1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677
|
/*
* Mach Operating System
* Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University.
* Copyright (c) 1993,1994 The University of Utah and
* the Computer Systems Laboratory (CSL).
* All rights reserved.
*
* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON, THE UNIVERSITY OF UTAH AND CSL ALLOW FREE USE OF
* THIS SOFTWARE IN ITS "AS IS" CONDITION, AND DISCLAIM ANY LIABILITY
* OF ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF
* THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie Mellon
* the rights to redistribute these changes.
*/
/*
* File: kern/lock.c
* Author: Avadis Tevanian, Jr., Michael Wayne Young
* Date: 1985
*
* Locking primitives implementation
*/
#include <string.h>
#include <kern/debug.h>
#include <kern/lock.h>
#include <kern/thread.h>
#include <kern/sched_prim.h>
#if MACH_KDB
#include <machine/db_machdep.h>
#include <ddb/db_output.h>
#include <ddb/db_sym.h>
#endif
#if NCPUS > 1
/*
* Module: lock
* Function:
* Provide reader/writer sychronization.
* Implementation:
* Simple interlock on a bit. Readers first interlock,
* increment the reader count, then let go. Writers hold
* the interlock (thus preventing further readers), and
* wait for already-accepted readers to go away.
*/
/*
* The simple-lock routines are the primitives out of which
* the lock package is built. The implementation is left
* to the machine-dependent code.
*/
#ifdef notdef
/*
* A sample implementation of simple locks.
* assumes:
* boolean_t test_and_set(boolean_t *)
* indivisibly sets the boolean to TRUE
* and returns its old value
* and that setting a boolean to FALSE is indivisible.
*/
/*
* simple_lock_init initializes a simple lock. A simple lock
* may only be used for exclusive locks.
*/
void simple_lock_init(simple_lock_t l)
{
*(boolean_t *)l = FALSE;
}
void simple_lock(simple_lock_t l)
{
while (test_and_set((boolean_t *)l))
continue;
}
void simple_unlock(simple_lock_t l)
{
*(boolean_t *)l = FALSE;
}
boolean_t simple_lock_try(simple_lock_t l)
{
return (!test_and_set((boolean_t *)l));
}
#endif /* notdef */
#endif /* NCPUS > 1 */
#if NCPUS > 1
static int lock_wait_time = 100;
#else /* NCPUS > 1 */
/*
* It is silly to spin on a uni-processor as if we
* thought something magical would happen to the
* want_write bit while we are executing.
*/
static int lock_wait_time = 0;
#endif /* NCPUS > 1 */
#if MACH_SLOCKS && NCPUS == 1
/*
* This code does not protect simple_locks_taken and simple_locks_info.
* It works despite the fact that interrupt code does use simple locks.
* This is because interrupts use locks in a stack-like manner.
* Each interrupt releases all the locks it acquires, so the data
* structures end up in the same state after the interrupt as before.
* The only precaution necessary is that simple_locks_taken be
* incremented first and decremented last, so that interrupt handlers
* don't over-write active slots in simple_locks_info.
*/
unsigned int simple_locks_taken = 0;
#define NSLINFO 1000 /* maximum number of locks held */
struct simple_locks_info {
simple_lock_t l;
const char *expr;
const char *loc;
} simple_locks_info[NSLINFO];
int do_check_simple_locks = 1;
void check_simple_locks(void)
{
assert(! do_check_simple_locks || simple_locks_taken == 0);
}
void check_simple_locks_enable(void)
{
do_check_simple_locks = 1;
}
void check_simple_locks_disable(void)
{
do_check_simple_locks = 0;
}
/* Need simple lock sanity checking code if simple locks are being
compiled in, and we are compiling for a uniprocessor. */
void simple_lock_init(
simple_lock_t l)
{
l->lock_data = 0;
}
void _simple_lock(
simple_lock_t l,
const char *expression,
const char *location)
{
struct simple_locks_info *info;
assert(l->lock_data == 0);
l->lock_data = 1;
info = &simple_locks_info[simple_locks_taken++];
barrier();
info->l = l;
info->expr = expression;
info->loc = location;
}
boolean_t _simple_lock_try(
simple_lock_t l,
const char *expression,
const char *location)
{
struct simple_locks_info *info;
if (l->lock_data != 0)
return FALSE;
l->lock_data = 1;
info = &simple_locks_info[simple_locks_taken++];
barrier();
info->l = l;
info->expr = expression;
info->loc = location;
return TRUE;
}
void simple_unlock(
simple_lock_t l)
{
assert(l->lock_data != 0);
l->lock_data = 0;
if (simple_locks_info[simple_locks_taken-1].l != l) {
unsigned int i = simple_locks_taken;
/* out-of-order unlocking */
do
if (i == 0)
panic("simple_unlock");
while (simple_locks_info[--i].l != l);
simple_locks_info[i] = simple_locks_info[simple_locks_taken-1];
}
barrier();
simple_locks_taken--;
simple_locks_info[simple_locks_taken] = (struct simple_locks_info) {0};
}
#endif /* MACH_SLOCKS && NCPUS == 1 */
/*
* Routine: lock_init
* Function:
* Initialize a lock; required before use.
* Note that clients declare the "struct lock"
* variables and then initialize them, rather
* than getting a new one from this module.
*/
void lock_init(
lock_t l,
boolean_t can_sleep)
{
memset(l, 0, sizeof(lock_data_t));
simple_lock_init(&l->interlock);
l->want_write = FALSE;
l->want_upgrade = FALSE;
l->read_count = 0;
l->can_sleep = can_sleep;
l->thread = (struct thread *)-1; /* XXX */
l->recursion_depth = 0;
}
void lock_sleepable(
lock_t l,
boolean_t can_sleep)
{
simple_lock(&l->interlock);
l->can_sleep = can_sleep;
simple_unlock(&l->interlock);
}
/*
* Sleep locks. These use the same data structure and algorithm
* as the spin locks, but the process sleeps while it is waiting
* for the lock. These work on uniprocessor systems.
*/
void lock_write(
lock_t l)
{
int i;
check_simple_locks();
simple_lock(&l->interlock);
if (l->thread == current_thread()) {
/*
* Recursive lock.
*/
l->recursion_depth++;
simple_unlock(&l->interlock);
return;
}
/*
* Try to acquire the want_write bit.
*/
while (l->want_write) {
if ((i = lock_wait_time) > 0) {
simple_unlock(&l->interlock);
while (--i > 0 && l->want_write)
continue;
simple_lock(&l->interlock);
}
if (l->can_sleep && l->want_write) {
l->waiting = TRUE;
thread_sleep(l,
simple_lock_addr(l->interlock), FALSE);
simple_lock(&l->interlock);
}
}
l->want_write = TRUE;
/* Wait for readers (and upgrades) to finish */
while ((l->read_count != 0) || l->want_upgrade) {
if ((i = lock_wait_time) > 0) {
simple_unlock(&l->interlock);
while (--i > 0 && (l->read_count != 0 ||
l->want_upgrade))
continue;
simple_lock(&l->interlock);
}
if (l->can_sleep && (l->read_count != 0 || l->want_upgrade)) {
l->waiting = TRUE;
thread_sleep(l,
simple_lock_addr(l->interlock), FALSE);
simple_lock(&l->interlock);
}
}
#if MACH_LDEBUG
l->writer = current_thread();
#endif /* MACH_LDEBUG */
simple_unlock(&l->interlock);
}
void lock_done(
lock_t l)
{
simple_lock(&l->interlock);
if (l->read_count != 0)
l->read_count--;
else
if (l->recursion_depth != 0)
l->recursion_depth--;
else
if (l->want_upgrade)
l->want_upgrade = FALSE;
else {
l->want_write = FALSE;
#if MACH_LDEBUG
l->writer = THREAD_NULL;
#endif /* MACH_LDEBUG */
}
/*
* There is no reason to wakeup a waiting thread
* if the read-count is non-zero. Consider:
* we must be dropping a read lock
* threads are waiting only if one wants a write lock
* if there are still readers, they can't proceed
*/
if (l->waiting && (l->read_count == 0)) {
l->waiting = FALSE;
thread_wakeup(l);
}
simple_unlock(&l->interlock);
}
void lock_read(
lock_t l)
{
int i;
check_simple_locks();
simple_lock(&l->interlock);
if (l->thread == current_thread()) {
/*
* Recursive lock.
*/
l->read_count++;
simple_unlock(&l->interlock);
return;
}
while (l->want_write || l->want_upgrade) {
if ((i = lock_wait_time) > 0) {
simple_unlock(&l->interlock);
while (--i > 0 && (l->want_write || l->want_upgrade))
continue;
simple_lock(&l->interlock);
}
if (l->can_sleep && (l->want_write || l->want_upgrade)) {
l->waiting = TRUE;
thread_sleep(l,
simple_lock_addr(l->interlock), FALSE);
simple_lock(&l->interlock);
}
}
l->read_count++;
simple_unlock(&l->interlock);
}
/*
* Routine: lock_read_to_write
* Function:
* Improves a read-only lock to one with
* write permission. If another reader has
* already requested an upgrade to a write lock,
* no lock is held upon return.
*
* Returns TRUE if the upgrade *failed*.
*/
boolean_t lock_read_to_write(
lock_t l)
{
int i;
check_simple_locks();
simple_lock(&l->interlock);
l->read_count--;
if (l->thread == current_thread()) {
/*
* Recursive lock.
*/
l->recursion_depth++;
simple_unlock(&l->interlock);
return(FALSE);
}
if (l->want_upgrade) {
/*
* Someone else has requested upgrade.
* Since we've released a read lock, wake
* him up.
*/
if (l->waiting && (l->read_count == 0)) {
l->waiting = FALSE;
thread_wakeup(l);
}
simple_unlock(&l->interlock);
return TRUE;
}
l->want_upgrade = TRUE;
while (l->read_count != 0) {
if ((i = lock_wait_time) > 0) {
simple_unlock(&l->interlock);
while (--i > 0 && l->read_count != 0)
continue;
simple_lock(&l->interlock);
}
if (l->can_sleep && l->read_count != 0) {
l->waiting = TRUE;
thread_sleep(l,
simple_lock_addr(l->interlock), FALSE);
simple_lock(&l->interlock);
}
}
#if MACH_LDEBUG
l->writer = current_thread();
#endif /* MACH_LDEBUG */
simple_unlock(&l->interlock);
return FALSE;
}
void lock_write_to_read(
lock_t l)
{
simple_lock(&l->interlock);
#if MACH_LDEBUG
assert(l->writer == current_thread());
#endif /* MACH_LDEBUG */
l->read_count++;
if (l->recursion_depth != 0)
l->recursion_depth--;
else
if (l->want_upgrade)
l->want_upgrade = FALSE;
else
l->want_write = FALSE;
if (l->waiting) {
l->waiting = FALSE;
thread_wakeup(l);
}
#if MACH_LDEBUG
l->writer = THREAD_NULL;
#endif /* MACH_LDEBUG */
simple_unlock(&l->interlock);
}
/*
* Routine: lock_try_write
* Function:
* Tries to get a write lock.
*
* Returns FALSE if the lock is not held on return.
*/
boolean_t lock_try_write(
lock_t l)
{
simple_lock(&l->interlock);
if (l->thread == current_thread()) {
/*
* Recursive lock
*/
l->recursion_depth++;
simple_unlock(&l->interlock);
return TRUE;
}
if (l->want_write || l->want_upgrade || l->read_count) {
/*
* Can't get lock.
*/
simple_unlock(&l->interlock);
return FALSE;
}
/*
* Have lock.
*/
l->want_write = TRUE;
#if MACH_LDEBUG
l->writer = current_thread();
#endif /* MACH_LDEBUG */
simple_unlock(&l->interlock);
return TRUE;
}
/*
* Routine: lock_try_read
* Function:
* Tries to get a read lock.
*
* Returns FALSE if the lock is not held on return.
*/
boolean_t lock_try_read(
lock_t l)
{
simple_lock(&l->interlock);
if (l->thread == current_thread()) {
/*
* Recursive lock
*/
l->read_count++;
simple_unlock(&l->interlock);
return TRUE;
}
if (l->want_write || l->want_upgrade) {
simple_unlock(&l->interlock);
return FALSE;
}
l->read_count++;
simple_unlock(&l->interlock);
return TRUE;
}
/*
* Routine: lock_try_read_to_write
* Function:
* Improves a read-only lock to one with
* write permission. If another reader has
* already requested an upgrade to a write lock,
* the read lock is still held upon return.
*
* Returns FALSE if the upgrade *failed*.
*/
boolean_t lock_try_read_to_write(
lock_t l)
{
check_simple_locks();
simple_lock(&l->interlock);
if (l->thread == current_thread()) {
/*
* Recursive lock
*/
l->read_count--;
l->recursion_depth++;
simple_unlock(&l->interlock);
return TRUE;
}
if (l->want_upgrade) {
simple_unlock(&l->interlock);
return FALSE;
}
l->want_upgrade = TRUE;
l->read_count--;
while (l->read_count != 0) {
l->waiting = TRUE;
thread_sleep(l,
simple_lock_addr(l->interlock), FALSE);
simple_lock(&l->interlock);
}
#if MACH_LDEBUG
l->writer = current_thread();
#endif /* MACH_LDEBUG */
simple_unlock(&l->interlock);
return TRUE;
}
/*
* Allow a process that has a lock for write to acquire it
* recursively (for read, write, or update).
*/
void lock_set_recursive(
lock_t l)
{
simple_lock(&l->interlock);
#if MACH_LDEBUG
assert(l->writer == current_thread());
#endif /* MACH_LDEBUG */
if (!l->want_write) {
panic("lock_set_recursive: don't have write lock");
}
l->thread = current_thread();
simple_unlock(&l->interlock);
}
/*
* Prevent a lock from being re-acquired.
*/
void lock_clear_recursive(
lock_t l)
{
simple_lock(&l->interlock);
if (l->thread != current_thread()) {
panic("lock_clear_recursive: wrong thread");
}
if (l->recursion_depth == 0)
l->thread = (struct thread *)-1; /* XXX */
simple_unlock(&l->interlock);
}
#if MACH_KDB
#if MACH_SLOCKS && NCPUS == 1
void db_show_all_slocks(void)
{
int i;
struct simple_locks_info *info;
simple_lock_t l;
for (i = 0; i < simple_locks_taken; i++) {
info = &simple_locks_info[i];
db_printf("%d: %s (", i, info->expr);
db_printsym(info->l, DB_STGY_ANY);
db_printf(") locked by %s\n", info->loc);
}
}
#else /* MACH_SLOCKS && NCPUS == 1 */
void db_show_all_slocks(void)
{
db_printf("simple lock info not available\n");
}
#endif /* MACH_SLOCKS && NCPUS == 1 */
#endif /* MACH_KDB */
|