1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
|
/* -*- mode: c -*-
*/
/*
GIFT, a flexible content based image retrieval system.
Copyright (C) 1998, 1999, 2000, 2001, 2002, CUI University of Geneva
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <math.h>
#include <string.h>
#include <unistd.h>
#include <ppm.h>
#include <gift_features.h>
#include "gabor.h"
//#include "extract_features.proto"
#define square(x) ((x)*(x))
/* This determines the number of bands into which the gabor filter energies
* are quantized.
/*
#define num_gabor_ranges 16
*/
#define num_gabor_ranges 10
const int image_size = 256;
const int smallest_colour_block = 16;
const int gabor_block_size = 16;
int num_colour_scales;
int num_total_colour_blocks;
int *num_blocks_at_scale;
int **col_counts;
int *col_histogram;
byte *block_mode;
int num_colours_seen = 0;
/* This specifies the bands into which the gabor filter energies are
* quantized.
/*
double gabor_ranges[num_gabor_ranges] = {0.0625, 0.125, 0.25, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 100000};
*/
double gabor_ranges[num_gabor_ranges] = {2, 3, 4, 5, 6, 7, 8, 9, 10, 100000};
int ***block_gabor_class;
int ***gabor_histogram;
void init_feature_variables(int colmap_size) {
int i, j, k;
int r, r1;
int sqrt_num_blocks_at_this_scale;
/* colour features */
r = image_size/smallest_colour_block;
num_colour_scales = rint(log((double)r)/log(2.0));
num_total_colour_blocks = rint((double)square(r)*4.0*(1 - 1/pow(4.0, (double)num_colour_scales))/3.0);
block_mode = (byte *)malloc(num_total_colour_blocks*sizeof(byte));
col_counts = (int **)malloc(num_total_colour_blocks*sizeof(int *));
col_histogram = (int *)malloc(colmap_size*sizeof(int));
num_blocks_at_scale = (int *)malloc(num_colour_scales*sizeof(int));
k = 0;
num_blocks_at_scale[0] = square(r);
for (i = 0; i < num_colour_scales; i++) {
for (j = 0; j < num_blocks_at_scale[i]; j++) {
col_counts[k++] = (int *)malloc(colmap_size*sizeof(int));
}
if (i != num_colour_scales - 1)
num_blocks_at_scale[i+1] = num_blocks_at_scale[i]/4;
}
#ifdef DEBUG
fprintf(stderr, "num_total_colour_blocks: %d\n", num_total_colour_blocks);
#endif
/* Gabor features */
block_gabor_class = (int ***)malloc(num_gabor_scales*sizeof(int **));
gabor_histogram = (int ***)malloc(num_gabor_scales*sizeof(int **));
for (i = 0; i < num_gabor_scales; i++) {
block_gabor_class[i] = (int **)malloc(num_gabors_per_scale*sizeof(int *));
gabor_histogram[i] = (int **)malloc(num_gabors_per_scale*sizeof(int *));
for (j = 0; j < num_gabors_per_scale; j++) {
block_gabor_class[i][j] = (int *)malloc(square(image_size/gabor_block_size)*sizeof(int));
gabor_histogram[i][j] = (int *)calloc(num_gabor_ranges, sizeof(int));
}
}
}
void extract_gabor_features(PPM *im_hsv) {
int i, j, x, y, k;
int scale, orientation;
int energy_class;
PPM *value_plane;
double *value_image_dbl, *filtered_image;
double gabor_mean;
/* for Gabor features, this is what I'm going to do:
- Apply each of the 12 filters (3 scales, 4 orientations) to each
pixel in the image.
- Use 16x16 blocks only.
- In each block find the rms energy of each filter.
- quantize these into num_gabor_ranges levels, as specified in the
array gabor_ranges[]
*/
/* make a float version of the value plane of the image */
value_image_dbl = (double *)malloc(im_hsv->width*im_hsv->height*sizeof(double));
filtered_image = (double *)malloc(im_hsv->width*im_hsv->height*sizeof(double));
value_plane = ppm_plane(im_hsv, VALUE);
for (i = 0; i < im_hsv->width*im_hsv->height; i++) {
value_image_dbl[i] = (double)(value_plane->pixel[i]);
}
destroy_ppm(&value_plane);
/* apply each filter to the image */
for (scale = 0; scale < num_gabor_scales; scale++) {
for (orientation = 0; orientation < num_gabors_per_scale; orientation++) {
/* filter the image */
gabor_filter(value_image_dbl, im_hsv->width, im_hsv->height, scale, orientation, filtered_image);
/* extract the rms energy for each block */
k = 0; /* block counter */
for (y = 0; y < im_hsv->height; y += gabor_block_size) {
for (x = 0; x < im_hsv->width; x += gabor_block_size) {
gabor_mean = 0;
for (i = 0; (i < gabor_block_size) && (y+i < im_hsv->height); i++) {
for (j = 0; (j < gabor_block_size) && (x+j < im_hsv->height); j++) {
gabor_mean += square((filtered_image[(y + i)*im_hsv->width + (x + j)]));
}
}
gabor_mean /= square(gabor_block_size);
gabor_mean = sqrt(gabor_mean);
/* find the energy class for this block */
for (energy_class = 0; energy_class < num_gabor_ranges; energy_class++) {
if (gabor_mean < gabor_ranges[energy_class])
break;
}
/* store this class in the appropriate place */
block_gabor_class[scale][orientation][k] = energy_class;
/* increment the histogram entry for this combination */
gabor_histogram[scale][orientation][energy_class]++;
k++; /* increment block counter */
}
}
}
}
}
void extract_mode_features(PPM *im, int *colmap, int colmap_size) {
int i, j, k, last_k, k1, m, n, r, x, y;
byte colour;
int scale, block_size, num_blocks, old_num_blocks;
int max_count, mode_index;
int b1, b2, b3, b4;
#ifdef GENERATE_BLOCK_IMAGES
PPM *out_image, *out_image_hsv, *out_image_rgb;
enum ppm_error the_error;
FILE *outfile;
char out_fname[256];
#endif
#ifdef GENERATE_BLOCK_IMAGES
/* make space for an HSV image of the same size as that read */
out_image = new_ppm();
out_image->type = PGM_RAW;
out_image->width = im->width;
out_image->height = im->height;
out_image->max_col_comp = im->max_col_comp;
out_image->bytes_per_pixel = 1;
out_image->pixel = (byte *)malloc(out_image->width*out_image->height*sizeof(byte));
#endif
/* first extract the lowest level blocks, directly from the pixels of
the PGM image */
scale = 0;
block_size = smallest_colour_block;
num_blocks = square(image_size/block_size);
k = last_k = 0;
for (y = 0; y < im->height; y += block_size) {
for (x = 0; x < im->width; x += block_size) {
for (n = 0; n < colmap_size; n++) {
col_counts[k][n] = 0;
}
for (i = 0; (i < block_size) && (y+i < im->height); i++) {
for (j = 0; (j < block_size) && (x+j < im->width); j++) {
colour = im->pixel[(y + j)*im->width + (x + i)];
col_counts[k][colour]++;
}
}
/* find the mode */
max_count = mode_index = 0;
for (n = 0; n < colmap_size; n++) {
if (col_counts[k][n] > max_count) {
max_count = col_counts[k][n];
mode_index = n;
}
}
block_mode[k] = mode_index;
k++;
}
}
#ifdef GENERATE_BLOCK_IMAGES
/* generate an image with this */
k1 = 0;
for (y = 0; y < im->height; y += block_size) {
for (x = 0; x < im->width; x += block_size) {
for (i = 0; i < block_size; i++) {
for (j = 0; j < block_size; j++) {
out_image->pixel[(y + j)*im->width + (x + i)] = block_mode[k1];
}
}
k1++;
}
}
/* convert from the colour map to an HSV image */
if ((the_error = colmap2rgb_ppm(out_image, colmap, colmap_size, &out_image_hsv)) != PPM_OK) {
ppm_handle_error(the_error);
exit(1);
}
/* convert to RGB */
if ((the_error = hsv2rgb_ppm(out_image_hsv, &out_image_rgb)) != PPM_OK) {
ppm_handle_error(the_error);
exit(1);
}
/* write it */
sprintf(out_fname, "blocks_%dx%d.ppm", block_size, block_size);
outfile = fopen(out_fname, "wb");
if ((the_error = write_ppm(outfile, out_image_rgb, PPM_RAW)) != PPM_OK) {
ppm_handle_error(the_error);
exit(1);
}
fclose(outfile);
destroy_ppm(&out_image_rgb);
destroy_ppm(&out_image_hsv);
#endif
/* now do the other scales */
for (scale = 1; scale < num_colour_scales; scale++) {
block_size *= 2;
num_blocks /= 4;
r = (int)sqrt((double)num_blocks);
for (i = 0; i < num_blocks; i++) {
m = (i/r)*2*r; /* note: this first is *integer* division */
b1 = last_k + 2*i + m;
b2 = last_k + 2*i + m + 1;
b3 = last_k + 2*i + m + 2*r;
b4 = last_k + 2*i + m + 2*r + 1;
max_count = mode_index = 0;
for (n = 0; n < colmap_size; n++) {
col_counts[k + i][n] =
col_counts[b1][n] + col_counts[b2][n] +
col_counts[b3][n] + col_counts[b4][n];
if (col_counts[k + i][n] > max_count) {
max_count = col_counts[k + i][n];
mode_index = n;
}
}
block_mode[k + i] = mode_index;
}
#ifdef GENERATE_BLOCK_IMAGES
/* generate an image with this */
for (y = 0; y < im->height; y += block_size) {
for (x = 0; x < im->width; x += block_size) {
for (i = 0; i < block_size; i++) {
for (j = 0; j < block_size; j++) {
out_image->pixel[(y + j)*im->width + (x + i)] = block_mode[k1];
}
}
k1++;
}
}
/* convert from the colour map to an HSV image */
if ((the_error = colmap2rgb_ppm(out_image, colmap, colmap_size, &out_image_hsv)) != PPM_OK) {
ppm_handle_error(the_error);
exit(1);
}
/* convert to RGB */
if ((the_error = hsv2rgb_ppm(out_image_hsv, &out_image_rgb)) != PPM_OK) {
ppm_handle_error(the_error);
exit(1);
}
/* write it */
sprintf(out_fname, "blocks_%dx%d.ppm", block_size, block_size);
outfile = fopen(out_fname, "wb");
if ((the_error = write_ppm(outfile, out_image_rgb, PPM_RAW)) != PPM_OK) {
ppm_handle_error(the_error);
exit(1);
}
fclose(outfile);
destroy_ppm(&out_image_rgb);
destroy_ppm(&out_image_hsv);
#endif
last_k = k;
k += num_blocks;
}
/* now finally consolidate all the colour counts to produce the
histogram for the whole image */
k -= num_blocks;
for (n = 0; n < colmap_size; n++)
col_histogram[n] =
col_counts[k][n] + col_counts[k + 1][n] +
col_counts[k + 2][n] + col_counts[k + 3][n];
}
enum ppm_error write_mode_features(char *out_fname, int colmap_size) {
FILE *out_file = NULL;
int feature_index;
int block_features_offset;
int scale, orientation, energy_class;
int num_features;
FEATURE_DATA *feature;
int i;
/***** count the features *****/
/* we know that there will be a mode color for each block */
num_features = num_total_colour_blocks;
/* and there will be one for each non-zero histogram entry. Convert
histogram entries to range [0, FREQ_MAX] while we're at it */
for (i = 0; i < colmap_size; i++) {
col_histogram[i] = (int)(rint(FREQ_MAX*(double)col_histogram[i]/(double)(square(image_size))));
if (col_histogram[i] != 0)
num_features++;
}
#ifdef NO_FLAT_FEATURES
/* count the block entries which are not of class zero (which indicates
a filter response too low to write), and the non-zero gabor histogram
entries */
for (scale = 0; scale < num_gabor_scales; scale++) {
for (orientation = 0; orientation < num_gabors_per_scale; orientation++) {
/* blocks */
for (i = 0; i < square((image_size/gabor_block_size)); i++) {
if (block_gabor_class[scale][orientation][i] != 0)
num_features++;
}
/* histogram */
for (energy_class = 0; energy_class < num_gabor_ranges; energy_class++) {
if (gabor_histogram[scale][orientation][energy_class] != 0)
num_features++;
}
}
}
#else
/* here we ARE storing features for filter responses in the lowest
* energy band, so the number of block features is fixed (and v.
* large!). We also count the non-zero gabor histogram entries */
/* blocks */
num_features += num_gabor_scales*num_gabors_per_scale*square((image_size/gabor_block_size));
/* histogram */
for (scale = 0; scale < num_gabor_scales; scale++) {
for (orientation = 0; orientation < num_gabors_per_scale; orientation++) {
for (energy_class = 0; energy_class < num_gabor_ranges; energy_class++) {
if (gabor_histogram[scale][orientation][energy_class] != 0)
num_features++;
}
}
}
#endif
#ifdef DEBUG
fprintf(stderr, "Image contains %d features.\n", num_features);
#endif
/* allocate space to store the features */
feature = (FEATURE_DATA *)malloc(num_features*sizeof(FEATURE_DATA));
/***** store the features in the array *****/
feature_index = 0;
/* colour block features */
for (i = 0; i < num_total_colour_blocks; i++) {
/* note that each block can have colmap_size values */
feature[feature_index].id = i*colmap_size + (int)block_mode[i];
feature[feature_index].frequency = FREQ_MAX; /* binary features */
feature_index++;
}
block_features_offset = num_total_colour_blocks*colmap_size;
/* colour histogram features */
for (i = 0; i < colmap_size; i++) {
if (col_histogram[i] != 0) {
feature[feature_index].id = block_features_offset + i;
feature[feature_index].frequency = (freq_type)col_histogram[i];
feature_index++;
}
}
block_features_offset += colmap_size;
/* gabor block features */
for (scale = 0; scale < num_gabor_scales; scale++) {
for (orientation = 0; orientation < num_gabors_per_scale; orientation++) {
/* blocks */
for (i = 0; i < square((image_size/gabor_block_size)); i++) {
#ifdef NO_FLAT_FEATURES
if (block_gabor_class[scale][orientation][i] != 0) {
feature[feature_index].id = block_features_offset + block_gabor_class[scale][orientation][i];
feature[feature_index].frequency = FREQ_MAX;
feature_index++;
}
#else
feature[feature_index].id = block_features_offset + block_gabor_class[scale][orientation][i];
feature[feature_index].frequency = FREQ_MAX;
feature_index++;
#endif
block_features_offset += num_gabor_ranges;
}
}
}
/* gabor histogram features */
for (scale = 0; scale < num_gabor_scales; scale++) {
for (orientation = 0; orientation < num_gabors_per_scale; orientation++) {
for (energy_class = 0; energy_class < num_gabor_ranges; energy_class++) {
if (gabor_histogram[scale][orientation][energy_class] != 0) {
feature[feature_index].id = block_features_offset;
feature[feature_index].frequency = (freq_type)rint(FREQ_MAX*(double)gabor_histogram[scale][orientation][energy_class]/(double)square((image_size/gabor_block_size)));
feature_index++;
}
block_features_offset++;
}
}
}
#ifdef DEBUG
fprintf(stderr, "%d features found.\n", feature_index);
fprintf(stderr, "block_features_offset = %d.\n", block_features_offset);
#endif
/***** now write the file *****/
/* open it */
if ((out_file = fopen(out_fname, "wb")) == NULL) {
fprintf(stderr, "Error opening file %s for writing.\n\n", out_fname);
return(FILE_OPEN_ERROR);
}
/* write the number of features */
if (fwrite(&num_features, sizeof(int), 1, out_file) != 1) {
fprintf(stderr, "Error writing file %s.\n\n", out_fname);
return(FILE_WRITE_ERROR);
}
/** HACK: convert all this features to floats.
WARNING: we write here floats into an
integer field of a structure
Why is this necessary?
The original version rounds at many places
So we cannot just set FREQ_MAX=1.
(WM)*/
for(i=0;
i<num_features;
i++){
*((float*)&(feature[i].frequency))=((float)feature[i].frequency/(float)FREQ_MAX);//(WM HACK)
};
/* write the features, as a block */
if (fwrite(feature, sizeof(FEATURE_DATA), num_features, out_file) != num_features) {
fprintf(stderr, "Error writing file %s.\n\n", out_fname);
return(FILE_WRITE_ERROR);
}
if (fclose(out_file) == EOF) {
fprintf(stderr, "Error closing file %s.\n\n", out_fname);
return(FILE_CLOSE_ERROR);
}
/* everything is OK if we got this far */
return(PPM_OK);
}
void fts2blocks(char *fts_fname) {
FILE *fts_file, *outfile;
int num_features, feature_index;
FEATURE_DATA *feature;
int block_features_offset;
int block_size, num_blocks, scale;
int *colmap;
int colmap_size = 18*3*3 + 4;
int x, y, i, j, k;
PPM *hsv_image, *qimage, *rgb_image;
enum ppm_error the_error;
char out_fname[256];
/* read the number of features */
fts_file = fopen(fts_fname, "rb");
fread(&num_features, sizeof(int), 1, fts_file);
/* allocate space for the features */
feature = (FEATURE_DATA *)malloc(num_features*sizeof(FEATURE_DATA));
/* read the features */
fread(feature, sizeof(FEATURE_DATA), num_features, fts_file);
fclose(fts_file);
/* "unpack" the features in the array */
feature_index = 0;
/* block features */
for (i = 0; i < num_total_colour_blocks; i++) {
/* note that each block can have colmap_size values */
block_mode[i] = feature[feature_index].id - i*colmap_size;
feature_index++;
}
block_features_offset = num_total_colour_blocks*colmap_size;
/* colour histogram features */
for (i = 0; i < colmap_size; i++)
col_histogram[i] = 0;
for (; feature_index < num_features; feature_index++) {
i = feature[feature_index].id - block_features_offset;
col_histogram[i] = (byte)(feature[feature_index].frequency);
}
/* make a dummy image so that we can generate a colour map */
hsv_image = new_ppm();
hsv_image->type = PPM_RAW;
hsv_image->width = 256;
hsv_image->height = 256;
hsv_image->max_col_comp = 255;
hsv_image->bytes_per_pixel = 3;
hsv_image->pixel = (byte *)malloc(3*256*256*sizeof(byte));
hsv_quantize_ppm(hsv_image, &qimage, &colmap, 18, 3, 3, 4);
destroy_ppm(&hsv_image);
/* now write the block images */
k = 0;
block_size = smallest_colour_block;
num_blocks = square(image_size/block_size);
for (scale = 0; scale < num_colour_scales; scale++) {
for (y = 0; y < 256; y += block_size) {
for (x = 0; x < 256; x += block_size) {
for (i = 0; i < block_size; i++) {
for (j = 0; j < block_size; j++) {
qimage->pixel[(y + j)*256 + (x + i)] = block_mode[k];
}
}
k++;
}
}
/* convert from the colour map to an HSV image */
if ((the_error = colmap2rgb_ppm(qimage, colmap, colmap_size, &hsv_image)) != PPM_OK) {
ppm_handle_error(the_error);
exit(1);
}
/* convert to RGB */
if ((the_error = hsv2rgb_ppm(hsv_image, &rgb_image)) != PPM_OK) {
ppm_handle_error(the_error);
exit(1);
}
/* write it */
sprintf(out_fname, "fts2blocks_%dx%d.ppm", block_size, block_size);
outfile = fopen(out_fname, "wb");
if ((the_error = write_ppm(outfile, rgb_image, PPM_RAW)) != PPM_OK) {
ppm_handle_error(the_error);
exit(1);
}
fclose(outfile);
destroy_ppm(&hsv_image);
destroy_ppm(&rgb_image);
block_size *= 2;
num_blocks /= 4;
}
}
enum ppm_error write_feature_descriptions(FILE *out_file, int *colmap, int colmap_size) {
int feature_index = 0;
int block_size;
int i, j, k;
int scale, orientation;
/* block features */
block_size = smallest_colour_block;
for (i = 0; i < num_colour_scales; i++) {
for (j = 0; j < num_blocks_at_scale[i]; j++) {
for (k = 0; k < colmap_size; k++) {
fprintf(out_file, "%d %d COL_POS block size = %dx%d position = %d H,S,V = %d, %d, %d\n", feature_index, COL_POS, block_size, block_size, j, colmap[3*k + HUE], colmap[3*k + SATURATION], colmap[3*k + VALUE]);
feature_index++;
}
}
block_size *= 2;
}
/* colour histogram features */
for (i = 0; i < colmap_size; i++) {
fprintf(out_file, "%d %d COL_HST H,S,V = %d, %d, %d\n", feature_index, COL_HST, colmap[3*i + HUE], colmap[3*i + SATURATION], colmap[3*i + VALUE]);
feature_index++;
}
/* gabor block features */
for (scale = 0; scale < num_gabor_scales; scale++) {
for (orientation = 0; orientation < num_gabors_per_scale; orientation++) {
/* blocks */
for (i = 0; i < square((image_size/gabor_block_size)); i++) {
for (j = 0; j < num_gabor_ranges; j++) {
fprintf(out_file, "%d %d GABOR_POS block size = %dx%d position = %d SCALE, ORIENTATION, ENERGY = %d, %d, %f\n", feature_index, GABOR_POS, gabor_block_size, gabor_block_size, i, scale, orientation, gabor_ranges[j]);
feature_index++;
}
}
}
}
/* gabor histogram features */
for (scale = 0; scale < num_gabor_scales; scale++) {
for (orientation = 0; orientation < num_gabors_per_scale; orientation++) {
for (j = 0; j < num_gabor_ranges; j++) {
fprintf(out_file, "%d %d GABOR_HST SCALE, ORIENTATION, ENERGY UPPER BOUND = %d, %d, %f\n", feature_index, GABOR_HST, scale, orientation, j);
feature_index++;
}
}
}
/* everything is OK if we got this far */
return(PPM_OK);
}
|