1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155
|
/*
* Mach Operating System
* Copyright (c) 1993-1989 Carnegie Mellon University
* All Rights Reserved.
*
* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
* ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie Mellon
* the rights to redistribute these changes.
*/
/*
* Author: David B. Golub, Carnegie Mellon University
* Date: 3/98
*
* Network IO.
*
* Packet filter code taken from vaxif/enet.c written
* CMU and Stanford.
*/
/*
* Note: don't depend on anything in this file.
* It may change a lot real soon. -cmaeda 11 June 1993
*/
#include <sys/types.h>
#include <string.h>
#include <device/net_status.h>
#include <machine/machspl.h> /* spl definitions */
#include <device/net_io.h>
#include <device/if_hdr.h>
#include <device/io_req.h>
#include <device/ds_routines.h>
#include <mach/boolean.h>
#include <mach/vm_param.h>
#include <ipc/ipc_port.h>
#include <ipc/ipc_kmsg.h>
#include <ipc/ipc_mqueue.h>
#include <kern/counters.h>
#include <kern/debug.h>
#include <kern/lock.h>
#include <kern/printf.h>
#include <kern/queue.h>
#include <kern/sched_prim.h>
#include <kern/slab.h>
#include <kern/thread.h>
#include <machine/machspl.h>
#if MACH_TTD
#include <ttd/ttd_stub.h>
#endif /* MACH_TTD */
#if MACH_TTD
int kttd_async_counter= 0;
#endif /* MACH_TTD */
/*
* Packet Buffer Management
*
* This module manages a private pool of kmsg buffers.
*/
/*
* List of net kmsgs queued to be sent to users.
* Messages can be high priority or low priority.
* The network thread processes high priority messages first.
*/
decl_simple_lock_data(,net_queue_lock)
boolean_t net_thread_awake = FALSE;
struct ipc_kmsg_queue net_queue_high;
int net_queue_high_size = 0;
int net_queue_high_max = 0; /* for debugging */
struct ipc_kmsg_queue net_queue_low;
int net_queue_low_size = 0;
int net_queue_low_max = 0; /* for debugging */
/*
* List of net kmsgs that can be touched at interrupt level.
* If it is empty, we will also steal low priority messages.
*/
decl_simple_lock_data(,net_queue_free_lock)
struct ipc_kmsg_queue net_queue_free;
int net_queue_free_size = 0; /* on free list */
int net_queue_free_max = 0; /* for debugging */
/*
* This value is critical to network performance.
* At least this many buffers should be sitting in net_queue_free.
* If this is set too small, we will drop network packets.
* Even a low drop rate (<1%) can cause severe network throughput problems.
* We add one to net_queue_free_min for every filter.
*/
int net_queue_free_min = 3;
int net_queue_free_hits = 0; /* for debugging */
int net_queue_free_steals = 0; /* for debugging */
int net_queue_free_misses = 0; /* for debugging */
int net_kmsg_send_high_hits = 0; /* for debugging */
int net_kmsg_send_low_hits = 0; /* for debugging */
int net_kmsg_send_high_misses = 0; /* for debugging */
int net_kmsg_send_low_misses = 0; /* for debugging */
int net_thread_awaken = 0; /* for debugging */
int net_ast_taken = 0; /* for debugging */
decl_simple_lock_data(,net_kmsg_total_lock)
int net_kmsg_total = 0; /* total allocated */
int net_kmsg_max; /* initialized below */
vm_size_t net_kmsg_size; /* initialized below */
/*
* We want more buffers when there aren't enough in the free queue
* and the low priority queue. However, we don't want to allocate
* more than net_kmsg_max.
*/
#define net_kmsg_want_more() \
(((net_queue_free_size + net_queue_low_size) < net_queue_free_min) && \
(net_kmsg_total < net_kmsg_max))
ipc_kmsg_t
net_kmsg_get(void)
{
ipc_kmsg_t kmsg;
spl_t s;
/*
* First check the list of free buffers.
*/
s = splimp();
simple_lock(&net_queue_free_lock);
kmsg = ipc_kmsg_queue_first(&net_queue_free);
if (kmsg != IKM_NULL) {
ipc_kmsg_rmqueue_first_macro(&net_queue_free, kmsg);
net_queue_free_size--;
net_queue_free_hits++;
}
simple_unlock(&net_queue_free_lock);
if (kmsg == IKM_NULL) {
/*
* Try to steal from the low priority queue.
*/
simple_lock(&net_queue_lock);
kmsg = ipc_kmsg_queue_first(&net_queue_low);
if (kmsg != IKM_NULL) {
ipc_kmsg_rmqueue_first_macro(&net_queue_low, kmsg);
net_queue_low_size--;
net_queue_free_steals++;
}
simple_unlock(&net_queue_lock);
}
if (kmsg == IKM_NULL)
net_queue_free_misses++;
(void) splx(s);
if (net_kmsg_want_more() || (kmsg == IKM_NULL)) {
boolean_t awake;
s = splimp();
simple_lock(&net_queue_lock);
awake = net_thread_awake;
net_thread_awake = TRUE;
simple_unlock(&net_queue_lock);
(void) splx(s);
if (!awake)
thread_wakeup((event_t) &net_thread_awake);
}
return kmsg;
}
void
net_kmsg_put(const ipc_kmsg_t kmsg)
{
spl_t s;
s = splimp();
simple_lock(&net_queue_free_lock);
ipc_kmsg_enqueue_macro(&net_queue_free, kmsg);
if (++net_queue_free_size > net_queue_free_max)
net_queue_free_max = net_queue_free_size;
simple_unlock(&net_queue_free_lock);
(void) splx(s);
}
void
net_kmsg_collect(void)
{
ipc_kmsg_t kmsg;
spl_t s;
s = splimp();
simple_lock(&net_queue_free_lock);
while (net_queue_free_size > net_queue_free_min) {
kmsg = ipc_kmsg_dequeue(&net_queue_free);
net_queue_free_size--;
simple_unlock(&net_queue_free_lock);
(void) splx(s);
net_kmsg_free(kmsg);
simple_lock(&net_kmsg_total_lock);
net_kmsg_total--;
simple_unlock(&net_kmsg_total_lock);
s = splimp();
simple_lock(&net_queue_free_lock);
}
simple_unlock(&net_queue_free_lock);
(void) splx(s);
}
void
net_kmsg_more(void)
{
ipc_kmsg_t kmsg;
/*
* Replenish net kmsg pool if low. We don't have the locks
* necessary to look at these variables, but that's OK because
* misread values aren't critical. The danger in this code is
* that while we allocate buffers, interrupts are happening
* which take buffers out of the free list. If we are not
* careful, we will sit in the loop and allocate a zillion
* buffers while a burst of packets arrives. So we count
* buffers in the low priority queue as available, because
* net_kmsg_get will make use of them, and we cap the total
* number of buffers we are willing to allocate.
*/
while (net_kmsg_want_more()) {
simple_lock(&net_kmsg_total_lock);
net_kmsg_total++;
simple_unlock(&net_kmsg_total_lock);
kmsg = net_kmsg_alloc();
net_kmsg_put(kmsg);
}
}
/*
* Packet Filter Data Structures
*
* Each network interface has a set of packet filters
* that are run on incoming packets.
*
* Each packet filter may represent a single network
* session or multiple network sessions. For example,
* all application level TCP sessions would be represented
* by a single packet filter data structure.
*
* If a packet filter has a single session, we use a
* struct net_rcv_port to represent it. If the packet
* filter represents multiple sessions, we use a
* struct net_hash_header to represent it.
*/
/*
* Each interface has a write port and a set of read ports.
* Each read port has one or more filters to determine what packets
* should go to that port.
*/
/*
* Receive port for net, with packet filter.
* This data structure by itself represents a packet
* filter for a single session.
*/
struct net_rcv_port {
queue_chain_t input; /* list of input open_descriptors */
queue_chain_t output; /* list of output open_descriptors */
ipc_port_t rcv_port; /* port to send packet to */
int rcv_qlimit; /* port's qlimit */
int rcv_count; /* number of packets received */
int priority; /* priority for filter */
filter_t *filter_end; /* pointer to end of filter */
filter_t filter[NET_MAX_FILTER];
/* filter operations */
};
struct kmem_cache net_rcv_cache; /* cache of net_rcv_port structs */
#define NET_HASH_SIZE 256
#define N_NET_HASH 4
#define N_NET_HASH_KEYS 4
/*
* A single hash entry.
*/
struct net_hash_entry {
queue_chain_t chain; /* list of entries with same hval */
#define he_next chain.next
#define he_prev chain.prev
ipc_port_t rcv_port; /* destination port */
int rcv_qlimit; /* qlimit for the port */
unsigned int keys[N_NET_HASH_KEYS];
};
struct kmem_cache net_hash_entry_cache;
/*
* This structure represents a packet filter with multiple sessions.
*
* For example, all application level TCP sessions might be
* represented by one of these structures. It looks like a
* net_rcv_port struct so that both types can live on the
* same packet filter queues.
*/
struct net_hash_header {
struct net_rcv_port rcv;
int n_keys; /* zero if not used */
int ref_count; /* reference count */
net_hash_entry_t table[NET_HASH_SIZE];
} filter_hash_header[N_NET_HASH];
decl_simple_lock_data(,net_hash_header_lock)
#define HASH_ITERATE(head, elt) (elt) = (net_hash_entry_t) (head); do {
#define HASH_ITERATE_END(head, elt) \
(elt) = (net_hash_entry_t) queue_next((queue_entry_t) (elt)); \
} while ((elt) != (head));
#define FILTER_ITERATE(if_port_list, fp, nextfp, chain) \
for ((fp) = (net_rcv_port_t) queue_first(if_port_list); \
!queue_end(if_port_list, (queue_entry_t)(fp)); \
(fp) = (nextfp)) { \
(nextfp) = (net_rcv_port_t) queue_next(chain);
#define FILTER_ITERATE_END }
/* entry_p must be net_rcv_port_t or net_hash_entry_t */
#define ENQUEUE_DEAD(dead, entry_p, chain) { \
(entry_p)->chain.next = (queue_entry_t) (dead); \
(dead) = (queue_entry_t)(entry_p); \
}
/*
* ethernet_priority:
*
* This function properly belongs in the ethernet interfaces;
* it should not be called by this module. (We get packet
* priorities as an argument to net_filter.) It is here
* to avoid massive code duplication.
*
* Returns TRUE for high-priority packets.
*/
boolean_t ethernet_priority(kmsg)
const ipc_kmsg_t kmsg;
{
unsigned char *addr =
(unsigned char *) net_kmsg(kmsg)->header;
/*
* A simplistic check for broadcast packets.
*/
if ((addr[0] == 0xff) && (addr[1] == 0xff) &&
(addr[2] == 0xff) && (addr[3] == 0xff) &&
(addr[4] == 0xff) && (addr[5] == 0xff))
return FALSE;
else
return TRUE;
}
mach_msg_type_t header_type = {
MACH_MSG_TYPE_BYTE,
8,
NET_HDW_HDR_MAX,
TRUE,
FALSE,
FALSE,
0
};
mach_msg_type_t packet_type = {
MACH_MSG_TYPE_BYTE, /* name */
8, /* size */
0, /* number */
TRUE, /* inline */
FALSE, /* longform */
FALSE /* deallocate */
};
/*
* net_deliver:
*
* Called and returns holding net_queue_lock, at splimp.
* Dequeues a message and delivers it at spl0.
* Returns FALSE if no messages.
*/
boolean_t net_deliver(boolean_t nonblocking)
{
ipc_kmsg_t kmsg;
boolean_t high_priority;
struct ipc_kmsg_queue send_list;
/*
* Pick up a pending network message and deliver it.
* Deliver high priority messages before low priority.
*/
if ((kmsg = ipc_kmsg_dequeue(&net_queue_high)) != IKM_NULL) {
net_queue_high_size--;
high_priority = TRUE;
} else if ((kmsg = ipc_kmsg_dequeue(&net_queue_low)) != IKM_NULL) {
net_queue_low_size--;
high_priority = FALSE;
} else
return FALSE;
simple_unlock(&net_queue_lock);
(void) spl0();
/*
* Run the packet through the filters,
* getting back a queue of packets to send.
*/
net_filter(kmsg, &send_list);
if (!nonblocking) {
/*
* There is a danger of running out of available buffers
* because they all get moved into the high priority queue
* or a port queue. In particular, we might need to
* allocate more buffers as we pull (previously available)
* buffers out of the low priority queue. But we can only
* allocate if we are allowed to block.
*/
net_kmsg_more();
}
while ((kmsg = ipc_kmsg_dequeue(&send_list)) != IKM_NULL) {
int count;
/*
* Fill in the rest of the kmsg.
*/
count = net_kmsg(kmsg)->net_rcv_msg_packet_count;
ikm_init_special(kmsg, IKM_SIZE_NETWORK);
kmsg->ikm_header.msgh_bits =
MACH_MSGH_BITS(MACH_MSG_TYPE_PORT_SEND, 0);
/* remember message sizes must be rounded up */
kmsg->ikm_header.msgh_size =
(((mach_msg_size_t) (sizeof(struct net_rcv_msg)
- sizeof net_kmsg(kmsg)->sent
- NET_RCV_MAX + count)) + 3) &~ 3;
kmsg->ikm_header.msgh_local_port = MACH_PORT_NULL;
kmsg->ikm_header.msgh_kind = MACH_MSGH_KIND_NORMAL;
kmsg->ikm_header.msgh_id = NET_RCV_MSG_ID;
net_kmsg(kmsg)->header_type = header_type;
net_kmsg(kmsg)->packet_type = packet_type;
net_kmsg(kmsg)->net_rcv_msg_packet_count = count;
/*
* Send the packet to the destination port. Drop it
* if the destination port is over its backlog.
*/
if (ipc_mqueue_send(kmsg, MACH_SEND_TIMEOUT, 0) ==
MACH_MSG_SUCCESS) {
if (high_priority)
net_kmsg_send_high_hits++;
else
net_kmsg_send_low_hits++;
/* the receiver is responsible for the message now */
} else {
if (high_priority)
net_kmsg_send_high_misses++;
else
net_kmsg_send_low_misses++;
ipc_kmsg_destroy(kmsg);
}
}
(void) splimp();
simple_lock(&net_queue_lock);
return TRUE;
}
/*
* We want to deliver packets using ASTs, so we can avoid the
* thread_wakeup/thread_block needed to get to the network
* thread. However, we can't allocate memory in the AST handler,
* because memory allocation might block. Hence we have the
* network thread to allocate memory. The network thread also
* delivers packets, so it can be allocating and delivering for a
* burst. net_thread_awake is protected by net_queue_lock
* (instead of net_queue_free_lock) so that net_packet and
* net_ast can safely determine if the network thread is running.
* This prevents a race that might leave a packet sitting without
* being delivered. It is possible for net_kmsg_get to think
* the network thread is awake, and so avoid a wakeup, and then
* have the network thread sleep without allocating. The next
* net_kmsg_get will do a wakeup.
*/
void net_ast(void)
{
spl_t s;
net_ast_taken++;
/*
* If the network thread is awake, then we would
* rather deliver messages from it, because
* it can also allocate memory.
*/
s = splimp();
simple_lock(&net_queue_lock);
while (!net_thread_awake && net_deliver(TRUE))
continue;
/*
* Prevent an unnecessary AST. Either the network
* thread will deliver the messages, or there are
* no messages left to deliver.
*/
simple_unlock(&net_queue_lock);
(void) splsched();
ast_off(cpu_number(), AST_NETWORK);
(void) splx(s);
}
void __attribute__ ((noreturn)) net_thread_continue(void)
{
for (;;) {
spl_t s;
net_thread_awaken++;
/*
* First get more buffers.
*/
net_kmsg_more();
s = splimp();
simple_lock(&net_queue_lock);
while (net_deliver(FALSE))
continue;
net_thread_awake = FALSE;
assert_wait(&net_thread_awake, FALSE);
simple_unlock(&net_queue_lock);
(void) splx(s);
counter(c_net_thread_block++);
thread_block(net_thread_continue);
}
}
void net_thread(void)
{
spl_t s;
/*
* We should be very high priority.
*/
thread_set_own_priority(0);
/*
* We sleep initially, so that we don't allocate any buffers
* unless the network is really in use and they are needed.
*/
s = splimp();
simple_lock(&net_queue_lock);
net_thread_awake = FALSE;
assert_wait(&net_thread_awake, FALSE);
simple_unlock(&net_queue_lock);
(void) splx(s);
counter(c_net_thread_block++);
thread_block(net_thread_continue);
net_thread_continue();
/*NOTREACHED*/
}
void
reorder_queue(
queue_t first,
queue_t last)
{
queue_entry_t prev, next;
prev = first->prev;
next = last->next;
prev->next = last;
next->prev = first;
last->prev = prev;
last->next = first;
first->next = next;
first->prev = last;
}
/*
* Incoming packet. Header has already been moved to proper place.
* We are already at splimp.
*/
void
net_packet(
struct ifnet *ifp,
ipc_kmsg_t kmsg,
unsigned int count,
boolean_t priority)
{
boolean_t awake;
#if MACH_TTD
/*
* Do a quick check to see if it is a kernel TTD packet.
*
* Only check if KernelTTD is enabled, ie. the current
* device driver supports TTD, and the bootp succeeded.
*/
if (kttd_enabled && kttd_handle_async(kmsg)) {
/*
* Packet was a valid ttd packet and
* doesn't need to be passed up to filter.
* The ttd code put the used kmsg buffer
* back onto the free list.
*/
if (kttd_debug)
printf("**%x**", kttd_async_counter++);
return;
}
#endif /* MACH_TTD */
kmsg->ikm_header.msgh_remote_port = (mach_port_t) ifp;
net_kmsg(kmsg)->net_rcv_msg_packet_count = count;
simple_lock(&net_queue_lock);
if (priority) {
ipc_kmsg_enqueue(&net_queue_high, kmsg);
if (++net_queue_high_size > net_queue_high_max)
net_queue_high_max = net_queue_high_size;
} else {
ipc_kmsg_enqueue(&net_queue_low, kmsg);
if (++net_queue_low_size > net_queue_low_max)
net_queue_low_max = net_queue_low_size;
}
/*
* If the network thread is awake, then we don't
* need to take an AST, because the thread will
* deliver the packet.
*/
awake = net_thread_awake;
simple_unlock(&net_queue_lock);
if (!awake) {
spl_t s = splsched();
ast_on(cpu_number(), AST_NETWORK);
(void) splx(s);
}
}
int net_filter_queue_reorder = 0; /* non-zero to enable reordering */
/*
* Run a packet through the filters, returning a list of messages.
* We are *not* called at interrupt level.
*/
void
net_filter(kmsg, send_list)
const ipc_kmsg_t kmsg;
ipc_kmsg_queue_t send_list;
{
struct ifnet *ifp;
net_rcv_port_t infp, nextfp;
ipc_kmsg_t new_kmsg;
net_hash_entry_t entp, *hash_headp;
ipc_port_t dest;
queue_entry_t dead_infp = (queue_entry_t) 0;
queue_entry_t dead_entp = (queue_entry_t) 0;
unsigned int ret_count;
queue_head_t *if_port_list;
int count = net_kmsg(kmsg)->net_rcv_msg_packet_count;
ifp = (struct ifnet *) kmsg->ikm_header.msgh_remote_port;
ipc_kmsg_queue_init(send_list);
if (net_kmsg(kmsg)->sent)
if_port_list = &ifp->if_snd_port_list;
else
if_port_list = &ifp->if_rcv_port_list;
/*
* Unfortunately we can't allocate or deallocate memory
* while holding these locks. And we can't drop the locks
* while examining the filter lists.
* Both locks are hold in case a filter is removed from both
* queues.
*/
simple_lock(&ifp->if_rcv_port_list_lock);
simple_lock(&ifp->if_snd_port_list_lock);
FILTER_ITERATE(if_port_list, infp, nextfp,
net_kmsg(kmsg)->sent ? &infp->output : &infp->input)
{
entp = (net_hash_entry_t) 0;
if ((infp->filter[0] & NETF_TYPE_MASK) == NETF_BPF) {
ret_count = bpf_do_filter(infp, net_kmsg(kmsg)->packet
+ sizeof(struct packet_header),
count - sizeof(struct packet_header),
net_kmsg(kmsg)->header,
ifp->if_header_size, &hash_headp,
&entp);
if (entp == (net_hash_entry_t) 0)
dest = infp->rcv_port;
else
dest = entp->rcv_port;
if (ret_count)
ret_count += sizeof(struct packet_header);
} else {
ret_count = net_do_filter(infp, net_kmsg(kmsg)->packet, count,
net_kmsg(kmsg)->header);
if (ret_count)
ret_count = count;
dest = infp->rcv_port;
}
if (ret_count) {
/*
* Make a send right for the destination.
*/
dest = ipc_port_copy_send(dest);
if (!IP_VALID(dest)) {
/*
* This filter is dead. We remove it from the
* filter list and set it aside for deallocation.
*/
if (entp == (net_hash_entry_t) 0) {
if (infp->filter[0] & NETF_IN)
queue_remove(&ifp->if_rcv_port_list, infp,
net_rcv_port_t, input);
if (infp->filter[0] & NETF_OUT)
queue_remove(&ifp->if_snd_port_list, infp,
net_rcv_port_t, output);
/* Use input only for queues of dead filters. */
ENQUEUE_DEAD(dead_infp, infp, input);
continue;
} else {
hash_ent_remove (ifp,
(net_hash_header_t)infp,
FALSE, /* no longer used */
hash_headp,
entp,
&dead_entp);
continue;
}
}
/*
* Deliver copy of packet to this channel.
*/
if (ipc_kmsg_queue_empty(send_list)) {
/*
* Only receiver, so far
*/
new_kmsg = kmsg;
} else {
/*
* Other receivers - must allocate message and copy.
*/
new_kmsg = net_kmsg_get();
if (new_kmsg == IKM_NULL) {
ipc_port_release_send(dest);
break;
}
memcpy(
net_kmsg(new_kmsg)->packet,
net_kmsg(kmsg)->packet,
ret_count);
memcpy(
net_kmsg(new_kmsg)->header,
net_kmsg(kmsg)->header,
NET_HDW_HDR_MAX);
}
net_kmsg(new_kmsg)->net_rcv_msg_packet_count = ret_count;
new_kmsg->ikm_header.msgh_remote_port = (mach_port_t) dest;
ipc_kmsg_enqueue(send_list, new_kmsg);
{
net_rcv_port_t prevfp;
int rcount = ++infp->rcv_count;
/*
* See if ordering of filters is wrong
*/
if (infp->priority >= NET_HI_PRI) {
#define REORDER_PRIO(chain) \
prevfp = (net_rcv_port_t) queue_prev(&infp->chain); \
/* \
* If infp is not the first element on the queue, \
* and the previous element is at equal priority \
* but has a lower count, then promote infp to \
* be in front of prevfp. \
*/ \
if ((queue_t)prevfp != if_port_list && \
infp->priority == prevfp->priority) { \
/* \
* Threshold difference to prevent thrashing \
*/ \
if (net_filter_queue_reorder \
&& (100 + prevfp->rcv_count < rcount)) \
reorder_queue(&prevfp->chain, &infp->chain);\
}
REORDER_PRIO(input);
REORDER_PRIO(output);
/*
* High-priority filter -> no more deliveries
*/
break;
}
}
}
}
FILTER_ITERATE_END
simple_unlock(&ifp->if_snd_port_list_lock);
simple_unlock(&ifp->if_rcv_port_list_lock);
/*
* Deallocate dead filters.
*/
if (dead_infp != 0)
net_free_dead_infp(dead_infp);
if (dead_entp != 0)
net_free_dead_entp(dead_entp);
if (ipc_kmsg_queue_empty(send_list)) {
/* Not sent - recycle */
net_kmsg_put(kmsg);
}
}
boolean_t
net_do_filter(infp, data, data_count, header)
net_rcv_port_t infp;
const char * data;
unsigned int data_count;
const char * header;
{
int stack[NET_FILTER_STACK_DEPTH+1];
int *sp;
filter_t *fp, *fpe;
unsigned int op, arg;
/*
* The filter accesses the header and data
* as unsigned short words.
*/
data_count /= sizeof(unsigned short);
#define data_word ((unsigned short *)data)
#define header_word ((unsigned short *)header)
sp = &stack[NET_FILTER_STACK_DEPTH];
fp = &infp->filter[1]; /* filter[0] used for flags */
fpe = infp->filter_end;
*sp = TRUE;
while (fp < fpe) {
arg = *fp++;
op = NETF_OP(arg);
arg = NETF_ARG(arg);
switch (arg) {
case NETF_NOPUSH:
arg = *sp++;
break;
case NETF_PUSHZERO:
arg = 0;
break;
case NETF_PUSHLIT:
arg = *fp++;
break;
case NETF_PUSHIND:
arg = *sp++;
if (arg >= data_count)
return FALSE;
arg = data_word[arg];
break;
case NETF_PUSHHDRIND:
arg = *sp++;
if (arg >= NET_HDW_HDR_MAX/sizeof(unsigned short))
return FALSE;
arg = header_word[arg];
break;
default:
if (arg >= NETF_PUSHSTK) {
arg = sp[arg - NETF_PUSHSTK];
}
else if (arg >= NETF_PUSHHDR) {
arg = header_word[arg - NETF_PUSHHDR];
}
else {
arg -= NETF_PUSHWORD;
if (arg >= data_count)
return FALSE;
arg = data_word[arg];
}
break;
}
switch (op) {
case NETF_OP(NETF_NOP):
*--sp = arg;
break;
case NETF_OP(NETF_AND):
*sp &= arg;
break;
case NETF_OP(NETF_OR):
*sp |= arg;
break;
case NETF_OP(NETF_XOR):
*sp ^= arg;
break;
case NETF_OP(NETF_EQ):
*sp = (*sp == arg);
break;
case NETF_OP(NETF_NEQ):
*sp = (*sp != arg);
break;
case NETF_OP(NETF_LT):
*sp = (*sp < arg);
break;
case NETF_OP(NETF_LE):
*sp = (*sp <= arg);
break;
case NETF_OP(NETF_GT):
*sp = (*sp > arg);
break;
case NETF_OP(NETF_GE):
*sp = (*sp >= arg);
break;
case NETF_OP(NETF_COR):
if (*sp++ == arg)
return (TRUE);
break;
case NETF_OP(NETF_CAND):
if (*sp++ != arg)
return (FALSE);
break;
case NETF_OP(NETF_CNOR):
if (*sp++ == arg)
return (FALSE);
break;
case NETF_OP(NETF_CNAND):
if (*sp++ != arg)
return (TRUE);
break;
case NETF_OP(NETF_LSH):
*sp <<= arg;
break;
case NETF_OP(NETF_RSH):
*sp >>= arg;
break;
case NETF_OP(NETF_ADD):
*sp += arg;
break;
case NETF_OP(NETF_SUB):
*sp -= arg;
break;
}
}
return ((*sp) ? TRUE : FALSE);
#undef data_word
#undef header_word
}
/*
* Check filter for invalid operations or stack over/under-flow.
*/
boolean_t
parse_net_filter(
filter_t *filter,
unsigned int count)
{
int sp;
filter_t *fpe = &filter[count];
filter_t op, arg;
/*
* count is at least 1, and filter[0] is used for flags.
*/
filter++;
sp = NET_FILTER_STACK_DEPTH;
for (; filter < fpe; filter++) {
op = NETF_OP(*filter);
arg = NETF_ARG(*filter);
switch (arg) {
case NETF_NOPUSH:
break;
case NETF_PUSHZERO:
sp--;
break;
case NETF_PUSHLIT:
filter++;
if (filter >= fpe)
return (FALSE); /* literal value not in filter */
sp--;
break;
case NETF_PUSHIND:
case NETF_PUSHHDRIND:
break;
default:
if (arg >= NETF_PUSHSTK) {
if (arg - NETF_PUSHSTK + sp > NET_FILTER_STACK_DEPTH)
return FALSE;
}
else if (arg >= NETF_PUSHHDR) {
if (arg - NETF_PUSHHDR >=
NET_HDW_HDR_MAX/sizeof(unsigned short))
return FALSE;
}
/* else... cannot check for packet bounds
without packet */
sp--;
break;
}
if (sp < 2) {
return (FALSE); /* stack overflow */
}
if (op == NETF_OP(NETF_NOP))
continue;
/*
* all non-NOP operators are binary.
*/
if (sp > NET_MAX_FILTER-2)
return (FALSE);
sp++;
switch (op) {
case NETF_OP(NETF_AND):
case NETF_OP(NETF_OR):
case NETF_OP(NETF_XOR):
case NETF_OP(NETF_EQ):
case NETF_OP(NETF_NEQ):
case NETF_OP(NETF_LT):
case NETF_OP(NETF_LE):
case NETF_OP(NETF_GT):
case NETF_OP(NETF_GE):
case NETF_OP(NETF_COR):
case NETF_OP(NETF_CAND):
case NETF_OP(NETF_CNOR):
case NETF_OP(NETF_CNAND):
case NETF_OP(NETF_LSH):
case NETF_OP(NETF_RSH):
case NETF_OP(NETF_ADD):
case NETF_OP(NETF_SUB):
break;
default:
return (FALSE);
}
}
return (TRUE);
}
/*
* Set a filter for a network interface.
*
* We are given a naked send right for the rcv_port.
* If we are successful, we must consume that right.
*/
io_return_t
net_set_filter(
struct ifnet *ifp,
ipc_port_t rcv_port,
int priority,
filter_t *filter,
unsigned int filter_count)
{
int filter_bytes;
bpf_insn_t match;
net_rcv_port_t infp, my_infp;
net_rcv_port_t nextfp;
net_hash_header_t hhp;
net_hash_entry_t entp;
net_hash_entry_t *head, nextentp;
queue_entry_t dead_infp, dead_entp;
int i;
int ret, is_new_infp;
io_return_t rval;
boolean_t in, out;
/* Initialize hash_entp to NULL to quiet GCC
* warning about uninitialized variable. hash_entp is only
* used when match != 0; in that case it is properly initialized
* by kmem_cache_alloc().
*/
net_hash_entry_t hash_entp = NULL;
/*
* Check the filter syntax.
*/
filter_bytes = CSPF_BYTES(filter_count);
match = (bpf_insn_t) 0;
if (filter_count == 0) {
return (D_INVALID_OPERATION);
} else if (!((filter[0] & NETF_IN) || (filter[0] & NETF_OUT))) {
return (D_INVALID_OPERATION); /* NETF_IN or NETF_OUT required */
} else if ((filter[0] & NETF_TYPE_MASK) == NETF_BPF) {
ret = bpf_validate((bpf_insn_t)filter, filter_bytes, &match);
if (!ret)
return (D_INVALID_OPERATION);
} else if ((filter[0] & NETF_TYPE_MASK) == 0) {
if (!parse_net_filter(filter, filter_count))
return (D_INVALID_OPERATION);
} else {
return (D_INVALID_OPERATION);
}
rval = D_SUCCESS; /* default return value */
dead_infp = dead_entp = 0;
if (match == (bpf_insn_t) 0) {
/*
* If there is no match instruction, we allocate
* a normal packet filter structure.
*/
my_infp = (net_rcv_port_t) kmem_cache_alloc(&net_rcv_cache);
my_infp->rcv_port = rcv_port;
is_new_infp = TRUE;
} else {
/*
* If there is a match instruction, we assume there will be
* multiple sessions with a common substructure and allocate
* a hash table to deal with them.
*/
my_infp = 0;
hash_entp = (net_hash_entry_t) kmem_cache_alloc(&net_hash_entry_cache);
is_new_infp = FALSE;
}
/*
* Look for an existing filter on the same reply port.
* Look for filters with dead ports (for GC).
* Look for a filter with the same code except KEY insns.
*/
void check_filter_list(queue_head_t *if_port_list)
{
FILTER_ITERATE(if_port_list, infp, nextfp,
(if_port_list == &ifp->if_rcv_port_list)
? &infp->input : &infp->output)
{
if (infp->rcv_port == MACH_PORT_NULL) {
if (match != 0
&& infp->priority == priority
&& my_infp == 0
&& (infp->filter_end - infp->filter) == filter_count
&& bpf_eq((bpf_insn_t)infp->filter,
(bpf_insn_t)filter, filter_bytes))
my_infp = infp;
for (i = 0; i < NET_HASH_SIZE; i++) {
head = &((net_hash_header_t) infp)->table[i];
if (*head == 0)
continue;
/*
* Check each hash entry to make sure the
* destination port is still valid. Remove
* any invalid entries.
*/
entp = *head;
do {
nextentp = (net_hash_entry_t) entp->he_next;
/* checked without
ip_lock(entp->rcv_port) */
if (entp->rcv_port == rcv_port
|| !IP_VALID(entp->rcv_port)
|| !ip_active(entp->rcv_port)) {
ret = hash_ent_remove (ifp,
(net_hash_header_t)infp,
(my_infp == infp),
head,
entp,
&dead_entp);
if (ret)
goto hash_loop_end;
}
entp = nextentp;
/* While test checks head since hash_ent_remove
might modify it.
*/
} while (*head != 0 && entp != *head);
}
hash_loop_end:
;
} else if (infp->rcv_port == rcv_port
|| !IP_VALID(infp->rcv_port)
|| !ip_active(infp->rcv_port)) {
/* Remove the old filter from lists */
if (infp->filter[0] & NETF_IN)
queue_remove(&ifp->if_rcv_port_list, infp,
net_rcv_port_t, input);
if (infp->filter[0] & NETF_OUT)
queue_remove(&ifp->if_snd_port_list, infp,
net_rcv_port_t, output);
ENQUEUE_DEAD(dead_infp, infp, input);
}
}
FILTER_ITERATE_END
}
in = (filter[0] & NETF_IN) != 0;
out = (filter[0] & NETF_OUT) != 0;
simple_lock(&ifp->if_rcv_port_list_lock);
simple_lock(&ifp->if_snd_port_list_lock);
if (in)
check_filter_list(&ifp->if_rcv_port_list);
if (out)
check_filter_list(&ifp->if_snd_port_list);
if (my_infp == 0) {
/* Allocate a dummy infp */
simple_lock(&net_hash_header_lock);
for (i = 0; i < N_NET_HASH; i++) {
if (filter_hash_header[i].n_keys == 0)
break;
}
if (i == N_NET_HASH) {
simple_unlock(&net_hash_header_lock);
simple_unlock(&ifp->if_snd_port_list_lock);
simple_unlock(&ifp->if_rcv_port_list_lock);
ipc_port_release_send(rcv_port);
if (match != 0)
kmem_cache_free(&net_hash_entry_cache,
(vm_offset_t)hash_entp);
rval = D_NO_MEMORY;
goto clean_and_return;
}
hhp = &filter_hash_header[i];
hhp->n_keys = match->jt;
simple_unlock(&net_hash_header_lock);
hhp->ref_count = 0;
for (i = 0; i < NET_HASH_SIZE; i++)
hhp->table[i] = 0;
my_infp = (net_rcv_port_t)hhp;
my_infp->rcv_port = MACH_PORT_NULL; /* indication of dummy */
is_new_infp = TRUE;
}
if (is_new_infp) {
my_infp->priority = priority;
my_infp->rcv_count = 0;
/* Copy filter program. */
memcpy (my_infp->filter, filter, filter_bytes);
my_infp->filter_end =
(filter_t *)((char *)my_infp->filter + filter_bytes);
if (match == 0) {
my_infp->rcv_qlimit = net_add_q_info(rcv_port);
} else {
my_infp->rcv_qlimit = 0;
}
/* Insert my_infp according to priority */
if (in) {
queue_iterate(&ifp->if_rcv_port_list, infp, net_rcv_port_t, input)
if (priority > infp->priority)
break;
queue_enter(&ifp->if_rcv_port_list, my_infp, net_rcv_port_t, input);
}
if (out) {
queue_iterate(&ifp->if_snd_port_list, infp, net_rcv_port_t, output)
if (priority > infp->priority)
break;
queue_enter(&ifp->if_snd_port_list, my_infp, net_rcv_port_t, output);
}
}
if (match != 0)
{ /* Insert to hash list */
net_hash_entry_t *p;
hash_entp->rcv_port = rcv_port;
for (i = 0; i < match->jt; i++) /* match->jt is n_keys */
hash_entp->keys[i] = match[i+1].k;
p = &((net_hash_header_t)my_infp)->
table[bpf_hash(match->jt, hash_entp->keys)];
/* Not checking for the same key values */
if (*p == 0) {
queue_init (&hash_entp->chain);
*p = hash_entp;
} else {
enqueue_tail(&(*p)->chain, &hash_entp->chain);
}
((net_hash_header_t)my_infp)->ref_count++;
hash_entp->rcv_qlimit = net_add_q_info(rcv_port);
}
simple_unlock(&ifp->if_snd_port_list_lock);
simple_unlock(&ifp->if_rcv_port_list_lock);
clean_and_return:
/* No locks are held at this point. */
if (dead_infp != 0)
net_free_dead_infp(dead_infp);
if (dead_entp != 0)
net_free_dead_entp(dead_entp);
return (rval);
}
/*
* Other network operations
*/
io_return_t
net_getstat(
struct ifnet *ifp,
dev_flavor_t flavor,
dev_status_t status, /* pointer to OUT array */
mach_msg_type_number_t *count) /* OUT */
{
switch (flavor) {
case NET_STATUS:
{
struct net_status *ns = (struct net_status *)status;
if (*count < NET_STATUS_COUNT)
return (D_INVALID_OPERATION);
ns->min_packet_size = ifp->if_header_size;
ns->max_packet_size = ifp->if_header_size + ifp->if_mtu;
ns->header_format = ifp->if_header_format;
ns->header_size = ifp->if_header_size;
ns->address_size = ifp->if_address_size;
ns->flags = ifp->if_flags;
ns->mapped_size = 0;
*count = NET_STATUS_COUNT;
break;
}
case NET_ADDRESS:
{
int addr_byte_count;
int addr_int_count;
int i;
addr_byte_count = ifp->if_address_size;
addr_int_count = (addr_byte_count + (sizeof(int)-1))
/ sizeof(int);
if (*count < addr_int_count)
{
/* XXX debug hack. */
printf ("net_getstat: count: %d, addr_int_count: %d\n",
*count, addr_int_count);
return (D_INVALID_OPERATION);
}
memcpy(status, ifp->if_address, addr_byte_count);
if (addr_byte_count < addr_int_count * sizeof(int))
memset((char *)status + addr_byte_count, 0,
(addr_int_count * sizeof(int)
- addr_byte_count));
for (i = 0; i < addr_int_count; i++) {
int word;
word = status[i];
status[i] = htonl(word);
}
*count = addr_int_count;
break;
}
default:
return (D_INVALID_OPERATION);
}
return (D_SUCCESS);
}
io_return_t
net_write(
struct ifnet *ifp,
int (*start)(),
io_req_t ior)
{
spl_t s;
kern_return_t rc;
boolean_t wait;
/*
* Reject the write if the interface is down.
*/
if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) != (IFF_UP|IFF_RUNNING))
return (D_DEVICE_DOWN);
/*
* Reject the write if the packet is too large or too small.
*/
if (ior->io_count < ifp->if_header_size ||
ior->io_count > ifp->if_header_size + ifp->if_mtu)
return (D_INVALID_SIZE);
/*
* Wire down the memory.
*/
rc = device_write_get(ior, &wait);
if (rc != KERN_SUCCESS)
return (rc);
/*
* Network interfaces can't cope with VM continuations.
* If wait is set, just panic.
*/
if (wait) {
panic("net_write: VM continuation");
}
/*
* Queue the packet on the output queue, and
* start the device.
*/
s = splimp();
IF_ENQUEUE(&ifp->if_snd, ior);
(*start)(ifp->if_unit);
splx(s);
return (D_IO_QUEUED);
}
/*
* Initialize the whole package.
*/
void
net_io_init(void)
{
vm_size_t size;
size = sizeof(struct net_rcv_port);
kmem_cache_init(&net_rcv_cache, "net_rcv_port", size, 0,
NULL, 0);
size = sizeof(struct net_hash_entry);
kmem_cache_init(&net_hash_entry_cache, "net_hash_entry", size, 0,
NULL, 0);
size = ikm_plus_overhead(sizeof(struct net_rcv_msg));
net_kmsg_size = round_page(size);
/*
* net_kmsg_max caps the number of buffers
* we are willing to allocate. By default,
* we allow for net_queue_free_min plus
* the queue limit for each filter.
* (Added as the filters are added.)
*/
simple_lock_init(&net_kmsg_total_lock);
if (net_kmsg_max == 0)
net_kmsg_max = net_queue_free_min;
simple_lock_init(&net_queue_free_lock);
ipc_kmsg_queue_init(&net_queue_free);
simple_lock_init(&net_queue_lock);
ipc_kmsg_queue_init(&net_queue_high);
ipc_kmsg_queue_init(&net_queue_low);
simple_lock_init(&net_hash_header_lock);
}
/* ======== BPF: Berkeley Packet Filter ======== */
/*-
* Copyright (c) 1990-1991 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from the Stanford/CMU enet packet filter,
* (net/enet.c) distributed as part of 4.3BSD, and code contributed
* to Berkeley by Steven McCanne and Van Jacobson both of Lawrence
* Berkeley Laboratory.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)bpf.c 7.5 (Berkeley) 7/15/91
*/
#if defined(sparc) || defined(mips) || defined(ibm032) || defined(alpha)
#define BPF_ALIGN
#endif
#ifndef BPF_ALIGN
#define EXTRACT_SHORT(p) ((u_short)ntohs(*(u_short *)p))
#define EXTRACT_LONG(p) (ntohl(*(u_long *)p))
#else
#define EXTRACT_SHORT(p)\
((u_short)\
((u_short)*((u_char *)p+0)<<8|\
(u_short)*((u_char *)p+1)<<0))
#define EXTRACT_LONG(p)\
((u_long)*((u_char *)p+0)<<24|\
(u_long)*((u_char *)p+1)<<16|\
(u_long)*((u_char *)p+2)<<8|\
(u_long)*((u_char *)p+3)<<0)
#endif
/*
* Execute the filter program starting at pc on the packet p
* wirelen is the length of the original packet
* buflen is the amount of data present
*/
int
bpf_do_filter(
net_rcv_port_t infp,
char * p, /* packet data */
unsigned int wirelen, /* data_count (in bytes) */
char * header,
unsigned int hlen, /* header len (in bytes) */
net_hash_entry_t **hash_headpp,
net_hash_entry_t *entpp) /* out */
{
bpf_insn_t pc, pc_end;
unsigned int buflen;
unsigned int A, X;
int k;
unsigned int mem[BPF_MEMWORDS];
/* Generic pointer to either HEADER or P according to the specified offset. */
char *data = NULL;
pc = ((bpf_insn_t) infp->filter) + 1;
/* filter[0].code is (NETF_BPF | flags) */
pc_end = (bpf_insn_t)infp->filter_end;
buflen = NET_RCV_MAX;
*entpp = 0; /* default */
A = 0;
X = 0;
for (; pc < pc_end; ++pc) {
switch (pc->code) {
default:
#ifdef KERNEL
return 0;
#else
abort();
#endif
case BPF_RET|BPF_K:
if (infp->rcv_port == MACH_PORT_NULL &&
*entpp == 0) {
return 0;
}
return ((u_int)pc->k <= wirelen) ?
pc->k : wirelen;
case BPF_RET|BPF_A:
if (infp->rcv_port == MACH_PORT_NULL &&
*entpp == 0) {
return 0;
}
return ((u_int)A <= wirelen) ?
A : wirelen;
case BPF_RET|BPF_MATCH_IMM:
if (bpf_match ((net_hash_header_t)infp, pc->jt, mem,
hash_headpp, entpp)) {
return ((u_int)pc->k <= wirelen) ?
pc->k : wirelen;
}
return 0;
case BPF_LD|BPF_W|BPF_ABS:
k = pc->k;
load_word:
if ((u_int)k + sizeof(int) <= hlen)
data = header;
else if ((u_int)k + sizeof(int) <= buflen) {
k -= hlen;
data = p;
} else
return 0;
#ifdef BPF_ALIGN
if (((int)(data + k) & 3) != 0)
A = EXTRACT_LONG(&data[k]);
else
#endif
A = ntohl(*(int *)(data + k));
continue;
case BPF_LD|BPF_H|BPF_ABS:
k = pc->k;
load_half:
if ((u_int)k + sizeof(short) <= hlen)
data = header;
else if ((u_int)k + sizeof(short) <= buflen) {
k -= hlen;
data = p;
} else
return 0;
A = EXTRACT_SHORT(&data[k]);
continue;
case BPF_LD|BPF_B|BPF_ABS:
k = pc->k;
load_byte:
if ((u_int)k < hlen)
data = header;
else if ((u_int)k < buflen) {
data = p;
k -= hlen;
} else
return 0;
A = data[k];
continue;
case BPF_LD|BPF_W|BPF_LEN:
A = wirelen;
continue;
case BPF_LDX|BPF_W|BPF_LEN:
X = wirelen;
continue;
case BPF_LD|BPF_W|BPF_IND:
k = X + pc->k;
goto load_word;
case BPF_LD|BPF_H|BPF_IND:
k = X + pc->k;
goto load_half;
case BPF_LD|BPF_B|BPF_IND:
k = X + pc->k;
goto load_byte;
case BPF_LDX|BPF_MSH|BPF_B:
k = pc->k;
if (k < hlen)
data = header;
else if (k < buflen) {
data = p;
k -= hlen;
} else
return 0;
X = (data[k] & 0xf) << 2;
continue;
case BPF_LD|BPF_IMM:
A = pc->k;
continue;
case BPF_LDX|BPF_IMM:
X = pc->k;
continue;
case BPF_LD|BPF_MEM:
A = mem[pc->k];
continue;
case BPF_LDX|BPF_MEM:
X = mem[pc->k];
continue;
case BPF_ST:
mem[pc->k] = A;
continue;
case BPF_STX:
mem[pc->k] = X;
continue;
case BPF_JMP|BPF_JA:
pc += pc->k;
continue;
case BPF_JMP|BPF_JGT|BPF_K:
pc += (A > pc->k) ? pc->jt : pc->jf;
continue;
case BPF_JMP|BPF_JGE|BPF_K:
pc += (A >= pc->k) ? pc->jt : pc->jf;
continue;
case BPF_JMP|BPF_JEQ|BPF_K:
pc += (A == pc->k) ? pc->jt : pc->jf;
continue;
case BPF_JMP|BPF_JSET|BPF_K:
pc += (A & pc->k) ? pc->jt : pc->jf;
continue;
case BPF_JMP|BPF_JGT|BPF_X:
pc += (A > X) ? pc->jt : pc->jf;
continue;
case BPF_JMP|BPF_JGE|BPF_X:
pc += (A >= X) ? pc->jt : pc->jf;
continue;
case BPF_JMP|BPF_JEQ|BPF_X:
pc += (A == X) ? pc->jt : pc->jf;
continue;
case BPF_JMP|BPF_JSET|BPF_X:
pc += (A & X) ? pc->jt : pc->jf;
continue;
case BPF_ALU|BPF_ADD|BPF_X:
A += X;
continue;
case BPF_ALU|BPF_SUB|BPF_X:
A -= X;
continue;
case BPF_ALU|BPF_MUL|BPF_X:
A *= X;
continue;
case BPF_ALU|BPF_DIV|BPF_X:
if (X == 0)
return 0;
A /= X;
continue;
case BPF_ALU|BPF_AND|BPF_X:
A &= X;
continue;
case BPF_ALU|BPF_OR|BPF_X:
A |= X;
continue;
case BPF_ALU|BPF_LSH|BPF_X:
A <<= X;
continue;
case BPF_ALU|BPF_RSH|BPF_X:
A >>= X;
continue;
case BPF_ALU|BPF_ADD|BPF_K:
A += pc->k;
continue;
case BPF_ALU|BPF_SUB|BPF_K:
A -= pc->k;
continue;
case BPF_ALU|BPF_MUL|BPF_K:
A *= pc->k;
continue;
case BPF_ALU|BPF_DIV|BPF_K:
A /= pc->k;
continue;
case BPF_ALU|BPF_AND|BPF_K:
A &= pc->k;
continue;
case BPF_ALU|BPF_OR|BPF_K:
A |= pc->k;
continue;
case BPF_ALU|BPF_LSH|BPF_K:
A <<= pc->k;
continue;
case BPF_ALU|BPF_RSH|BPF_K:
A >>= pc->k;
continue;
case BPF_ALU|BPF_NEG:
A = -A;
continue;
case BPF_MISC|BPF_TAX:
X = A;
continue;
case BPF_MISC|BPF_TXA:
A = X;
continue;
}
}
return 0;
}
/*
* Return 1 if the 'f' is a valid filter program without a MATCH
* instruction. Return 2 if it is a valid filter program with a MATCH
* instruction. Otherwise, return 0.
* The constraints are that each jump be forward and to a valid
* code. The code must terminate with either an accept or reject.
* 'valid' is an array for use by the routine (it must be at least
* 'len' bytes long).
*
* The kernel needs to be able to verify an application's filter code.
* Otherwise, a bogus program could easily crash the system.
*/
int
bpf_validate(
bpf_insn_t f,
int bytes,
bpf_insn_t *match)
{
int i, j, len;
bpf_insn_t p;
len = BPF_BYTES2LEN(bytes);
/*
* f[0].code is already checked to be (NETF_BPF | flags).
* So skip f[0].
*/
for (i = 1; i < len; ++i) {
/*
* Check that that jumps are forward, and within
* the code block.
*/
p = &f[i];
if (BPF_CLASS(p->code) == BPF_JMP) {
int from = i + 1;
if (BPF_OP(p->code) == BPF_JA) {
if (from + p->k >= len)
return 0;
}
else if (from + p->jt >= len || from + p->jf >= len)
return 0;
}
/*
* Check that memory operations use valid addresses.
*/
if ((BPF_CLASS(p->code) == BPF_ST ||
(BPF_CLASS(p->code) == BPF_LD &&
(p->code & 0xe0) == BPF_MEM)) &&
(p->k >= BPF_MEMWORDS || p->k < 0))
return 0;
/*
* Check for constant division by 0.
*/
if (p->code == (BPF_ALU|BPF_DIV|BPF_K) && p->k == 0)
return 0;
/*
* Check for match instruction.
* Only one match instruction per filter is allowed.
*/
if (p->code == (BPF_RET|BPF_MATCH_IMM)) {
if (*match != 0 ||
p->jt == 0 ||
p->jt > N_NET_HASH_KEYS)
return 0;
i += p->jt; /* skip keys */
if (i + 1 > len)
return 0;
for (j = 1; j <= p->jt; j++) {
if (p[j].code != (BPF_MISC|BPF_KEY))
return 0;
}
*match = p;
}
}
if (BPF_CLASS(f[len - 1].code) == BPF_RET)
return ((*match == 0) ? 1 : 2);
else
return 0;
}
int
bpf_eq(
bpf_insn_t f1,
bpf_insn_t f2,
int bytes)
{
int count;
count = BPF_BYTES2LEN(bytes);
for (; count--; f1++, f2++) {
if (!BPF_INSN_EQ(f1, f2)) {
if ( f1->code == (BPF_MISC|BPF_KEY) &&
f2->code == (BPF_MISC|BPF_KEY) )
continue;
return FALSE;
}
};
return TRUE;
}
unsigned int
bpf_hash (n, keys)
int n;
const unsigned int *keys;
{
unsigned int hval = 0;
while (n--) {
hval += *keys++;
}
return (hval % NET_HASH_SIZE);
}
int
bpf_match (hash, n_keys, keys, hash_headpp, entpp)
net_hash_header_t hash;
int n_keys;
const unsigned int *keys;
net_hash_entry_t **hash_headpp, *entpp;
{
net_hash_entry_t head, entp;
int i;
if (n_keys != hash->n_keys)
return FALSE;
*hash_headpp = &hash->table[bpf_hash(n_keys, keys)];
head = **hash_headpp;
if (head == 0)
return FALSE;
HASH_ITERATE (head, entp)
{
for (i = 0; i < n_keys; i++) {
if (keys[i] != entp->keys[i])
break;
}
if (i == n_keys) {
*entpp = entp;
return TRUE;
}
}
HASH_ITERATE_END (head, entp)
return FALSE;
}
/*
* Removes a hash entry (ENTP) from its queue (HEAD).
* If the reference count of filter (HP) becomes zero and not USED,
* HP is removed from the corresponding port lists and is freed.
*/
int
hash_ent_remove(
struct ifnet *ifp,
net_hash_header_t hp,
int used,
net_hash_entry_t *head,
net_hash_entry_t entp,
queue_entry_t *dead_p)
{
hp->ref_count--;
if (*head == entp) {
if (queue_empty((queue_t) entp)) {
*head = 0;
ENQUEUE_DEAD(*dead_p, entp, chain);
if (hp->ref_count == 0 && !used) {
if (((net_rcv_port_t)hp)->filter[0] & NETF_IN)
queue_remove(&ifp->if_rcv_port_list,
(net_rcv_port_t)hp,
net_rcv_port_t, input);
if (((net_rcv_port_t)hp)->filter[0] & NETF_OUT)
queue_remove(&ifp->if_snd_port_list,
(net_rcv_port_t)hp,
net_rcv_port_t, output);
hp->n_keys = 0;
return TRUE;
}
return FALSE;
} else {
*head = (net_hash_entry_t)queue_next((queue_t) entp);
}
}
remqueue((queue_t)*head, (queue_entry_t)entp);
ENQUEUE_DEAD(*dead_p, entp, chain);
return FALSE;
}
int
net_add_q_info(ipc_port_t rcv_port)
{
mach_port_msgcount_t qlimit = 0;
/*
* We use a new port, so increase net_queue_free_min
* and net_kmsg_max to allow for more queued messages.
*/
if (IP_VALID(rcv_port)) {
ip_lock(rcv_port);
if (ip_active(rcv_port))
qlimit = rcv_port->ip_qlimit;
ip_unlock(rcv_port);
}
simple_lock(&net_kmsg_total_lock);
net_queue_free_min++;
net_kmsg_max += qlimit + 1;
simple_unlock(&net_kmsg_total_lock);
return (int)qlimit;
}
void
net_del_q_info(int qlimit)
{
simple_lock(&net_kmsg_total_lock);
net_queue_free_min--;
net_kmsg_max -= qlimit + 1;
simple_unlock(&net_kmsg_total_lock);
}
/*
* net_free_dead_infp (dead_infp)
* queue_entry_t dead_infp; list of dead net_rcv_port_t.
*
* Deallocates dead net_rcv_port_t.
* No locks should be held when called.
*/
void
net_free_dead_infp(queue_entry_t dead_infp)
{
net_rcv_port_t infp, nextfp;
for (infp = (net_rcv_port_t) dead_infp; infp != 0; infp = nextfp)
{
nextfp = (net_rcv_port_t) queue_next(&infp->input);
ipc_port_release_send(infp->rcv_port);
net_del_q_info(infp->rcv_qlimit);
kmem_cache_free(&net_rcv_cache, (vm_offset_t) infp);
}
}
/*
* net_free_dead_entp (dead_entp)
* queue_entry_t dead_entp; list of dead net_hash_entry_t.
*
* Deallocates dead net_hash_entry_t.
* No locks should be held when called.
*/
void
net_free_dead_entp(queue_entry_t dead_entp)
{
net_hash_entry_t entp, nextentp;
for (entp = (net_hash_entry_t)dead_entp; entp != 0; entp = nextentp)
{
nextentp = (net_hash_entry_t) queue_next(&entp->chain);
ipc_port_release_send(entp->rcv_port);
net_del_q_info(entp->rcv_qlimit);
kmem_cache_free(&net_hash_entry_cache, (vm_offset_t) entp);
}
}
|