1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
|
/*
* Mach Operating System
* Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
* All Rights Reserved.
*
* Permission to use, copy, modify and distribute this software and its
* documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
* ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie Mellon
* the rights to redistribute these changes.
*/
#include <mach/kern_return.h>
#include <mach/port.h>
#include <kern/queue.h>
#include <kern/thread.h>
#include <mach/time_value.h>
#include <kern/timer.h>
#include <kern/cpu_number.h>
#include <kern/assert.h>
#include <kern/macros.h>
timer_t current_timer[NCPUS];
timer_data_t kernel_timer[NCPUS];
/*
* init_timers initializes all non-thread timers and puts the
* service routine on the callout queue. All timers must be
* serviced by the callout routine once an hour.
*/
void init_timers(void)
{
int i;
timer_t this_timer;
/*
* Initialize all the kernel timers and start the one
* for this cpu (master) slaves start theirs later.
*/
this_timer = &kernel_timer[0];
for ( i=0 ; i<NCPUS ; i++, this_timer++) {
timer_init(this_timer);
current_timer[i] = (timer_t) 0;
}
start_timer(&kernel_timer[cpu_number()]);
}
/*
* timer_init initializes a single timer.
*/
void timer_init(timer_t this_timer)
{
this_timer->low_bits = 0;
this_timer->high_bits = 0;
this_timer->tstamp = 0;
this_timer->high_bits_check = 0;
}
#if STAT_TIME
#else /* STAT_TIME */
#ifdef MACHINE_TIMER_ROUTINES
/*
* Machine-dependent code implements the timer routines.
*/
#else /* MACHINE_TIMER_ROUTINES */
/*
* start_timer starts the given timer for this cpu. It is called
* exactly once for each cpu during the boot sequence.
*/
void
start_timer(timer_t timer)
{
timer->tstamp = get_timestamp();
current_timer[cpu_number()] = timer;
}
/*
* time_trap_uentry does trap entry timing. Caller must lock out
* interrupts and take a timestamp. ts is a timestamp taken after
* interrupts were locked out. Must only be called if trap was
* from user mode.
*/
void
time_trap_uentry(unsigned ts)
{
int elapsed;
int mycpu;
timer_t mytimer;
/*
* Calculate elapsed time.
*/
mycpu = cpu_number();
mytimer = current_timer[mycpu];
elapsed = ts - mytimer->tstamp;
#ifdef TIMER_MAX
if (elapsed < 0) elapsed += TIMER_MAX;
#endif /* TIMER_MAX */
/*
* Update current timer.
*/
mytimer->low_bits += elapsed;
mytimer->tstamp = 0;
if (mytimer->low_bits & TIMER_LOW_FULL) {
timer_normalize(mytimer);
}
/*
* Record new timer.
*/
mytimer = &(active_threads[mycpu]->system_timer);
current_timer[mycpu] = mytimer;
mytimer->tstamp = ts;
}
/*
* time_trap_uexit does trap exit timing. Caller must lock out
* interrupts and take a timestamp. ts is a timestamp taken after
* interrupts were locked out. Must only be called if returning to
* user mode.
*/
void
time_trap_uexit(int ts)
{
int elapsed;
int mycpu;
timer_t mytimer;
/*
* Calculate elapsed time.
*/
mycpu = cpu_number();
mytimer = current_timer[mycpu];
elapsed = ts - mytimer->tstamp;
#ifdef TIMER_MAX
if (elapsed < 0) elapsed += TIMER_MAX;
#endif /* TIMER_MAX */
/*
* Update current timer.
*/
mytimer->low_bits += elapsed;
mytimer->tstamp = 0;
if (mytimer->low_bits & TIMER_LOW_FULL) {
timer_normalize(mytimer); /* SYSTEMMODE */
}
mytimer = &(active_threads[mycpu]->user_timer);
/*
* Record new timer.
*/
current_timer[mycpu] = mytimer;
mytimer->tstamp = ts;
}
/*
* time_int_entry does interrupt entry timing. Caller must lock out
* interrupts and take a timestamp. ts is a timestamp taken after
* interrupts were locked out. new_timer is the new timer to
* switch to. This routine returns the currently running timer,
* which MUST be pushed onto the stack by the caller, or otherwise
* saved for time_int_exit.
*/
timer_t
time_int_entry(
unsigned ts,
timer_t new_timer)
{
int elapsed;
int mycpu;
timer_t mytimer;
/*
* Calculate elapsed time.
*/
mycpu = cpu_number();
mytimer = current_timer[mycpu];
elapsed = ts - mytimer->tstamp;
#ifdef TIMER_MAX
if (elapsed < 0) elapsed += TIMER_MAX;
#endif /* TIMER_MAX */
/*
* Update current timer.
*/
mytimer->low_bits += elapsed;
mytimer->tstamp = 0;
/*
* Switch to new timer, and save old one on stack.
*/
new_timer->tstamp = ts;
current_timer[mycpu] = new_timer;
return(mytimer);
}
/*
* time_int_exit does interrupt exit timing. Caller must lock out
* interrupts and take a timestamp. ts is a timestamp taken after
* interrupts were locked out. old_timer is the timer value pushed
* onto the stack or otherwise saved after time_int_entry returned
* it.
*/
void
time_int_exit(
unsigned ts,
timer_t old_timer)
{
int elapsed;
int mycpu;
timer_t mytimer;
/*
* Calculate elapsed time.
*/
mycpu = cpu_number();
mytimer = current_timer[mycpu];
elapsed = ts - mytimer->tstamp;
#ifdef TIMER_MAX
if (elapsed < 0) elapsed += TIMER_MAX;
#endif /* TIMER_MAX */
/*
* Update current timer.
*/
mytimer->low_bits += elapsed;
mytimer->tstamp = 0;
/*
* If normalization requested, do it.
*/
if (mytimer->low_bits & TIMER_LOW_FULL) {
timer_normalize(mytimer);
}
if (old_timer->low_bits & TIMER_LOW_FULL) {
timer_normalize(old_timer);
}
/*
* Start timer that was running before interrupt.
*/
old_timer->tstamp = ts;
current_timer[mycpu] = old_timer;
}
/*
* timer_switch switches to a new timer. The machine
* dependent routine/macro get_timestamp must return a timestamp.
* Caller must lock out interrupts.
*/
void
timer_switch(timer_t new_timer)
{
int elapsed;
int mycpu;
timer_t mytimer;
unsigned ts;
/*
* Calculate elapsed time.
*/
mycpu = cpu_number();
mytimer = current_timer[mycpu];
ts = get_timestamp();
elapsed = ts - mytimer->tstamp;
#ifdef TIMER_MAX
if (elapsed < 0) elapsed += TIMER_MAX;
#endif /* TIMER_MAX */
/*
* Update current timer.
*/
mytimer->low_bits += elapsed;
mytimer->tstamp = 0;
/*
* Normalization check
*/
if (mytimer->low_bits & TIMER_LOW_FULL) {
timer_normalize(mytimer);
}
/*
* Record new timer.
*/
current_timer[mycpu] = new_timer;
new_timer->tstamp = ts;
}
#endif /* MACHINE_TIMER_ROUTINES */
#endif /* STAT_TIME */
/*
* timer_normalize normalizes the value of a timer. It is
* called only rarely, to make sure low_bits never overflows.
*/
void timer_normalize(timer_t timer)
{
unsigned int high_increment;
/*
* Calculate high_increment, then write high check field first
* followed by low and high. timer_grab() reads these fields in
* reverse order so if high and high check match, we know
* that the values read are ok.
*/
high_increment = timer->low_bits/TIMER_HIGH_UNIT;
timer->high_bits_check += high_increment;
timer->low_bits %= TIMER_HIGH_UNIT;
timer->high_bits += high_increment;
}
/*
* timer_grab() retrieves the value of a timer.
*
* Critical scheduling code uses TIMER_DELTA macro in timer.h
* (called from thread_timer_delta in sched.h).
*
* Keep coherent with db_time_grab below.
*/
static void timer_grab(
timer_t timer,
timer_save_t save)
{
#if MACH_ASSERT
unsigned int passes=0;
#endif
do {
(save)->high = (timer)->high_bits;
(save)->low = (timer)->low_bits;
/*
* If the timer was normalized while we were doing this,
* the high_bits value read above and the high_bits check
* value will not match because high_bits_check is the first
* field touched by the normalization procedure, and
* high_bits is the last.
*
* Additions to timer only touch low bits and
* are therefore atomic with respect to this.
*/
#if MACH_ASSERT
passes++;
assert((passes < 10000) ? (1) : ((timer->high_bits_check = save->high), 0));
#endif
} while ( (save)->high != (timer)->high_bits_check);
}
/*
*
* Db_timer_grab(): used by db_thread_read_times. An nonblocking
* version of db_thread_get_times. Keep coherent with timer_grab
* above.
*
*/
void db_timer_grab(
timer_t timer,
timer_save_t save)
{
/* Don't worry about coherency */
(save)->high = (timer)->high_bits;
(save)->low = (timer)->low_bits;
}
/*
* timer_read reads the value of a timer into a time_value_t. If the
* timer was modified during the read, retry. The value returned
* is accurate to the last update; time accumulated by a running
* timer since its last timestamp is not included.
*/
void
timer_read(
timer_t timer,
time_value_t *tv)
{
timer_save_data_t temp;
timer_grab(timer,&temp);
/*
* Normalize the result
*/
#ifdef TIMER_ADJUST
TIMER_ADJUST(&temp);
#endif /* TIMER_ADJUST */
tv->seconds = temp.high + temp.low/1000000;
tv->microseconds = temp.low%1000000;
}
/*
* thread_read_times reads the user and system times from a thread.
* Time accumulated since last timestamp is not included. Should
* be called at splsched() to avoid having user and system times
* be out of step. Doesn't care if caller locked thread.
*
* Needs to be kept coherent with thread_read_times ahead.
*/
void thread_read_times(
thread_t thread,
time_value_t *user_time_p,
time_value_t *system_time_p)
{
timer_save_data_t temp;
timer_t timer;
timer = &thread->user_timer;
timer_grab(timer, &temp);
#ifdef TIMER_ADJUST
TIMER_ADJUST(&temp);
#endif /* TIMER_ADJUST */
user_time_p->seconds = temp.high + temp.low/1000000;
user_time_p->microseconds = temp.low % 1000000;
timer = &thread->system_timer;
timer_grab(timer, &temp);
#ifdef TIMER_ADJUST
TIMER_ADJUST(&temp);
#endif /* TIMER_ADJUST */
system_time_p->seconds = temp.high + temp.low/1000000;
system_time_p->microseconds = temp.low % 1000000;
}
/*
* Db_thread_read_times: A version of thread_read_times that
* can be called by the debugger. This version does not call
* timer_grab, which can block. Please keep it up to date with
* thread_read_times above.
*
*/
void db_thread_read_times(
thread_t thread,
time_value_t *user_time_p,
time_value_t *system_time_p)
{
timer_save_data_t temp;
timer_t timer;
timer = &thread->user_timer;
db_timer_grab(timer, &temp);
#ifdef TIMER_ADJUST
TIMER_ADJUST(&temp);
#endif /* TIMER_ADJUST */
user_time_p->seconds = temp.high + temp.low/1000000;
user_time_p->microseconds = temp.low % 1000000;
timer = &thread->system_timer;
timer_grab(timer, &temp);
#ifdef TIMER_ADJUST
TIMER_ADJUST(&temp);
#endif /* TIMER_ADJUST */
system_time_p->seconds = temp.high + temp.low/1000000;
system_time_p->microseconds = temp.low % 1000000;
}
/*
* timer_delta takes the difference of a saved timer value
* and the current one, and updates the saved value to current.
* The difference is returned as a function value. See
* TIMER_DELTA macro (timer.h) for optimization to this.
*/
unsigned
timer_delta(
timer_t timer,
timer_save_t save)
{
timer_save_data_t new_save;
unsigned result;
timer_grab(timer,&new_save);
result = (new_save.high - save->high) * TIMER_HIGH_UNIT +
new_save.low - save->low;
save->high = new_save.high;
save->low = new_save.low;
return(result);
}
|