1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <math.h>
#include <string.h>
#include <unistd.h>
#include <ppm.h>
#include "gabor.h"
/* note that all this is taken from the paper JaH98 in ~/tex/bib/squizz.bib */
/* (with my corrections!) */
static double ***kernel11 = NULL;
static double ***kernel12 = NULL;
static double ***kernel21 = NULL;
static double ***kernel22 = NULL;
static int kernal_size[num_gabor_scales] = {gabor_kernel_size_0, gabor_kernel_size_1, gabor_kernel_size_2};
void save_norm_double_pgm(double *double_im, int w, int h, char *fname) {
PPM *im;
float *norm_im;
int i;
FILE *outfile;
int the_error;
/* copy the image, and then normalise the contrast */
norm_im = (float *)malloc(w*h*sizeof(float));
for (i = 0; i < w*h; i++)
norm_im[i] = (float)double_im[i];
normaliseContrast(norm_im, w*h);
im = new_ppm();
im->type = PGM_RAW;
im->width = w;
im->height = h;
im->max_col_comp = 255;
im->bytes_per_pixel = 1;
im->pixel = (byte *)malloc(w*h*sizeof(byte));
for (i = 0; i < w*h; i++)
im->pixel[i] = (byte)norm_im[i];
outfile = fopen(fname, "wb");
if ((the_error = write_ppm(outfile, im, PGM_RAW)) != PPM_OK) {
ppm_handle_error(the_error);
exit(1);
}
fclose(outfile);
destroy_ppm(&im);
free(norm_im);
}
void create_filter_kernels() {
int i, j, n;
int x, x_c;
double u0, u, v, sigma, theta;
char fname[256];
/* allocate space for all the filter kernels */
kernel11 = (double ***)malloc(num_gabor_scales*sizeof(double **));
kernel12 = (double ***)malloc(num_gabor_scales*sizeof(double **));
kernel21 = (double ***)malloc(num_gabor_scales*sizeof(double **));
kernel22 = (double ***)malloc(num_gabor_scales*sizeof(double **));
for (i = 0; i < num_gabor_scales; i++) {
kernel11[i] = (double **)malloc(num_gabors_per_scale*sizeof(double *));
for (j = 0; j < num_gabors_per_scale; j++)
kernel11[i][j] = (double *)malloc(kernal_size[i]*sizeof(double));
kernel12[i] = (double **)malloc(num_gabors_per_scale*sizeof(double *));
for (j = 0; j < num_gabors_per_scale; j++)
kernel12[i][j] = (double *)malloc(kernal_size[i]*sizeof(double));
kernel21[i] = (double **)malloc(num_gabors_per_scale*sizeof(double *));
for (j = 0; j < num_gabors_per_scale; j++)
kernel21[i][j] = (double *)malloc(kernal_size[i]*sizeof(double));
kernel22[i] = (double **)malloc(num_gabors_per_scale*sizeof(double *));
for (j = 0; j < num_gabors_per_scale; j++)
kernel22[i][j] = (double *)malloc(kernal_size[i]*sizeof(double));
}
/* now set the values of the kernels */
u0 = u00;
for (i = 0; i < num_gabor_scales; i++) {
sigma = sigma_m(u0);
for (j = 0; j < num_gabors_per_scale; j++) {
theta = j*theta_step;
u = u0*cos(theta);
v = u0*sin(theta);
x_c = kernal_size[i]/2; /* since sizes are odd, this gives the
centre value */
for (x = 0; x < kernal_size[i]; x++) {
/* note that x is "y" for kernels 12 and 22 */
kernel11[i][j][x] = (1/(sqrt(2*M_PI)*sigma)*exp(-sq((x - x_c))/(2*sq(sigma)))*cos(2*M_PI*u*(x - x_c)));
kernel12[i][j][x] = (1/(sqrt(2*M_PI)*sigma)*exp(-sq((x - x_c))/(2*sq(sigma)))*cos(2*M_PI*v*(x - x_c)));
kernel21[i][j][x] = (1/(sqrt(2*M_PI)*sigma)*exp(-sq((x - x_c))/(2*sq(sigma)))*sin(2*M_PI*u*(x - x_c)));
kernel22[i][j][x] = (1/(sqrt(2*M_PI)*sigma)*exp(-sq((x - x_c))/(2*sq(sigma)))*sin(2*M_PI*v*(x - x_c)));
}
}
u0 = u0/2;
}
}
void gabor_filter(double *image, int width, int height, int filter_scale, int n_theta, double *output) {
double *conv;
int x, y, t_x, t_y;
int i;
/* create the filter kernels, if it has not already been done */
if (kernel11 == NULL)
create_filter_kernels();
conv = (double *)calloc(width*height, sizeof(double));
/* first convolution */
for (x = 0; x < width; x++) {
for (y = 0; y < height; y++) {
output[y*width + x] = 0; /* might as well be here */
for (t_x = -kernal_size[filter_scale]/2; t_x <= kernal_size[filter_scale]/2; t_x++) {
if (((x - t_x) >= 0) && ((x - t_x) < width)) {
conv[y*width + x] +=
kernel11[filter_scale][n_theta][t_x + kernal_size[filter_scale]/2]*image[y*width+ (x - t_x)];
}
}
}
}
/* second convolution */
for (x = 0; x < width; x++) {
for (y = 0; y < height; y++) {
for (t_y = -kernal_size[filter_scale]/2; t_y <= kernal_size[filter_scale]/2; t_y++) {
if (((y - t_y) >= 0) && ((y - t_y) < height))
output[y*width + x] +=
kernel12[filter_scale][n_theta][t_y + kernal_size[filter_scale]/2]*conv[(y - t_y)*width + x];
}
}
}
for (i = 0; i < width*height; i++)
conv[i] = 0;
/* third convolution */
for (x = 0; x < width; x++) {
for (y = 0; y < height; y++) {
for (t_x = -kernal_size[filter_scale]/2; t_x <= kernal_size[filter_scale]/2; t_x++) {
if (((x - t_x) >= 0) && ((x - t_x) < width)) {
conv[y*width + x] +=
kernel21[filter_scale][n_theta][t_x + kernal_size[filter_scale]/2]*image[y*width + (x - t_x)];
}
}
}
}
/* fourth convolution */
for (x = 0; x < width; x++) {
for (y = 0; y < height; y++) {
for (t_y = -kernal_size[filter_scale]/2; t_y <= kernal_size[filter_scale]/2; t_y++) {
if (((y - t_y) >= 0) && ((y - t_y) < height))
output[y*width + x] -=
kernel22[filter_scale][n_theta][t_y + kernal_size[filter_scale]/2]*conv[(y - t_y)*width + x];
}
}
}
free(conv);
}
|