1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
/* Emulation for expl.
Contributed by Paolo Bonzini
Copyright 2002, 2003 Free Software Foundation, Inc.
This file is part of gnulib.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
#include <float.h>
#include <math.h>
#include "mathl.h"
static const long double C[] = {
/* Chebyshev polynom coeficients for (exp(x)-1)/x */
#define P1 C[0]
#define P2 C[1]
#define P3 C[2]
#define P4 C[3]
#define P5 C[4]
#define P6 C[5]
0.5L,
1.66666666666666666666666666666666683E-01L,
4.16666666666666666666654902320001674E-02L,
8.33333333333333333333314659767198461E-03L,
1.38888888889899438565058018857254025E-03L,
1.98412698413981650382436541785404286E-04L,
/* Smallest integer x for which e^x overflows. */
#define himark C[6]
11356.523406294143949491931077970765L,
/* Largest integer x for which e^x underflows. */
#define lomark C[7]
-11433.4627433362978788372438434526231L,
/* very small number */
#define TINY C[8]
1.0e-4900L,
/* 2^16383 */
#define TWO16383 C[9]
5.94865747678615882542879663314003565E+4931L};
long double
expl (long double x)
{
/* Check for usual case. */
if (x < himark && x > lomark)
{
int exponent;
long double t, x22;
int k = 1;
long double result = 1.0;
/* Compute an integer power of e with a granularity of 0.125. */
exponent = (int) floorl (x * 8.0L);
x -= exponent / 8.0L;
if (x > 0.0625)
{
exponent++;
x -= 0.125L;
}
if (exponent < 0)
{
t = 0.8824969025845954028648921432290507362220L; /* e^-0.25 */
exponent = -exponent;
}
else
t = 1.1331484530668263168290072278117938725655L; /* e^0.25 */
while (exponent)
{
if (exponent & k)
{
result *= t;
exponent ^= k;
}
t *= t;
k <<= 1;
}
/* Approximate (e^x - 1)/x, using a seventh-degree polynomial,
with maximum error in [-2^-16-2^-53,2^-16+2^-53]
less than 4.8e-39. */
x22 = x + x*x*(P1+x*(P2+x*(P3+x*(P4+x*(P5+x*P6)))));
return result + result * x22;
}
/* Exceptional cases: */
else if (x < himark)
{
if (x + x == x)
/* e^-inf == 0, with no error. */
return 0;
else
/* Underflow */
return TINY * TINY;
}
else
/* Return x, if x is a NaN or Inf; or overflow, otherwise. */
return TWO16383*x;
}
#if 0
int
main (void)
{
printf ("%.16Lg\n", expl(1.0L));
printf ("%.16Lg\n", expl(-1.0L));
printf ("%.16Lg\n", expl(2.0L));
printf ("%.16Lg\n", expl(4.0L));
printf ("%.16Lg\n", expl(-2.0L));
printf ("%.16Lg\n", expl(-4.0L));
printf ("%.16Lg\n", expl(0.0625L));
printf ("%.16Lg\n", expl(0.3L));
printf ("%.16Lg\n", expl(0.6L));
}
#endif
|