1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
|
/* Sequential list data type implemented by a binary tree.
Copyright (C) 2006 Free Software Foundation, Inc.
Written by Bruno Haible <bruno@clisp.org>, 2006.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
/* Common code of gl_rbtree_list.c and gl_rbtreehash_list.c. */
/* -------------------------- gl_list_t Data Type -------------------------- */
/* Create a subtree for count >= 1 elements.
Its black-height bh is passed as argument, with
2^bh - 1 <= count <= 2^(bh+1) - 1. bh == 0 implies count == 1.
Its height is h where 2^(h-1) <= count <= 2^h - 1. */
static gl_list_node_t
create_subtree_with_contents (unsigned int bh,
size_t count, const void **contents)
{
size_t half1 = (count - 1) / 2;
size_t half2 = count / 2;
/* Note: half1 + half2 = count - 1. */
gl_list_node_t node = XMALLOC (struct gl_list_node_impl);
if (half1 > 0)
{
/* half1 > 0 implies count > 1, implies bh >= 1, implies
2^(bh-1) - 1 <= half1 <= 2^bh - 1. */
node->left =
create_subtree_with_contents (bh - 1, half1, contents);
node->left->parent = node;
}
else
node->left = NULL;
node->value = contents[half1];
if (half2 > 0)
{
/* half2 > 0 implies count > 1, implies bh >= 1, implies
2^(bh-1) - 1 <= half2 <= 2^bh - 1. */
node->right =
create_subtree_with_contents (bh - 1, half2, contents + half1 + 1);
node->right->parent = node;
}
else
node->right = NULL;
node->color = (bh == 0 ? RED : BLACK);
node->branch_size = count;
return node;
}
static gl_list_t
gl_tree_create (gl_list_implementation_t implementation,
gl_listelement_equals_fn equals_fn,
gl_listelement_hashcode_fn hashcode_fn,
bool allow_duplicates,
size_t count, const void **contents)
{
struct gl_list_impl *list = XMALLOC (struct gl_list_impl);
list->base.vtable = implementation;
list->base.equals_fn = equals_fn;
list->base.hashcode_fn = hashcode_fn;
list->base.allow_duplicates = allow_duplicates;
#if WITH_HASHTABLE
{
size_t estimate = xsum (count, count / 2); /* 1.5 * count */
if (estimate < 10)
estimate = 10;
list->table_size = next_prime (estimate);
list->table = XCALLOC (list->table_size, gl_hash_entry_t);
}
#endif
if (count > 0)
{
/* Assuming 2^bh - 1 <= count <= 2^(bh+1) - 2, we create a tree whose
upper bh levels are black, and only the partially present lowest
level is red. */
unsigned int bh;
{
size_t n;
for (n = count + 1, bh = 0; n > 1; n = n >> 1)
bh++;
}
list->root = create_subtree_with_contents (bh, count, contents);
list->root->parent = NULL;
#if WITH_HASHTABLE
/* Now that the tree is built, node_position() works. Now we can
add the nodes to the hash table. */
add_nodes_to_buckets (list);
#endif
}
else
list->root = NULL;
return list;
}
/* Rotate left a subtree.
B D
/ \ / \
A D --> B E
/ \ / \
C E A C
Change the tree structure, update the branch sizes.
The caller must update the colors and register D as child of its parent. */
static inline gl_list_node_t
rotate_left (gl_list_node_t b_node, gl_list_node_t d_node)
{
gl_list_node_t a_node = b_node->left;
gl_list_node_t c_node = d_node->left;
gl_list_node_t e_node = d_node->right;
b_node->right = c_node;
d_node->left = b_node;
d_node->parent = b_node->parent;
b_node->parent = d_node;
if (c_node != NULL)
c_node->parent = b_node;
b_node->branch_size =
(a_node != NULL ? a_node->branch_size : 0)
+ 1 + (c_node != NULL ? c_node->branch_size : 0);
d_node->branch_size =
b_node->branch_size + 1 + (e_node != NULL ? e_node->branch_size : 0);
return d_node;
}
/* Rotate right a subtree.
D B
/ \ / \
B E --> A D
/ \ / \
A C C E
Change the tree structure, update the branch sizes.
The caller must update the colors and register B as child of its parent. */
static inline gl_list_node_t
rotate_right (gl_list_node_t b_node, gl_list_node_t d_node)
{
gl_list_node_t a_node = b_node->left;
gl_list_node_t c_node = b_node->right;
gl_list_node_t e_node = d_node->right;
d_node->left = c_node;
b_node->right = d_node;
b_node->parent = d_node->parent;
d_node->parent = b_node;
if (c_node != NULL)
c_node->parent = d_node;
d_node->branch_size =
(c_node != NULL ? c_node->branch_size : 0)
+ 1 + (e_node != NULL ? e_node->branch_size : 0);
b_node->branch_size =
(a_node != NULL ? a_node->branch_size : 0) + 1 + d_node->branch_size;
return b_node;
}
/* Ensure the tree is balanced, after an insertion operation.
Also assigns node->color.
parent is the given node's parent, known to be non-NULL. */
static void
rebalance_after_add (gl_list_t list, gl_list_node_t node, gl_list_node_t parent)
{
for (;;)
{
/* At this point, parent = node->parent != NULL.
Think of node->color being RED (although node->color is not yet
assigned.) */
gl_list_node_t grandparent;
gl_list_node_t uncle;
if (parent->color == BLACK)
{
/* A RED color for node is acceptable. */
node->color = RED;
return;
}
grandparent = parent->parent;
/* Since parent is RED, we know that
grandparent is != NULL and colored BLACK. */
if (grandparent->left == parent)
uncle = grandparent->right;
else if (grandparent->right == parent)
uncle = grandparent->left;
else
abort ();
if (uncle != NULL && uncle->color == RED)
{
/* Change grandparent from BLACK to RED, and
change parent and uncle from RED to BLACK.
This makes it acceptable for node to be RED. */
node->color = RED;
parent->color = uncle->color = BLACK;
node = grandparent;
}
else
{
/* grandparent and uncle are BLACK. parent is RED. node wants
to be RED too.
In this case, recoloring is not sufficient. Need to perform
one or two rotations. */
gl_list_node_t *grandparentp;
if (grandparent->parent == NULL)
grandparentp = &list->root;
else if (grandparent->parent->left == grandparent)
grandparentp = &grandparent->parent->left;
else if (grandparent->parent->right == grandparent)
grandparentp = &grandparent->parent->right;
else
abort ();
if (grandparent->left == parent)
{
if (parent->right == node)
{
/* Rotation between node and parent. */
grandparent->left = rotate_left (parent, node);
node = parent;
parent = grandparent->left;
}
/* grandparent and uncle are BLACK. parent and node want to be
RED. parent = grandparent->left. node = parent->left.
grandparent parent
bh+1 bh+1
/ \ / \
parent uncle --> node grandparent
bh bh bh bh
/ \ / \
node C C uncle
bh bh bh bh
*/
*grandparentp = rotate_right (parent, grandparent);
parent->color = BLACK;
node->color = grandparent->color = RED;
}
else /* grandparent->right == parent */
{
if (parent->left == node)
{
/* Rotation between node and parent. */
grandparent->right = rotate_right (node, parent);
node = parent;
parent = grandparent->right;
}
/* grandparent and uncle are BLACK. parent and node want to be
RED. parent = grandparent->right. node = parent->right.
grandparent parent
bh+1 bh+1
/ \ / \
uncle parent --> grandparent node
bh bh bh bh
/ \ / \
C node uncle C
bh bh bh bh
*/
*grandparentp = rotate_left (grandparent, parent);
parent->color = BLACK;
node->color = grandparent->color = RED;
}
return;
}
/* Start again with a new (node, parent) pair. */
parent = node->parent;
if (parent == NULL)
{
/* Change node's color from RED to BLACK. This increases the
tree's black-height. */
node->color = BLACK;
return;
}
}
}
/* Ensure the tree is balanced, after a deletion operation.
CHILD was a grandchild of PARENT and is now its child. Between them,
a black node was removed. CHILD is also black, or NULL.
(CHILD can also be NULL. But PARENT is non-NULL.) */
static void
rebalance_after_remove (gl_list_t list, gl_list_node_t child, gl_list_node_t parent)
{
for (;;)
{
/* At this point, we reduced the black-height of the CHILD subtree by 1.
To make up, either look for a possibility to turn a RED to a BLACK
node, or try to reduce the black-height tree of CHILD's sibling
subtree as well. */
gl_list_node_t *parentp;
if (parent->parent == NULL)
parentp = &list->root;
else if (parent->parent->left == parent)
parentp = &parent->parent->left;
else if (parent->parent->right == parent)
parentp = &parent->parent->right;
else
abort ();
if (parent->left == child)
{
gl_list_node_t sibling = parent->right;
/* sibling's black-height is >= 1. In particular,
sibling != NULL.
parent
/ \
child sibling
bh bh+1
*/
if (sibling->color == RED)
{
/* sibling is RED, hence parent is BLACK and sibling's children
are non-NULL and BLACK.
parent sibling
bh+2 bh+2
/ \ / \
child sibling --> parent SR
bh bh+1 bh+1 bh+1
/ \ / \
SL SR child SL
bh+1 bh+1 bh bh+1
*/
*parentp = rotate_left (parent, sibling);
parent->color = RED;
sibling->color = BLACK;
/* Concentrate on the subtree of parent. The new sibling is
one of the old sibling's children, and known to be BLACK. */
parentp = &sibling->left;
sibling = parent->right;
}
/* Now we know that sibling is BLACK.
parent
/ \
child sibling
bh bh+1
*/
if (sibling->right != NULL && sibling->right->color == RED)
{
/*
parent sibling
bh+1|bh+2 bh+1|bh+2
/ \ / \
child sibling --> parent SR
bh bh+1 bh+1 bh+1
/ \ / \
SL SR child SL
bh bh bh bh
*/
*parentp = rotate_left (parent, sibling);
sibling->color = parent->color;
parent->color = BLACK;
sibling->right->color = BLACK;
return;
}
else if (sibling->left != NULL && sibling->left->color == RED)
{
/*
parent parent
bh+1|bh+2 bh+1|bh+2
/ \ / \
child sibling --> child SL
bh bh+1 bh bh+1
/ \ / \
SL SR SLL sibling
bh bh bh bh
/ \ / \
SLL SLR SLR SR
bh bh bh bh
where SLL, SLR, SR are all black.
*/
parent->right = rotate_right (sibling->left, sibling);
/* Change sibling from BLACK to RED and SL from RED to BLACK. */
sibling->color = RED;
sibling = parent->right;
sibling->color = BLACK;
/* Now do as in the previous case. */
*parentp = rotate_left (parent, sibling);
sibling->color = parent->color;
parent->color = BLACK;
sibling->right->color = BLACK;
return;
}
else
{
if (parent->color == BLACK)
{
/* Change sibling from BLACK to RED. Then the entire
subtree at parent has decreased its black-height.
parent parent
bh+2 bh+1
/ \ / \
child sibling --> child sibling
bh bh+1 bh bh
*/
sibling->color = RED;
child = parent;
}
else
{
/* Change parent from RED to BLACK, but compensate by
changing sibling from BLACK to RED.
parent parent
bh+1 bh+1
/ \ / \
child sibling --> child sibling
bh bh+1 bh bh
*/
parent->color = BLACK;
sibling->color = RED;
return;
}
}
}
else if (parent->right == child)
{
gl_list_node_t sibling = parent->left;
/* sibling's black-height is >= 1. In particular,
sibling != NULL.
parent
/ \
sibling child
bh+1 bh
*/
if (sibling->color == RED)
{
/* sibling is RED, hence parent is BLACK and sibling's children
are non-NULL and BLACK.
parent sibling
bh+2 bh+2
/ \ / \
sibling child --> SR parent
bh+1 ch bh+1 bh+1
/ \ / \
SL SR SL child
bh+1 bh+1 bh+1 bh
*/
*parentp = rotate_right (sibling, parent);
parent->color = RED;
sibling->color = BLACK;
/* Concentrate on the subtree of parent. The new sibling is
one of the old sibling's children, and known to be BLACK. */
parentp = &sibling->right;
sibling = parent->left;
}
/* Now we know that sibling is BLACK.
parent
/ \
sibling child
bh+1 bh
*/
if (sibling->left != NULL && sibling->left->color == RED)
{
/*
parent sibling
bh+1|bh+2 bh+1|bh+2
/ \ / \
sibling child --> SL parent
bh+1 bh bh+1 bh+1
/ \ / \
SL SR SR child
bh bh bh bh
*/
*parentp = rotate_right (sibling, parent);
sibling->color = parent->color;
parent->color = BLACK;
sibling->left->color = BLACK;
return;
}
else if (sibling->right != NULL && sibling->right->color == RED)
{
/*
parent parent
bh+1|bh+2 bh+1|bh+2
/ \ / \
sibling child --> SR child
bh+1 bh bh+1 bh
/ \ / \
SL SR sibling SRR
bh bh bh bh
/ \ / \
SRL SRR SL SRL
bh bh bh bh
where SL, SRL, SRR are all black.
*/
parent->left = rotate_left (sibling, sibling->right);
/* Change sibling from BLACK to RED and SL from RED to BLACK. */
sibling->color = RED;
sibling = parent->left;
sibling->color = BLACK;
/* Now do as in the previous case. */
*parentp = rotate_right (sibling, parent);
sibling->color = parent->color;
parent->color = BLACK;
sibling->left->color = BLACK;
return;
}
else
{
if (parent->color == BLACK)
{
/* Change sibling from BLACK to RED. Then the entire
subtree at parent has decreased its black-height.
parent parent
bh+2 bh+1
/ \ / \
sibling child --> sibling child
bh+1 bh bh bh
*/
sibling->color = RED;
child = parent;
}
else
{
/* Change parent from RED to BLACK, but compensate by
changing sibling from BLACK to RED.
parent parent
bh+1 bh+1
/ \ / \
sibling child --> sibling child
bh+1 bh bh bh
*/
parent->color = BLACK;
sibling->color = RED;
return;
}
}
}
else
abort ();
/* Start again with a new (child, parent) pair. */
parent = child->parent;
#if 0 /* Already handled. */
if (child != NULL && child->color == RED)
{
child->color = BLACK;
return;
}
#endif
if (parent == NULL)
return;
}
}
static gl_list_node_t
gl_tree_add_first (gl_list_t list, const void *elt)
{
/* Create new node. */
gl_list_node_t new_node = XMALLOC (struct gl_list_node_impl);
new_node->left = NULL;
new_node->right = NULL;
new_node->branch_size = 1;
new_node->value = elt;
#if WITH_HASHTABLE
new_node->h.hashcode =
(list->base.hashcode_fn != NULL
? list->base.hashcode_fn (new_node->value)
: (size_t)(uintptr_t) new_node->value);
#endif
/* Add it to the tree. */
if (list->root == NULL)
{
new_node->color = BLACK;
list->root = new_node;
new_node->parent = NULL;
}
else
{
gl_list_node_t node;
for (node = list->root; node->left != NULL; )
node = node->left;
node->left = new_node;
new_node->parent = node;
/* Update branch_size fields of the parent nodes. */
{
gl_list_node_t p;
for (p = node; p != NULL; p = p->parent)
p->branch_size++;
}
/* Color and rebalance. */
rebalance_after_add (list, new_node, node);
}
#if WITH_HASHTABLE
/* Add node to the hash table.
Note that this is only possible _after_ the node has been added to the
tree structure, because add_to_bucket() uses node_position(). */
add_to_bucket (list, new_node);
hash_resize_after_add (list);
#endif
return new_node;
}
static gl_list_node_t
gl_tree_add_last (gl_list_t list, const void *elt)
{
/* Create new node. */
gl_list_node_t new_node = XMALLOC (struct gl_list_node_impl);
new_node->left = NULL;
new_node->right = NULL;
new_node->branch_size = 1;
new_node->value = elt;
#if WITH_HASHTABLE
new_node->h.hashcode =
(list->base.hashcode_fn != NULL
? list->base.hashcode_fn (new_node->value)
: (size_t)(uintptr_t) new_node->value);
#endif
/* Add it to the tree. */
if (list->root == NULL)
{
new_node->color = BLACK;
list->root = new_node;
new_node->parent = NULL;
}
else
{
gl_list_node_t node;
for (node = list->root; node->right != NULL; )
node = node->right;
node->right = new_node;
new_node->parent = node;
/* Update branch_size fields of the parent nodes. */
{
gl_list_node_t p;
for (p = node; p != NULL; p = p->parent)
p->branch_size++;
}
/* Color and rebalance. */
rebalance_after_add (list, new_node, node);
}
#if WITH_HASHTABLE
/* Add node to the hash table.
Note that this is only possible _after_ the node has been added to the
tree structure, because add_to_bucket() uses node_position(). */
add_to_bucket (list, new_node);
hash_resize_after_add (list);
#endif
return new_node;
}
static gl_list_node_t
gl_tree_add_before (gl_list_t list, gl_list_node_t node, const void *elt)
{
/* Create new node. */
gl_list_node_t new_node = XMALLOC (struct gl_list_node_impl);
new_node->left = NULL;
new_node->right = NULL;
new_node->branch_size = 1;
new_node->value = elt;
#if WITH_HASHTABLE
new_node->h.hashcode =
(list->base.hashcode_fn != NULL
? list->base.hashcode_fn (new_node->value)
: (size_t)(uintptr_t) new_node->value);
#endif
/* Add it to the tree. */
if (node->left == NULL)
node->left = new_node;
else
{
for (node = node->left; node->right != NULL; )
node = node->right;
node->right = new_node;
}
new_node->parent = node;
/* Update branch_size fields of the parent nodes. */
{
gl_list_node_t p;
for (p = node; p != NULL; p = p->parent)
p->branch_size++;
}
/* Color and rebalance. */
rebalance_after_add (list, new_node, node);
#if WITH_HASHTABLE
/* Add node to the hash table.
Note that this is only possible _after_ the node has been added to the
tree structure, because add_to_bucket() uses node_position(). */
add_to_bucket (list, new_node);
hash_resize_after_add (list);
#endif
return new_node;
}
static gl_list_node_t
gl_tree_add_after (gl_list_t list, gl_list_node_t node, const void *elt)
{
/* Create new node. */
gl_list_node_t new_node = XMALLOC (struct gl_list_node_impl);
new_node->left = NULL;
new_node->right = NULL;
new_node->branch_size = 1;
new_node->value = elt;
#if WITH_HASHTABLE
new_node->h.hashcode =
(list->base.hashcode_fn != NULL
? list->base.hashcode_fn (new_node->value)
: (size_t)(uintptr_t) new_node->value);
#endif
/* Add it to the tree. */
if (node->right == NULL)
node->right = new_node;
else
{
for (node = node->right; node->left != NULL; )
node = node->left;
node->left = new_node;
}
new_node->parent = node;
/* Update branch_size fields of the parent nodes. */
{
gl_list_node_t p;
for (p = node; p != NULL; p = p->parent)
p->branch_size++;
}
/* Color and rebalance. */
rebalance_after_add (list, new_node, node);
#if WITH_HASHTABLE
/* Add node to the hash table.
Note that this is only possible _after_ the node has been added to the
tree structure, because add_to_bucket() uses node_position(). */
add_to_bucket (list, new_node);
hash_resize_after_add (list);
#endif
return new_node;
}
static bool
gl_tree_remove_node (gl_list_t list, gl_list_node_t node)
{
gl_list_node_t parent;
#if WITH_HASHTABLE
/* Remove node from the hash table.
Note that this is only possible _before_ the node is removed from the
tree structure, because remove_from_bucket() uses node_position(). */
remove_from_bucket (list, node);
#endif
parent = node->parent;
if (node->left == NULL)
{
/* Replace node with node->right. */
gl_list_node_t child = node->right;
if (child != NULL)
{
child->parent = parent;
/* Since node->left == NULL, child must be RED and of height 1,
hence node must have been BLACK. Recolor the child. */
child->color = BLACK;
}
if (parent == NULL)
list->root = child;
else
{
if (parent->left == node)
parent->left = child;
else /* parent->right == node */
parent->right = child;
/* Update branch_size fields of the parent nodes. */
{
gl_list_node_t p;
for (p = parent; p != NULL; p = p->parent)
p->branch_size--;
}
if (child == NULL && node->color == BLACK)
rebalance_after_remove (list, child, parent);
}
}
else if (node->right == NULL)
{
/* It is not absolutely necessary to treat this case. But the more
general case below is more complicated, hence slower. */
/* Replace node with node->left. */
gl_list_node_t child = node->left;
child->parent = parent;
/* Since node->right == NULL, child must be RED and of height 1,
hence node must have been BLACK. Recolor the child. */
child->color = BLACK;
if (parent == NULL)
list->root = child;
else
{
if (parent->left == node)
parent->left = child;
else /* parent->right == node */
parent->right = child;
/* Update branch_size fields of the parent nodes. */
{
gl_list_node_t p;
for (p = parent; p != NULL; p = p->parent)
p->branch_size--;
}
}
}
else
{
/* Replace node with the rightmost element of the node->left subtree. */
gl_list_node_t subst;
gl_list_node_t subst_parent;
gl_list_node_t child;
color_t removed_color;
for (subst = node->left; subst->right != NULL; )
subst = subst->right;
subst_parent = subst->parent;
child = subst->left;
removed_color = subst->color;
/* The case subst_parent == node is special: If we do nothing special,
we get confusion about node->left, subst->left and child->parent.
subst_parent == node
<==> The 'for' loop above terminated immediately.
<==> subst == subst_parent->left
[otherwise subst == subst_parent->right]
In this case, we would need to first set
child->parent = node; node->left = child;
and later - when we copy subst into node's position - again
child->parent = subst; subst->left = child;
Altogether a no-op. */
if (subst_parent != node)
{
if (child != NULL)
child->parent = subst_parent;
subst_parent->right = child;
}
/* Update branch_size fields of the parent nodes. */
{
gl_list_node_t p;
for (p = subst_parent; p != NULL; p = p->parent)
p->branch_size--;
}
/* Copy subst into node's position.
(This is safer than to copy subst's value into node, keep node in
place, and free subst.) */
if (subst_parent != node)
{
subst->left = node->left;
subst->left->parent = subst;
}
subst->right = node->right;
subst->right->parent = subst;
subst->color = node->color;
subst->branch_size = node->branch_size;
subst->parent = parent;
if (parent == NULL)
list->root = subst;
else if (parent->left == node)
parent->left = subst;
else /* parent->right == node */
parent->right = subst;
if (removed_color == BLACK)
{
if (child != NULL && child->color == RED)
/* Recolor the child. */
child->color = BLACK;
else
/* Rebalancing starts at child's parent, that is subst_parent -
except when subst_parent == node. In this case, we need to use
its replacement, subst. */
rebalance_after_remove (list, child,
subst_parent != node ? subst_parent : subst);
}
}
free (node);
return true;
}
|