1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
|
/*
* Mach Operating System
* Copyright (c) 1993-1988 Carnegie Mellon University
* All Rights Reserved.
*
* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
* ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie Mellon
* the rights to redistribute these changes.
*/
/*
* File: kern/task.c
* Author: Avadis Tevanian, Jr., Michael Wayne Young, David Golub,
* David Black
*
* Task management primitives implementation.
*/
#include <string.h>
#include <mach/machine/vm_types.h>
#include <mach/vm_param.h>
#include <mach/task_info.h>
#include <mach/task_special_ports.h>
#include <mach_debug/mach_debug_types.h>
#include <ipc/ipc_space.h>
#include <ipc/ipc_types.h>
#include <kern/debug.h>
#include <kern/task.h>
#include <kern/thread.h>
#include <kern/slab.h>
#include <kern/kalloc.h>
#include <kern/processor.h>
#include <kern/printf.h>
#include <kern/sched_prim.h> /* for thread_wakeup */
#include <kern/ipc_tt.h>
#include <kern/syscall_emulation.h>
#include <kern/task_notify.user.h>
#include <vm/vm_kern.h> /* for kernel_map, ipc_kernel_map */
#include <machine/machspl.h> /* for splsched */
task_t kernel_task = TASK_NULL;
struct kmem_cache task_cache;
/* Where to send notifications about newly created tasks. */
ipc_port_t new_task_notification = NULL;
void task_init(void)
{
kmem_cache_init(&task_cache, "task", sizeof(struct task), 0,
NULL, 0);
eml_init();
machine_task_module_init ();
/*
* Create the kernel task as the first task.
* Task_create must assign to kernel_task as a side effect,
* for other initialization. (:-()
*/
(void) task_create_kernel(TASK_NULL, FALSE, &kernel_task);
(void) task_set_name(kernel_task, "gnumach");
vm_map_set_name(kernel_map, kernel_task->name);
}
kern_return_t task_create(
task_t parent_task,
boolean_t inherit_memory,
task_t *child_task) /* OUT */
{
if (parent_task == TASK_NULL)
return KERN_INVALID_TASK;
return task_create_kernel (parent_task, inherit_memory,
child_task);
}
kern_return_t
task_create_kernel(
task_t parent_task,
boolean_t inherit_memory,
task_t *child_task) /* OUT */
{
task_t new_task;
processor_set_t pset;
#if FAST_TAS
int i;
#endif
new_task = (task_t) kmem_cache_alloc(&task_cache);
if (new_task == TASK_NULL)
return KERN_RESOURCE_SHORTAGE;
/* one ref for just being alive; one for our caller */
new_task->ref_count = 2;
if (child_task == &kernel_task) {
new_task->map = kernel_map;
} else if (inherit_memory) {
new_task->map = vm_map_fork(parent_task->map);
} else {
pmap_t new_pmap = pmap_create((vm_size_t) 0);
if (new_pmap == PMAP_NULL)
new_task->map = VM_MAP_NULL;
else {
new_task->map = vm_map_create(new_pmap,
round_page(VM_MIN_ADDRESS),
trunc_page(VM_MAX_ADDRESS));
if (new_task->map == VM_MAP_NULL)
pmap_destroy(new_pmap);
}
}
if (new_task->map == VM_MAP_NULL) {
kmem_cache_free(&task_cache, (vm_address_t) new_task);
return KERN_RESOURCE_SHORTAGE;
}
if (child_task != &kernel_task)
vm_map_set_name(new_task->map, new_task->name);
simple_lock_init(&new_task->lock);
queue_init(&new_task->thread_list);
new_task->suspend_count = 0;
new_task->active = TRUE;
new_task->user_stop_count = 0;
new_task->thread_count = 0;
new_task->faults = 0;
new_task->zero_fills = 0;
new_task->reactivations = 0;
new_task->pageins = 0;
new_task->cow_faults = 0;
new_task->messages_sent = 0;
new_task->messages_received = 0;
eml_task_reference(new_task, parent_task);
ipc_task_init(new_task, parent_task);
machine_task_init (new_task);
new_task->total_user_time.seconds = 0;
new_task->total_user_time.microseconds = 0;
new_task->total_system_time.seconds = 0;
new_task->total_system_time.microseconds = 0;
record_time_stamp (&new_task->creation_time);
if (parent_task != TASK_NULL) {
task_lock(parent_task);
pset = parent_task->processor_set;
if (!pset->active)
pset = &default_pset;
pset_reference(pset);
new_task->priority = parent_task->priority;
task_unlock(parent_task);
}
else {
pset = &default_pset;
pset_reference(pset);
new_task->priority = BASEPRI_USER;
}
pset_lock(pset);
pset_add_task(pset, new_task);
pset_unlock(pset);
new_task->may_assign = TRUE;
new_task->assign_active = FALSE;
#if MACH_PCSAMPLE
new_task->pc_sample.buffer = 0;
new_task->pc_sample.seqno = 0;
new_task->pc_sample.sampletypes = 0;
#endif /* MACH_PCSAMPLE */
#if FAST_TAS
for (i = 0; i < TASK_FAST_TAS_NRAS; i++) {
if (inherit_memory) {
new_task->fast_tas_base[i] = parent_task->fast_tas_base[i];
new_task->fast_tas_end[i] = parent_task->fast_tas_end[i];
} else {
new_task->fast_tas_base[i] = (vm_offset_t)0;
new_task->fast_tas_end[i] = (vm_offset_t)0;
}
}
#endif /* FAST_TAS */
if (parent_task == TASK_NULL)
snprintf (new_task->name, sizeof new_task->name, "%p",
new_task);
else
snprintf (new_task->name, sizeof new_task->name, "(%.*s)",
(int) (sizeof new_task->name - 3), parent_task->name);
if (new_task_notification != NULL) {
task_reference (new_task);
task_reference (parent_task);
mach_notify_new_task (new_task_notification,
convert_task_to_port (new_task),
parent_task
? convert_task_to_port (parent_task)
: IP_NULL);
}
ipc_task_enable(new_task);
*child_task = new_task;
return KERN_SUCCESS;
}
/*
* task_deallocate:
*
* Give up a reference to the specified task and destroy it if there
* are no other references left. It is assumed that the current thread
* is never in this task.
*/
void task_deallocate(
task_t task)
{
int c;
processor_set_t pset;
if (task == TASK_NULL)
return;
task_lock(task);
c = --(task->ref_count);
task_unlock(task);
if (c != 0)
return;
machine_task_terminate (task);
eml_task_deallocate(task);
pset = task->processor_set;
pset_lock(pset);
pset_remove_task(pset,task);
pset_unlock(pset);
pset_deallocate(pset);
vm_map_deallocate(task->map);
is_release(task->itk_space);
kmem_cache_free(&task_cache, (vm_offset_t) task);
}
void task_reference(
task_t task)
{
if (task == TASK_NULL)
return;
task_lock(task);
task->ref_count++;
task_unlock(task);
}
/*
* task_terminate:
*
* Terminate the specified task. See comments on thread_terminate
* (kern/thread.c) about problems with terminating the "current task."
*/
kern_return_t task_terminate(
task_t task)
{
thread_t thread, cur_thread;
queue_head_t *list;
task_t cur_task;
spl_t s;
if (task == TASK_NULL)
return KERN_INVALID_ARGUMENT;
list = &task->thread_list;
cur_task = current_task();
cur_thread = current_thread();
/*
* Deactivate task so that it can't be terminated again,
* and so lengthy operations in progress will abort.
*
* If the current thread is in this task, remove it from
* the task's thread list to keep the thread-termination
* loop simple.
*/
if (task == cur_task) {
task_lock(task);
if (!task->active) {
/*
* Task is already being terminated.
*/
task_unlock(task);
return KERN_FAILURE;
}
/*
* Make sure current thread is not being terminated.
*/
s = splsched();
thread_lock(cur_thread);
if (!cur_thread->active) {
thread_unlock(cur_thread);
(void) splx(s);
task_unlock(task);
thread_terminate(cur_thread);
return KERN_FAILURE;
}
task_hold_locked(task);
task->active = FALSE;
queue_remove(list, cur_thread, thread_t, thread_list);
thread_unlock(cur_thread);
(void) splx(s);
task_unlock(task);
/*
* Shut down this thread's ipc now because it must
* be left alone to terminate the task.
*/
ipc_thread_disable(cur_thread);
ipc_thread_terminate(cur_thread);
}
else {
/*
* Lock both current and victim task to check for
* potential deadlock.
*/
if ((vm_offset_t)task < (vm_offset_t)cur_task) {
task_lock(task);
task_lock(cur_task);
}
else {
task_lock(cur_task);
task_lock(task);
}
/*
* Check if current thread or task is being terminated.
*/
s = splsched();
thread_lock(cur_thread);
if ((!cur_task->active) ||(!cur_thread->active)) {
/*
* Current task or thread is being terminated.
*/
thread_unlock(cur_thread);
(void) splx(s);
task_unlock(task);
task_unlock(cur_task);
thread_terminate(cur_thread);
return KERN_FAILURE;
}
thread_unlock(cur_thread);
(void) splx(s);
task_unlock(cur_task);
if (!task->active) {
/*
* Task is already being terminated.
*/
task_unlock(task);
return KERN_FAILURE;
}
task_hold_locked(task);
task->active = FALSE;
task_unlock(task);
}
/*
* Prevent further execution of the task. ipc_task_disable
* prevents further task operations via the task port.
* If this is the current task, the current thread will
* be left running.
*/
(void) task_dowait(task,TRUE); /* may block */
ipc_task_disable(task);
/*
* Terminate each thread in the task.
*
* The task_port is closed down, so no more thread_create
* operations can be done. Thread_force_terminate closes the
* thread port for each thread; when that is done, the
* thread will eventually disappear. Thus the loop will
* terminate. Call thread_force_terminate instead of
* thread_terminate to avoid deadlock checks. Need
* to call thread_block() inside loop because some other
* thread (e.g., the reaper) may have to run to get rid
* of all references to the thread; it won't vanish from
* the task's thread list until the last one is gone.
*/
task_lock(task);
while (!queue_empty(list)) {
thread = (thread_t) queue_first(list);
thread_reference(thread);
task_unlock(task);
thread_force_terminate(thread);
thread_deallocate(thread);
thread_block(thread_no_continuation);
task_lock(task);
}
task_unlock(task);
/*
* Shut down IPC.
*/
ipc_task_terminate(task);
/*
* Deallocate the task's reference to itself.
*/
task_deallocate(task);
/*
* If the current thread is in this task, it has not yet
* been terminated (since it was removed from the task's
* thread-list). Put it back in the thread list (for
* completeness), and terminate it. Since it holds the
* last reference to the task, terminating it will deallocate
* the task.
*/
if (cur_thread->task == task) {
task_lock(task);
s = splsched();
queue_enter(list, cur_thread, thread_t, thread_list);
(void) splx(s);
task_unlock(task);
(void) thread_terminate(cur_thread);
}
return KERN_SUCCESS;
}
/*
* task_hold:
*
* Suspend execution of the specified task.
* This is a recursive-style suspension of the task, a count of
* suspends is maintained.
*
* CONDITIONS: the task is locked and active.
*/
void task_hold_locked(
task_t task)
{
queue_head_t *list;
thread_t thread, cur_thread;
assert(task->active);
cur_thread = current_thread();
task->suspend_count++;
/*
* Iterate through all the threads and hold them.
* Do not hold the current thread if it is within the
* task.
*/
list = &task->thread_list;
queue_iterate(list, thread, thread_t, thread_list) {
if (thread != cur_thread)
thread_hold(thread);
}
}
/*
* task_hold:
*
* Suspend execution of the specified task.
* This is a recursive-style suspension of the task, a count of
* suspends is maintained.
*/
kern_return_t task_hold(
task_t task)
{
task_lock(task);
if (!task->active) {
task_unlock(task);
return KERN_FAILURE;
}
task_hold_locked(task);
task_unlock(task);
return KERN_SUCCESS;
}
/*
* task_dowait:
*
* Wait until the task has really been suspended (all of the threads
* are stopped). Skip the current thread if it is within the task.
*
* If task is deactivated while waiting, return a failure code unless
* must_wait is true.
*/
kern_return_t task_dowait(
task_t task,
boolean_t must_wait)
{
queue_head_t *list;
thread_t thread, cur_thread, prev_thread;
kern_return_t ret = KERN_SUCCESS;
/*
* Iterate through all the threads.
* While waiting for each thread, we gain a reference to it
* to prevent it from going away on us. This guarantees
* that the "next" thread in the list will be a valid thread.
*
* We depend on the fact that if threads are created while
* we are looping through the threads, they will be held
* automatically. We don't care about threads that get
* deallocated along the way (the reference prevents it
* from happening to the thread we are working with).
*
* If the current thread is in the affected task, it is skipped.
*
* If the task is deactivated before we're done, and we don't
* have to wait for it (must_wait is FALSE), just bail out.
*/
cur_thread = current_thread();
list = &task->thread_list;
prev_thread = THREAD_NULL;
task_lock(task);
queue_iterate(list, thread, thread_t, thread_list) {
if (!(task->active) && !(must_wait)) {
ret = KERN_FAILURE;
break;
}
if (thread != cur_thread) {
thread_reference(thread);
task_unlock(task);
if (prev_thread != THREAD_NULL)
thread_deallocate(prev_thread);
/* may block */
(void) thread_dowait(thread, TRUE); /* may block */
prev_thread = thread;
task_lock(task);
}
}
task_unlock(task);
if (prev_thread != THREAD_NULL)
thread_deallocate(prev_thread); /* may block */
return ret;
}
kern_return_t task_release(
task_t task)
{
queue_head_t *list;
thread_t thread, next;
task_lock(task);
if (!task->active) {
task_unlock(task);
return KERN_FAILURE;
}
task->suspend_count--;
/*
* Iterate through all the threads and release them
*/
list = &task->thread_list;
thread = (thread_t) queue_first(list);
while (!queue_end(list, (queue_entry_t) thread)) {
next = (thread_t) queue_next(&thread->thread_list);
thread_release(thread);
thread = next;
}
task_unlock(task);
return KERN_SUCCESS;
}
kern_return_t task_threads(
task_t task,
thread_array_t *thread_list,
natural_t *count)
{
unsigned int actual; /* this many threads */
thread_t thread;
thread_t *threads;
unsigned i;
vm_size_t size, size_needed;
vm_offset_t addr;
if (task == TASK_NULL)
return KERN_INVALID_ARGUMENT;
size = 0; addr = 0;
for (;;) {
task_lock(task);
if (!task->active) {
task_unlock(task);
return KERN_FAILURE;
}
actual = task->thread_count;
/* do we have the memory we need? */
size_needed = actual * sizeof(mach_port_t);
if (size_needed <= size)
break;
/* unlock the task and allocate more memory */
task_unlock(task);
if (size != 0)
kfree(addr, size);
assert(size_needed > 0);
size = size_needed;
addr = kalloc(size);
if (addr == 0)
return KERN_RESOURCE_SHORTAGE;
}
/* OK, have memory and the task is locked & active */
threads = (thread_t *) addr;
for (i = 0, thread = (thread_t) queue_first(&task->thread_list);
i < actual;
i++, thread = (thread_t) queue_next(&thread->thread_list)) {
/* take ref for convert_thread_to_port */
thread_reference(thread);
threads[i] = thread;
}
assert(queue_end(&task->thread_list, (queue_entry_t) thread));
/* can unlock task now that we've got the thread refs */
task_unlock(task);
if (actual == 0) {
/* no threads, so return null pointer and deallocate memory */
*thread_list = 0;
*count = 0;
if (size != 0)
kfree(addr, size);
} else {
/* if we allocated too much, must copy */
if (size_needed < size) {
vm_offset_t newaddr;
newaddr = kalloc(size_needed);
if (newaddr == 0) {
for (i = 0; i < actual; i++)
thread_deallocate(threads[i]);
kfree(addr, size);
return KERN_RESOURCE_SHORTAGE;
}
memcpy((void *) newaddr, (void *) addr, size_needed);
kfree(addr, size);
threads = (thread_t *) newaddr;
}
*thread_list = (mach_port_t *) threads;
*count = actual;
/* do the conversion that Mig should handle */
for (i = 0; i < actual; i++)
((ipc_port_t *) threads)[i] =
convert_thread_to_port(threads[i]);
}
return KERN_SUCCESS;
}
kern_return_t task_suspend(
task_t task)
{
boolean_t hold;
if (task == TASK_NULL)
return KERN_INVALID_ARGUMENT;
hold = FALSE;
task_lock(task);
if ((task->user_stop_count)++ == 0)
hold = TRUE;
task_unlock(task);
/*
* If the stop count was positive, the task is
* already stopped and we can exit.
*/
if (!hold) {
return KERN_SUCCESS;
}
/*
* Hold all of the threads in the task, and wait for
* them to stop. If the current thread is within
* this task, hold it separately so that all of the
* other threads can stop first.
*/
if (task_hold(task) != KERN_SUCCESS)
return KERN_FAILURE;
if (task_dowait(task, FALSE) != KERN_SUCCESS)
return KERN_FAILURE;
if (current_task() == task) {
spl_t s;
thread_hold(current_thread());
/*
* We want to call thread_block on our way out,
* to stop running.
*/
s = splsched();
ast_on(cpu_number(), AST_BLOCK);
(void) splx(s);
}
return KERN_SUCCESS;
}
kern_return_t task_resume(
task_t task)
{
boolean_t release;
if (task == TASK_NULL)
return KERN_INVALID_ARGUMENT;
release = FALSE;
task_lock(task);
if (task->user_stop_count > 0) {
if (--(task->user_stop_count) == 0)
release = TRUE;
}
else {
task_unlock(task);
return KERN_FAILURE;
}
task_unlock(task);
/*
* Release the task if necessary.
*/
if (release)
return task_release(task);
return KERN_SUCCESS;
}
kern_return_t task_info(
task_t task,
int flavor,
task_info_t task_info_out, /* pointer to OUT array */
natural_t *task_info_count) /* IN/OUT */
{
vm_map_t map;
if (task == TASK_NULL)
return KERN_INVALID_ARGUMENT;
switch (flavor) {
case TASK_BASIC_INFO:
{
task_basic_info_t basic_info;
/* Allow *task_info_count to be two words smaller than
the usual amount, because creation_time is a new member
that some callers might not know about. */
if (*task_info_count < TASK_BASIC_INFO_COUNT - 2) {
return KERN_INVALID_ARGUMENT;
}
basic_info = (task_basic_info_t) task_info_out;
map = (task == kernel_task) ? kernel_map : task->map;
basic_info->virtual_size = map->size;
basic_info->resident_size = pmap_resident_count(map->pmap)
* PAGE_SIZE;
task_lock(task);
basic_info->base_priority = task->priority;
basic_info->suspend_count = task->user_stop_count;
basic_info->user_time.seconds
= task->total_user_time.seconds;
basic_info->user_time.microseconds
= task->total_user_time.microseconds;
basic_info->system_time.seconds
= task->total_system_time.seconds;
basic_info->system_time.microseconds
= task->total_system_time.microseconds;
read_time_stamp(&task->creation_time,
&basic_info->creation_time);
task_unlock(task);
if (*task_info_count > TASK_BASIC_INFO_COUNT)
*task_info_count = TASK_BASIC_INFO_COUNT;
break;
}
case TASK_EVENTS_INFO:
{
task_events_info_t event_info;
if (*task_info_count < TASK_EVENTS_INFO_COUNT) {
return KERN_INVALID_ARGUMENT;
}
event_info = (task_events_info_t) task_info_out;
task_lock(task);
event_info->faults = task->faults;
event_info->zero_fills = task->zero_fills;
event_info->reactivations = task->reactivations;
event_info->pageins = task->pageins;
event_info->cow_faults = task->cow_faults;
event_info->messages_sent = task->messages_sent;
event_info->messages_received = task->messages_received;
task_unlock(task);
*task_info_count = TASK_EVENTS_INFO_COUNT;
break;
}
case TASK_THREAD_TIMES_INFO:
{
task_thread_times_info_t times_info;
thread_t thread;
if (*task_info_count < TASK_THREAD_TIMES_INFO_COUNT) {
return KERN_INVALID_ARGUMENT;
}
times_info = (task_thread_times_info_t) task_info_out;
times_info->user_time.seconds = 0;
times_info->user_time.microseconds = 0;
times_info->system_time.seconds = 0;
times_info->system_time.microseconds = 0;
task_lock(task);
queue_iterate(&task->thread_list, thread,
thread_t, thread_list)
{
time_value_t user_time, system_time;
spl_t s;
s = splsched();
thread_lock(thread);
thread_read_times(thread, &user_time, &system_time);
thread_unlock(thread);
splx(s);
time_value_add(×_info->user_time, &user_time);
time_value_add(×_info->system_time, &system_time);
}
task_unlock(task);
*task_info_count = TASK_THREAD_TIMES_INFO_COUNT;
break;
}
default:
return KERN_INVALID_ARGUMENT;
}
return KERN_SUCCESS;
}
#if MACH_HOST
/*
* task_assign:
*
* Change the assigned processor set for the task
*/
kern_return_t
task_assign(
task_t task,
processor_set_t new_pset,
boolean_t assign_threads)
{
kern_return_t ret = KERN_SUCCESS;
thread_t thread, prev_thread;
queue_head_t *list;
processor_set_t pset;
if (task == TASK_NULL || new_pset == PROCESSOR_SET_NULL) {
return KERN_INVALID_ARGUMENT;
}
/*
* Freeze task`s assignment. Prelude to assigning
* task. Only one freeze may be held per task.
*/
task_lock(task);
while (task->may_assign == FALSE) {
task->assign_active = TRUE;
assert_wait((event_t)&task->assign_active, TRUE);
task_unlock(task);
thread_block(thread_no_continuation);
task_lock(task);
}
/*
* Avoid work if task already in this processor set.
*/
if (task->processor_set == new_pset) {
/*
* No need for task->assign_active wakeup:
* task->may_assign is still TRUE.
*/
task_unlock(task);
return KERN_SUCCESS;
}
task->may_assign = FALSE;
task_unlock(task);
/*
* Safe to get the task`s pset: it cannot change while
* task is frozen.
*/
pset = task->processor_set;
/*
* Lock both psets now. Use ordering to avoid deadlock.
*/
Restart:
if ((vm_offset_t) pset < (vm_offset_t) new_pset) {
pset_lock(pset);
pset_lock(new_pset);
}
else {
pset_lock(new_pset);
pset_lock(pset);
}
/*
* Check if new_pset is ok to assign to. If not,
* reassign to default_pset.
*/
if (!new_pset->active) {
pset_unlock(pset);
pset_unlock(new_pset);
new_pset = &default_pset;
goto Restart;
}
pset_reference(new_pset);
/*
* Now grab the task lock and move the task.
*/
task_lock(task);
pset_remove_task(pset, task);
pset_add_task(new_pset, task);
pset_unlock(pset);
pset_unlock(new_pset);
if (assign_threads == FALSE) {
/*
* We leave existing threads at their
* old assignments. Unfreeze task`s
* assignment.
*/
task->may_assign = TRUE;
if (task->assign_active) {
task->assign_active = FALSE;
thread_wakeup((event_t) &task->assign_active);
}
task_unlock(task);
pset_deallocate(pset);
return KERN_SUCCESS;
}
/*
* If current thread is in task, freeze its assignment.
*/
if (current_thread()->task == task) {
task_unlock(task);
thread_freeze(current_thread());
task_lock(task);
}
/*
* Iterate down the thread list reassigning all the threads.
* New threads pick up task's new processor set automatically.
* Do current thread last because new pset may be empty.
*/
list = &task->thread_list;
prev_thread = THREAD_NULL;
queue_iterate(list, thread, thread_t, thread_list) {
if (!(task->active)) {
ret = KERN_FAILURE;
break;
}
if (thread != current_thread()) {
thread_reference(thread);
task_unlock(task);
if (prev_thread != THREAD_NULL)
thread_deallocate(prev_thread); /* may block */
thread_assign(thread,new_pset); /* may block */
prev_thread = thread;
task_lock(task);
}
}
/*
* Done, wakeup anyone waiting for us.
*/
task->may_assign = TRUE;
if (task->assign_active) {
task->assign_active = FALSE;
thread_wakeup((event_t)&task->assign_active);
}
task_unlock(task);
if (prev_thread != THREAD_NULL)
thread_deallocate(prev_thread); /* may block */
/*
* Finish assignment of current thread.
*/
if (current_thread()->task == task)
thread_doassign(current_thread(), new_pset, TRUE);
pset_deallocate(pset);
return ret;
}
#else /* MACH_HOST */
/*
* task_assign:
*
* Change the assigned processor set for the task
*/
kern_return_t
task_assign(
task_t task,
processor_set_t new_pset,
boolean_t assign_threads)
{
return KERN_FAILURE;
}
#endif /* MACH_HOST */
/*
* task_assign_default:
*
* Version of task_assign to assign to default processor set.
*/
kern_return_t
task_assign_default(
task_t task,
boolean_t assign_threads)
{
return task_assign(task, &default_pset, assign_threads);
}
/*
* task_get_assignment
*
* Return name of processor set that task is assigned to.
*/
kern_return_t task_get_assignment(
task_t task,
processor_set_t *pset)
{
if (task == TASK_NULL)
return KERN_INVALID_ARGUMENT;
if (!task->active)
return KERN_FAILURE;
*pset = task->processor_set;
pset_reference(*pset);
return KERN_SUCCESS;
}
/*
* task_priority
*
* Set priority of task; used only for newly created threads.
* Optionally change priorities of threads.
*/
kern_return_t
task_priority(
task_t task,
int priority,
boolean_t change_threads)
{
kern_return_t ret = KERN_SUCCESS;
if (task == TASK_NULL || invalid_pri(priority))
return KERN_INVALID_ARGUMENT;
task_lock(task);
task->priority = priority;
if (change_threads) {
thread_t thread;
queue_head_t *list;
list = &task->thread_list;
queue_iterate(list, thread, thread_t, thread_list) {
if (thread_priority(thread, priority, FALSE)
!= KERN_SUCCESS)
ret = KERN_FAILURE;
}
}
task_unlock(task);
return ret;
}
/*
* task_set_name
*
* Set the name of task TASK to NAME. This is a debugging aid.
* NAME will be used in error messages printed by the kernel.
*/
kern_return_t
task_set_name(
task_t task,
kernel_debug_name_t name)
{
strncpy(task->name, name, sizeof task->name - 1);
task->name[sizeof task->name - 1] = '\0';
return KERN_SUCCESS;
}
/*
* task_collect_scan:
*
* Attempt to free resources owned by tasks.
*/
void task_collect_scan(void)
{
task_t task, prev_task;
processor_set_t pset, prev_pset;
prev_task = TASK_NULL;
prev_pset = PROCESSOR_SET_NULL;
simple_lock(&all_psets_lock);
queue_iterate(&all_psets, pset, processor_set_t, all_psets) {
pset_lock(pset);
queue_iterate(&pset->tasks, task, task_t, pset_tasks) {
task_reference(task);
pset_reference(pset);
pset_unlock(pset);
simple_unlock(&all_psets_lock);
machine_task_collect (task);
pmap_collect(task->map->pmap);
if (prev_task != TASK_NULL)
task_deallocate(prev_task);
prev_task = task;
if (prev_pset != PROCESSOR_SET_NULL)
pset_deallocate(prev_pset);
prev_pset = pset;
simple_lock(&all_psets_lock);
pset_lock(pset);
}
pset_unlock(pset);
}
simple_unlock(&all_psets_lock);
if (prev_task != TASK_NULL)
task_deallocate(prev_task);
if (prev_pset != PROCESSOR_SET_NULL)
pset_deallocate(prev_pset);
}
boolean_t task_collect_allowed = TRUE;
unsigned task_collect_last_tick = 0;
unsigned task_collect_max_rate = 0; /* in ticks */
/*
* consider_task_collect:
*
* Called by the pageout daemon when the system needs more free pages.
*/
void consider_task_collect(void)
{
/*
* By default, don't attempt task collection more frequently
* than once a second.
*/
if (task_collect_max_rate == 0)
task_collect_max_rate = hz;
if (task_collect_allowed &&
(sched_tick > (task_collect_last_tick +
task_collect_max_rate / (hz / 1)))) {
task_collect_last_tick = sched_tick;
task_collect_scan();
}
}
kern_return_t
task_ras_control(
task_t task,
vm_offset_t pc,
vm_offset_t endpc,
int flavor)
{
kern_return_t ret = KERN_FAILURE;
#if FAST_TAS
int i;
ret = KERN_SUCCESS;
task_lock(task);
switch (flavor) {
case TASK_RAS_CONTROL_PURGE_ALL: /* remove all RAS */
for (i = 0; i < TASK_FAST_TAS_NRAS; i++) {
task->fast_tas_base[i] = task->fast_tas_end[i] = 0;
}
break;
case TASK_RAS_CONTROL_PURGE_ONE: /* remove this RAS, collapse remaining */
for (i = 0; i < TASK_FAST_TAS_NRAS; i++) {
if ( (task->fast_tas_base[i] == pc)
&& (task->fast_tas_end[i] == endpc)) {
while (i < TASK_FAST_TAS_NRAS-1) {
task->fast_tas_base[i] = task->fast_tas_base[i+1];
task->fast_tas_end[i] = task->fast_tas_end[i+1];
i++;
}
task->fast_tas_base[TASK_FAST_TAS_NRAS-1] = 0;
task->fast_tas_end[TASK_FAST_TAS_NRAS-1] = 0;
break;
}
}
if (i == TASK_FAST_TAS_NRAS) {
ret = KERN_INVALID_ADDRESS;
}
break;
case TASK_RAS_CONTROL_PURGE_ALL_AND_INSTALL_ONE:
/* remove all RAS an install this RAS */
for (i = 0; i < TASK_FAST_TAS_NRAS; i++) {
task->fast_tas_base[i] = task->fast_tas_end[i] = 0;
}
/* FALL THROUGH */
case TASK_RAS_CONTROL_INSTALL_ONE: /* install this RAS */
for (i = 0; i < TASK_FAST_TAS_NRAS; i++) {
if ( (task->fast_tas_base[i] == pc)
&& (task->fast_tas_end[i] == endpc)) {
/* already installed */
break;
}
if ((task->fast_tas_base[i] == 0) && (task->fast_tas_end[i] == 0)){
task->fast_tas_base[i] = pc;
task->fast_tas_end[i] = endpc;
break;
}
}
if (i == TASK_FAST_TAS_NRAS) {
ret = KERN_RESOURCE_SHORTAGE;
}
break;
default: ret = KERN_INVALID_VALUE;
break;
}
task_unlock(task);
#endif /* FAST_TAS */
return ret;
}
/*
* register_new_task_notification
*
* Register a port to which a notification about newly created
* tasks are sent.
*/
kern_return_t
register_new_task_notification(
const host_t host,
ipc_port_t notification)
{
if (host == HOST_NULL)
return KERN_INVALID_HOST;
if (new_task_notification != NULL)
return KERN_NO_ACCESS;
new_task_notification = notification;
return KERN_SUCCESS;
}
|