);
if (!sgf) {
fprintf(stderr, "Warning: Couldn't open sgf file %s.\n", sgf_names[k]);
continue;
}
examine_game(sgf, 0);
/* Free memory of SGF file. */
sgfFreeNode(sgf);
}
}
/* Print the winning patterns in patterns.db format on stdout. */
static void
print_patterns(void)
{
int k, l;
int m, n;
double chisq = 0.0;
int df = 0;
unsigned int pre = situation_table[winning_moves[0].index].pre.values[0];
int first_in_set = 0;
gg_assert(winning_moves[0].index != -1);
l = 1;
for (k = 0; k < number_of_winning_moves; k++) {
/* Do not print erroneous patterns. */
if (winning_moves[k].pattern[0][0] != '\0'
|| winning_moves[k].index == -1) {
double grand_sum = winning_moves[k].position_frequency;
double grand_wins = winning_moves[k].position_success;
#if 0
double grand_losses = grand_sum - grand_wins;
#endif
double row_sum = winning_moves[k].move_frequency;
double wins = winning_moves[k].move_success;
double losses = row_sum - wins;
double expect_wins = row_sum*grand_wins/grand_sum;
double expect_losses = row_sum - expect_wins;
/* We're _not_ using a Yates corrected chisquare.
* Two reasons: 1. It's never correct for > 2x2 table
* 2. Our marginals are sampled, not fixed, so
* Yates and usual Fisher exact are wrong distribution.
* Straight chi squared is best.
*/
double dchisq = 0.0;
/* This was Yates line. It's wrong. */
#if 0
if (expect_wins > 0.0)
dchisq += pow(gg_abs(wins - expect_wins) - 0.5, 2) / expect_wins;
#endif
if (expect_wins > 0.0)
dchisq += pow(wins - expect_wins, 2) / expect_wins;
if (expect_losses > 0.0)
dchisq += pow(losses - expect_losses, 2) / expect_losses;
gg_assert(winning_moves[k].index == -1
|| (situation_table[winning_moves[k].index].pre.values[0]
== winning_moves[k].pre));
/* Did we just finish a set? If so, print totals and reset. */
if (winning_moves[k].pre != pre) {
/* p-value is 1 - incomplete gamma function(d.o.f/2, chisq/2)
* variable df is number of moves, actual d.o.f is df-1
* k is referring to the pattern _after_ the set we just completed.
*/
printf("\n### Summary of pattern pre 0x%08x\n### N Chi_squared df: %d %g %d ",
pre, winning_moves[k-1].position_frequency, chisq, df - 1);
/* and array is indexed at zero for d.o.f = 1... */
if (df-1 < 1)
printf("NS\n\n");
else if (df - 1 < (int) (sizeof(chisquarecrit05) / sizeof(double))
&& chisq > chisquarecrit05[df-2]) {
/* The overall result is significant at 5%. In this case, at
* least some authorities will allow us to examine several
* individual contrasts w/o futher correction. We compare
* every pair of moves, which is perhaps too many, but the
* purpose is to give the human expert (who would in any
* case be required to examine the output) some sense of
* where the differences are. Something like a Bonferroni
* correction could result in a significant test overall,
* but no significant contrasts, which is obviously
* nonsense. The significance of the overall result must
* come from somewhere.
*/
int m, n;
if (chisq > chisquarecrit001[df-2])
printf("!!! p < 0.001\n");
else if (chisq > chisquarecrit01[df-2])
printf("!!! p < 0.01\n");
else
printf("!!! p < 0.05\n");
for (m = first_in_set; m < k; m++) {
for (n = m + 1; n < k; n++) {
double grand_sum = (winning_moves[m].move_frequency
+ winning_moves[n].move_frequency);
double grand_wins = (winning_moves[m].move_success
+ winning_moves[n].move_success);
#if 0
double grand_losses = grand_sum - grand_wins;
#endif
double row_sum_m = winning_moves[m].move_frequency;
double row_sum_n = winning_moves[n].move_frequency;
double wins_m = winning_moves[m].move_success;
double losses_m = row_sum_m - wins_m;
double wins_n = winning_moves[n].move_success;
double losses_n = row_sum_n - wins_n;
double expect_wins_m = row_sum_m * grand_wins/grand_sum;
double expect_losses_m = row_sum_m - expect_wins_m;
double expect_wins_n = row_sum_n * grand_wins/grand_sum;
double expect_losses_n = row_sum_n - expect_wins_n;
double dchisq_m = 0.0;
double dchisq_n = 0.0;
if (expect_wins_m > 0.0)
dchisq_m += pow(wins_m - expect_wins_m, 2) / expect_wins_m;
if (expect_losses_m > 0.0)
dchisq_m += pow(losses_m - expect_losses_m, 2) / expect_losses_m;
if (expect_wins_n > 0.0)
dchisq_n += pow(wins_n - expect_wins_n, 2) / expect_wins_n;
if (expect_losses_n > 0.0)
dchisq_n += pow(losses_n - expect_losses_n, 2) / expect_losses_n;
/* We demand at least N=6. Nonsense with smaller N. */
if (dchisq_m + dchisq_n > chisquarecrit05[0] && grand_sum > 5) {
printf("#### 0x%08x %c 0x%08x (p < 0.05) chisq = %g N = %g\n",
situation_table[winning_moves[m].index].post.values[0],
(1.0 * wins_m / row_sum_m
> 1.0 * wins_n / row_sum_n) ? '>' : '<',
situation_table[winning_moves[n].index].post.values[0],
dchisq_m + dchisq_n, grand_sum);
}
}
}
printf("\n\n");
}
else if (df-1 < (int) (sizeof(chisquarecrit10) / sizeof(double))
&& chisq > chisquarecrit10[df - 2])
printf("??? p < 0.10\n\n");
else if (!(df - 1 < (int) (sizeof(chisquarecrit05) / sizeof(double))))
printf("df out of range...\n\n");
else
printf("NS\n\n");
pre = winning_moves[k].pre;
#if 0
pre = situation_table[winning_moves[k].index].pre.values[0];
#endif
first_in_set = k;
chisq = 0.0;
df = 0;
}
/* increment totals */
chisq += dchisq;
df++;
if (winning_moves[k].index == -1) {
printf("# Unpopular moves\n");
printf("# pre: 0x%08x\n", winning_moves[k].pre);
printf("# post: could be various\n");
printf("# frequency: %d/%d\n",
winning_moves[k].move_frequency,
winning_moves[k].position_frequency);
printf("# unique players: %d\n", winning_moves[k].n_player);
printf("# wins: %d/%d\n\n",
winning_moves[k].move_success,
winning_moves[k].position_success);
printf("# success: %.1f%% vs %.1f%% for this position overall, dchisq = %g\n\n",
100.0 * winning_moves[k].move_success / winning_moves[k].move_frequency,
100.0 * winning_moves[k].position_success / winning_moves[k].position_frequency,
dchisq);
}
else {
printf("Pattern F-H%d-%d\n", handicap_value, l);
printf("# pre : 0x%08x\n",
situation_table[winning_moves[k].index].pre.values[0]);
printf("# post: 0x%08x\n",
situation_table[winning_moves[k].index].post.values[0]);
printf("# frequency: %d/%d\n", winning_moves[k].move_frequency,
winning_moves[k].position_frequency);
printf("# unique players: %d\n", winning_moves[k].n_player);
printf("# wins: %d/%d\n\n", winning_moves[k].move_success,
winning_moves[k].position_success);
printf("# success: %.1f%% vs %.1f%% for this position overall, dchisq = %g\n\n",
100.0 * winning_moves[k].move_success / winning_moves[k].move_frequency,
100.0 * winning_moves[k].position_success / winning_moves[k].position_frequency,
dchisq);
printf("+");
for (n = 0; n < board_size; n++)
printf("-");
printf("+\n");
for (m = 0; m < board_size; m++) {
printf("|");
for (n = 0; n < board_size; n++) {
if (winning_moves[k].pattern[m][n] == '\0') {
fprintf(stderr, "Something wrong in print pattern\n");
printf(".");
}
else
printf("%c", winning_moves[k].pattern[m][n]);
}
printf("|\n");
}
printf("+");
for (n = 0; n < board_size; n++)
printf("-");
printf("+");
printf("\n\n:8,-,value(%d)\n\n\n", winning_moves[k].n_player);
l++;
}
}
else {
fprintf(stderr,
"Skipping pattern pre 0x%08x post 0x%08x, stats may be wrong...\n",
situation_table[winning_moves[k].index].pre.values[0],
situation_table[winning_moves[k].index].post.values[0]);
}
}
}
int
main(int argc, char *argv[])
{
int number_of_unused_games = 0;
int i = 0;
/* Check number of arguments. */
if (argc < 10) {
fprintf(stderr, USAGE);
exit(EXIT_FAILURE);
}
/* Check arguments. */
board_size = atoi(argv[2]);
if (board_size % 2 == 0) {
fprintf(stderr, "Fatal error, only odd boardsizes supported: %d.\n",
board_size);
exit(EXIT_FAILURE);
}
if (board_size < 9 || board_size > 19)
fprintf(stderr, "Warning: strange boardsize: %d.\n", board_size);
moves_per_game = atoi(argv[3]);
if (moves_per_game < 1 || moves_per_game > 20)
fprintf(stderr, "Warning: strange number of moves per game: %d.\n",
moves_per_game);
handicap_value = atoi(argv[4]);
if (handicap_value < 0 || handicap_value > 10)
fprintf(stderr, "Warning: unusual handicap value: %d.\n",
handicap_value);
player_strength = atoi(argv[5]);
if (player_strength < 0 || player_strength > 30)
fprintf(stderr, "Warning: wrong lowest strength: %d.\n",
player_strength);
half_board_patterns = atoi(argv[6]);
if (half_board_patterns != 0 && half_board_patterns != 1) {
fprintf(stderr,
"Warning: incorrect half_board_flag (0 or 1). Setting the value to 0.\n");
half_board_patterns = 0;
}
min_position_freq = atoi(argv[7]);
if (min_position_freq < 1) {
fprintf(stderr, "Warning: setting min_position_freq to 1\n");
min_position_freq = 1;
}
min_move_percent = atof(argv[8]);
if (min_move_percent < 0. || min_move_percent > 100.) {
fprintf(stderr, "Warning: strange min_move_percent %g, setting to 1%%\n",
min_move_percent);
min_move_percent = 1.0;
}
min_move_freq = atoi(argv[9]);
if (min_move_freq < 0)
fprintf(stderr, "Warning: strange min_move_freq %d\n", min_move_freq);
/* Count the number of sgf files. */
number_of_games = read_sgf_filenames(argv[1], NULL);
/* Allocate space for the list of unused files. */
unused_games = calloc(number_of_games, sizeof(*unused_games));
if (unused_games == NULL) {
fprintf(stderr, "Fatal error, failed to allocate memory.\n");
exit(EXIT_FAILURE);
}
/* Allocate space for the list of sgf file names. */
sgf_names = calloc(number_of_games, sizeof(*sgf_names));
if (sgf_names == NULL) {
fprintf(stderr, "Fatal error, failed to allocate memory.\n");
exit(EXIT_FAILURE);
}
/* Read the list of sgf files and store in memory. */
read_sgf_filenames(argv[1], sgf_names);
/* Save memory by sorting out the games that can be used first */
if (argv[10] != NULL) {
fprintf(stderr, "Starting game sort\n");
sort_games();
fprintf(stderr, "Starting game writes\n");
write_sgf_filenames(argv[10], sgf_names);
}
else {
/* Build tables of random numbers for Zobrist hashing. */
init_zobrist_numbers();
/* Play through the initial moves of all games and collect hash values
* for the encountered situations.
*/
collect_situations();
fprintf(stderr, "collect OK.\n");
/* Find the most common positions and moves, for which we want to
* generate patterns.
*/
analyze_statistics();
fprintf(stderr, "analyze OK.\n");
/* Generate patterns from the chosen positions and moves.
*/
generate_patterns();
fprintf(stderr, "generate OK.\n");
printf("attribute_map value_only\n\n\n");
printf("# ");
for (i = 0; i < argc; i++)
printf("%s ", argv[i]);
printf("\n\n\n");
/* Write the patterns to stdout in patterns.db format.
*/
print_patterns();
/* Tell the user everything worked out fine */
fprintf(stderr, "The pattern database was produced with no errors.\n");
for (i = 0; i < number_of_games; i++)
if (unused_games[i])
number_of_unused_games++;
fprintf(stderr, "Out of %d games, %d were not used.\n",
number_of_games, number_of_unused_games);
}
return 0;
}
/*
* Local Variables:
* tab-width: 8
* c-basic-offset: 2
* End:
*/
|