1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357
|
/*
* Copyright (c) 2009, 2010 Richard Braun.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*
* Simple doubly-linked list.
*/
#ifndef _KERN_LIST_H
#define _KERN_LIST_H
#include <stddef.h>
#include <sys/types.h>
#include <kern/macros.h>
/*
* Structure used as both head and node.
*
* This implementation relies on using the same type for both heads and nodes.
*
* It is recommended to encode the use of struct list variables in their names,
* e.g. struct list free_list or struct list free_objects is a good hint for a
* list of free objects. A declaration like struct list free_node clearly
* indicates it is used as part of a node in the free list.
*/
struct list {
struct list *prev;
struct list *next;
};
/*
* Static list initializer.
*/
#define LIST_INITIALIZER(list) { &(list), &(list) }
/*
* Initialize a list.
*/
static inline void list_init(struct list *list)
{
list->prev = list;
list->next = list;
}
/*
* Initialize a list node.
*
* An entry is in no list when its node members point to NULL.
*/
static inline void list_node_init(struct list *node)
{
node->prev = NULL;
node->next = NULL;
}
/*
* Return true if node is in no list.
*/
static inline int list_node_unlinked(const struct list *node)
{
return node->prev == NULL;
}
/*
* Macro that evaluates to the address of the structure containing the
* given node based on the given type and member.
*/
#define list_entry(node, type, member) structof(node, type, member)
/*
* Return the first node of a list.
*/
static inline struct list * list_first(const struct list *list)
{
return list->next;
}
/*
* Return the last node of a list.
*/
static inline struct list * list_last(const struct list *list)
{
return list->prev;
}
/*
* Return the node next to the given node.
*/
static inline struct list * list_next(const struct list *node)
{
return node->next;
}
/*
* Return the node previous to the given node.
*/
static inline struct list * list_prev(const struct list *node)
{
return node->prev;
}
/*
* Get the first entry of a list.
*/
#define list_first_entry(list, type, member) \
list_entry(list_first(list), type, member)
/*
* Get the last entry of a list.
*/
#define list_last_entry(list, type, member) \
list_entry(list_last(list), type, member)
/*
* Return true if node is after the last or before the first node of the list.
*/
static inline int list_end(const struct list *list, const struct list *node)
{
return list == node;
}
/*
* Return true if list is empty.
*/
static inline int list_empty(const struct list *list)
{
return list == list->next;
}
/*
* Return true if list contains exactly one node.
*/
static inline int list_singular(const struct list *list)
{
return (list != list->next) && (list->next == list->prev);
}
/*
* Split list2 by moving its nodes up to (but not including) the given
* node into list1 (which can be in a stale state).
*
* If list2 is empty, or node is list2 or list2->next, nothing is done.
*/
static inline void list_split(struct list *list1, struct list *list2,
struct list *node)
{
if (list_empty(list2) || (list2->next == node) || list_end(list2, node))
return;
list1->next = list2->next;
list1->next->prev = list1;
list1->prev = node->prev;
node->prev->next = list1;
list2->next = node;
node->prev = list2;
}
/*
* Append the nodes of list2 at the end of list1.
*
* After completion, list2 is stale.
*/
static inline void list_concat(struct list *list1, const struct list *list2)
{
struct list *last1, *first2, *last2;
if (list_empty(list2))
return;
last1 = list1->prev;
first2 = list2->next;
last2 = list2->prev;
last1->next = first2;
first2->prev = last1;
last2->next = list1;
list1->prev = last2;
}
/*
* Set the new head of a list.
*
* This function is an optimized version of :
* list_init(&new_list);
* list_concat(&new_list, &old_list);
*
* After completion, old_head is stale.
*/
static inline void list_set_head(struct list *new_head,
const struct list *old_head)
{
if (list_empty(old_head)) {
list_init(new_head);
return;
}
*new_head = *old_head;
new_head->next->prev = new_head;
new_head->prev->next = new_head;
}
/*
* Add a node between two nodes.
*/
static inline void list_add(struct list *prev, struct list *next,
struct list *node)
{
next->prev = node;
node->next = next;
prev->next = node;
node->prev = prev;
}
/*
* Insert a node at the head of a list.
*/
static inline void list_insert_head(struct list *list, struct list *node)
{
list_add(list, list->next, node);
}
/*
* Insert a node at the tail of a list.
*/
static inline void list_insert_tail(struct list *list, struct list *node)
{
list_add(list->prev, list, node);
}
/*
* Insert a node before another node.
*/
static inline void list_insert_before(struct list *next, struct list *node)
{
list_add(next->prev, next, node);
}
/*
* Insert a node after another node.
*/
static inline void list_insert_after(struct list *prev, struct list *node)
{
list_add(prev, prev->next, node);
}
/*
* Remove a node from a list.
*
* After completion, the node is stale.
*/
static inline void list_remove(struct list *node)
{
node->prev->next = node->next;
node->next->prev = node->prev;
}
/*
* Forge a loop to process all nodes of a list.
*
* The node must not be altered during the loop.
*/
#define list_for_each(list, node) \
for (node = list_first(list); \
!list_end(list, node); \
node = list_next(node))
/*
* Forge a loop to process all nodes of a list.
*/
#define list_for_each_safe(list, node, tmp) \
for (node = list_first(list), tmp = list_next(node); \
!list_end(list, node); \
node = tmp, tmp = list_next(node))
/*
* Version of list_for_each() that processes nodes backward.
*/
#define list_for_each_reverse(list, node) \
for (node = list_last(list); \
!list_end(list, node); \
node = list_prev(node))
/*
* Version of list_for_each_safe() that processes nodes backward.
*/
#define list_for_each_reverse_safe(list, node, tmp) \
for (node = list_last(list), tmp = list_prev(node); \
!list_end(list, node); \
node = tmp, tmp = list_prev(node))
/*
* Forge a loop to process all entries of a list.
*
* The entry node must not be altered during the loop.
*/
#define list_for_each_entry(list, entry, member) \
for (entry = list_entry(list_first(list), typeof(*entry), member); \
!list_end(list, &entry->member); \
entry = list_entry(list_next(&entry->member), typeof(*entry), \
member))
/*
* Forge a loop to process all entries of a list.
*/
#define list_for_each_entry_safe(list, entry, tmp, member) \
for (entry = list_entry(list_first(list), typeof(*entry), member), \
tmp = list_entry(list_next(&entry->member), typeof(*entry), \
member); \
!list_end(list, &entry->member); \
entry = tmp, tmp = list_entry(list_next(&entry->member), \
typeof(*entry), member))
/*
* Version of list_for_each_entry() that processes entries backward.
*/
#define list_for_each_entry_reverse(list, entry, member) \
for (entry = list_entry(list_last(list), typeof(*entry), member); \
!list_end(list, &entry->member); \
entry = list_entry(list_prev(&entry->member), typeof(*entry), \
member))
/*
* Version of list_for_each_entry_safe() that processes entries backward.
*/
#define list_for_each_entry_reverse_safe(list, entry, tmp, member) \
for (entry = list_entry(list_last(list), typeof(*entry), member), \
tmp = list_entry(list_prev(&entry->member), typeof(*entry), \
member); \
!list_end(list, &entry->member); \
entry = tmp, tmp = list_entry(list_prev(&entry->member), \
typeof(*entry), member))
#endif /* _KERN_LIST_H */
|