1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794
|
@CATEGORY=Bitwise Operations
@FUNCTION=BITAND
@SHORTDESC=bitwise and
@SYNTAX=BITAND(a,b)
@ARGUMENTDESCRIPTION=@{a}: non-negative integer
@{b}: non-negative integer
@DESCRIPTION=BITAND returns the bitwise and of the binary representations of its arguments.
@SEEALSO=BITOR,BITXOR
@CATEGORY=Bitwise Operations
@FUNCTION=BITLSHIFT
@SHORTDESC=bit-shift to the left
@SYNTAX=BITLSHIFT(a,n)
@ARGUMENTDESCRIPTION=@{a}: non-negative integer
@{n}: integer
@DESCRIPTION=BITLSHIFT returns the binary representations of @{a} shifted @{n} positions to the left.
@NOTE=If @{n} is negative, BITLSHIFT shifts the bits to the right by ABS(@{n}) positions.
@SEEALSO=BITRSHIFT
@CATEGORY=Bitwise Operations
@FUNCTION=BITOR
@SHORTDESC=bitwise or
@SYNTAX=BITOR(a,b)
@ARGUMENTDESCRIPTION=@{a}: non-negative integer
@{b}: non-negative integer
@DESCRIPTION=BITOR returns the bitwise or of the binary representations of its arguments.
@SEEALSO=BITXOR,BITAND
@CATEGORY=Bitwise Operations
@FUNCTION=BITRSHIFT
@SHORTDESC=bit-shift to the right
@SYNTAX=BITRSHIFT(a,n)
@ARGUMENTDESCRIPTION=@{a}: non-negative integer
@{n}: integer
@DESCRIPTION=BITRSHIFT returns the binary representations of @{a} shifted @{n} positions to the right.
@NOTE=If @{n} is negative, BITRSHIFT shifts the bits to the left by ABS(@{n}) positions.
@SEEALSO=BITLSHIFT
@CATEGORY=Bitwise Operations
@FUNCTION=BITXOR
@SHORTDESC=bitwise exclusive or
@SYNTAX=BITXOR(a,b)
@ARGUMENTDESCRIPTION=@{a}: non-negative integer
@{b}: non-negative integer
@DESCRIPTION=BITXOR returns the bitwise exclusive or of the binary representations of its arguments.
@SEEALSO=BITOR,BITAND
@CATEGORY=Complex
@FUNCTION=COMPLEX
@SHORTDESC=a complex number of the form @{x} + @{y}@{i}
@SYNTAX=COMPLEX(x,y,i)
@ARGUMENTDESCRIPTION=@{x}: real part
@{y}: imaginary part
@{i}: the suffix for the complex number, either "i" or "j"; defaults to "i"
@NOTE=If @{i} is neither "i" nor "j", COMPLEX returns #VALUE!
@EXCEL=This function is Excel compatible.
@CATEGORY=Complex
@FUNCTION=IMABS
@SHORTDESC=the absolute value of the complex number @{z}
@SYNTAX=IMABS(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@EXCEL=This function is Excel compatible.
@SEEALSO=IMAGINARY,IMREAL
@CATEGORY=Complex
@FUNCTION=IMAGINARY
@SHORTDESC=the imaginary part of the complex number @{z}
@SYNTAX=IMAGINARY(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@EXCEL=This function is Excel compatible.
@SEEALSO=IMREAL
@CATEGORY=Complex
@FUNCTION=IMARCCOS
@SHORTDESC=the complex arccosine of the complex number
@SYNTAX=IMARCCOS(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@DESCRIPTION=IMARCCOS returns the complex arccosine of the complex number @{z}. The branch cuts are on the real axis, less than -1 and greater than 1.
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMARCSIN,IMARCTAN
@CATEGORY=Complex
@FUNCTION=IMARCCOSH
@SHORTDESC=the complex hyperbolic arccosine of the complex number @{z}
@SYNTAX=IMARCCOSH(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@DESCRIPTION=IMARCCOSH returns the complex hyperbolic arccosine of the complex number @{z}. The branch cut is on the real axis, less than 1.
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMARCSINH,IMARCTANH
@CATEGORY=Complex
@FUNCTION=IMARCCOT
@SHORTDESC=the complex arccotangent of the complex number @{z}
@SYNTAX=IMARCCOT(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMARCSEC,IMARCCSC
@CATEGORY=Complex
@FUNCTION=IMARCCOTH
@SHORTDESC=the complex hyperbolic arccotangent of the complex number @{z}
@SYNTAX=IMARCCOTH(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMARCSECH,IMARCCSCH
@CATEGORY=Complex
@FUNCTION=IMARCCSC
@SHORTDESC=the complex arccosecant of the complex number @{z}
@SYNTAX=IMARCCSC(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMARCSEC,IMARCCOT
@CATEGORY=Complex
@FUNCTION=IMARCCSCH
@SHORTDESC=the complex hyperbolic arccosecant of the complex number @{z}
@SYNTAX=IMARCCSCH(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMARCSECH,IMARCCOTH
@CATEGORY=Complex
@FUNCTION=IMARCSEC
@SHORTDESC=the complex arcsecant of the complex number @{z}
@SYNTAX=IMARCSEC(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMARCCSC,IMARCCOT
@CATEGORY=Complex
@FUNCTION=IMARCSECH
@SHORTDESC=the complex hyperbolic arcsecant of the complex number @{z}
@SYNTAX=IMARCSECH(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMARCCSCH,IMARCCOTH
@CATEGORY=Complex
@FUNCTION=IMARCSIN
@SHORTDESC=the complex arcsine of the complex number @{z}
@SYNTAX=IMARCSIN(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@DESCRIPTION=IMARCSIN returns the complex arcsine of the complex number @{z}. The branch cuts are on the real axis, less than -1 and greater than 1.
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMARCCOS,IMARCTAN
@CATEGORY=Complex
@FUNCTION=IMARCSINH
@SHORTDESC=the complex hyperbolic arcsine of the complex number @{z}
@SYNTAX=IMARCSINH(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@DESCRIPTION=IMARCSINH returns the complex hyperbolic arcsine of the complex number @{z}. The branch cuts are on the imaginary axis, below -i and above i.
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMARCCOSH,IMARCTANH
@CATEGORY=Complex
@FUNCTION=IMARCTAN
@SHORTDESC=the complex arctangent of the complex number
@SYNTAX=IMARCTAN(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@DESCRIPTION=IMARCTAN returns the complex arctangent of the complex number @{z}. The branch cuts are on the imaginary axis, below -i and above i.
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMARCSIN,IMARCCOS
@CATEGORY=Complex
@FUNCTION=IMARCTANH
@SHORTDESC=the complex hyperbolic arctangent of the complex number @{z}
@SYNTAX=IMARCTANH(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@DESCRIPTION=IMARCTANH returns the complex hyperbolic arctangent of the complex number @{z}. The branch cuts are on the real axis, less than -1 and greater than 1.
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMARCSINH,IMARCCOSH
@CATEGORY=Complex
@FUNCTION=IMARGUMENT
@SHORTDESC=the argument theta of the complex number @{z}
@SYNTAX=IMARGUMENT(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@DESCRIPTION=The argument theta of a complex number is its angle in radians from the real axis.
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned. If @{z} is 0, 0 is returned. This is different from Excel which returns an error.
@CATEGORY=Complex
@FUNCTION=IMCONJUGATE
@SHORTDESC=the complex conjugate of the complex number @{z}
@SYNTAX=IMCONJUGATE(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@EXCEL=This function is Excel compatible.
@SEEALSO=IMAGINARY,IMREAL
@CATEGORY=Complex
@FUNCTION=IMCOS
@SHORTDESC=the cosine of the complex number @{z}
@SYNTAX=IMCOS(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@EXCEL=This function is Excel compatible.
@SEEALSO=IMSIN,IMTAN
@CATEGORY=Complex
@FUNCTION=IMCOSH
@SHORTDESC=the hyperbolic cosine of the complex number @{z}
@SYNTAX=IMCOSH(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMSINH,IMTANH
@CATEGORY=Complex
@FUNCTION=IMCOT
@SHORTDESC=the cotangent of the complex number @{z}
@SYNTAX=IMCOT(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@DESCRIPTION=IMCOT(@{z}) = IMCOS(@{z})/IMSIN(@{z}).
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMSEC,IMCSC
@CATEGORY=Complex
@FUNCTION=IMCOTH
@SHORTDESC=the hyperbolic cotangent of the complex number @{z}
@SYNTAX=IMCOTH(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMSECH,IMCSCH
@CATEGORY=Complex
@FUNCTION=IMCSC
@SHORTDESC=the cosecant of the complex number @{z}
@SYNTAX=IMCSC(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@DESCRIPTION=IMCSC(@{z}) = 1/IMSIN(@{z}).
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMSEC,IMCOT
@CATEGORY=Complex
@FUNCTION=IMCSCH
@SHORTDESC=the hyperbolic cosecant of the complex number @{z}
@SYNTAX=IMCSCH(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMSECH,IMCOTH
@CATEGORY=Complex
@FUNCTION=IMDIV
@SHORTDESC=the quotient of two complex numbers @{z1}/@{z2}
@SYNTAX=IMDIV(z1,z2)
@ARGUMENTDESCRIPTION=@{z1}: a complex number
@{z2}: a complex number
@NOTE=If @{z1} or @{z2} is not a valid complex number, #VALUE! is returned.
@EXCEL=This function is Excel compatible.
@SEEALSO=IMPRODUCT
@CATEGORY=Complex
@FUNCTION=IMEXP
@SHORTDESC=the exponential of the complex number @{z}
@SYNTAX=IMEXP(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@EXCEL=This function is Excel compatible.
@SEEALSO=IMLN
@CATEGORY=Complex
@FUNCTION=IMFACT
@SHORTDESC=the factorial of the complex number @{z}
@SYNTAX=IMFACT(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMGAMMA
@CATEGORY=Complex
@FUNCTION=IMGAMMA
@SHORTDESC=the gamma function of the complex number @{z}
@SYNTAX=IMGAMMA(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMGAMMA
@CATEGORY=Complex
@FUNCTION=IMIGAMMA
@SHORTDESC=the incomplete Gamma function
@SYNTAX=IMIGAMMA(a,z,lower,regularize)
@ARGUMENTDESCRIPTION=@{a}: a complex number
@{z}: a complex number
@{lower}: if true (the default), the lower incomplete gamma function, otherwise the upper incomplete gamma function
@{regularize}: if true (the default), the regularized version of the incomplete gamma function
@NOTE=The regularized incomplete gamma function is the unregularized incomplete gamma function divided by GAMMA(@{a}).
@SEEALSO=GAMMA,IMIGAMMA
@CATEGORY=Complex
@FUNCTION=IMINV
@SHORTDESC=the reciprocal, or inverse, of the complex number @{z}
@SYNTAX=IMINV(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@CATEGORY=Complex
@FUNCTION=IMLN
@SHORTDESC=the natural logarithm of the complex number @{z}
@SYNTAX=IMLN(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@DESCRIPTION=The result will have an imaginary part between -π and +π.
The natural logarithm is not uniquely defined on complex numbers. You may need to add or subtract an even multiple of π to the imaginary part.
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@EXCEL=This function is Excel compatible.
@SEEALSO=IMEXP,IMLOG2,IMLOG10
@CATEGORY=Complex
@FUNCTION=IMLOG10
@SHORTDESC=the base-10 logarithm of the complex number @{z}
@SYNTAX=IMLOG10(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@EXCEL=This function is Excel compatible.
@SEEALSO=IMLN,IMLOG2
@CATEGORY=Complex
@FUNCTION=IMLOG2
@SHORTDESC=the base-2 logarithm of the complex number @{z}
@SYNTAX=IMLOG2(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@EXCEL=This function is Excel compatible.
@SEEALSO=IMLN,IMLOG10
@CATEGORY=Complex
@FUNCTION=IMNEG
@SHORTDESC=the negative of the complex number @{z}
@SYNTAX=IMNEG(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@CATEGORY=Complex
@FUNCTION=IMPOWER
@SHORTDESC=the complex number @{z1} raised to the @{z2}th power
@SYNTAX=IMPOWER(z1,z2)
@ARGUMENTDESCRIPTION=@{z1}: a complex number
@{z2}: a complex number
@NOTE=If @{z1} or @{z2} is not a valid complex number, #VALUE! is returned.
@EXCEL=This function is Excel compatible.
@SEEALSO=IMSQRT
@CATEGORY=Complex
@FUNCTION=IMPRODUCT
@SHORTDESC=the product of the given complex numbers
@SYNTAX=IMPRODUCT(z1,z2,…)
@ARGUMENTDESCRIPTION=@{z1}: a complex number
@{z2}: a complex number
@NOTE=If any of @{z1}, @{z2},... is not a valid complex number, #VALUE! is returned.
@EXCEL=This function is Excel compatible.
@SEEALSO=IMDIV
@CATEGORY=Complex
@FUNCTION=IMREAL
@SHORTDESC=the real part of the complex number @{z}
@SYNTAX=IMREAL(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@EXCEL=This function is Excel compatible.
@SEEALSO=IMAGINARY
@CATEGORY=Complex
@FUNCTION=IMSEC
@SHORTDESC=the secant of the complex number @{z}
@SYNTAX=IMSEC(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@DESCRIPTION=IMSEC(@{z}) = 1/IMCOS(@{z}).
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMCSC,IMCOT
@CATEGORY=Complex
@FUNCTION=IMSECH
@SHORTDESC=the hyperbolic secant of the complex number @{z}
@SYNTAX=IMSECH(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMCSCH,IMCOTH
@CATEGORY=Complex
@FUNCTION=IMSIN
@SHORTDESC=the sine of the complex number @{z}
@SYNTAX=IMSIN(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@EXCEL=This function is Excel compatible.
@SEEALSO=IMCOS,IMTAN
@CATEGORY=Complex
@FUNCTION=IMSINH
@SHORTDESC=the hyperbolic sine of the complex number @{z}
@SYNTAX=IMSINH(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMCOSH,IMTANH
@CATEGORY=Complex
@FUNCTION=IMSQRT
@SHORTDESC=the square root of the complex number @{z}
@SYNTAX=IMSQRT(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@EXCEL=This function is Excel compatible.
@SEEALSO=IMPOWER
@CATEGORY=Complex
@FUNCTION=IMSUB
@SHORTDESC=the difference of two complex numbers
@SYNTAX=IMSUB(z1,z2)
@ARGUMENTDESCRIPTION=@{z1}: a complex number
@{z2}: a complex number
@NOTE=If @{z1} or @{z2} is not a valid complex number, #VALUE! is returned.
@EXCEL=This function is Excel compatible.
@SEEALSO=IMSUM
@CATEGORY=Complex
@FUNCTION=IMSUM
@SHORTDESC=the sum of the given complex numbers
@SYNTAX=IMSUM(z1,z2,…)
@ARGUMENTDESCRIPTION=@{z1}: a complex number
@{z2}: a complex number
@NOTE=If any of @{z1}, @{z2},... is not a valid complex number, #VALUE! is returned.
@EXCEL=This function is Excel compatible.
@SEEALSO=IMSUB
@CATEGORY=Complex
@FUNCTION=IMTAN
@SHORTDESC=the tangent of the complex number @{z}
@SYNTAX=IMTAN(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@EXCEL=This function is Excel compatible.
@SEEALSO=IMSIN,IMCOS
@CATEGORY=Complex
@FUNCTION=IMTANH
@SHORTDESC=the hyperbolic tangent of the complex number @{z}
@SYNTAX=IMTANH(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMSINH,IMCOSH
@CATEGORY=Database
@FUNCTION=DAVERAGE
@SHORTDESC=average of the values in @{field} in @{database} belonging to records that match @{criteria}
@SYNTAX=DAVERAGE(database,field,criteria)
@ARGUMENTDESCRIPTION=@{database}: a range in which rows of related information are records and columns of data are fields
@{field}: a string or integer specifying which field is to be used
@{criteria}: a range containing conditions
@DESCRIPTION=@{database} is a range in which rows of related information are records and columns of data are fields. The first row of a database contains labels for each column.
@{field} is a string or integer specifying which field is to be used. If @{field} is an integer n then the nth column will be used. If @{field} is a string, then the column with the matching label will be used.
@{criteria} is a range containing conditions. The first row of a @{criteria} should contain labels. Each label specifies to which field the conditions given in that column apply. Each cell below the label specifies a condition such as ">3" or "<9". An equality condition can be given by simply specifying a value, e. g. "3" or "Jody". For a record to be considered it must satisfy all conditions in at least one of the rows of @{criteria}.
@SEEALSO=DCOUNT
@CATEGORY=Database
@FUNCTION=DCOUNT
@SHORTDESC=count of numbers in @{field} in @{database} belonging to records that match @{criteria}
@SYNTAX=DCOUNT(database,field,criteria)
@ARGUMENTDESCRIPTION=@{database}: a range in which rows of related information are records and columns of data are fields
@{field}: a string or integer specifying which field is to be used
@{criteria}: a range containing conditions
@DESCRIPTION=@{database} is a range in which rows of related information are records and columns of data are fields. The first row of a database contains labels for each column.
@{field} is a string or integer specifying which field is to be used. If @{field} is an integer n then the nth column will be used. If @{field} is a string, then the column with the matching label will be used.
@{criteria} is a range containing conditions. The first row of a @{criteria} should contain labels. Each label specifies to which field the conditions given in that column apply. Each cell below the label specifies a condition such as ">3" or "<9". An equality condition can be given by simply specifying a value, e. g. "3" or "Jody". For a record to be considered it must satisfy all conditions in at least one of the rows of @{criteria}.
@SEEALSO=DAVERAGE,DCOUNTA
@CATEGORY=Database
@FUNCTION=DCOUNTA
@SHORTDESC=count of cells with data in @{field} in @{database} belonging to records that match @{criteria}
@SYNTAX=DCOUNTA(database,field,criteria)
@ARGUMENTDESCRIPTION=@{database}: a range in which rows of related information are records and columns of data are fields
@{field}: a string or integer specifying which field is to be used
@{criteria}: a range containing conditions
@DESCRIPTION=@{database} is a range in which rows of related information are records and columns of data are fields. The first row of a database contains labels for each column.
@{field} is a string or integer specifying which field is to be used. If @{field} is an integer n then the nth column will be used. If @{field} is a string, then the column with the matching label will be used.
@{criteria} is a range containing conditions. The first row of a @{criteria} should contain labels. Each label specifies to which field the conditions given in that column apply. Each cell below the label specifies a condition such as ">3" or "<9". An equality condition can be given by simply specifying a value, e. g. "3" or "Jody". For a record to be considered it must satisfy all conditions in at least one of the rows of @{criteria}.
@SEEALSO=DCOUNT
@CATEGORY=Database
@FUNCTION=DGET
@SHORTDESC=a value from @{field} in @{database} belonging to records that match @{criteria}
@SYNTAX=DGET(database,field,criteria)
@ARGUMENTDESCRIPTION=@{database}: a range in which rows of related information are records and columns of data are fields
@{field}: a string or integer specifying which field is to be used
@{criteria}: a range containing conditions
@DESCRIPTION=@{database} is a range in which rows of related information are records and columns of data are fields. The first row of a database contains labels for each column.
@{field} is a string or integer specifying which field is to be used. If @{field} is an integer n then the nth column will be used. If @{field} is a string, then the column with the matching label will be used.
@{criteria} is a range containing conditions. The first row of a @{criteria} should contain labels. Each label specifies to which field the conditions given in that column apply. Each cell below the label specifies a condition such as ">3" or "<9". An equality condition can be given by simply specifying a value, e. g. "3" or "Jody". For a record to be considered it must satisfy all conditions in at least one of the rows of @{criteria}.
@NOTE=If none of the records match the conditions, DGET returns #VALUE! If more than one record match the conditions, DGET returns #NUM!
@SEEALSO=DCOUNT
@CATEGORY=Database
@FUNCTION=DMAX
@SHORTDESC=largest number in @{field} in @{database} belonging to a record that match @{criteria}
@SYNTAX=DMAX(database,field,criteria)
@ARGUMENTDESCRIPTION=@{database}: a range in which rows of related information are records and columns of data are fields
@{field}: a string or integer specifying which field is to be used
@{criteria}: a range containing conditions
@DESCRIPTION=@{database} is a range in which rows of related information are records and columns of data are fields. The first row of a database contains labels for each column.
@{field} is a string or integer specifying which field is to be used. If @{field} is an integer n then the nth column will be used. If @{field} is a string, then the column with the matching label will be used.
@{criteria} is a range containing conditions. The first row of a @{criteria} should contain labels. Each label specifies to which field the conditions given in that column apply. Each cell below the label specifies a condition such as ">3" or "<9". An equality condition can be given by simply specifying a value, e. g. "3" or "Jody". For a record to be considered it must satisfy all conditions in at least one of the rows of @{criteria}.
@SEEALSO=DMIN
@CATEGORY=Database
@FUNCTION=DMIN
@SHORTDESC=smallest number in @{field} in @{database} belonging to a record that match @{criteria}
@SYNTAX=DMIN(database,field,criteria)
@ARGUMENTDESCRIPTION=@{database}: a range in which rows of related information are records and columns of data are fields
@{field}: a string or integer specifying which field is to be used
@{criteria}: a range containing conditions
@DESCRIPTION=@{database} is a range in which rows of related information are records and columns of data are fields. The first row of a database contains labels for each column.
@{field} is a string or integer specifying which field is to be used. If @{field} is an integer n then the nth column will be used. If @{field} is a string, then the column with the matching label will be used.
@{criteria} is a range containing conditions. The first row of a @{criteria} should contain labels. Each label specifies to which field the conditions given in that column apply. Each cell below the label specifies a condition such as ">3" or "<9". An equality condition can be given by simply specifying a value, e. g. "3" or "Jody". For a record to be considered it must satisfy all conditions in at least one of the rows of @{criteria}.
@SEEALSO=DCOUNT
@CATEGORY=Database
@FUNCTION=DPRODUCT
@SHORTDESC=product of all values in @{field} in @{database} belonging to records that match @{criteria}
@SYNTAX=DPRODUCT(database,field,criteria)
@ARGUMENTDESCRIPTION=@{database}: a range in which rows of related information are records and columns of data are fields
@{field}: a string or integer specifying which field is to be used
@{criteria}: a range containing conditions
@DESCRIPTION=@{database} is a range in which rows of related information are records and columns of data are fields. The first row of a database contains labels for each column.
@{field} is a string or integer specifying which field is to be used. If @{field} is an integer n then the nth column will be used. If @{field} is a string, then the column with the matching label will be used.
@{criteria} is a range containing conditions. The first row of a @{criteria} should contain labels. Each label specifies to which field the conditions given in that column apply. Each cell below the label specifies a condition such as ">3" or "<9". An equality condition can be given by simply specifying a value, e. g. "3" or "Jody". For a record to be considered it must satisfy all conditions in at least one of the rows of @{criteria}.
@SEEALSO=DSUM
@CATEGORY=Database
@FUNCTION=DSTDEV
@SHORTDESC=sample standard deviation of the values in @{field} in @{database} belonging to records that match @{criteria}
@SYNTAX=DSTDEV(database,field,criteria)
@ARGUMENTDESCRIPTION=@{database}: a range in which rows of related information are records and columns of data are fields
@{field}: a string or integer specifying which field is to be used
@{criteria}: a range containing conditions
@DESCRIPTION=@{database} is a range in which rows of related information are records and columns of data are fields. The first row of a database contains labels for each column.
@{field} is a string or integer specifying which field is to be used. If @{field} is an integer n then the nth column will be used. If @{field} is a string, then the column with the matching label will be used.
@{criteria} is a range containing conditions. The first row of a @{criteria} should contain labels. Each label specifies to which field the conditions given in that column apply. Each cell below the label specifies a condition such as ">3" or "<9". An equality condition can be given by simply specifying a value, e. g. "3" or "Jody". For a record to be considered it must satisfy all conditions in at least one of the rows of @{criteria}.
@SEEALSO=DSTDEVP
@CATEGORY=Database
@FUNCTION=DSTDEVP
@SHORTDESC=standard deviation of the population of values in @{field} in @{database} belonging to records that match @{criteria}
@SYNTAX=DSTDEVP(database,field,criteria)
@ARGUMENTDESCRIPTION=@{database}: a range in which rows of related information are records and columns of data are fields
@{field}: a string or integer specifying which field is to be used
@{criteria}: a range containing conditions
@DESCRIPTION=@{database} is a range in which rows of related information are records and columns of data are fields. The first row of a database contains labels for each column.
@{field} is a string or integer specifying which field is to be used. If @{field} is an integer n then the nth column will be used. If @{field} is a string, then the column with the matching label will be used.
@{criteria} is a range containing conditions. The first row of a @{criteria} should contain labels. Each label specifies to which field the conditions given in that column apply. Each cell below the label specifies a condition such as ">3" or "<9". An equality condition can be given by simply specifying a value, e. g. "3" or "Jody". For a record to be considered it must satisfy all conditions in at least one of the rows of @{criteria}.
@SEEALSO=DSTDEV
@CATEGORY=Database
@FUNCTION=DSUM
@SHORTDESC=sum of the values in @{field} in @{database} belonging to records that match @{criteria}
@SYNTAX=DSUM(database,field,criteria)
@ARGUMENTDESCRIPTION=@{database}: a range in which rows of related information are records and columns of data are fields
@{field}: a string or integer specifying which field is to be used
@{criteria}: a range containing conditions
@DESCRIPTION=@{database} is a range in which rows of related information are records and columns of data are fields. The first row of a database contains labels for each column.
@{field} is a string or integer specifying which field is to be used. If @{field} is an integer n then the nth column will be used. If @{field} is a string, then the column with the matching label will be used.
@{criteria} is a range containing conditions. The first row of a @{criteria} should contain labels. Each label specifies to which field the conditions given in that column apply. Each cell below the label specifies a condition such as ">3" or "<9". An equality condition can be given by simply specifying a value, e. g. "3" or "Jody". For a record to be considered it must satisfy all conditions in at least one of the rows of @{criteria}.
@SEEALSO=DPRODUCT
@CATEGORY=Database
@FUNCTION=DVAR
@SHORTDESC=sample variance of the values in @{field} in @{database} belonging to records that match @{criteria}
@SYNTAX=DVAR(database,field,criteria)
@ARGUMENTDESCRIPTION=@{database}: a range in which rows of related information are records and columns of data are fields
@{field}: a string or integer specifying which field is to be used
@{criteria}: a range containing conditions
@DESCRIPTION=@{database} is a range in which rows of related information are records and columns of data are fields. The first row of a database contains labels for each column.
@{field} is a string or integer specifying which field is to be used. If @{field} is an integer n then the nth column will be used. If @{field} is a string, then the column with the matching label will be used.
@{criteria} is a range containing conditions. The first row of a @{criteria} should contain labels. Each label specifies to which field the conditions given in that column apply. Each cell below the label specifies a condition such as ">3" or "<9". An equality condition can be given by simply specifying a value, e. g. "3" or "Jody". For a record to be considered it must satisfy all conditions in at least one of the rows of @{criteria}.
@SEEALSO=DVARP
@CATEGORY=Database
@FUNCTION=DVARP
@SHORTDESC=variance of the population of values in @{field} in @{database} belonging to records that match @{criteria}
@SYNTAX=DVARP(database,field,criteria)
@ARGUMENTDESCRIPTION=@{database}: a range in which rows of related information are records and columns of data are fields
@{field}: a string or integer specifying which field is to be used
@{criteria}: a range containing conditions
@DESCRIPTION=@{database} is a range in which rows of related information are records and columns of data are fields. The first row of a database contains labels for each column.
@{field} is a string or integer specifying which field is to be used. If @{field} is an integer n then the nth column will be used. If @{field} is a string, then the column with the matching label will be used.
@{criteria} is a range containing conditions. The first row of a @{criteria} should contain labels. Each label specifies to which field the conditions given in that column apply. Each cell below the label specifies a condition such as ">3" or "<9". An equality condition can be given by simply specifying a value, e. g. "3" or "Jody". For a record to be considered it must satisfy all conditions in at least one of the rows of @{criteria}.
@SEEALSO=DVAR
@CATEGORY=Database
@FUNCTION=GETPIVOTDATA
@SHORTDESC=summary data from a pivot table
@SYNTAX=GETPIVOTDATA(pivot_table,field_name)
@ARGUMENTDESCRIPTION=@{pivot_table}: cell range containing the pivot table
@{field_name}: name of the field for which the summary data is requested
@NOTE=If the summary data is unavailable, GETPIVOTDATA returns #REF!
@CATEGORY=Date/Time
@FUNCTION=ASCENSIONTHURSDAY
@SHORTDESC=Ascension Thursday in the Gregorian calendar according to the Roman rite of the Christian Church
@SYNTAX=ASCENSIONTHURSDAY(year)
@ARGUMENTDESCRIPTION=@{year}: year between 1582 and 9956, defaults to the year of the next Ascension Thursday
@NOTE=Two digit years are adjusted as elsewhere in Gnumeric. Dates before 1904 may also be prohibited.
@SEEALSO=EASTERSUNDAY
@CATEGORY=Date/Time
@FUNCTION=ASHWEDNESDAY
@SHORTDESC=Ash Wednesday in the Gregorian calendar according to the Roman rite of the Christian Church
@SYNTAX=ASHWEDNESDAY(year)
@ARGUMENTDESCRIPTION=@{year}: year between 1582 and 9956, defaults to the year of the next Ash Wednesday
@NOTE=Two digit years are adjusted as elsewhere in Gnumeric. Dates before 1904 may also be prohibited.
@SEEALSO=EASTERSUNDAY
@CATEGORY=Date/Time
@FUNCTION=DATE
@SHORTDESC=create a date serial value
@SYNTAX=DATE(year,month,day)
@ARGUMENTDESCRIPTION=@{year}: year of date
@{month}: month of year
@{day}: day of month
@DESCRIPTION=The DATE function creates date serial values. 1-Jan-1900 is serial value 1, 2-Jan-1900 is serial value 2, and so on. For compatibility reasons, a serial value is reserved for the non-existing date 29-Feb-1900.
@NOTE=If @{month} or @{day} is less than 1 or too big, then the year and/or month will be adjusted. For spreadsheets created with the Mac version of Excel, serial 1 is 1-Jan-1904.
@EXCEL=This function is Excel compatible.
@SEEALSO=TODAY,YEAR,MONTH,DAY
@CATEGORY=Date/Time
@FUNCTION=DATE2HDATE
@SHORTDESC=Hebrew date
@SYNTAX=DATE2HDATE(date)
@ARGUMENTDESCRIPTION=@{date}: Gregorian date, defaults to today
@SEEALSO=HDATE,DATE2HDATE_HEB
@CATEGORY=Date/Time
@FUNCTION=DATE2HDATE_HEB
@SHORTDESC=Hebrew date in Hebrew
@SYNTAX=DATE2HDATE_HEB(date)
@ARGUMENTDESCRIPTION=@{date}: Gregorian date, defaults to today
@SEEALSO=DATE2HDATE,HDATE_HEB
@CATEGORY=Date/Time
@FUNCTION=DATE2JULIAN
@SHORTDESC=Julian day number for given Gregorian date
@SYNTAX=DATE2JULIAN(date)
@ARGUMENTDESCRIPTION=@{date}: Gregorian date, defaults to today
@SEEALSO=HDATE_JULIAN
@CATEGORY=Date/Time
@FUNCTION=DATE2UNIX
@SHORTDESC=the Unix timestamp corresponding to a date @{d}
@SYNTAX=DATE2UNIX(d)
@ARGUMENTDESCRIPTION=@{d}: date
@DESCRIPTION=The DATE2UNIX function translates a date into a Unix timestamp. A Unix timestamp is the number of seconds since midnight (0:00) of January 1st, 1970 GMT.
@SEEALSO=UNIX2DATE,DATE
@CATEGORY=Date/Time
@FUNCTION=DATEDIF
@SHORTDESC=difference between dates
@SYNTAX=DATEDIF(start_date,end_date,interval)
@ARGUMENTDESCRIPTION=@{start_date}: starting date serial value
@{end_date}: ending date serial value
@{interval}: counting unit
@DESCRIPTION=DATEDIF returns the distance from @{start_date} to @{end_date} according to the unit specified by @{interval}.
@NOTE=If @{interval} is "y", "m", or "d" then the distance is measured in complete years, months, or days respectively. If @{interval} is "ym" or "yd" then the distance is measured in complete months or days, respectively, but excluding any difference in years. If @{interval} is "md" then the distance is measured in complete days but excluding any difference in months.
@EXCEL=This function is Excel compatible.
@SEEALSO=DAYS360
@CATEGORY=Date/Time
@FUNCTION=DATEVALUE
@SHORTDESC=the date part of a date and time serial value
@SYNTAX=DATEVALUE(serial)
@ARGUMENTDESCRIPTION=@{serial}: date and time serial value
@DESCRIPTION=DATEVALUE returns the date serial value part of a date and time serial value.
@EXCEL=This function is Excel compatible.
@SEEALSO=TIMEVALUE,DATE
@CATEGORY=Date/Time
@FUNCTION=DAY
@SHORTDESC=the day-of-month part of a date serial value
@SYNTAX=DAY(date)
@ARGUMENTDESCRIPTION=@{date}: date serial value
@DESCRIPTION=The DAY function returns the day-of-month part of @{date}.
@EXCEL=This function is Excel compatible.
@SEEALSO=DATE,YEAR,MONTH
@CATEGORY=Date/Time
@FUNCTION=DAYS
@SHORTDESC=difference between dates in days
@SYNTAX=DAYS(end_date,start_date)
@ARGUMENTDESCRIPTION=@{end_date}: ending date serial value
@{start_date}: starting date serial value
@DESCRIPTION=DAYS returns the positive or negative number of days from @{start_date} to @{end_date}.
@ODF=This function is OpenFormula compatible.
@SEEALSO=DATEDIF
@CATEGORY=Date/Time
@FUNCTION=DAYS360
@SHORTDESC=days between dates
@SYNTAX=DAYS360(start_date,end_date,method)
@ARGUMENTDESCRIPTION=@{start_date}: starting date serial value
@{end_date}: ending date serial value
@{method}: counting method
@DESCRIPTION=DAYS360 returns the number of days from @{start_date} to @{end_date}.
@NOTE=If @{method} is 0, the default, the MS Excel (tm) US method will be used. This is a somewhat complicated industry standard method where the last day of February is considered to be the 30th day of the month, but only for @{start_date}. If @{method} is 1, the European method will be used. In this case, if the day of the month is 31 it will be considered as 30 If @{method} is 2, a saner version of the US method is used in which both dates get the same February treatment.
@EXCEL=This function is Excel compatible.
@SEEALSO=DATEDIF
@CATEGORY=Date/Time
@FUNCTION=EASTERSUNDAY
@SHORTDESC=Easter Sunday in the Gregorian calendar according to the Roman rite of the Christian Church
@SYNTAX=EASTERSUNDAY(year)
@ARGUMENTDESCRIPTION=@{year}: year between 1582 and 9956, defaults to the year of the next Easter Sunday
@NOTE=Two digit years are adjusted as elsewhere in Gnumeric. Dates before 1904 may also be prohibited.
@ODF=The 1-argument version of EASTERSUNDAY is compatible with OpenOffice for years after 1904. This function is not specified in ODF/OpenFormula.
@SEEALSO=ASHWEDNESDAY
@CATEGORY=Date/Time
@FUNCTION=EDATE
@SHORTDESC=adjust a date by a number of months
@SYNTAX=EDATE(date,months)
@ARGUMENTDESCRIPTION=@{date}: date serial value
@{months}: signed number of months
@DESCRIPTION=EDATE returns @{date} moved forward or backward the number of months specified by @{months}.
@EXCEL=This function is Excel compatible.
@SEEALSO=DATE
@CATEGORY=Date/Time
@FUNCTION=EOMONTH
@SHORTDESC=end of month
@SYNTAX=EOMONTH(date,months)
@ARGUMENTDESCRIPTION=@{date}: date serial value
@{months}: signed number of months
@DESCRIPTION=EOMONTH returns the date serial value of the end of the month specified by @{date} adjusted forward or backward the number of months specified by @{months}.
@EXCEL=This function is Excel compatible.
@SEEALSO=EDATE
@CATEGORY=Date/Time
@FUNCTION=GOODFRIDAY
@SHORTDESC=Good Friday in the Gregorian calendar according to the Roman rite of the Christian Church
@SYNTAX=GOODFRIDAY(year)
@ARGUMENTDESCRIPTION=@{year}: year between 1582 and 9956, defaults to the year of the next Good Friday
@NOTE=Two digit years are adjusted as elsewhere in Gnumeric. Dates before 1904 may also be prohibited.
@SEEALSO=EASTERSUNDAY
@CATEGORY=Date/Time
@FUNCTION=HDATE
@SHORTDESC=Hebrew date
@SYNTAX=HDATE(year,month,day)
@ARGUMENTDESCRIPTION=@{year}: Gregorian year of date, defaults to the current year
@{month}: Gregorian month of year, defaults to the current month
@{day}: Gregorian day of month, defaults to the current day
@SEEALSO=HDATE_HEB,DATE
@CATEGORY=Date/Time
@FUNCTION=HDATE_DAY
@SHORTDESC=Hebrew day of Gregorian date
@SYNTAX=HDATE_DAY(year,month,day)
@ARGUMENTDESCRIPTION=@{year}: Gregorian year of date, defaults to the current year
@{month}: Gregorian month of year, defaults to the current month
@{day}: Gregorian day of month, defaults to the current day
@SEEALSO=HDATE_JULIAN
@CATEGORY=Date/Time
@FUNCTION=HDATE_HEB
@SHORTDESC=Hebrew date in Hebrew
@SYNTAX=HDATE_HEB(year,month,day)
@ARGUMENTDESCRIPTION=@{year}: Gregorian year of date, defaults to the current year
@{month}: Gregorian month of year, defaults to the current month
@{day}: Gregorian day of month, defaults to the current day
@SEEALSO=HDATE,DATE
@CATEGORY=Date/Time
@FUNCTION=HDATE_JULIAN
@SHORTDESC=Julian day number for given Gregorian date
@SYNTAX=HDATE_JULIAN(year,month,day)
@ARGUMENTDESCRIPTION=@{year}: Gregorian year of date, defaults to the current year
@{month}: Gregorian month of year, defaults to the current month
@{day}: Gregorian day of month, defaults to the current day
@SEEALSO=HDATE
@CATEGORY=Date/Time
@FUNCTION=HDATE_MONTH
@SHORTDESC=Hebrew month of Gregorian date
@SYNTAX=HDATE_MONTH(year,month,day)
@ARGUMENTDESCRIPTION=@{year}: Gregorian year of date, defaults to the current year
@{month}: Gregorian month of year, defaults to the current month
@{day}: Gregorian day of month, defaults to the current day
@SEEALSO=HDATE_JULIAN
@CATEGORY=Date/Time
@FUNCTION=HDATE_YEAR
@SHORTDESC=Hebrew year of Gregorian date
@SYNTAX=HDATE_YEAR(year,month,day)
@ARGUMENTDESCRIPTION=@{year}: Gregorian year of date, defaults to the current year
@{month}: Gregorian month of year, defaults to the current month
@{day}: Gregorian day of month, defaults to the current day
@SEEALSO=HDATE_JULIAN
@CATEGORY=Date/Time
@FUNCTION=HOUR
@SHORTDESC=compute hour part of fractional day
@SYNTAX=HOUR(time)
@ARGUMENTDESCRIPTION=@{time}: time of day as fractional day
@DESCRIPTION=The HOUR function computes the hour part of the fractional day given by @{time}.
@EXCEL=This function is Excel compatible.
@SEEALSO=TIME,MINUTE,SECOND
@CATEGORY=Date/Time
@FUNCTION=ISOWEEKNUM
@SHORTDESC=ISO week number
@SYNTAX=ISOWEEKNUM(date)
@ARGUMENTDESCRIPTION=@{date}: date serial value
@DESCRIPTION=ISOWEEKNUM calculates the week number according to the ISO 8601 standard. Weeks start on Mondays and week 1 contains the first Thursday of the year.
@NOTE=January 1 of a year is sometimes in week 52 or 53 of the previous year. Similarly, December 31 is sometimes in week 1 of the following year.
@SEEALSO=ISOYEAR,WEEKNUM
@CATEGORY=Date/Time
@FUNCTION=ISOYEAR
@SHORTDESC=year corresponding to the ISO week number
@SYNTAX=ISOYEAR(date)
@ARGUMENTDESCRIPTION=@{date}: date serial value
@DESCRIPTION=ISOYEAR calculates the year to go with week number according to the ISO 8601 standard.
@NOTE=January 1 of a year is sometimes in week 52 or 53 of the previous year. Similarly, December 31 is sometimes in week 1 of the following year.
@SEEALSO=ISOWEEKNUM,YEAR
@CATEGORY=Date/Time
@FUNCTION=MINUTE
@SHORTDESC=compute minute part of fractional day
@SYNTAX=MINUTE(time)
@ARGUMENTDESCRIPTION=@{time}: time of day as fractional day
@DESCRIPTION=The MINUTE function computes the minute part of the fractional day given by @{time}.
@EXCEL=This function is Excel compatible.
@SEEALSO=TIME,HOUR,SECOND
@CATEGORY=Date/Time
@FUNCTION=MONTH
@SHORTDESC=the month part of a date serial value
@SYNTAX=MONTH(date)
@ARGUMENTDESCRIPTION=@{date}: date serial value
@DESCRIPTION=The MONTH function returns the month part of @{date}.
@EXCEL=This function is Excel compatible.
@SEEALSO=DATE,YEAR,DAY
@CATEGORY=Date/Time
@FUNCTION=NETWORKDAYS
@SHORTDESC=number of workdays in range
@SYNTAX=NETWORKDAYS(start_date,end_date,holidays,weekend)
@ARGUMENTDESCRIPTION=@{start_date}: starting date serial value
@{end_date}: ending date serial value
@{holidays}: array of holidays
@{weekend}: array of 0s and 1s, indicating whether a weekday (S, M, T, W, T, F, S) is on the weekend, defaults to {1,0,0,0,0,0,1}
@DESCRIPTION=NETWORKDAYS calculates the number of days from @{start_date} to @{end_date} skipping weekends and @{holidays} in the process.
@NOTE=If an entry of @{weekend} is non-zero, the corresponding weekday is not a work day.
@EXCEL=This function is Excel compatible if the last argument is omitted.
@ODF=This function is OpenFormula compatible.
@SEEALSO=WORKDAY
@CATEGORY=Date/Time
@FUNCTION=NOW
@SHORTDESC=the date and time serial value of the current time
@SYNTAX=NOW()
@DESCRIPTION=The NOW function returns the date and time serial value of the moment it is computed. Recomputing later will produce a different value.
@EXCEL=This function is Excel compatible.
@SEEALSO=DATE
@CATEGORY=Date/Time
@FUNCTION=ODF.TIME
@SHORTDESC=create a time serial value
@SYNTAX=ODF.TIME(hour,minute,second)
@ARGUMENTDESCRIPTION=@{hour}: hour
@{minute}: minute
@{second}: second
@DESCRIPTION=The ODF.TIME function computes the time given by @{hour}, @{minute}, and @{second} as a fraction of a day.
@NOTE=While the return value is automatically formatted to look like a time between 0:00 and 24:00, the underlying serial time value can be any number.
@ODF=This function is OpenFormula compatible.
@SEEALSO=TIME,HOUR,MINUTE,SECOND
@CATEGORY=Date/Time
@FUNCTION=PENTECOSTSUNDAY
@SHORTDESC=Pentecost Sunday in the Gregorian calendar according to the Roman rite of the Christian Church
@SYNTAX=PENTECOSTSUNDAY(year)
@ARGUMENTDESCRIPTION=@{year}: year between 1582 and 9956, defaults to the year of the next Pentecost Sunday
@NOTE=Two digit years are adjusted as elsewhere in Gnumeric. Dates before 1904 may also be prohibited.
@SEEALSO=EASTERSUNDAY
@CATEGORY=Date/Time
@FUNCTION=SECOND
@SHORTDESC=compute seconds part of fractional day
@SYNTAX=SECOND(time)
@ARGUMENTDESCRIPTION=@{time}: time of day as fractional day
@DESCRIPTION=The SECOND function computes the seconds part of the fractional day given by @{time}.
@EXCEL=This function is Excel compatible.
@SEEALSO=TIME,HOUR,MINUTE
@CATEGORY=Date/Time
@FUNCTION=TIME
@SHORTDESC=create a time serial value
@SYNTAX=TIME(hour,minute,second)
@ARGUMENTDESCRIPTION=@{hour}: hour of the day
@{minute}: minute within the hour
@{second}: second within the minute
@DESCRIPTION=The TIME function computes the fractional day after midnight at the time given by @{hour}, @{minute}, and @{second}.
@NOTE=While the return value is automatically formatted to look like a time between 0:00 and 24:00, the underlying serial time value is a number between 0 and 1. If any of @{hour}, @{minute}, and @{second} is negative, #NUM! is returned
@EXCEL=This function is Excel compatible.
@SEEALSO=ODF.TIME,HOUR,MINUTE,SECOND
@CATEGORY=Date/Time
@FUNCTION=TIMEVALUE
@SHORTDESC=the time part of a date and time serial value
@SYNTAX=TIMEVALUE(serial)
@ARGUMENTDESCRIPTION=@{serial}: date and time serial value
@DESCRIPTION=TIMEVALUE returns the time-of-day part of a date and time serial value.
@EXCEL=This function is Excel compatible.
@SEEALSO=DATEVALUE,TIME
@CATEGORY=Date/Time
@FUNCTION=TODAY
@SHORTDESC=the date serial value of today
@SYNTAX=TODAY()
@DESCRIPTION=The TODAY function returns the date serial value of the day it is computed. Recomputing on a later date will produce a different value.
@EXCEL=This function is Excel compatible.
@SEEALSO=DATE
@CATEGORY=Date/Time
@FUNCTION=UNIX2DATE
@SHORTDESC=date value corresponding to the Unix timestamp @{t}
@SYNTAX=UNIX2DATE(t)
@ARGUMENTDESCRIPTION=@{t}: Unix time stamp
@DESCRIPTION=The UNIX2DATE function translates Unix timestamps into the corresponding date. A Unix timestamp is the number of seconds since midnight (0:00) of January 1st, 1970 GMT.
@SEEALSO=DATE2UNIX,DATE
@CATEGORY=Date/Time
@FUNCTION=WEEKDAY
@SHORTDESC=day-of-week
@SYNTAX=WEEKDAY(date,method)
@ARGUMENTDESCRIPTION=@{date}: date serial value
@{method}: numbering system, defaults to 1
@DESCRIPTION=The WEEKDAY function returns the day-of-week of @{date}. The value of @{method} determines how days are numbered; it defaults to 1.
@NOTE=If @{method} is 1, then Sunday is 1, Monday is 2, etc. If @{method} is 2, then Monday is 1, Tuesday is 2, etc. If @{method} is 3, then Monday is 0, Tuesday is 1, etc. If @{method} is 11, then Monday is 1, Tuesday is 2, etc. If @{method} is 12, then Tuesday is 1, Wednesday is 2, etc. If @{method} is 13, then Wednesday is 1, Thursday is 2, etc. If @{method} is 14, then Thursday is 1, Friday is 2, etc. If @{method} is 15, then Friday is 1, Saturday is 2, etc. If @{method} is 16, then Saturday is 1, Sunday is 2, etc. If @{method} is 17, then Sunday is 1, Monday is 2, etc.
@EXCEL=This function is Excel compatible.
@SEEALSO=DATE,ISOWEEKNUM
@CATEGORY=Date/Time
@FUNCTION=WEEKNUM
@SHORTDESC=week number
@SYNTAX=WEEKNUM(date,method)
@ARGUMENTDESCRIPTION=@{date}: date serial value
@{method}: numbering system, defaults to 1
@DESCRIPTION=WEEKNUM calculates the week number according to @{method} which defaults to 1.
@NOTE=If @{method} is 1, then weeks start on Sundays and January 1 is in week 1. If @{method} is 2, then weeks start on Mondays and January 1 is in week 1. If @{method} is 150, then the ISO 8601 numbering is used.
@SEEALSO=ISOWEEKNUM
@CATEGORY=Date/Time
@FUNCTION=WORKDAY
@SHORTDESC=add working days
@SYNTAX=WORKDAY(date,days,holidays,weekend)
@ARGUMENTDESCRIPTION=@{date}: date serial value
@{days}: number of days to add
@{holidays}: array of holidays
@{weekend}: array of 0s and 1s, indicating whether a weekday (S, M, T, W, T, F, S) is on the weekend, defaults to {1,0,0,0,0,0,1}
@DESCRIPTION=WORKDAY adjusts @{date} by @{days} skipping over weekends and @{holidays} in the process.
@NOTE=@{days} may be negative. If an entry of @{weekend} is non-zero, the corresponding weekday is not a work day.
@EXCEL=This function is Excel compatible if the last argument is omitted.
@ODF=This function is OpenFormula compatible.
@SEEALSO=NETWORKDAYS
@CATEGORY=Date/Time
@FUNCTION=YEAR
@SHORTDESC=the year part of a date serial value
@SYNTAX=YEAR(date)
@ARGUMENTDESCRIPTION=@{date}: date serial value
@DESCRIPTION=The YEAR function returns the year part of @{date}.
@EXCEL=This function is Excel compatible.
@SEEALSO=DATE,MONTH,DAY
@CATEGORY=Date/Time
@FUNCTION=YEARFRAC
@SHORTDESC=fractional number of years between dates
@SYNTAX=YEARFRAC(start_date,end_date,basis)
@ARGUMENTDESCRIPTION=@{start_date}: starting date serial value
@{end_date}: ending date serial value
@{basis}: calendar basis
@DESCRIPTION=YEARFRAC calculates the number of days from @{start_date} to @{end_date} according to the calendar specified by @{basis}, which defaults to 0, and expresses the result as a fractional number of years.
@NOTE=If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=DATE
@CATEGORY=Engineering
@FUNCTION=BASE
@SHORTDESC=string of digits representing the number @{n} in base @{b}
@SYNTAX=BASE(n,b,length)
@ARGUMENTDESCRIPTION=@{n}: integer
@{b}: base (2 ≤ @{b} ≤ 36)
@{length}: minimum length of the resulting string
@DESCRIPTION=BASE converts @{n} to its string representation in base @{b}. Leading zeroes will be added to reach the minimum length given by @{length}.
@ODF=This function is OpenFormula compatible.
@SEEALSO=DECIMAL
@CATEGORY=Engineering
@FUNCTION=BESSELI
@SHORTDESC=Modified Bessel function of the first kind of order @{α} at @{x}
@SYNTAX=BESSELI(X,α)
@ARGUMENTDESCRIPTION=@{X}: number
@{α}: order (any non-negative number)
@NOTE=If @{x} or @{α} are not numeric, #VALUE! is returned. If @{α} < 0, #NUM! is returned.
@EXCEL=This function is Excel compatible if only integer orders @{α} are used.
@SEEALSO=BESSELJ,BESSELK,BESSELY
@CATEGORY=Engineering
@FUNCTION=BESSELJ
@SHORTDESC=Bessel function of the first kind of order @{α} at @{x}
@SYNTAX=BESSELJ(X,α)
@ARGUMENTDESCRIPTION=@{X}: number
@{α}: order (any non-negative integer)
@NOTE=If @{x} or @{α} are not numeric, #VALUE! is returned. If @{α} < 0, #NUM! is returned.
@EXCEL=This function is Excel compatible if only integer orders @{α} are used.
@SEEALSO=BESSELI,BESSELK,BESSELY
@CATEGORY=Engineering
@FUNCTION=BESSELK
@SHORTDESC=Modified Bessel function of the second kind of order @{α} at @{x}
@SYNTAX=BESSELK(X,α)
@ARGUMENTDESCRIPTION=@{X}: number
@{α}: order (any non-negative number)
@NOTE=If @{x} or @{α} are not numeric, #VALUE! is returned. If @{α} < 0, #NUM! is returned.
@EXCEL=This function is Excel compatible if only integer orders @{α} are used.
@SEEALSO=BESSELI,BESSELJ,BESSELY
@CATEGORY=Engineering
@FUNCTION=BESSELY
@SHORTDESC=Bessel function of the second kind of order @{α} at @{x}
@SYNTAX=BESSELY(X,α)
@ARGUMENTDESCRIPTION=@{X}: number
@{α}: order (any non-negative integer)
@NOTE=If @{x} or @{α} are not numeric, #VALUE! is returned. If @{α} < 0, #NUM! is returned.
@EXCEL=This function is Excel compatible if only integer orders @{α} are used.
@SEEALSO=BESSELI,BESSELJ,BESSELK
@CATEGORY=Engineering
@FUNCTION=BIN2DEC
@SHORTDESC=decimal representation of the binary number @{x}
@SYNTAX=BIN2DEC(x)
@ARGUMENTDESCRIPTION=@{x}: a binary number, either as a string or as a number involving only the digits 0 and 1
@EXCEL=This function is Excel compatible.
@SEEALSO=DEC2BIN,BIN2OCT,BIN2HEX
@CATEGORY=Engineering
@FUNCTION=BIN2HEX
@SHORTDESC=hexadecimal representation of the binary number @{x}
@SYNTAX=BIN2HEX(x,places)
@ARGUMENTDESCRIPTION=@{x}: a binary number, either as a string or as a number involving only the digits 0 and 1
@{places}: number of digits
@DESCRIPTION=If @{places} is given, BIN2HEX pads the result with zeros to achieve exactly @{places} digits. If this is not possible, BIN2HEX returns #NUM!
@EXCEL=This function is Excel compatible.
@SEEALSO=HEX2BIN,BIN2OCT,BIN2DEC
@CATEGORY=Engineering
@FUNCTION=BIN2OCT
@SHORTDESC=octal representation of the binary number @{x}
@SYNTAX=BIN2OCT(x,places)
@ARGUMENTDESCRIPTION=@{x}: a binary number, either as a string or as a number involving only the digits 0 and 1
@{places}: number of digits
@DESCRIPTION=If @{places} is given, BIN2OCT pads the result with zeros to achieve exactly @{places} digits. If this is not possible, BIN2OCT returns #NUM!
@EXCEL=This function is Excel compatible.
@SEEALSO=OCT2BIN,BIN2DEC,BIN2HEX
@CATEGORY=Engineering
@FUNCTION=CONVERT
@SHORTDESC=a converted measurement
@SYNTAX=CONVERT(x,from,to)
@ARGUMENTDESCRIPTION=@{x}: number
@{from}: unit (string)
@{to}: unit (string)
@DESCRIPTION=CONVERT returns a conversion from one measurement system to another. @{x} is a value in @{from} units that is to be converted into @{to} units.
@{from} and @{to} can be any of the following:
Weight and mass:
'brton' Imperial ton
'cwt' U.S. (short) hundredweight
'g' Gram
'grain' Grain
'hweight' Imperial (long) hundredweight
'LTON' Imperial ton
'sg' Slug
'shweight' U.S. (short) hundredweight
'lbm' Pound
'lcwt' Imperial (long) hundredweight
'u' U (atomic mass)
'uk_cwt' Imperial (long) hundredweight
'uk_ton' Imperial ton
'ozm' Ounce
'stone' Stone
'ton' Ton
Distance:
'm' Meter
'mi' Statute mile
'survey_mi' U.S. survey mile
'Nmi' Nautical mile
'in' Inch
'ft' Foot
'yd' Yard
'ell' English Ell
'ang' Angstrom
'ly' Light-Year
'pc' Parsec
'parsec' Parsec
'Pica' Pica Points
'Picapt' Pica Points
'picapt' Pica Points
'pica' Pica
Time:
'yr' Year
'day' Day
'hr' Hour
'mn' Minute
'sec' Second
Pressure:
'Pa' Pascal
'psi' PSI
'atm' Atmosphere
'Pa' Pascal
'mmHg' mm of Mercury
'Torr' Torr
Force:
'N' Newton
'dyn' Dyne
'pond' Pond
'lbf' Pound force
Energy:
'J' Joule
'e' Erg
'c' Thermodynamic calorie
'cal' IT calorie
'eV' Electron volt
'HPh' Horsepower-hour
'Wh' Watt-hour
'flb' Foot-pound
'BTU' BTU
Power:
'HP' Horsepower
'PS' Pferdestärke
'W' Watt
Magnetism:
'T' Tesla
'ga' Gauss
Temperature:
'C' Degree Celsius
'F' Degree Fahrenheit
'K' Kelvin
'Rank' Degree Rankine
'Reau' Degree Réaumur
Volume (liquid measure):
'tsp' Teaspoon
'tspm' Teaspoon (modern, metric)
'tbs' Tablespoon
'oz' Fluid ounce
'cup' Cup
'pt' Pint
'us_pt' U.S. pint
'uk_pt' Imperial pint (U.K.)
'qt' Quart
'uk_qt' Imperial quart
'gal' Gallon
'uk_gal' Imperial gallon
'GRT' Registered ton
'regton' Registered ton
'MTON' Measurement ton (freight ton)
'l' Liter
'L' Liter
'lt' Liter
'ang3' Cubic Angstrom
'ang^3' Cubic Angstrom
'barrel' U.S. oil barrel (bbl)
'bushel' U.S. bushel
'ft3' Cubic feet
'ft^3' Cubic feet
'in3' Cubic inch
'in^3' Cubic inch
'ly3' Cubic light-year
'ly^3' Cubic light-year
'm3' Cubic meter
'm^3' Cubic meter
'mi3' Cubic mile
'mi^3' Cubic mile
'yd3' Cubic yard
'yd^3' Cubic yard
'Nmi3' Cubic nautical mile
'Nmi^3' Cubic nautical mile
'Picapt3' Cubic Pica
'Picapt^3' Cubic Pica
'Pica3' Cubic Pica
'Pica^3' Cubic Pica
Area:
'uk_acre' International acre
'us_acre' U.S. survey/statute acre
'ang2' Square angstrom
'ang^2' Square angstrom
'ar' Are
'ha' Hectare
'in2' Square inches
'in^2' Square inches
'ly2' Square light-year
'ly^2' Square light-year
'm2' Square meter
'm^2' Square meter
'Morgen' Morgen (North German Confederation)
'mi2' Square miles
'mi^2' Square miles
'Nmi2' Square nautical miles
'Nmi^2' Square nautical miles
'Picapt2' Square Pica
'Picapt^2' Square Pica
'Pica2' Square Pica
'Pica^2' Square Pica
'yd2' Square yards
'yd^2' Square yards
Bits and Bytes:
'bit' Bit
'byte' Byte
Speed:
'admkn' Admiralty knot
'kn' knot
'm/h' Meters per hour
'm/hr' Meters per hour
'm/s' Meters per second
'm/sec' Meters per second
'mph' Miles per hour
For metric units any of the following prefixes can be used:
'Y' yotta 1E+24
'Z' zetta 1E+21
'E' exa 1E+18
'P' peta 1E+15
'T' tera 1E+12
'G' giga 1E+09
'M' mega 1E+06
'k' kilo 1E+03
'h' hecto 1E+02
'e' deca (deka) 1E+01
'd' deci 1E-01
'c' centi 1E-02
'm' milli 1E-03
'u' micro 1E-06
'n' nano 1E-09
'p' pico 1E-12
'f' femto 1E-15
'a' atto 1E-18
'z' zepto 1E-21
'y' yocto 1E-24
For bits and bytes any of the following prefixes can be also be used:
'Yi' yobi 2^80
'Zi' zebi 2^70
'Ei' exbi 2^60
'Pi' pebi 2^50
'Ti' tebi 2^40
'Gi' gibi 2^30
'Mi' mebi 2^20
'ki' kibi 2^10
@NOTE=If @{from} and @{to} are different types, CONVERT returns #N/A!
@EXCEL=This function is Excel compatible (except "picapt").
@ODF=This function is OpenFormula compatible.
@CATEGORY=Engineering
@FUNCTION=DEC2BIN
@SHORTDESC=binary representation of the decimal number @{x}
@SYNTAX=DEC2BIN(x,places)
@ARGUMENTDESCRIPTION=@{x}: integer (− 513 < @{x} < 512)
@{places}: number of digits
@DESCRIPTION=If @{places} is given and @{x} is non-negative, DEC2BIN pads the result with zeros to achieve exactly @{places} digits. If this is not possible, DEC2BIN returns #NUM!
If @{places} is given and @{x} is negative, @{places} is ignored.
@NOTE=If @{x} < − 512 or @{x} > 511, DEC2BIN returns #NUM!
@EXCEL=This function is Excel compatible.
@ODF=This function is OpenFormula compatible.
@SEEALSO=BIN2DEC,DEC2OCT,DEC2HEX
@CATEGORY=Engineering
@FUNCTION=DEC2HEX
@SHORTDESC=hexadecimal representation of the decimal number @{x}
@SYNTAX=DEC2HEX(x,places)
@ARGUMENTDESCRIPTION=@{x}: integer
@{places}: number of digits
@DESCRIPTION=If @{places} is given, DEC2HEX pads the result with zeros to achieve exactly @{places} digits. If this is not possible, DEC2HEX returns #NUM!
@EXCEL=This function is Excel compatible.
@SEEALSO=HEX2DEC,DEC2BIN,DEC2OCT
@CATEGORY=Engineering
@FUNCTION=DEC2OCT
@SHORTDESC=octal representation of the decimal number @{x}
@SYNTAX=DEC2OCT(x,places)
@ARGUMENTDESCRIPTION=@{x}: integer
@{places}: number of digits
@DESCRIPTION=If @{places} is given, DEC2OCT pads the result with zeros to achieve exactly @{places} digits. If this is not possible, DEC2OCT returns #NUM!
@EXCEL=This function is Excel compatible.
@SEEALSO=OCT2DEC,DEC2BIN,DEC2HEX
@CATEGORY=Engineering
@FUNCTION=DECIMAL
@SHORTDESC=decimal representation of @{x}
@SYNTAX=DECIMAL(x,base)
@ARGUMENTDESCRIPTION=@{x}: number in base @{base}
@{base}: base of @{x}, (2 ≤ @{base} ≤ 36)
@ODF=This function is OpenFormula compatible.
@SEEALSO=BASE
@CATEGORY=Engineering
@FUNCTION=DELTA
@SHORTDESC=Kronecker delta function
@SYNTAX=DELTA(x0,x1)
@ARGUMENTDESCRIPTION=@{x0}: number
@{x1}: number, defaults to 0
@DESCRIPTION=DELTA returns 1 if @{x1} = @{x0} and 0 otherwise.
@NOTE=If either argument is non-numeric, #VALUE! is returned.
@EXCEL=This function is Excel compatible.
@SEEALSO=EXACT,GESTEP
@CATEGORY=Engineering
@FUNCTION=ERF
@SHORTDESC=Gauss error function
@SYNTAX=ERF(lower,upper)
@ARGUMENTDESCRIPTION=@{lower}: lower limit of the integral, defaults to 0
@{upper}: upper limit of the integral
@DESCRIPTION=ERF returns 2/sqrt(π)* integral from @{lower} to @{upper} of exp(-t*t) dt
@EXCEL=This function is Excel compatible if two arguments are supplied and neither is negative.
@SEEALSO=ERFC
@CATEGORY=Engineering
@FUNCTION=ERFC
@SHORTDESC=Complementary Gauss error function
@SYNTAX=ERFC(x)
@ARGUMENTDESCRIPTION=@{x}: number
@DESCRIPTION=ERFC returns 2/sqrt(π)* integral from @{x} to ∞ of exp(-t*t) dt
@SEEALSO=ERF
@CATEGORY=Engineering
@FUNCTION=GESTEP
@SHORTDESC=step function with step at @{x1} evaluated at @{x0}
@SYNTAX=GESTEP(x0,x1)
@ARGUMENTDESCRIPTION=@{x0}: number
@{x1}: number, defaults to 0
@DESCRIPTION=GESTEP returns 1 if @{x1} ≤ @{x0} and 0 otherwise.
@NOTE=If either argument is non-numeric, #VALUE! is returned.
@EXCEL=This function is Excel compatible.
@SEEALSO=DELTA
@CATEGORY=Engineering
@FUNCTION=HEX2BIN
@SHORTDESC=binary representation of the hexadecimal number @{x}
@SYNTAX=HEX2BIN(x,places)
@ARGUMENTDESCRIPTION=@{x}: a hexadecimal number, either as a string or as a number if no A to F are needed
@{places}: number of digits
@DESCRIPTION=If @{places} is given, HEX2BIN pads the result with zeros to achieve exactly @{places} digits. If this is not possible, HEX2BIN returns #NUM!
@EXCEL=This function is Excel compatible.
@SEEALSO=BIN2HEX,HEX2OCT,HEX2DEC
@CATEGORY=Engineering
@FUNCTION=HEX2DEC
@SHORTDESC=decimal representation of the hexadecimal number @{x}
@SYNTAX=HEX2DEC(x)
@ARGUMENTDESCRIPTION=@{x}: a hexadecimal number, either as a string or as a number if no A to F are needed
@EXCEL=This function is Excel compatible.
@SEEALSO=DEC2HEX,HEX2BIN,HEX2OCT
@CATEGORY=Engineering
@FUNCTION=HEX2OCT
@SHORTDESC=octal representation of the hexadecimal number @{x}
@SYNTAX=HEX2OCT(x,places)
@ARGUMENTDESCRIPTION=@{x}: a hexadecimal number, either as a string or as a number if no A to F are needed
@{places}: number of digits
@DESCRIPTION=If @{places} is given, HEX2OCT pads the result with zeros to achieve exactly @{places} digits. If this is not possible, HEX2OCT returns #NUM!
@EXCEL=This function is Excel compatible.
@SEEALSO=OCT2HEX,HEX2BIN,HEX2DEC
@CATEGORY=Engineering
@FUNCTION=HEXREP
@SHORTDESC=hexadecimal representation of numeric value
@SYNTAX=HEXREP(x)
@ARGUMENTDESCRIPTION=@{x}: number
@DESCRIPTION=HEXREP returns a hexadecimal string representation of @{x}.
@NOTE=This is a function meant for debugging. The layout of the result may change and even depend on how Gnumeric was compiled.
@CATEGORY=Engineering
@FUNCTION=INVSUMINV
@SHORTDESC=the reciprocal of the sum of reciprocals of the arguments
@SYNTAX=INVSUMINV(x0,x1,…)
@ARGUMENTDESCRIPTION=@{x0}: non-negative number
@{x1}: non-negative number
@DESCRIPTION=INVSUMINV sum calculates the reciprocal (the inverse) of the sum of reciprocals (inverses) of all its arguments.
@NOTE=If any of the arguments is negative, #VALUE! is returned.
If any argument is zero, the result is zero.
@SEEALSO=HARMEAN
@CATEGORY=Engineering
@FUNCTION=OCT2BIN
@SHORTDESC=binary representation of the octal number @{x}
@SYNTAX=OCT2BIN(x,places)
@ARGUMENTDESCRIPTION=@{x}: a octal number, either as a string or as a number
@{places}: number of digits
@DESCRIPTION=If @{places} is given, OCT2BIN pads the result with zeros to achieve exactly @{places} digits. If this is not possible, OCT2BIN returns #NUM!
@EXCEL=This function is Excel compatible.
@SEEALSO=BIN2OCT,OCT2DEC,OCT2HEX
@CATEGORY=Engineering
@FUNCTION=OCT2DEC
@SHORTDESC=decimal representation of the octal number @{x}
@SYNTAX=OCT2DEC(x)
@ARGUMENTDESCRIPTION=@{x}: a octal number, either as a string or as a number
@EXCEL=This function is Excel compatible.
@SEEALSO=DEC2OCT,OCT2BIN,OCT2HEX
@CATEGORY=Engineering
@FUNCTION=OCT2HEX
@SHORTDESC=hexadecimal representation of the octal number @{x}
@SYNTAX=OCT2HEX(x,places)
@ARGUMENTDESCRIPTION=@{x}: a octal number, either as a string or as a number
@{places}: number of digits
@DESCRIPTION=If @{places} is given, OCT2HEX pads the result with zeros to achieve exactly @{places} digits. If this is not possible, OCT2HEX returns #NUM!
@EXCEL=This function is Excel compatible.
@SEEALSO=HEX2OCT,OCT2BIN,OCT2DEC
@CATEGORY=Erlang
@FUNCTION=DIMCIRC
@SHORTDESC=number of circuits required
@SYNTAX=DIMCIRC(traffic,gos)
@ARGUMENTDESCRIPTION=@{traffic}: number of calls
@{gos}: grade of service
@DESCRIPTION=DIMCIRC returns the number of circuits required given @{traffic} calls with grade of service @{gos}.
@SEEALSO=OFFCAP,OFFTRAF,PROBBLOCK
@CATEGORY=Erlang
@FUNCTION=OFFCAP
@SHORTDESC=traffic capacity
@SYNTAX=OFFCAP(circuits,gos)
@ARGUMENTDESCRIPTION=@{circuits}: number of circuits
@{gos}: grade of service
@DESCRIPTION=OFFCAP returns the traffic capacity given @{circuits} circuits with grade of service @{gos}.
@SEEALSO=DIMCIRC,OFFTRAF,PROBBLOCK
@CATEGORY=Erlang
@FUNCTION=OFFTRAF
@SHORTDESC=predicted number of offered calls
@SYNTAX=OFFTRAF(traffic,circuits)
@ARGUMENTDESCRIPTION=@{traffic}: number of carried calls
@{circuits}: number of circuits
@DESCRIPTION=OFFTRAF returns the predicted number of offered calls given @{traffic} carried calls (taken from measurements) on @{circuits} circuits.
@NOTE=@{traffic} cannot exceed @{circuits}.
@SEEALSO=PROBBLOCK,DIMCIRC,OFFCAP
@CATEGORY=Erlang
@FUNCTION=PROBBLOCK
@SHORTDESC=probability of blocking
@SYNTAX=PROBBLOCK(traffic,circuits)
@ARGUMENTDESCRIPTION=@{traffic}: number of calls
@{circuits}: number of circuits
@DESCRIPTION=PROBBLOCK returns probability of blocking when @{traffic} calls load into @{circuits} circuits.
@NOTE=@{traffic} cannot exceed @{circuits}.
@SEEALSO=OFFTRAF,DIMCIRC,OFFCAP
@CATEGORY=Finance
@FUNCTION=ACCRINT
@SHORTDESC=accrued interest
@SYNTAX=ACCRINT(issue,first_interest,settlement,rate,par,frequency,basis,calc_method)
@ARGUMENTDESCRIPTION=@{issue}: date of issue
@{first_interest}: date of first interest payment
@{settlement}: settlement date
@{rate}: nominal annual interest rate
@{par}: par value, defaults to $1000
@{frequency}: number of interest payments per year
@{basis}: calendar basis, defaults to 0
@{calc_method}: calculation method, defaults to TRUE
@DESCRIPTION=If @{first_interest} < @{settlement} and @{calc_method} is TRUE, then ACCRINT returns the sum of the interest accrued in all coupon periods from @{issue} date until @{settlement} date.
If @{first_interest} < @{settlement} and @{calc_method} is FALSE, then ACCRINT returns the sum of the interest accrued in all coupon periods from @{first_interest} date until @{settlement} date.
Otherwise ACCRINT returns the sum of the interest accrued in all coupon periods from @{issue} date until @{settlement} date.
@NOTE=@{frequency} must be one of 1, 2 or 4, but the exact value does not affect the result. @{issue} must precede both @{first_interest} and @{settlement}. @{frequency} may be 1 (annual), 2 (semi-annual), or 4 (quarterly). If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=ACCRINTM
@CATEGORY=Finance
@FUNCTION=ACCRINTM
@SHORTDESC=accrued interest
@SYNTAX=ACCRINTM(issue,maturity,rate,par,basis)
@ARGUMENTDESCRIPTION=@{issue}: date of issue
@{maturity}: maturity date
@{rate}: nominal annual interest rate
@{par}: par value
@{basis}: calendar basis
@DESCRIPTION=ACCRINTM calculates the accrued interest from @{issue} to @{maturity}.
@NOTE=@{par} defaults to $1000. If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=ACCRINT
@CATEGORY=Finance
@FUNCTION=AMORDEGRC
@SHORTDESC=depreciation of an asset using French accounting conventions
@SYNTAX=AMORDEGRC(cost,purchase_date,first_period,salvage,period,rate,basis)
@ARGUMENTDESCRIPTION=@{cost}: initial cost of asset
@{purchase_date}: date of purchase
@{first_period}: end of first period
@{salvage}: value after depreciation
@{period}: subject period
@{rate}: depreciation rate
@{basis}: calendar basis
@DESCRIPTION=AMORDEGRC calculates the depreciation of an asset using French accounting conventions. Assets purchased in the middle of a period take prorated depreciation into account. This is similar to AMORLINC, except that a depreciation coefficient is applied in the calculation depending on the life of the assets.
The depreciation coefficient used is:
1.0 for an expected lifetime less than 3 years,
1.5 for an expected lifetime of at least 3 years but less than 5 years,
2.0 for an expected lifetime of at least 5 years but at most 6 years,
2.5 for an expected lifetime of more than 6 years.
@NOTE=Special depreciation rules are applied for the last two periods resulting in a possible total depreciation exceeding the difference of @{cost} - @{salvage}. Named for AMORtissement DEGRessif Comptabilite. If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=AMORLINC
@CATEGORY=Finance
@FUNCTION=AMORLINC
@SHORTDESC=depreciation of an asset using French accounting conventions
@SYNTAX=AMORLINC(cost,purchase_date,first_period,salvage,period,rate,basis)
@ARGUMENTDESCRIPTION=@{cost}: initial cost of asset
@{purchase_date}: date of purchase
@{first_period}: end of first period
@{salvage}: value after depreciation
@{period}: subject period
@{rate}: depreciation rate
@{basis}: calendar basis
@DESCRIPTION=AMORLINC calculates the depreciation of an asset using French accounting conventions. Assets purchased in the middle of a period take prorated depreciation into account.
@NOTE=Named for AMORtissement LINeaire Comptabilite. If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=AMORDEGRC
@CATEGORY=Finance
@FUNCTION=COUPDAYBS
@SHORTDESC=number of days from coupon period to settlement
@SYNTAX=COUPDAYBS(settlement,maturity,frequency,basis,eom)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{frequency}: number of interest payments per year
@{basis}: calendar basis
@{eom}: end-of-month flag
@DESCRIPTION=COUPDAYBS calculates the number of days from the beginning of the coupon period to the settlement date.
@NOTE=@{frequency} may be 1 (annual), 2 (semi-annual), or 4 (quarterly). If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=COUPDAYS
@CATEGORY=Finance
@FUNCTION=COUPDAYS
@SHORTDESC=number of days in the coupon period of the settlement date
@SYNTAX=COUPDAYS(settlement,maturity,frequency,basis,eom)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{frequency}: number of interest payments per year
@{basis}: calendar basis
@{eom}: end-of-month flag
@DESCRIPTION=COUPDAYS calculates the number of days in the coupon period of the settlement date.
@NOTE=@{frequency} may be 1 (annual), 2 (semi-annual), or 4 (quarterly). If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=COUPDAYBS,COUPDAYSNC
@CATEGORY=Finance
@FUNCTION=COUPDAYSNC
@SHORTDESC=number of days from the settlement date to the next coupon period
@SYNTAX=COUPDAYSNC(settlement,maturity,frequency,basis,eom)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{frequency}: number of interest payments per year
@{basis}: calendar basis
@{eom}: end-of-month flag
@DESCRIPTION=COUPDAYSNC calculates number of days from the settlement date to the next coupon period.
@NOTE=@{frequency} may be 1 (annual), 2 (semi-annual), or 4 (quarterly). If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=COUPDAYS,COUPDAYBS
@CATEGORY=Finance
@FUNCTION=COUPNCD
@SHORTDESC=the next coupon date after settlement
@SYNTAX=COUPNCD(settlement,maturity,frequency,basis,eom)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{frequency}: number of interest payments per year
@{basis}: calendar basis
@{eom}: end-of-month flag
@DESCRIPTION=COUPNCD calculates the coupon date following settlement.
@NOTE=@{frequency} may be 1 (annual), 2 (semi-annual), or 4 (quarterly). If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=COUPPCD,COUPDAYS,COUPDAYBS
@CATEGORY=Finance
@FUNCTION=COUPNUM
@SHORTDESC=number of coupons
@SYNTAX=COUPNUM(settlement,maturity,frequency,basis,eom)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{frequency}: number of interest payments per year
@{basis}: calendar basis
@{eom}: end-of-month flag
@DESCRIPTION=COUPNUM calculates the number of coupons to be paid between the settlement and maturity dates, rounded up.
@NOTE=@{frequency} may be 1 (annual), 2 (semi-annual), or 4 (quarterly). If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=COUPNCD,COUPPCD
@CATEGORY=Finance
@FUNCTION=COUPPCD
@SHORTDESC=the last coupon date before settlement
@SYNTAX=COUPPCD(settlement,maturity,frequency,basis,eom)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{frequency}: number of interest payments per year
@{basis}: calendar basis
@{eom}: end-of-month flag
@DESCRIPTION=COUPPCD calculates the coupon date preceding settlement.
@NOTE=@{frequency} may be 1 (annual), 2 (semi-annual), or 4 (quarterly). If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=COUPNCD,COUPDAYS,COUPDAYBS
@CATEGORY=Finance
@FUNCTION=CUM_BIV_NORM_DIST
@SHORTDESC=cumulative bivariate normal distribution
@SYNTAX=CUM_BIV_NORM_DIST(a,b,rho)
@ARGUMENTDESCRIPTION=@{a}: limit for first random variable
@{b}: limit for second random variable
@{rho}: correlation of the two random variables
@DESCRIPTION=CUM_BIV_NORM_DIST calculates the probability that two standard normal distributed random variables with correlation @{rho} are respectively each less than @{a} and @{b}.
@CATEGORY=Finance
@FUNCTION=CUMIPMT
@SHORTDESC=cumulative interest payment
@SYNTAX=CUMIPMT(rate,nper,pv,start_period,end_period,type)
@ARGUMENTDESCRIPTION=@{rate}: interest rate per period
@{nper}: number of periods
@{pv}: present value
@{start_period}: first period to accumulate for
@{end_period}: last period to accumulate for
@{type}: payment type
@DESCRIPTION=CUMIPMT calculates the cumulative interest paid on a loan from @{start_period} to @{end_period}.
@NOTE=If @{type} is 0, the default, payment is at the end of each period. If @{type} is 1, payment is at the beginning of each period.
@SEEALSO=IPMT
@CATEGORY=Finance
@FUNCTION=CUMPRINC
@SHORTDESC=cumulative principal
@SYNTAX=CUMPRINC(rate,nper,pv,start_period,end_period,type)
@ARGUMENTDESCRIPTION=@{rate}: interest rate per period
@{nper}: number of periods
@{pv}: present value
@{start_period}: first period to accumulate for
@{end_period}: last period to accumulate for
@{type}: payment type
@DESCRIPTION=CUMPRINC calculates the cumulative principal paid on a loan from @{start_period} to @{end_period}.
@NOTE=If @{type} is 0, the default, payment is at the end of each period. If @{type} is 1, payment is at the beginning of each period.
@SEEALSO=PPMT
@CATEGORY=Finance
@FUNCTION=DB
@SHORTDESC=depreciation of an asset
@SYNTAX=DB(cost,salvage,life,period,month)
@ARGUMENTDESCRIPTION=@{cost}: initial cost of asset
@{salvage}: value after depreciation
@{life}: number of periods
@{period}: subject period
@{month}: number of months in first year of depreciation
@DESCRIPTION=DB calculates the depreciation of an asset for a given period using the fixed-declining balance method.
@SEEALSO=DDB,SLN,SYD
@CATEGORY=Finance
@FUNCTION=DDB
@SHORTDESC=depreciation of an asset
@SYNTAX=DDB(cost,salvage,life,period,factor)
@ARGUMENTDESCRIPTION=@{cost}: initial cost of asset
@{salvage}: value after depreciation
@{life}: number of periods
@{period}: subject period
@{factor}: factor at which the balance declines
@DESCRIPTION=DDB calculates the depreciation of an asset for a given period using the double-declining balance method.
@SEEALSO=DB,SLN,SYD
@CATEGORY=Finance
@FUNCTION=DISC
@SHORTDESC=discount rate
@SYNTAX=DISC(settlement,maturity,par,redemption,basis)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{par}: price per $100 face value
@{redemption}: amount received at maturity
@{basis}: calendar basis
@DESCRIPTION=DISC calculates the discount rate for a security.
@NOTE=@{redemption} is the redemption value per $100 face value. If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=PRICEMAT
@CATEGORY=Finance
@FUNCTION=DOLLARDE
@SHORTDESC=convert to decimal dollar amount
@SYNTAX=DOLLARDE(fractional_dollar,fraction)
@ARGUMENTDESCRIPTION=@{fractional_dollar}: amount to convert
@{fraction}: denominator
@DESCRIPTION=DOLLARDE converts a fractional dollar amount into a decimal amount. This is the inverse of the DOLLARFR function.
@SEEALSO=DOLLARFR
@CATEGORY=Finance
@FUNCTION=DOLLARFR
@SHORTDESC=convert to dollar fraction
@SYNTAX=DOLLARFR(decimal_dollar,fraction)
@ARGUMENTDESCRIPTION=@{decimal_dollar}: amount to convert
@{fraction}: denominator
@DESCRIPTION=DOLLARFR converts a decimal dollar amount into a fractional amount which is represented as the digits after the decimal point. For example, 2/8 would be represented as .2 while 3/16 would be represented as .03. This is the inverse of the DOLLARDE function.
@SEEALSO=DOLLARDE
@CATEGORY=Finance
@FUNCTION=DURATION
@SHORTDESC=the (Macaulay) duration of a security
@SYNTAX=DURATION(settlement,maturity,coupon,yield,frequency,basis)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{coupon}: annual coupon rate
@{yield}: annual yield of security
@{frequency}: number of interest payments per year
@{basis}: calendar basis
@DESCRIPTION=DURATION calculates the (Macaulay) duration of a security.
@NOTE=@{frequency} may be 1 (annual), 2 (semi-annual), or 4 (quarterly). If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=MDURATION, G_DURATION
@CATEGORY=Finance
@FUNCTION=EFFECT
@SHORTDESC=effective interest rate
@SYNTAX=EFFECT(rate,nper)
@ARGUMENTDESCRIPTION=@{rate}: nominal annual interest rate
@{nper}: number of periods used for compounding
@DESCRIPTION=EFFECT calculates the effective interest rate using the formula (1+@{rate}/@{nper})^@{nper}-1.
@SEEALSO=NOMINAL
@CATEGORY=Finance
@FUNCTION=EURO
@SHORTDESC=equivalent of 1 EUR
@SYNTAX=EURO(currency)
@ARGUMENTDESCRIPTION=@{currency}: three-letter currency code
@DESCRIPTION=EURO calculates the national currency amount corresponding to 1 EUR for any of the national currencies that were replaced by the Euro on its introduction.
@NOTE=@{currency} must be one of ATS (Austria), BEF (Belgium), CYP (Cyprus), DEM (Germany), EEK (Estonia), ESP (Spain), EUR (Euro), FIM (Finland), FRF (France), GRD (Greece), IEP (Ireland), ITL (Italy), LUF (Luxembourg), MTL (Malta), NLG (The Netherlands), PTE (Portugal), SIT (Slovenia), or SKK (Slovakia). This function is not likely to be useful anymore.
@SEEALSO=EUROCONVERT
@CATEGORY=Finance
@FUNCTION=EUROCONVERT
@SHORTDESC=pre-Euro amount from one currency to another
@SYNTAX=EUROCONVERT(n,source,target,full_precision,triangulation_precision)
@ARGUMENTDESCRIPTION=@{n}: amount
@{source}: three-letter source currency code
@{target}: three-letter target currency code
@{full_precision}: whether to provide the full precision; defaults to false
@{triangulation_precision}: number of digits (at least 3) to be rounded to after conversion of the source currency to euro; defaults to no rounding
@DESCRIPTION=EUROCONVERT converts @{n} units of currency @{source} to currency @{target}. The rates used are the official ones used on the introduction of the Euro.
@NOTE=If @{full_precision} is true, the result is not rounded; if it false the result is rounded to 0 or 2 decimals depending on the target currency; defaults to false. @{source} and @{target} must be one of the currencies listed for the EURO function. This function is not likely to be useful anymore.
@SEEALSO=EURO
@CATEGORY=Finance
@FUNCTION=FV
@SHORTDESC=future value
@SYNTAX=FV(rate,nper,pmt,pv,type)
@ARGUMENTDESCRIPTION=@{rate}: effective interest rate per period
@{nper}: number of periods
@{pmt}: payment at each period
@{pv}: present value
@{type}: payment type
@DESCRIPTION=FV calculates the future value of @{pv} moved @{nper} periods into the future, assuming a periodic payment of @{pmt} and an interest rate of @{rate} per period.
@NOTE=If @{type} is 0, the default, payment is at the end of each period. If @{type} is 1, payment is at the beginning of each period.
@SEEALSO=PV
@CATEGORY=Finance
@FUNCTION=FVSCHEDULE
@SHORTDESC=future value
@SYNTAX=FVSCHEDULE(principal,schedule)
@ARGUMENTDESCRIPTION=@{principal}: initial value
@{schedule}: range of interest rates
@DESCRIPTION=FVSCHEDULE calculates the future value of @{principal} after applying a range of interest rates with compounding.
@SEEALSO=FV
@CATEGORY=Finance
@FUNCTION=G_DURATION
@SHORTDESC=the duration of a investment
@SYNTAX=G_DURATION(rate,pv,fv)
@ARGUMENTDESCRIPTION=@{rate}: effective annual interest rate
@{pv}: present value
@{fv}: future value
@DESCRIPTION=G_DURATION calculates the number of periods needed for an investment to attain a desired value.
@ODF=G_DURATION is the OpenFormula function PDURATION.
@SEEALSO=FV,PV,DURATION,MDURATION
@CATEGORY=Finance
@FUNCTION=INTRATE
@SHORTDESC=interest rate
@SYNTAX=INTRATE(settlement,maturity,investment,redemption,basis)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{investment}: amount paid on settlement
@{redemption}: amount received at maturity
@{basis}: calendar basis
@DESCRIPTION=INTRATE calculates the interest of a fully vested security.
@NOTE=If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=RECEIVED
@CATEGORY=Finance
@FUNCTION=IPMT
@SHORTDESC=interest payment for period
@SYNTAX=IPMT(rate,per,nper,pv,fv,type)
@ARGUMENTDESCRIPTION=@{rate}: effective annual interest rate
@{per}: period number
@{nper}: number of periods
@{pv}: present value
@{fv}: future value
@{type}: payment type
@DESCRIPTION=IPMT calculates the interest part of an annuity's payment for period number @{per}.
@NOTE=If @{type} is 0, the default, payment is at the end of each period. If @{type} is 1, payment is at the beginning of each period.
@SEEALSO=PPMT
@CATEGORY=Finance
@FUNCTION=IRR
@SHORTDESC=internal rate of return
@SYNTAX=IRR(values,guess)
@ARGUMENTDESCRIPTION=@{values}: cash flow
@{guess}: an estimate of what the result should be
@DESCRIPTION=IRR calculates the internal rate of return of a cash flow with periodic payments. @{values} lists the payments (negative values) and receipts (positive values) for each period.
@NOTE=The optional @{guess} is needed because there can be more than one valid result. It defaults to 10%.
@SEEALSO=XIRR
@CATEGORY=Finance
@FUNCTION=ISPMT
@SHORTDESC=interest payment for period
@SYNTAX=ISPMT(rate,per,nper,pv)
@ARGUMENTDESCRIPTION=@{rate}: effective annual interest rate
@{per}: period number
@{nper}: number of periods
@{pv}: present value
@DESCRIPTION=ISPMT calculates the interest payment for period number @{per}.
@SEEALSO=PV
@CATEGORY=Finance
@FUNCTION=MDURATION
@SHORTDESC=the modified (Macaulay) duration of a security
@SYNTAX=MDURATION(settlement,maturity,coupon,yield,frequency,basis)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{coupon}: annual coupon rate
@{yield}: annual yield of security
@{frequency}: number of interest payments per year
@{basis}: calendar basis
@DESCRIPTION=MDURATION calculates the modified (Macaulay) duration of a security.
@NOTE=@{frequency} may be 1 (annual), 2 (semi-annual), or 4 (quarterly). If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=DURATION,G_DURATION
@CATEGORY=Finance
@FUNCTION=MIRR
@SHORTDESC=modified internal rate of return
@SYNTAX=MIRR(values,finance_rate,reinvest_rate)
@ARGUMENTDESCRIPTION=@{values}: cash flow
@{finance_rate}: interest rate for financing cost
@{reinvest_rate}: interest rate for reinvestments
@DESCRIPTION=MIRR calculates the modified internal rate of return of a periodic cash flow.
@SEEALSO=IRR,XIRR
@CATEGORY=Finance
@FUNCTION=NOMINAL
@SHORTDESC=nominal interest rate
@SYNTAX=NOMINAL(rate,nper)
@ARGUMENTDESCRIPTION=@{rate}: effective annual interest rate
@{nper}: number of periods used for compounding
@DESCRIPTION=NOMINAL calculates the nominal interest rate from the effective rate.
@SEEALSO=EFFECT
@CATEGORY=Finance
@FUNCTION=NPER
@SHORTDESC=number of periods
@SYNTAX=NPER(rate,pmt,pv,fv,type)
@ARGUMENTDESCRIPTION=@{rate}: effective annual interest rate
@{pmt}: payment at each period
@{pv}: present value
@{fv}: future value
@{type}: payment type
@DESCRIPTION=NPER calculates the number of periods of an investment based on periodic constant payments and a constant interest rate.
@NOTE=If @{type} is 0, the default, payment is at the end of each period. If @{type} is 1, payment is at the beginning of each period.
@SEEALSO=PV,FV
@CATEGORY=Finance
@FUNCTION=NPV
@SHORTDESC=net present value
@SYNTAX=NPV(rate,value1,value2,…)
@ARGUMENTDESCRIPTION=@{rate}: effective interest rate per period
@{value1}: cash flow for period 1
@{value2}: cash flow for period 2
@DESCRIPTION=NPV calculates the net present value of a cash flow.
@SEEALSO=PV
@CATEGORY=Finance
@FUNCTION=ODDFPRICE
@SHORTDESC=price of a security that has an odd first period
@SYNTAX=ODDFPRICE(settlement,maturity,issue,first_interest,rate,yield,redemption,frequency,basis)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{issue}: date of issue
@{first_interest}: first interest date
@{rate}: nominal annual interest rate
@{yield}: annual yield of security
@{redemption}: amount received at maturity
@{frequency}: number of interest payments per year
@{basis}: calendar basis
@DESCRIPTION=ODDFPRICE calculates the price per $100 face value of a security that pays periodic interest, but has an odd first period.
@NOTE=@{frequency} may be 1 (annual), 2 (semi-annual), or 4 (quarterly). If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=ODDLPRICE,ODDFYIELD
@CATEGORY=Finance
@FUNCTION=ODDFYIELD
@SHORTDESC=yield of a security that has an odd first period
@SYNTAX=ODDFYIELD(settlement,maturity,issue,first_interest,rate,price,redemption,frequency,basis)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{issue}: date of issue
@{first_interest}: first interest date
@{rate}: nominal annual interest rate
@{price}: price of security
@{redemption}: amount received at maturity
@{frequency}: number of interest payments per year
@{basis}: calendar basis
@DESCRIPTION=ODDFYIELD calculates the yield of a security that pays periodic interest, but has an odd first period.
@NOTE=@{frequency} may be 1 (annual), 2 (semi-annual), or 4 (quarterly). If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=ODDFPRICE,ODDLYIELD
@CATEGORY=Finance
@FUNCTION=ODDLPRICE
@SHORTDESC=price of a security that has an odd last period
@SYNTAX=ODDLPRICE(settlement,maturity,last_interest,rate,yield,redemption,frequency,basis)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{last_interest}: last interest date
@{rate}: nominal annual interest rate
@{yield}: annual yield of security
@{redemption}: amount received at maturity
@{frequency}: number of interest payments per year
@{basis}: calendar basis
@DESCRIPTION=ODDLPRICE calculates the price per $100 face value of a security that pays periodic interest, but has an odd last period.
@NOTE=@{frequency} may be 1 (annual), 2 (semi-annual), or 4 (quarterly). If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=YIELD,DURATION
@CATEGORY=Finance
@FUNCTION=ODDLYIELD
@SHORTDESC=yield of a security that has an odd last period
@SYNTAX=ODDLYIELD(settlement,maturity,last_interest,rate,price,redemption,frequency,basis)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{last_interest}: last interest date
@{rate}: nominal annual interest rate
@{price}: price of security
@{redemption}: amount received at maturity
@{frequency}: number of interest payments per year
@{basis}: calendar basis
@DESCRIPTION=ODDLYIELD calculates the yield of a security that pays periodic interest, but has an odd last period.
@NOTE=@{frequency} may be 1 (annual), 2 (semi-annual), or 4 (quarterly). If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=YIELD,DURATION
@CATEGORY=Finance
@FUNCTION=OPT_2_ASSET_CORRELATION
@SHORTDESC=theoretical price of options on 2 assets with correlation @{rho}
@SYNTAX=OPT_2_ASSET_CORRELATION(call_put_flag,spot1,spot2,strike1,strike2,time,cost_of_carry1,cost_of_carry2,rate,volatility1,volatility2,rho)
@ARGUMENTDESCRIPTION=@{call_put_flag}: 'c' for a call and 'p' for a put
@{spot1}: spot price of the underlying asset of the first option
@{spot2}: spot price of the underlying asset of the second option
@{strike1}: strike prices of the first option
@{strike2}: strike prices of the second option
@{time}: time to maturity in years
@{cost_of_carry1}: net cost of holding the underlying asset of the first option (for common stocks, the risk free rate less the dividend yield)
@{cost_of_carry2}: net cost of holding the underlying asset of the second option (for common stocks, the risk free rate less the dividend yield)
@{rate}: annualized risk-free interest rate
@{volatility1}: annualized volatility in price of the underlying asset of the first option
@{volatility2}: annualized volatility in price of the underlying asset of the second option
@{rho}: correlation between the two underlying assets
@DESCRIPTION=OPT_2_ASSET_CORRELATION models the theoretical price of options on 2 assets with correlation @{rho}. The payoff for a call is max(@{spot2} - @{strike2},0) if @{spot1} > @{strike1} or 0 otherwise. The payoff for a put is max (@{strike2} - @{spot2}, 0) if @{spot1} < @{strike1} or 0 otherwise.
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_AMER_EXCHANGE
@SHORTDESC=theoretical price of an American option to exchange assets
@SYNTAX=OPT_AMER_EXCHANGE(spot1,spot2,qty1,qty2,time,rate,cost_of_carry1,cost_of_carry2,volatility1,volatility2,rho)
@ARGUMENTDESCRIPTION=@{spot1}: spot price of asset 1
@{spot2}: spot price of asset 2
@{qty1}: quantity of asset 1
@{qty2}: quantity of asset 2
@{time}: time to maturity in years
@{rate}: annualized risk-free interest rate
@{cost_of_carry1}: net cost of holding asset 1 (for common stocks, the risk free rate less the dividend yield)
@{cost_of_carry2}: net cost of holding asset 2 (for common stocks, the risk free rate less the dividend yield)
@{volatility1}: annualized volatility in price of asset 1
@{volatility2}: annualized volatility in price of asset 2
@{rho}: correlation between the prices of the two assets
@DESCRIPTION=OPT_AMER_EXCHANGE models the theoretical price of an American option to exchange one asset with quantity @{qty2} and spot price @{spot2} for another with quantity @{qty1} and spot price @{spot1}.
@SEEALSO=OPT_EURO_EXCHANGE,OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_BAW_AMER
@SHORTDESC=theoretical price of an option according to the Barone Adesie & Whaley approximation
@SYNTAX=OPT_BAW_AMER(call_put_flag,spot,strike,time,rate,cost_of_carry,volatility)
@ARGUMENTDESCRIPTION=@{call_put_flag}: 'c' for a call and 'p' for a put
@{spot}: spot price
@{strike}: strike price
@{time}: time to maturity in days
@{rate}: annualized risk-free interest rate
@{cost_of_carry}: net cost of holding the underlying asset
@{volatility}: annualized volatility of the asset
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_BINOMIAL
@SHORTDESC=theoretical price of either an American or European style option using a binomial tree
@SYNTAX=OPT_BINOMIAL(amer_euro_flag,call_put_flag,num_time_steps,spot,strike,time,rate,volatility,cost_of_carry)
@ARGUMENTDESCRIPTION=@{amer_euro_flag}: 'a' for an American style option or 'e' for a European style option
@{call_put_flag}: 'c' for a call and 'p' for a put
@{num_time_steps}: number of time steps used in the valuation
@{spot}: spot price
@{strike}: strike price
@{time}: time to maturity in years
@{rate}: annualized risk-free interest rate
@{volatility}: annualized volatility of the asset
@{cost_of_carry}: net cost of holding the underlying asset
@NOTE=A larger @{num_time_steps} yields greater accuracy but OPT_BINOMIAL is slower to calculate.
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_BJER_STENS
@SHORTDESC=theoretical price of American options according to the Bjerksund & Stensland approximation technique
@SYNTAX=OPT_BJER_STENS(call_put_flag,spot,strike,time,rate,volatility,cost_of_carry)
@ARGUMENTDESCRIPTION=@{call_put_flag}: 'c' for a call and 'p' for a put
@{spot}: spot price
@{strike}: strike price
@{time}: time to maturity in days
@{rate}: annualized risk-free interest rate
@{volatility}: annualized volatility of the asset
@{cost_of_carry}: net cost of holding the underlying asset (for common stocks, the risk free rate less the dividend yield), defaults to 0
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_BS
@SHORTDESC=price of a European option
@SYNTAX=OPT_BS(call_put_flag,spot,strike,time,rate,volatility,cost_of_carry)
@ARGUMENTDESCRIPTION=@{call_put_flag}: 'c' for a call and 'p' for a put
@{spot}: spot price
@{strike}: strike price
@{time}: time to maturity in years
@{rate}: risk-free interest rate to the exercise date in percent
@{volatility}: annualized volatility of the asset in percent for the period through to the exercise date
@{cost_of_carry}: net cost of holding the underlying asset (for common stocks, the risk free rate less the dividend yield), defaults to 0
@DESCRIPTION=OPT_BS uses the Black-Scholes model to calculate the price of a European option struck at @{strike} on an asset with spot price @{spot}.
@NOTE=The returned value will be expressed in the same units as @{strike} and @{spot}.
@SEEALSO=OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_VEGA,OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_BS_CARRYCOST
@SHORTDESC=elasticity of a European option
@SYNTAX=OPT_BS_CARRYCOST(call_put_flag,spot,strike,time,rate,volatility,cost_of_carry)
@ARGUMENTDESCRIPTION=@{call_put_flag}: 'c' for a call and 'p' for a put
@{spot}: spot price
@{strike}: strike price
@{time}: time to maturity in years
@{rate}: risk-free interest rate to the exercise date in percent
@{volatility}: annualized volatility of the asset in percent for the period through to the exercise date
@{cost_of_carry}: net cost of holding the underlying asset (for common stocks, the risk free rate less the dividend yield), defaults to 0
@DESCRIPTION=OPT_BS_CARRYCOST uses the Black-Scholes model to calculate the 'elasticity' of a European option struck at @{strike} on an asset with spot price @{spot}. The elasticity of an option is the rate of change of its price with respect to its @{cost_of_carry}.
@NOTE=Elasticity is expressed as the rate of change of the option value, per 100% volatility.
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_BS_DELTA
@SHORTDESC=delta of a European option
@SYNTAX=OPT_BS_DELTA(call_put_flag,spot,strike,time,rate,volatility,cost_of_carry)
@ARGUMENTDESCRIPTION=@{call_put_flag}: 'c' for a call and 'p' for a put
@{spot}: spot price
@{strike}: strike price
@{time}: time to maturity in years
@{rate}: risk-free interest rate to the exercise date in percent
@{volatility}: annualized volatility of the asset in percent for the period through to the exercise date
@{cost_of_carry}: net cost of holding the underlying asset (for common stocks, the risk free rate less the dividend yield), defaults to 0
@DESCRIPTION=OPT_BS_DELTA uses the Black-Scholes model to calculate the 'delta' of a European option struck at @{strike} on an asset with spot price @{spot}.
@NOTE=The returned value will be expressed in the same units as @{strike} and @{spot}.
@SEEALSO=OPT_BS,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_VEGA,OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_BS_GAMMA
@SHORTDESC=gamma of a European option
@SYNTAX=OPT_BS_GAMMA(spot,strike,time,rate,volatility,cost_of_carry)
@ARGUMENTDESCRIPTION=@{spot}: spot price
@{strike}: strike price
@{time}: time to maturity in years
@{rate}: risk-free interest rate to the exercise date in percent
@{volatility}: annualized volatility of the asset in percent for the period through to the exercise date
@{cost_of_carry}: net cost of holding the underlying asset (for common stocks, the risk free rate less the dividend yield), defaults to 0
@DESCRIPTION=OPT_BS_GAMMA uses the Black-Scholes model to calculate the 'gamma' of a European option struck at @{strike} on an asset with spot price @{spot}. The gamma of an option is the second derivative of its price with respect to the price of the underlying asset.
@NOTE=Gamma is expressed as the rate of change of delta per unit change in @{spot}. Gamma is the same for calls and puts.
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_VEGA
@CATEGORY=Finance
@FUNCTION=OPT_BS_RHO
@SHORTDESC=rho of a European option
@SYNTAX=OPT_BS_RHO(call_put_flag,spot,strike,time,rate,volatility,cost_of_carry)
@ARGUMENTDESCRIPTION=@{call_put_flag}: 'c' for a call and 'p' for a put
@{spot}: spot price
@{strike}: strike price
@{time}: time to maturity in years
@{rate}: risk-free interest rate to the exercise date in percent
@{volatility}: annualized volatility of the asset in percent for the period through to the exercise date
@{cost_of_carry}: net cost of holding the underlying asset (for common stocks, the risk free rate less the dividend yield), defaults to 0
@DESCRIPTION=OPT_BS_RHO uses the Black-Scholes model to calculate the 'rho' of a European option struck at @{strike} on an asset with spot price @{spot}. The rho of an option is the rate of change of its price with respect to the risk free interest rate.
@NOTE=Rho is expressed as the rate of change of the option value, per 100% change in @{rate}.
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_THETA,OPT_BS_VEGA,OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_BS_THETA
@SHORTDESC=theta of a European option
@SYNTAX=OPT_BS_THETA(call_put_flag,spot,strike,time,rate,volatility,cost_of_carry)
@ARGUMENTDESCRIPTION=@{call_put_flag}: 'c' for a call and 'p' for a put
@{spot}: spot price
@{strike}: strike price
@{time}: time to maturity in years
@{rate}: risk-free interest rate to the exercise date in percent
@{volatility}: annualized volatility of the asset in percent for the period through to the exercise date
@{cost_of_carry}: net cost of holding the underlying asset (for common stocks, the risk free rate less the dividend yield), defaults to 0
@DESCRIPTION=OPT_BS_THETA uses the Black-Scholes model to calculate the 'theta' of a European option struck at @{strike} on an asset with spot price @{spot}. The theta of an option is the rate of change of its price with respect to time to expiry.
@NOTE=Theta is expressed as the negative of the rate of change of the option value, per 365.25 days.
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_VEGA,OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_BS_VEGA
@SHORTDESC=vega of a European option
@SYNTAX=OPT_BS_VEGA(spot,strike,time,rate,volatility,cost_of_carry)
@ARGUMENTDESCRIPTION=@{spot}: spot price
@{strike}: strike price
@{time}: time to maturity in years
@{rate}: risk-free interest rate to the exercise date in percent
@{volatility}: annualized volatility of the asset in percent for the period through to the exercise date
@{cost_of_carry}: net cost of holding the underlying asset (for common stocks, the risk free rate less the dividend yield), defaults to 0
@DESCRIPTION=OPT_BS_VEGA uses the Black-Scholes model to calculate the 'vega' of a European option struck at @{strike} on an asset with spot price @{spot}. The vega of an option is the rate of change of its price with respect to volatility.
@NOTE=Vega is the same for calls and puts. Vega is expressed as the rate of change of option value, per 100% volatility.
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_COMPLEX_CHOOSER
@SHORTDESC=theoretical price of a complex chooser option
@SYNTAX=OPT_COMPLEX_CHOOSER(spot,strike_call,strike_put,time,time_call,time_put,rate,cost_of_carry,volatility)
@ARGUMENTDESCRIPTION=@{spot}: spot price
@{strike_call}: strike price, if exercised as a call option
@{strike_put}: strike price, if exercised as a put option
@{time}: time in years until the holder chooses a put or a call option
@{time_call}: time in years to maturity of the call option if chosen
@{time_put}: time in years to maturity of the put option if chosen
@{rate}: annualized risk-free interest rate
@{cost_of_carry}: net cost of holding the underlying asset
@{volatility}: annualized volatility of the asset in percent for the period through to the exercise date
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_EURO_EXCHANGE
@SHORTDESC=theoretical price of a European option to exchange assets
@SYNTAX=OPT_EURO_EXCHANGE(spot1,spot2,qty1,qty2,time,rate,cost_of_carry1,cost_of_carry2,volatility1,volatility2,rho)
@ARGUMENTDESCRIPTION=@{spot1}: spot price of asset 1
@{spot2}: spot price of asset 2
@{qty1}: quantity of asset 1
@{qty2}: quantity of asset 2
@{time}: time to maturity in years
@{rate}: annualized risk-free interest rate
@{cost_of_carry1}: net cost of holding asset 1 (for common stocks, the risk free rate less the dividend yield)
@{cost_of_carry2}: net cost of holding asset 2 (for common stocks, the risk free rate less the dividend yield)
@{volatility1}: annualized volatility in price of asset 1
@{volatility2}: annualized volatility in price of asset 2
@{rho}: correlation between the prices of the two assets
@DESCRIPTION=OPT_EURO_EXCHANGE models the theoretical price of a European option to exchange one asset with quantity @{qty2} and spot price @{spot2} for another with quantity @{qty1} and spot price @{spot1}.
@SEEALSO=OPT_AMER_EXCHANGE,OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_EXEC
@SHORTDESC=theoretical price of executive stock options
@SYNTAX=OPT_EXEC(call_put_flag,spot,strike,time,rate,volatility,cost_of_carry,lambda)
@ARGUMENTDESCRIPTION=@{call_put_flag}: 'c' for a call and 'p' for a put
@{spot}: spot price
@{strike}: strike price
@{time}: time to maturity in days
@{rate}: annualized risk-free interest rate
@{volatility}: annualized volatility of the asset
@{cost_of_carry}: net cost of holding the underlying asset
@{lambda}: jump rate for executives
@NOTE=The model assumes executives forfeit their options if they leave the company.
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_EXTENDIBLE_WRITER
@SHORTDESC=theoretical price of extendible writer options
@SYNTAX=OPT_EXTENDIBLE_WRITER(call_put_flag,spot,strike1,strike2,time1,time2,rate,cost_of_carry,volatility)
@ARGUMENTDESCRIPTION=@{call_put_flag}: 'c' for a call and 'p' for a put
@{spot}: spot price
@{strike1}: strike price at which the option is struck
@{strike2}: strike price at which the option is re-struck if out of the money at @{time1}
@{time1}: initial maturity of the option in years
@{time2}: extended maturity in years if chosen
@{rate}: annualized risk-free interest rate
@{cost_of_carry}: net cost of holding the underlying asset
@{volatility}: annualized volatility of the asset
@DESCRIPTION=OPT_EXTENDIBLE_WRITER models the theoretical price of extendible writer options. These are options that have their maturity extended to @{time2} if the option is out of the money at @{time1}.
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_FIXED_STRK_LKBK
@SHORTDESC=theoretical price of a fixed-strike lookback option
@SYNTAX=OPT_FIXED_STRK_LKBK(call_put_flag,spot,spot_min,spot_max,strike,time,rate,cost_of_carry,volatility)
@ARGUMENTDESCRIPTION=@{call_put_flag}: 'c' for a call and 'p' for a put
@{spot}: spot price
@{spot_min}: minimum spot price of the underlying asset so far observed
@{spot_max}: maximum spot price of the underlying asset so far observed
@{strike}: strike price
@{time}: time to maturity in years
@{rate}: annualized risk-free interest rate
@{cost_of_carry}: net cost of holding the underlying asset
@{volatility}: annualized volatility of the asset
@DESCRIPTION=OPT_FIXED_STRK_LKBK determines the theoretical price of a fixed-strike lookback option where the holder of the option may exercise on expiry at the most favourable price observed during the options life of the underlying asset.
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_FLOAT_STRK_LKBK
@SHORTDESC=theoretical price of floating-strike lookback option
@SYNTAX=OPT_FLOAT_STRK_LKBK(call_put_flag,spot,spot_min,spot_max,time,rate,cost_of_carry,volatility)
@ARGUMENTDESCRIPTION=@{call_put_flag}: 'c' for a call and 'p' for a put
@{spot}: spot price
@{spot_min}: minimum spot price of the underlying asset so far observed
@{spot_max}: maximum spot price of the underlying asset so far observed
@{time}: time to maturity in years
@{rate}: annualized risk-free interest rate
@{cost_of_carry}: net cost of holding the underlying asset
@{volatility}: annualized volatility of the asset
@DESCRIPTION=OPT_FLOAT_STRK_LKBK determines the theoretical price of a floating-strike lookback option where the holder of the option may exercise on expiry at the most favourable price observed during the options life of the underlying asset.
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_FORWARD_START
@SHORTDESC=theoretical price of forward start options
@SYNTAX=OPT_FORWARD_START(call_put_flag,spot,alpha,time_start,time,rate,volatility,cost_of_carry)
@ARGUMENTDESCRIPTION=@{call_put_flag}: 'c' for a call and 'p' for a put
@{spot}: spot price
@{alpha}: fraction setting the strike price at the future date @{time_start}
@{time_start}: time until the option starts in days
@{time}: time to maturity in days
@{rate}: annualized risk-free interest rate
@{volatility}: annualized volatility of the asset
@{cost_of_carry}: net cost of holding the underlying asset
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_FRENCH
@SHORTDESC=theoretical price of a European option adjusted for trading day volatility
@SYNTAX=OPT_FRENCH(call_put_flag,spot,strike,time,ttime,rate,volatility,cost_of_carry)
@ARGUMENTDESCRIPTION=@{call_put_flag}: 'c' for a call and 'p' for a put
@{spot}: spot price
@{strike}: strike price
@{time}: ratio of the number of calendar days to exercise and the number of calendar days in the year
@{ttime}: ratio of the number of trading days to exercise and the number of trading days in the year
@{rate}: risk-free interest rate to the exercise date in percent
@{volatility}: annualized volatility of the asset in percent for the period through to the exercise date
@{cost_of_carry}: net cost of holding the underlying asset (for common stocks, the risk free rate less the dividend yield), defaults to 0
@DESCRIPTION=OPT_FRENCH values the theoretical price of a European option adjusted for trading day volatility, struck at @{strike} on an asset with spot price @{spot}.
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_GARMAN_KOHLHAGEN
@SHORTDESC=theoretical price of a European currency option
@SYNTAX=OPT_GARMAN_KOHLHAGEN(call_put_flag,spot,strike,time,domestic_rate,foreign_rate,volatility)
@ARGUMENTDESCRIPTION=@{call_put_flag}: 'c' for a call and 'p' for a put
@{spot}: spot price
@{strike}: strike price
@{time}: number of days to exercise
@{domestic_rate}: domestic risk-free interest rate to the exercise date in percent
@{foreign_rate}: foreign risk-free interest rate to the exercise date in percent
@{volatility}: annualized volatility of the asset in percent for the period through to the exercise date
@DESCRIPTION=OPT_GARMAN_KOHLHAGEN values the theoretical price of a European currency option struck at @{strike} on an asset with spot price @{spot}.
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_JUMP_DIFF
@SHORTDESC=theoretical price of an option according to the Jump Diffusion process
@SYNTAX=OPT_JUMP_DIFF(call_put_flag,spot,strike,time,rate,volatility,lambda,gamma)
@ARGUMENTDESCRIPTION=@{call_put_flag}: 'c' for a call and 'p' for a put
@{spot}: spot price
@{strike}: strike price
@{time}: time to maturity in years
@{rate}: the annualized rate of interest
@{volatility}: annualized volatility of the asset in percent for the period through to the exercise date
@{lambda}: expected number of 'jumps' per year
@{gamma}: proportion of volatility explained by the 'jumps'
@DESCRIPTION=OPT_JUMP_DIFF models the theoretical price of an option according to the Jump Diffusion process (Merton).
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_MILTERSEN_SCHWARTZ
@SHORTDESC=theoretical price of options on commodities futures according to Miltersen & Schwartz
@SYNTAX=OPT_MILTERSEN_SCHWARTZ(call_put_flag,p_t,f_t,strike,t1,t2,v_s,v_e,v_f,rho_se,rho_sf,rho_ef,kappa_e,kappa_f)
@ARGUMENTDESCRIPTION=@{call_put_flag}: 'c' for a call and 'p' for a put
@{p_t}: zero coupon bond with expiry at option maturity
@{f_t}: futures price
@{strike}: strike price
@{t1}: time to maturity of the option
@{t2}: time to maturity of the underlying commodity futures contract
@{v_s}: volatility of the spot commodity price
@{v_e}: volatility of the future convenience yield
@{v_f}: volatility of the forward rate of interest
@{rho_se}: correlation between the spot commodity price and the convenience yield
@{rho_sf}: correlation between the spot commodity price and the forward interest rate
@{rho_ef}: correlation between the forward interest rate and the convenience yield
@{kappa_e}: speed of mean reversion of the convenience yield
@{kappa_f}: speed of mean reversion of the forward interest rate
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_ON_OPTIONS
@SHORTDESC=theoretical price of options on options
@SYNTAX=OPT_ON_OPTIONS(type_flag,spot,strike1,strike2,time1,time2,rate,cost_of_carry,volatility)
@ARGUMENTDESCRIPTION=@{type_flag}: 'cc' for calls on calls, 'cp' for calls on puts, and so on for 'pc', and 'pp'
@{spot}: spot price
@{strike1}: strike price at which the option being valued is struck
@{strike2}: strike price at which the underlying option is struck
@{time1}: time in years to maturity of the option
@{time2}: time in years to the maturity of the underlying option
@{rate}: annualized risk-free interest rate
@{cost_of_carry}: net cost of holding the underlying asset of the underlying option
@{volatility}: annualized volatility in price of the underlying asset of the underlying option
@NOTE=For common stocks, @{cost_of_carry} is the risk free rate less the dividend yield. @{time2} ≥ @{time1}
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_RGW
@SHORTDESC=theoretical price of an American option according to the Roll-Geske-Whaley approximation
@SYNTAX=OPT_RGW(spot,strike,time_payout,time_exp,rate,d,volatility)
@ARGUMENTDESCRIPTION=@{spot}: spot price
@{strike}: strike price
@{time_payout}: time to dividend payout
@{time_exp}: time to expiration
@{rate}: annualized interest rate
@{d}: amount of the dividend to be paid expressed in currency
@{volatility}: annualized volatility of the asset in percent for the period through to the exercise date
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_SIMPLE_CHOOSER
@SHORTDESC=theoretical price of a simple chooser option
@SYNTAX=OPT_SIMPLE_CHOOSER(call_put_flag,spot,strike,time1,time2,cost_of_carry,volatility)
@ARGUMENTDESCRIPTION=@{call_put_flag}: 'c' for a call and 'p' for a put
@{spot}: spot price
@{strike}: strike price
@{time1}: time in years until the holder chooses a put or a call option
@{time2}: time in years until the chosen option expires
@{cost_of_carry}: net cost of holding the underlying asset
@{volatility}: annualized volatility of the asset
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_SPREAD_APPROX
@SHORTDESC=theoretical price of a European option on the spread between two futures contracts
@SYNTAX=OPT_SPREAD_APPROX(call_put_flag,fut_price1,fut_price2,strike,time,rate,volatility1,volatility2,rho)
@ARGUMENTDESCRIPTION=@{call_put_flag}: 'c' for a call and 'p' for a put
@{fut_price1}: price of the first futures contract
@{fut_price2}: price of the second futures contract
@{strike}: strike price
@{time}: time to maturity in years
@{rate}: annualized risk-free interest rate
@{volatility1}: annualized volatility in price of the first underlying futures contract
@{volatility2}: annualized volatility in price of the second underlying futures contract
@{rho}: correlation between the two futures contracts
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_TIME_SWITCH
@SHORTDESC=theoretical price of time switch options
@SYNTAX=OPT_TIME_SWITCH(call_put_flag,spot,strike,a,time,m,dt,rate,cost_of_carry,volatility)
@ARGUMENTDESCRIPTION=@{call_put_flag}: 'c' for a call and 'p' for a put
@{spot}: spot price
@{strike}: strike price
@{a}: amount received for each time period
@{time}: time to maturity in years
@{m}: number of time units the option has already met the condition
@{dt}: agreed upon discrete time period expressed as a fraction of a year
@{rate}: annualized risk-free interest rate
@{cost_of_carry}: net cost of holding the underlying asset
@{volatility}: annualized volatility of the asset
@DESCRIPTION=OPT_TIME_SWITCH models the theoretical price of time switch options. (Pechtl 1995). The holder receives @{a} * @{dt} for each period that the asset price was greater than @{strike} (for a call) or below it (for a put).
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=PMT
@SHORTDESC=payment for annuity
@SYNTAX=PMT(rate,nper,pv,fv,type)
@ARGUMENTDESCRIPTION=@{rate}: effective annual interest rate
@{nper}: number of periods
@{pv}: present value
@{fv}: future value
@{type}: payment type
@DESCRIPTION=PMT calculates the payment amount for an annuity.
@NOTE=If @{type} is 0, the default, payment is at the end of each period. If @{type} is 1, payment is at the beginning of each period.
@SEEALSO=PV,FV,RATE,ISPMT
@CATEGORY=Finance
@FUNCTION=PPMT
@SHORTDESC=interest payment for period
@SYNTAX=PPMT(rate,per,nper,pv,fv,type)
@ARGUMENTDESCRIPTION=@{rate}: effective annual interest rate
@{per}: period number
@{nper}: number of periods
@{pv}: present value
@{fv}: future value
@{type}: payment type
@DESCRIPTION=PPMT calculates the principal part of an annuity's payment for period number @{per}.
@NOTE=If @{type} is 0, the default, payment is at the end of each period. If @{type} is 1, payment is at the beginning of each period.
@SEEALSO=IPMT
@CATEGORY=Finance
@FUNCTION=PRICE
@SHORTDESC=price of a security
@SYNTAX=PRICE(settlement,maturity,rate,yield,redemption,frequency,basis)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{rate}: nominal annual interest rate
@{yield}: annual yield of security
@{redemption}: amount received at maturity
@{frequency}: number of interest payments per year
@{basis}: calendar basis
@DESCRIPTION=PRICE calculates the price per $100 face value of a security that pays periodic interest.
@NOTE=@{frequency} may be 1 (annual), 2 (semi-annual), or 4 (quarterly). If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=YIELD,DURATION
@CATEGORY=Finance
@FUNCTION=PRICEDISC
@SHORTDESC=discounted price
@SYNTAX=PRICEDISC(settlement,maturity,discount,redemption,basis)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{discount}: annual rate at which to discount
@{redemption}: amount received at maturity
@{basis}: calendar basis
@DESCRIPTION=PRICEDISC calculates the price per $100 face value of a bond that does not pay interest at maturity.
@NOTE=If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=PRICEMAT
@CATEGORY=Finance
@FUNCTION=PRICEMAT
@SHORTDESC=price at maturity
@SYNTAX=PRICEMAT(settlement,maturity,issue,discount,yield,basis)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{issue}: date of issue
@{discount}: annual rate at which to discount
@{yield}: annual yield of security
@{basis}: calendar basis
@DESCRIPTION=PRICEMAT calculates the price per $100 face value of a bond that pays interest at maturity.
@NOTE=If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=PRICEDISC
@CATEGORY=Finance
@FUNCTION=PV
@SHORTDESC=present value
@SYNTAX=PV(rate,nper,pmt,fv,type)
@ARGUMENTDESCRIPTION=@{rate}: effective interest rate per period
@{nper}: number of periods
@{pmt}: payment at each period
@{fv}: future value
@{type}: payment type
@DESCRIPTION=PV calculates the present value of @{fv} which is @{nper} periods into the future, assuming a periodic payment of @{pmt} and an interest rate of @{rate} per period.
@NOTE=If @{type} is 0, the default, payment is at the end of each period. If @{type} is 1, payment is at the beginning of each period.
@SEEALSO=FV
@CATEGORY=Finance
@FUNCTION=RATE
@SHORTDESC=rate of investment
@SYNTAX=RATE(nper,pmt,pv,fv,type,guess)
@ARGUMENTDESCRIPTION=@{nper}: number of periods
@{pmt}: payment at each period
@{pv}: present value
@{fv}: future value
@{type}: payment type
@{guess}: an estimate of what the result should be
@DESCRIPTION=RATE calculates the rate of return.
@NOTE=If @{type} is 0, the default, payment is at the end of each period. If @{type} is 1, payment is at the beginning of each period. The optional @{guess} is needed because there can be more than one valid result. It defaults to 10%.
@SEEALSO=PV,FV
@CATEGORY=Finance
@FUNCTION=RECEIVED
@SHORTDESC=amount to be received at maturity
@SYNTAX=RECEIVED(settlement,maturity,investment,rate,basis)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{investment}: amount paid on settlement
@{rate}: nominal annual interest rate
@{basis}: calendar basis
@DESCRIPTION=RECEIVED calculates the amount to be received when a security matures.
@NOTE=If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=INTRATE
@CATEGORY=Finance
@FUNCTION=RRI
@SHORTDESC=equivalent interest rate for an investment increasing in value
@SYNTAX=RRI(p,pv,fv)
@ARGUMENTDESCRIPTION=@{p}: number of periods
@{pv}: present value
@{fv}: future value
@DESCRIPTION=RRI determines an equivalent interest rate for an investment that increases in value. The interest is compounded after each complete period.
@NOTE=If @{type} is 0, the default, payment is at the end of each period. If @{type} is 1, payment is at the beginning of each period. Note that @{p} need not be an integer but for fractional value the calculated rate is only approximate.
@ODF=This function is OpenFormula compatible.
@SEEALSO=PV,FV,RATE
@CATEGORY=Finance
@FUNCTION=SLN
@SHORTDESC=depreciation of an asset
@SYNTAX=SLN(cost,salvage,life)
@ARGUMENTDESCRIPTION=@{cost}: initial cost of asset
@{salvage}: value after depreciation
@{life}: number of periods
@DESCRIPTION=SLN calculates the depreciation of an asset using the straight-line method.
@SEEALSO=DB,DDB,SYD
@CATEGORY=Finance
@FUNCTION=SYD
@SHORTDESC=sum-of-years depreciation
@SYNTAX=SYD(cost,salvage,life,period)
@ARGUMENTDESCRIPTION=@{cost}: initial cost of asset
@{salvage}: value after depreciation
@{life}: number of periods
@{period}: subject period
@DESCRIPTION=SYD calculates the depreciation of an asset using the sum-of-years method.
@SEEALSO=DB,DDB,SLN
@CATEGORY=Finance
@FUNCTION=TBILLEQ
@SHORTDESC=bond-equivalent yield for a treasury bill
@SYNTAX=TBILLEQ(settlement,maturity,discount)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{discount}: annual rate at which to discount
@DESCRIPTION=TBILLEQ calculates the bond-equivalent yield for a treasury bill.
@SEEALSO=TBILLPRICE,TBILLYIELD
@CATEGORY=Finance
@FUNCTION=TBILLPRICE
@SHORTDESC=price of a treasury bill
@SYNTAX=TBILLPRICE(settlement,maturity,discount)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{discount}: annual rate at which to discount
@DESCRIPTION=TBILLPRICE calculates the price per $100 face value for a treasury bill.
@SEEALSO=TBILLEQ,TBILLYIELD
@CATEGORY=Finance
@FUNCTION=TBILLYIELD
@SHORTDESC=yield of a treasury bill
@SYNTAX=TBILLYIELD(settlement,maturity,price)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{price}: price
@DESCRIPTION=TBILLYIELD calculates the yield of a treasury bill.
@SEEALSO=TBILLEQ,TBILLPRICE
@CATEGORY=Finance
@FUNCTION=VDB
@SHORTDESC=depreciation of an asset
@SYNTAX=VDB(cost,salvage,life,start_period,end_period,factor,no_switch)
@ARGUMENTDESCRIPTION=@{cost}: initial cost of asset
@{salvage}: value after depreciation
@{life}: number of periods
@{start_period}: first period to accumulate for
@{end_period}: last period to accumulate for
@{factor}: factor at which the balance declines
@{no_switch}: do not switch to straight-line depreciation
@DESCRIPTION=VDB calculates the depreciation of an asset for a given period range using the variable-rate declining balance method.
@NOTE=If @{no_switch} is FALSE, the calculation switches to straight-line depreciation when depreciation is greater than the declining balance calculation.
@SEEALSO=DB,DDB
@CATEGORY=Finance
@FUNCTION=XIRR
@SHORTDESC=internal rate of return
@SYNTAX=XIRR(values,dates,guess)
@ARGUMENTDESCRIPTION=@{values}: cash flow
@{dates}: dates of cash flow
@{guess}: an estimate of what the result should be
@DESCRIPTION=XIRR calculates the annualized internal rate of return of a cash flow at arbitrary points in time. @{values} lists the payments (negative values) and receipts (positive values) with one value for each entry in @{dates}.
@NOTE=The optional @{guess} is needed because there can be more than one valid result. It defaults to 10%.
@SEEALSO=IRR
@CATEGORY=Finance
@FUNCTION=XNPV
@SHORTDESC=net present value
@SYNTAX=XNPV(rate,values,dates)
@ARGUMENTDESCRIPTION=@{rate}: effective annual interest rate
@{values}: cash flow
@{dates}: dates of cash flow
@DESCRIPTION=XNPV calculates the net present value of a cash flow at irregular times.
@NOTE=If @{type} is 0, the default, payment is at the end of each period. If @{type} is 1, payment is at the beginning of each period.
@SEEALSO=NPV
@CATEGORY=Finance
@FUNCTION=YIELD
@SHORTDESC=yield of a security
@SYNTAX=YIELD(settlement,maturity,rate,price,redemption,frequency,basis)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{rate}: nominal annual interest rate
@{price}: price of security
@{redemption}: amount received at maturity
@{frequency}: number of interest payments per year
@{basis}: calendar basis
@DESCRIPTION=YIELD calculates the yield of a security that pays periodic interest.
@NOTE=@{frequency} may be 1 (annual), 2 (semi-annual), or 4 (quarterly). If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=PRICE,DURATION
@CATEGORY=Finance
@FUNCTION=YIELDDISC
@SHORTDESC=yield of a discounted security
@SYNTAX=YIELDDISC(settlement,maturity,price,redemption,basis)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{price}: price of security
@{redemption}: amount received at maturity
@{basis}: calendar basis
@DESCRIPTION=YIELDDISC calculates the yield of a discounted security.
@NOTE=If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=PRICE,DURATION
@CATEGORY=Finance
@FUNCTION=YIELDMAT
@SHORTDESC=yield of a security
@SYNTAX=YIELDMAT(settlement,maturity,issue,rate,price,basis)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{issue}: date of issue
@{rate}: nominal annual interest rate
@{price}: price of security
@{basis}: calendar basis
@DESCRIPTION=YIELDMAT calculates the yield of a security for which the interest is paid at maturity date.
@NOTE=If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=YIELDDISC,YIELD
@CATEGORY=Gnumeric
@FUNCTION=GNUMERIC_VERSION
@SHORTDESC=the current version of Gnumeric
@SYNTAX=GNUMERIC_VERSION()
@DESCRIPTION=GNUMERIC_VERSION returns the version of gnumeric as a string.
@CATEGORY=Information
@FUNCTION=CELL
@SHORTDESC=information of @{type} about @{cell}
@SYNTAX=CELL(type,cell)
@ARGUMENTDESCRIPTION=@{type}: string specifying the type of information requested
@{cell}: cell reference
@DESCRIPTION=@{type} specifies the type of information you want to obtain:
address Returns the given cell reference as text.
col Returns the number of the column in @{cell}.
color Returns 0.
contents Returns the contents of the cell in @{cell}.
column Returns the number of the column in @{cell}.
columnwidth Returns the column width.
coord Returns the absolute address of @{cell}.
datatype same as type
filename Returns the name of the file of @{cell}.
format Returns the code of the format of the cell.
formulatype same as type
locked Returns 1 if @{cell} is locked.
parentheses Returns 1 if @{cell} contains a negative value
and its format displays it with parentheses.
prefix Returns a character indicating the horizontal
alignment of @{cell}.
prefixcharacter same as prefix
protect Returns 1 if @{cell} is locked.
row Returns the number of the row in @{cell}.
sheetname Returns the name of the sheet of @{cell}.
type Returns "l" if @{cell} contains a string,
"v" if it contains some other value, and
"b" if @{cell} is blank.
value Returns the contents of the cell in @{cell}.
width Returns the column width.
@EXCEL=This function is Excel compatible.
@SEEALSO=INDIRECT
@CATEGORY=Information
@FUNCTION=COUNTBLANK
@SHORTDESC=the number of blank cells in @{range}
@SYNTAX=COUNTBLANK(range)
@ARGUMENTDESCRIPTION=@{range}: a cell range
@EXCEL=This function is Excel compatible.
@SEEALSO=COUNT
@CATEGORY=Information
@FUNCTION=ERROR
@SHORTDESC=the error with the given @{name}
@SYNTAX=ERROR(name)
@ARGUMENTDESCRIPTION=@{name}: string
@SEEALSO=ISERROR
@CATEGORY=Information
@FUNCTION=ERROR.TYPE
@SHORTDESC=the type of @{error}
@SYNTAX=ERROR.TYPE(error)
@ARGUMENTDESCRIPTION=@{error}: an error
@DESCRIPTION=ERROR.TYPE returns an error number corresponding to the given error value. The error numbers for error values are:
#DIV/0! 2
#VALUE! 3
#REF! 4
#NAME? 5
#NUM! 6
#N/A 7
@EXCEL=This function is Excel compatible.
@SEEALSO=ISERROR
@CATEGORY=Information
@FUNCTION=EXPRESSION
@SHORTDESC=expression in @{cell} as a string
@SYNTAX=EXPRESSION(cell)
@ARGUMENTDESCRIPTION=@{cell}: a cell reference
@NOTE=If @{cell} contains no expression, EXPRESSION returns empty.
@SEEALSO=TEXT
@CATEGORY=Information
@FUNCTION=GET.FORMULA
@SHORTDESC=the formula in @{cell} as a string
@SYNTAX=GET.FORMULA(cell)
@ARGUMENTDESCRIPTION=@{cell}: the referenced cell
@ODF=GET.FORMULA is the OpenFormula function FORMULA.
@SEEALSO=EXPRESSION,ISFORMULA
@CATEGORY=Information
@FUNCTION=GET.LINK
@SHORTDESC=the target of the hyperlink attached to @{cell} as a string
@SYNTAX=GET.LINK(cell)
@ARGUMENTDESCRIPTION=@{cell}: the referenced cell
@NOTE=The value return is not updated automatically when the link attached to @{cell} changes but requires a recalculation.
@SEEALSO=HYPERLINK
@CATEGORY=Information
@FUNCTION=GETENV
@SHORTDESC=the value of execution environment variable @{name}
@SYNTAX=GETENV(name)
@ARGUMENTDESCRIPTION=@{name}: the name of the environment variable
@NOTE=If a variable called @{name} does not exist, #N/A will be returned. Variable names are case sensitive.
@CATEGORY=Information
@FUNCTION=INFO
@SHORTDESC=information about the current operating environment according to @{type}
@SYNTAX=INFO(type)
@ARGUMENTDESCRIPTION=@{type}: string giving the type of information requested
@DESCRIPTION=INFO returns information about the current operating environment according to @{type}:
memavail Returns the amount of memory available, bytes.
memused Returns the amount of memory used (bytes).
numfile Returns the number of active worksheets.
osversion Returns the operating system version.
recalc Returns the recalculation mode (automatic).
release Returns the version of Gnumeric as text.
system Returns the name of the environment.
totmem Returns the amount of total memory available.
@EXCEL=This function is Excel compatible.
@SEEALSO=CELL
@CATEGORY=Information
@FUNCTION=ISBLANK
@SHORTDESC=TRUE if @{value} is blank
@SYNTAX=ISBLANK(value)
@ARGUMENTDESCRIPTION=@{value}: a value
@DESCRIPTION=This function checks if a value is blank. Empty cells are blank, but empty strings are not.
@EXCEL=This function is Excel compatible.
@CATEGORY=Information
@FUNCTION=ISERR
@SHORTDESC=TRUE if @{value} is any error value except #N/A
@SYNTAX=ISERR(value)
@ARGUMENTDESCRIPTION=@{value}: a value
@EXCEL=This function is Excel compatible.
@SEEALSO=ISERROR
@CATEGORY=Information
@FUNCTION=ISERROR
@SHORTDESC=TRUE if @{value} is any error value
@SYNTAX=ISERROR(value)
@ARGUMENTDESCRIPTION=@{value}: a value
@EXCEL=This function is Excel compatible.
@SEEALSO=ISERR,ISNA
@CATEGORY=Information
@FUNCTION=ISEVEN
@SHORTDESC=TRUE if @{n} is even
@SYNTAX=ISEVEN(n)
@ARGUMENTDESCRIPTION=@{n}: number
@EXCEL=This function is Excel compatible.
@SEEALSO=ISODD
@CATEGORY=Information
@FUNCTION=ISFORMULA
@SHORTDESC=TRUE if @{cell} contains a formula
@SYNTAX=ISFORMULA(cell)
@ARGUMENTDESCRIPTION=@{cell}: the referenced cell
@ODF=ISFORMULA is OpenFormula compatible.
@SEEALSO=GET.FORMULA
@CATEGORY=Information
@FUNCTION=ISLOGICAL
@SHORTDESC=TRUE if @{value} is a logical value
@SYNTAX=ISLOGICAL(value)
@ARGUMENTDESCRIPTION=@{value}: a value
@DESCRIPTION=This function checks if a value is either TRUE or FALSE.
@EXCEL=This function is Excel compatible.
@CATEGORY=Information
@FUNCTION=ISNA
@SHORTDESC=TRUE if @{value} is the #N/A error value
@SYNTAX=ISNA(value)
@ARGUMENTDESCRIPTION=@{value}: a value
@EXCEL=This function is Excel compatible.
@SEEALSO=NA
@CATEGORY=Information
@FUNCTION=ISNONTEXT
@SHORTDESC=TRUE if @{value} is not text
@SYNTAX=ISNONTEXT(value)
@ARGUMENTDESCRIPTION=@{value}: a value
@EXCEL=This function is Excel compatible.
@SEEALSO=ISTEXT
@CATEGORY=Information
@FUNCTION=ISNUMBER
@SHORTDESC=TRUE if @{value} is a number
@SYNTAX=ISNUMBER(value)
@ARGUMENTDESCRIPTION=@{value}: a value
@DESCRIPTION=This function checks if a value is a number. Neither TRUE nor FALSE are numbers for this purpose.
@EXCEL=This function is Excel compatible.
@CATEGORY=Information
@FUNCTION=ISODD
@SHORTDESC=TRUE if @{n} is odd
@SYNTAX=ISODD(n)
@ARGUMENTDESCRIPTION=@{n}: number
@EXCEL=This function is Excel compatible.
@SEEALSO=ISEVEN
@CATEGORY=Information
@FUNCTION=ISREF
@SHORTDESC=TRUE if @{value} is a reference
@SYNTAX=ISREF(value,…)
@ARGUMENTDESCRIPTION=@{value}: a value
@DESCRIPTION=This function checks if a value is a cell reference.
@EXCEL=This function is Excel compatible.
@CATEGORY=Information
@FUNCTION=ISTEXT
@SHORTDESC=TRUE if @{value} is text
@SYNTAX=ISTEXT(value)
@ARGUMENTDESCRIPTION=@{value}: a value
@EXCEL=This function is Excel compatible.
@SEEALSO=ISNONTEXT
@CATEGORY=Information
@FUNCTION=N
@SHORTDESC=@{text} converted to a number
@SYNTAX=N(text)
@ARGUMENTDESCRIPTION=@{text}: string
@NOTE=If @{text} contains non-numerical text, 0 is returned.
@EXCEL=This function is Excel compatible.
@CATEGORY=Information
@FUNCTION=NA
@SHORTDESC=the error value #N/A
@SYNTAX=NA()
@EXCEL=This function is Excel compatible.
@SEEALSO=ISNA
@CATEGORY=Information
@FUNCTION=TYPE
@SHORTDESC=a number indicating the data type of @{value}
@SYNTAX=TYPE(value)
@ARGUMENTDESCRIPTION=@{value}: a value
@DESCRIPTION=TYPE returns a number indicating the data type of @{value}:
1 = number
2 = text
4 = boolean
16 = error
64 = array
@EXCEL=This function is Excel compatible.
@CATEGORY=Logic
@FUNCTION=AND
@SHORTDESC=logical conjunction
@SYNTAX=AND(b0,b1,…)
@ARGUMENTDESCRIPTION=@{b0}: logical value
@{b1}: logical value
@DESCRIPTION=AND calculates the logical conjunction of its arguments @{b0},@{b1},...
@NOTE=If an argument is numerical, zero is considered FALSE and anything else TRUE. Strings and empty values are ignored. If no logical values are provided, then the error #VALUE! is returned. This function is strict: if any argument is an error, the result will be the first such error.
@EXCEL=This function is Excel compatible.
@SEEALSO=OR,NOT,IF
@CATEGORY=Logic
@FUNCTION=FALSE
@SHORTDESC=the value FALSE
@SYNTAX=FALSE()
@DESCRIPTION=FALSE returns the value FALSE.
@EXCEL=This function is Excel compatible.
@SEEALSO=TRUE,IF
@CATEGORY=Logic
@FUNCTION=IF
@SHORTDESC=conditional expression
@SYNTAX=IF(cond,trueval,falseval)
@ARGUMENTDESCRIPTION=@{cond}: condition
@{trueval}: value to use if condition is true
@{falseval}: value to use if condition is false
@DESCRIPTION=This function first evaluates the condition. If the result is true, it will then evaluate and return the second argument. Otherwise, it will evaluate and return the last argument.
@SEEALSO=AND,OR,XOR,NOT,IFERROR
@CATEGORY=Logic
@FUNCTION=IFERROR
@SHORTDESC=test for error
@SYNTAX=IFERROR(x,y)
@ARGUMENTDESCRIPTION=@{x}: value to test for error
@{y}: alternate value
@DESCRIPTION=This function returns the first value, unless that is an error, in which case it returns the second.
@SEEALSO=IF,ISERROR
@CATEGORY=Logic
@FUNCTION=IFNA
@SHORTDESC=test for #N/A error
@SYNTAX=IFNA(x,y)
@ARGUMENTDESCRIPTION=@{x}: value to test for #N/A error
@{y}: alternate value
@DESCRIPTION=This function returns the first value, unless that is #N/A, in which case it returns the second.
@SEEALSO=IF,ISERROR
@CATEGORY=Logic
@FUNCTION=IFS
@SHORTDESC=multi-branch conditional
@SYNTAX=IFS(cond1,value1,cond2,value2,…)
@ARGUMENTDESCRIPTION=@{cond1}: condition
@{value1}: value if @{condition1} is true
@{cond2}: condition
@{value2}: value if @{condition2} is true
@DESCRIPTION=This function returns the value after the first true conditional. If no conditional is true, #VALUE! is returned.
@SEEALSO=IF
@CATEGORY=Logic
@FUNCTION=NOT
@SHORTDESC=logical negation
@SYNTAX=NOT(b)
@ARGUMENTDESCRIPTION=@{b}: logical value
@DESCRIPTION=NOT calculates the logical negation of its argument.
@NOTE=If the argument is numerical, zero is considered FALSE and anything else TRUE. Strings and empty values are ignored.
@EXCEL=This function is Excel compatible.
@SEEALSO=AND,OR,IF
@CATEGORY=Logic
@FUNCTION=OR
@SHORTDESC=logical disjunction
@SYNTAX=OR(b0,b1,…)
@ARGUMENTDESCRIPTION=@{b0}: logical value
@{b1}: logical value
@DESCRIPTION=OR calculates the logical disjunction of its arguments @{b0},@{b1},...
@NOTE=If an argument is numerical, zero is considered FALSE and anything else TRUE. Strings and empty values are ignored. If no logical values are provided, then the error #VALUE! is returned. This function is strict: if any argument is an error, the result will be the first such error.
@EXCEL=This function is Excel compatible.
@SEEALSO=AND,XOR,NOT,IF
@CATEGORY=Logic
@FUNCTION=SWITCH
@SHORTDESC=multi-branch selector
@SYNTAX=SWITCH(ref,choice1,value1,choice2,value2,…)
@ARGUMENTDESCRIPTION=@{ref}: value
@{choice1}: first choice value
@{value1}: first result value
@{choice2}: second choice value
@{value2}: second result value
@DESCRIPTION=This function compares the reference value, @{ref}, against the choice values, @{choice1} etc., and returns the corresponding result value when it finds a match. The choices may be followed by a default value to use. If there are no choices that match and no default value, #N/A is return.
@SEEALSO=IF,IFS
@CATEGORY=Logic
@FUNCTION=TRUE
@SHORTDESC=the value TRUE
@SYNTAX=TRUE()
@DESCRIPTION=TRUE returns the value TRUE.
@EXCEL=This function is Excel compatible.
@SEEALSO=FALSE,IF
@CATEGORY=Logic
@FUNCTION=XOR
@SHORTDESC=logical exclusive disjunction
@SYNTAX=XOR(b0,b1,…)
@ARGUMENTDESCRIPTION=@{b0}: logical value
@{b1}: logical value
@DESCRIPTION=XOR calculates the logical exclusive disjunction of its arguments @{b0},@{b1},...
@NOTE=If an argument is numerical, zero is considered FALSE and anything else TRUE. Strings and empty values are ignored. If no logical values are provided, then the error #VALUE! is returned. This function is strict: if any argument is an error, the result will be the first such error.
@SEEALSO=OR,AND,NOT,IF
@CATEGORY=Lookup
@FUNCTION=ADDRESS
@SHORTDESC=cell address as text
@SYNTAX=ADDRESS(row_num,col_num,abs_num,a1,text)
@ARGUMENTDESCRIPTION=@{row_num}: row number
@{col_num}: column number
@{abs_num}: 1 for an absolute, 2 for a row absolute and column relative, 3 for a row relative and column absolute, and 4 for a relative reference; defaults to 1
@{a1}: if TRUE, an A1-style reference is provided, otherwise an R1C1-style reference; defaults to TRUE
@{text}: name of the worksheet, defaults to no sheet
@NOTE=If @{row_num} or @{col_num} is less than one, ADDRESS returns #VALUE! If @{abs_num} is greater than 4 ADDRESS returns #VALUE!
@SEEALSO=COLUMNNUMBER
@CATEGORY=Lookup
@FUNCTION=AREAS
@SHORTDESC=number of areas in @{reference}
@SYNTAX=AREAS(reference,…)
@ARGUMENTDESCRIPTION=@{reference}: range
@SEEALSO=ADDRESS,INDEX,INDIRECT,OFFSET
@CATEGORY=Lookup
@FUNCTION=ARRAY
@SHORTDESC=vertical array of the arguments
@SYNTAX=ARRAY(v,…)
@ARGUMENTDESCRIPTION=@{v}: value
@SEEALSO=TRANSPOSE
@CATEGORY=Lookup
@FUNCTION=CHOOSE
@SHORTDESC=the (@{index}+1)th argument
@SYNTAX=CHOOSE(index,value1,value2,…)
@ARGUMENTDESCRIPTION=@{index}: positive number
@{value1}: first value
@{value2}: second value
@DESCRIPTION=CHOOSE returns its (@{index}+1)th argument.
@NOTE=@{index} is truncated to an integer. If @{index} < 1 or the truncated @{index} > number of values, CHOOSE returns #VALUE!
@SEEALSO=IF
@CATEGORY=Lookup
@FUNCTION=COLUMN
@SHORTDESC=vector of column numbers
@SYNTAX=COLUMN(x)
@ARGUMENTDESCRIPTION=@{x}: reference, defaults to the position of the current expression
@DESCRIPTION=COLUMN function returns a Nx1 array containing the sequence of integers from the first column to the last column of @{x}.
@NOTE=If @{x} is neither an array nor a reference nor a range, returns #VALUE!
@SEEALSO=COLUMNS,ROW,ROWS
@CATEGORY=Lookup
@FUNCTION=COLUMNNUMBER
@SHORTDESC=column number for the given column called @{name}
@SYNTAX=COLUMNNUMBER(name)
@ARGUMENTDESCRIPTION=@{name}: column name such as "IV"
@NOTE=If @{name} is invalid, COLUMNNUMBER returns #VALUE!
@SEEALSO=ADDRESS
@CATEGORY=Lookup
@FUNCTION=COLUMNS
@SHORTDESC=number of columns in @{reference}
@SYNTAX=COLUMNS(reference)
@ARGUMENTDESCRIPTION=@{reference}: array or area
@NOTE=If @{reference} is neither an array nor a reference nor a range, COLUMNS returns #VALUE!
@SEEALSO=COLUMN,ROW,ROWS
@CATEGORY=Lookup
@FUNCTION=FLIP
@SHORTDESC=@{matrix} flipped
@SYNTAX=FLIP(matrix,vertical)
@ARGUMENTDESCRIPTION=@{matrix}: range
@{vertical}: if true, @{matrix} is flipped vertically, otherwise horizontally; defaults to TRUE
@SEEALSO=TRANSPOSE
@CATEGORY=Lookup
@FUNCTION=HLOOKUP
@SHORTDESC=search the first row of @{range} for @{value}
@SYNTAX=HLOOKUP(value,range,row,approximate,as_index)
@ARGUMENTDESCRIPTION=@{value}: search value
@{range}: range to search
@{row}: 1-based row offset indicating the return values
@{approximate}: if false, an exact match of @{value} must be found; defaults to TRUE
@{as_index}: if true, the 0-based column offset is returned; defaults to FALSE
@DESCRIPTION=HLOOKUP function finds the row in @{range} that has a first cell similar to @{value}. If @{approximate} is not true it finds the column with an exact equality. If @{approximate} is true, it finds the last column with first value less than or equal to @{value}. If @{as_index} is true the 0-based column offset is returned.
@NOTE=If @{approximate} is true, then the values must be sorted in order of ascending value. HLOOKUP returns #REF! if @{row} falls outside @{range}.
@SEEALSO=VLOOKUP
@CATEGORY=Lookup
@FUNCTION=HYPERLINK
@SHORTDESC=second or first arguments
@SYNTAX=HYPERLINK(link_location,label)
@ARGUMENTDESCRIPTION=@{link_location}: string
@{label}: string, optional
@DESCRIPTION=HYPERLINK function currently returns its 2nd argument, or if that is omitted the 1st argument.
@CATEGORY=Lookup
@FUNCTION=INDEX
@SHORTDESC=reference to a cell in the given @{array}
@SYNTAX=INDEX(array,row,col,area,…)
@ARGUMENTDESCRIPTION=@{array}: cell or inline array
@{row}: desired row, defaults to 1
@{col}: desired column, defaults to 1
@{area}: from which area to select a cell, defaults to 1
@DESCRIPTION=INDEX gives a reference to a cell in the given @{array}. The cell is selected by @{row} and @{col}, which count the rows and columns in the array.
@NOTE=If the reference falls outside the range of @{array}, INDEX returns #REF!
@CATEGORY=Lookup
@FUNCTION=INDIRECT
@SHORTDESC=contents of the cell pointed to by the @{ref_text} string
@SYNTAX=INDIRECT(ref_text,format)
@ARGUMENTDESCRIPTION=@{ref_text}: textual reference
@{format}: if true, @{ref_text} is given in A1-style, otherwise it is given in R1C1 style; defaults to true
@NOTE=If @{ref_text} is not a valid reference in the style determined by @{format}, INDIRECT returns #REF!
@SEEALSO=AREAS,INDEX,CELL
@CATEGORY=Lookup
@FUNCTION=LOOKUP
@SHORTDESC=contents of @{vector2} at the corresponding location to @{value} in @{vector1}
@SYNTAX=LOOKUP(value,vector1,vector2)
@ARGUMENTDESCRIPTION=@{value}: value to look up
@{vector1}: range to search:
@{vector2}: range of return values
@DESCRIPTION=If @{vector1} has more rows than columns, LOOKUP searches the first row of @{vector1}, otherwise the first column. If @{vector2} is omitted the return value is taken from the last row or column of @{vector1}.
@NOTE=If LOOKUP can't find @{value} it uses the largest value less than @{value}. The data must be sorted. If @{value} is smaller than the first value it returns #N/A. If the corresponding location does not exist in @{vector2}, it returns #N/A.
@SEEALSO=VLOOKUP,HLOOKUP
@CATEGORY=Lookup
@FUNCTION=MATCH
@SHORTDESC=the index of @{seek} in @{vector}
@SYNTAX=MATCH(seek,vector,type)
@ARGUMENTDESCRIPTION=@{seek}: value to find
@{vector}: n by 1 or 1 by n range to be searched
@{type}: +1 (the default) to find the largest value ≤ @{seek}, 0 to find the first value = @{seek}, or -1 to find the smallest value ≥ @{seek}
@DESCRIPTION=MATCH searches @{vector} for @{seek} and returns the 1-based index.
@NOTE=For @{type} = -1 the data must be sorted in descending order; for @{type} = +1 the data must be sorted in ascending order. If @{seek} could not be found, #N/A is returned. If @{vector} is neither n by 1 nor 1 by n, #N/A is returned.
@SEEALSO=LOOKUP
@CATEGORY=Lookup
@FUNCTION=OFFSET
@SHORTDESC=an offset cell range
@SYNTAX=OFFSET(range,row,col,height,width)
@ARGUMENTDESCRIPTION=@{range}: reference or range
@{row}: number of rows to offset @{range}
@{col}: number of columns to offset @{range}
@{height}: height of the offset range, defaults to height of @{range}
@{width}: width of the offset range, defaults to width of @{range}
@DESCRIPTION=OFFSET returns the cell range starting at offset (@{row},@{col}) from @{range} of height @{height} and width @{width}.
@NOTE=If @{range} is neither a reference nor a range, OFFSET returns #VALUE!
@SEEALSO=COLUMN,COLUMNS,ROWS,INDEX,INDIRECT,ADDRESS
@CATEGORY=Lookup
@FUNCTION=ROW
@SHORTDESC=vector of row numbers
@SYNTAX=ROW(x)
@ARGUMENTDESCRIPTION=@{x}: reference, defaults to the position of the current expression
@DESCRIPTION=ROW function returns a 1xN array containing the sequence of integers from the first row to the last row of @{x}.
@NOTE=If @{x} is neither an array nor a reference nor a range, returns #VALUE!
@SEEALSO=COLUMN,COLUMNS,ROWS
@CATEGORY=Lookup
@FUNCTION=ROWS
@SHORTDESC=number of rows in @{reference}
@SYNTAX=ROWS(reference)
@ARGUMENTDESCRIPTION=@{reference}: array, reference, or range
@NOTE=If @{reference} is neither an array nor a reference nor a range, ROWS returns #VALUE!
@SEEALSO=COLUMN,COLUMNS,ROW
@CATEGORY=Lookup
@FUNCTION=SHEET
@SHORTDESC=sheet number of @{reference}
@SYNTAX=SHEET(reference)
@ARGUMENTDESCRIPTION=@{reference}: reference or literal sheet name, defaults to the current sheet
@NOTE=If @{reference} is neither a reference nor a literal sheet name, SHEET returns #VALUE!
@SEEALSO=SHEETS,ROW,COLUMNNUMBER
@CATEGORY=Lookup
@FUNCTION=SHEETS
@SHORTDESC=number of sheets in @{reference}
@SYNTAX=SHEETS(reference)
@ARGUMENTDESCRIPTION=@{reference}: array, reference, or range, defaults to the maximum range
@NOTE=If @{reference} is neither an array nor a reference nor a range, SHEETS returns #VALUE!
@SEEALSO=COLUMNS,ROWS
@CATEGORY=Lookup
@FUNCTION=SORT
@SHORTDESC=sorted list of numbers as vertical array
@SYNTAX=SORT(ref,order)
@ARGUMENTDESCRIPTION=@{ref}: list of numbers
@{order}: 0 (descending order) or 1 (ascending order); defaults to 0
@NOTE=Strings, booleans, and empty cells are ignored.
@SEEALSO=ARRAY
@CATEGORY=Lookup
@FUNCTION=TRANSPOSE
@SHORTDESC=the transpose of @{matrix}
@SYNTAX=TRANSPOSE(matrix)
@ARGUMENTDESCRIPTION=@{matrix}: range
@SEEALSO=FLIP,MMULT
@CATEGORY=Lookup
@FUNCTION=VLOOKUP
@SHORTDESC=search the first column of @{range} for @{value}
@SYNTAX=VLOOKUP(value,range,column,approximate,as_index)
@ARGUMENTDESCRIPTION=@{value}: search value
@{range}: range to search
@{column}: 1-based column offset indicating the return values
@{approximate}: if false, an exact match of @{value} must be found; defaults to TRUE
@{as_index}: if true, the 0-based row offset is returned; defaults to FALSE
@DESCRIPTION=VLOOKUP function finds the row in @{range} that has a first cell similar to @{value}. If @{approximate} is not true it finds the row with an exact equality. If @{approximate} is true, it finds the last row with first value less than or equal to @{value}. If @{as_index} is true the 0-based row offset is returned.
@NOTE=If @{approximate} is true, then the values must be sorted in order of ascending value. VLOOKUP returns #REF! if @{column} falls outside @{range}.
@SEEALSO=HLOOKUP
@CATEGORY=Mathematics
@FUNCTION=ABS
@SHORTDESC=absolute value
@SYNTAX=ABS(x)
@ARGUMENTDESCRIPTION=@{x}: number
@DESCRIPTION=ABS gives the absolute value of @{x}, i.e. the non-negative number of the same magnitude as @{x}.
@EXCEL=This function is Excel compatible.
@SEEALSO=CEIL,CEILING,FLOOR,INT,MOD
@CATEGORY=Mathematics
@FUNCTION=ACOS
@SHORTDESC=the arc cosine of @{x}
@SYNTAX=ACOS(x)
@ARGUMENTDESCRIPTION=@{x}: number
@EXCEL=This function is Excel compatible.
@SEEALSO=COS,SIN,DEGREES,RADIANS
@CATEGORY=Mathematics
@FUNCTION=ACOSH
@SHORTDESC=the hyperbolic arc cosine of @{x}
@SYNTAX=ACOSH(x)
@ARGUMENTDESCRIPTION=@{x}: number
@EXCEL=This function is Excel compatible.
@SEEALSO=ACOS,ASINH
@CATEGORY=Mathematics
@FUNCTION=ACOT
@SHORTDESC=inverse cotangent of @{x}
@SYNTAX=ACOT(x)
@ARGUMENTDESCRIPTION=@{x}: value
@SEEALSO=COT,TAN
@CATEGORY=Mathematics
@FUNCTION=ACOTH
@SHORTDESC=the inverse hyperbolic cotangent of @{x}
@SYNTAX=ACOTH(x)
@ARGUMENTDESCRIPTION=@{x}: number
@SEEALSO=COTH,TANH
@CATEGORY=Mathematics
@FUNCTION=AGM
@SHORTDESC=the arithmetic-geometric mean
@SYNTAX=AGM(a,b)
@ARGUMENTDESCRIPTION=@{a}: value
@{b}: value
@DESCRIPTION=AGM computes the arithmetic-geometric mean of the two values.
@SEEALSO=AVERAGE,GEOMEAN
@CATEGORY=Mathematics
@FUNCTION=ARABIC
@SHORTDESC=the Roman numeral @{roman} as number
@SYNTAX=ARABIC(roman)
@ARGUMENTDESCRIPTION=@{roman}: Roman numeral
@DESCRIPTION=Any Roman symbol to the left of a larger symbol (directly or indirectly) reduces the final value by the symbol amount, otherwise, it increases the final amount by the symbol's amount.
@ODF=This function is OpenFormula compatible.
@SEEALSO=ROMAN
@CATEGORY=Mathematics
@FUNCTION=ASIN
@SHORTDESC=the arc sine of @{x}
@SYNTAX=ASIN(x)
@ARGUMENTDESCRIPTION=@{x}: number
@DESCRIPTION=ASIN calculates the arc sine of @{x}; that is the value whose sine is @{x}.
@NOTE=If @{x} falls outside the range -1 to 1, ASIN returns #NUM!
@EXCEL=This function is Excel compatible.
@SEEALSO=SIN,COS,ASINH,DEGREES,RADIANS
@CATEGORY=Mathematics
@FUNCTION=ASINH
@SHORTDESC=the inverse hyperbolic sine of @{x}
@SYNTAX=ASINH(x)
@ARGUMENTDESCRIPTION=@{x}: number
@DESCRIPTION=ASINH calculates the inverse hyperbolic sine of @{x}; that is the value whose hyperbolic sine is @{x}.
@EXCEL=This function is Excel compatible.
@SEEALSO=ASIN,ACOSH,SIN,COS
@CATEGORY=Mathematics
@FUNCTION=ATAN
@SHORTDESC=the arc tangent of @{x}
@SYNTAX=ATAN(x)
@ARGUMENTDESCRIPTION=@{x}: number
@DESCRIPTION=ATAN calculates the arc tangent of @{x}; that is the value whose tangent is @{x}.
@NOTE=The result will be between −π/2 and +π/2.
@EXCEL=This function is Excel compatible.
@SEEALSO=TAN,COS,SIN,DEGREES,RADIANS
@CATEGORY=Mathematics
@FUNCTION=ATAN2
@SHORTDESC=the arc tangent of the ratio @{y}/@{x}
@SYNTAX=ATAN2(x,y)
@ARGUMENTDESCRIPTION=@{x}: x-coordinate
@{y}: y-coordinate
@DESCRIPTION=ATAN2 calculates the direction from the origin to the point (@{x},@{y}) as an angle from the x-axis in radians.
@NOTE=The result will be between −π and +π. The order of the arguments may be unexpected.
@EXCEL=This function is Excel compatible.
@ODF=This function is OpenFormula compatible.
@SEEALSO=ATAN,ATANH,COS,SIN
@CATEGORY=Mathematics
@FUNCTION=ATANH
@SHORTDESC=the inverse hyperbolic tangent of @{x}
@SYNTAX=ATANH(x)
@ARGUMENTDESCRIPTION=@{x}: number
@DESCRIPTION=ATANH calculates the inverse hyperbolic tangent of @{x}; that is the value whose hyperbolic tangent is @{x}.
@NOTE=If the absolute value of @{x} is greater than 1.0, ATANH returns #NUM!
@EXCEL=This function is Excel compatible.
@SEEALSO=ATAN,COS,SIN
@CATEGORY=Mathematics
@FUNCTION=AVERAGEIF
@SHORTDESC=average of the cells in @{actual range} for which the corresponding cells in the range meet the given @{criteria}
@SYNTAX=AVERAGEIF(range,criteria,actual_range)
@ARGUMENTDESCRIPTION=@{range}: cell area
@{criteria}: condition for a cell to be included
@{actual_range}: cell area, defaults to @{range}
@EXCEL=This function is Excel compatible.
@SEEALSO=SUMIF,COUNTIF
@CATEGORY=Mathematics
@FUNCTION=AVERAGEIFS
@SHORTDESC=average of the cells in @{actual_range} for which the corresponding cells in the range meet the given criteria
@SYNTAX=AVERAGEIFS(actual_range,range1,criteria1,…)
@ARGUMENTDESCRIPTION=@{actual_range}: cell area
@{range1}: cell area
@{criteria1}: condition for a cell to be included
@EXCEL=This function is Excel compatible.
@SEEALSO=AVERAGE,AVERAGEIF
@CATEGORY=Mathematics
@FUNCTION=BETA
@SHORTDESC=Euler beta function
@SYNTAX=BETA(x,y)
@ARGUMENTDESCRIPTION=@{x}: number
@{y}: number
@DESCRIPTION=BETA function returns the value of the Euler beta function extended to all real numbers except 0 and negative integers.
@NOTE=If @{x}, @{y}, or (@{x} + @{y}) are non-positive integers, BETA returns #NUM!
@SEEALSO=BETALN,GAMMALN
@CATEGORY=Mathematics
@FUNCTION=BETALN
@SHORTDESC=natural logarithm of the absolute value of the Euler beta function
@SYNTAX=BETALN(x,y)
@ARGUMENTDESCRIPTION=@{x}: number
@{y}: number
@DESCRIPTION=BETALN function returns the natural logarithm of the absolute value of the Euler beta function extended to all real numbers except 0 and negative integers.
@NOTE=If @{x}, @{y}, or (@{x} + @{y}) are non-positive integers, BETALN returns #NUM!
@SEEALSO=BETA,GAMMALN
@CATEGORY=Mathematics
@FUNCTION=CEIL
@SHORTDESC=smallest integer larger than or equal to @{x}
@SYNTAX=CEIL(x)
@ARGUMENTDESCRIPTION=@{x}: number
@DESCRIPTION=CEIL(@{x}) is the smallest integer that is at least as large as @{x}.
@ODF=This function is the OpenFormula function CEILING(@{x}).
@SEEALSO=CEILING,FLOOR,ABS,INT,MOD
@CATEGORY=Mathematics
@FUNCTION=CEILING
@SHORTDESC=nearest multiple of @{significance} whose absolute value is at least ABS(@{x})
@SYNTAX=CEILING(x,significance)
@ARGUMENTDESCRIPTION=@{x}: number
@{significance}: base multiple (defaults to 1 for @{x} > 0 and -1 for @{x} < 0)
@DESCRIPTION=CEILING(@{x},@{significance}) is the nearest multiple of @{significance} whose absolute value is at least ABS(@{x}).
@NOTE=If @{x} or @{significance} is non-numeric, CEILING returns a #VALUE! error. If @{x} and @{significance} have different signs, CEILING returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@ODF=CEILING(@{x}) is exported to ODF as CEILING(@{x},SIGN(@{x}),1). CEILING(@{x},@{significance}) is the OpenFormula function CEILING(@{x},@{significance},1).
@SEEALSO=CEIL,FLOOR,ABS,INT,MOD
@CATEGORY=Mathematics
@FUNCTION=CHOLESKY
@SHORTDESC=the Cholesky decomposition of the symmetric positive-definite @{matrix}
@SYNTAX=CHOLESKY(matrix)
@ARGUMENTDESCRIPTION=@{matrix}: a symmetric positive definite matrix
@NOTE=If the Cholesky-Banachiewicz algorithm applied to @{matrix} fails, Cholesky returns #NUM! If @{matrix} does not contain an equal number of columns and rows, CHOLESKY returns #VALUE!
@SEEALSO=MINVERSE,MMULT,MDETERM
@CATEGORY=Mathematics
@FUNCTION=COMBIN
@SHORTDESC=binomial coefficient
@SYNTAX=COMBIN(n,k)
@ARGUMENTDESCRIPTION=@{n}: non-negative integer
@{k}: non-negative integer
@DESCRIPTION=COMBIN returns the binomial coefficient "@{n} choose @{k}", the number of @{k}-combinations of an @{n}-element set without repetition.
@NOTE=If @{n} is less than @{k} COMBIN returns #NUM!
@EXCEL=This function is Excel compatible.
@ODF=This function is OpenFormula compatible.
@CATEGORY=Mathematics
@FUNCTION=COMBINA
@SHORTDESC=the number of @{k}-combinations of an @{n}-element set with repetition
@SYNTAX=COMBINA(n,k)
@ARGUMENTDESCRIPTION=@{n}: non-negative integer
@{k}: non-negative integer
@ODF=This function is OpenFormula compatible.
@SEEALSO=COMBIN
@CATEGORY=Mathematics
@FUNCTION=COS
@SHORTDESC=the cosine of @{x}
@SYNTAX=COS(x)
@ARGUMENTDESCRIPTION=@{x}: angle in radians
@DESCRIPTION=This function is Excel compatible.
@SEEALSO=SIN,TAN,SINH,COSH,TANH,RADIANS,DEGREES
@CATEGORY=Mathematics
@FUNCTION=COSH
@SHORTDESC=the hyperbolic cosine of @{x}
@SYNTAX=COSH(x)
@ARGUMENTDESCRIPTION=@{x}: number
@EXCEL=This function is Excel compatible.
@SEEALSO=SIN,TAN,SINH,COSH,TANH
@CATEGORY=Mathematics
@FUNCTION=COSPI
@SHORTDESC=the cosine of Pi*@{x}
@SYNTAX=COSPI(x)
@ARGUMENTDESCRIPTION=@{x}: number of half turns
@SEEALSO=COS
@CATEGORY=Mathematics
@FUNCTION=COT
@SHORTDESC=the cotangent of @{x}
@SYNTAX=COT(x)
@ARGUMENTDESCRIPTION=@{x}: number
@SEEALSO=TAN,ACOT
@CATEGORY=Mathematics
@FUNCTION=COTH
@SHORTDESC=the hyperbolic cotangent of @{x}
@SYNTAX=COTH(x)
@ARGUMENTDESCRIPTION=@{x}: number
@SEEALSO=TANH,ACOTH
@CATEGORY=Mathematics
@FUNCTION=COTPI
@SHORTDESC=the cotangent of Pi*@{x}
@SYNTAX=COTPI(x)
@ARGUMENTDESCRIPTION=@{x}: number of half turns
@SEEALSO=COT
@CATEGORY=Mathematics
@FUNCTION=COUNTIF
@SHORTDESC=count of the cells meeting the given @{criteria}
@SYNTAX=COUNTIF(range,criteria)
@ARGUMENTDESCRIPTION=@{range}: cell area
@{criteria}: condition for a cell to be counted
@EXCEL=This function is Excel compatible.
@SEEALSO=COUNT,SUMIF
@CATEGORY=Mathematics
@FUNCTION=COUNTIFS
@SHORTDESC=count of the cells meeting the given @{criteria}
@SYNTAX=COUNTIFS(range,criteria,…)
@ARGUMENTDESCRIPTION=@{range}: cell area
@{criteria}: condition for a cell to be counted
@EXCEL=This function is Excel compatible.
@SEEALSO=COUNT,SUMIF
@CATEGORY=Mathematics
@FUNCTION=CSC
@SHORTDESC=the cosecant of @{x}
@SYNTAX=CSC(x)
@ARGUMENTDESCRIPTION=@{x}: angle in radians
@EXCEL=This function is not Excel compatible.
@ODF=This function is OpenFormula compatible.
@SEEALSO=SIN,COS,TAN,SEC,SINH,COSH,TANH,RADIANS,DEGREES
@CATEGORY=Mathematics
@FUNCTION=CSCH
@SHORTDESC=the hyperbolic cosecant of @{x}
@SYNTAX=CSCH(x)
@ARGUMENTDESCRIPTION=@{x}: number
@EXCEL=This function is not Excel compatible.
@ODF=This function is OpenFormula compatible.
@SEEALSO=SIN,COS,TAN,CSC,SEC,SINH,COSH,TANH
@CATEGORY=Mathematics
@FUNCTION=DEGREES
@SHORTDESC=equivalent degrees to @{x} radians
@SYNTAX=DEGREES(x)
@ARGUMENTDESCRIPTION=@{x}: angle in radians
@EXCEL=This function is Excel compatible.
@SEEALSO=RADIANS,PI
@CATEGORY=Mathematics
@FUNCTION=EIGEN
@SHORTDESC=eigenvalues and eigenvectors of the symmetric @{matrix}
@SYNTAX=EIGEN(matrix)
@ARGUMENTDESCRIPTION=@{matrix}: a symmetric matrix
@NOTE=If @{matrix} is not symmetric, matching off-diagonal cells will be averaged on the assumption that the non-symmetry is caused by unimportant rounding errors. If @{matrix} does not contain an equal number of columns and rows, EIGEN returns #VALUE!
@CATEGORY=Mathematics
@FUNCTION=EVEN
@SHORTDESC=@{x} rounded away from 0 to the next even integer
@SYNTAX=EVEN(x)
@ARGUMENTDESCRIPTION=@{x}: number
@EXCEL=This function is Excel compatible.
@SEEALSO=ODD
@CATEGORY=Mathematics
@FUNCTION=EXP
@SHORTDESC=e raised to the power of @{x}
@SYNTAX=EXP(x)
@ARGUMENTDESCRIPTION=@{x}: number
@NOTE=e is the base of the natural logarithm.
@EXCEL=This function is Excel compatible.
@SEEALSO=LOG,LOG2,LOG10
@CATEGORY=Mathematics
@FUNCTION=EXPM1
@SHORTDESC=EXP(@{x})-1
@SYNTAX=EXPM1(x)
@ARGUMENTDESCRIPTION=@{x}: number
@NOTE=This function has a higher resulting precision than evaluating EXP(@{x})-1.
@SEEALSO=EXP,LN1P
@CATEGORY=Mathematics
@FUNCTION=FACT
@SHORTDESC=the factorial of @{x}, i.e. @{x}!
@SYNTAX=FACT(x)
@ARGUMENTDESCRIPTION=@{x}: number
@NOTE=The domain of this function has been extended using the GAMMA function.
@EXCEL=This function is Excel compatible.
@CATEGORY=Mathematics
@FUNCTION=FACTDOUBLE
@SHORTDESC=double factorial
@SYNTAX=FACTDOUBLE(x)
@ARGUMENTDESCRIPTION=@{x}: non-negative integer
@DESCRIPTION=FACTDOUBLE function returns the double factorial @{x}!!
@NOTE=If @{x} is not an integer, it is truncated. If @{x} is negative, FACTDOUBLE returns #NUM!
@EXCEL=This function is Excel compatible.
@SEEALSO=FACT
@CATEGORY=Mathematics
@FUNCTION=FIB
@SHORTDESC=Fibonacci numbers
@SYNTAX=FIB(n)
@ARGUMENTDESCRIPTION=@{n}: positive integer
@DESCRIPTION=FIB(@{n}) is the @{n}th Fibonacci number.
@NOTE=If @{n} is not an integer, it is truncated. If it is negative or zero FIB returns #NUM!
@CATEGORY=Mathematics
@FUNCTION=FLOOR
@SHORTDESC=nearest multiple of @{significance} whose absolute value is at most ABS(@{x})
@SYNTAX=FLOOR(x,significance)
@ARGUMENTDESCRIPTION=@{x}: number
@{significance}: base multiple (defaults to 1 for @{x} > 0 and -1 for @{x} < 0)
@DESCRIPTION=FLOOR(@{x},@{significance}) is the nearest multiple of @{significance} whose absolute value is at most ABS(@{x})
@EXCEL=This function is Excel compatible.
@ODF=FLOOR(@{x}) is exported to ODF as FLOOR(@{x},SIGN(@{x}),1). FLOOR(@{x},@{significance}) is the OpenFormula function FLOOR(@{x},@{significance},1).
@SEEALSO=CEIL,CEILING,ABS,INT,MOD
@CATEGORY=Mathematics
@FUNCTION=G_PRODUCT
@SHORTDESC=product of all the values and cells referenced
@SYNTAX=G_PRODUCT(x1,x2,…)
@ARGUMENTDESCRIPTION=@{x1}: number
@{x2}: number
@NOTE=Empty cells are ignored and the empty product is 1.
@SEEALSO=SUM,COUNT
@CATEGORY=Mathematics
@FUNCTION=GAMMA
@SHORTDESC=the Gamma function
@SYNTAX=GAMMA(x)
@ARGUMENTDESCRIPTION=@{x}: number
@SEEALSO=GAMMALN
@CATEGORY=Mathematics
@FUNCTION=GAMMALN
@SHORTDESC=natural logarithm of the Gamma function
@SYNTAX=GAMMALN(x)
@ARGUMENTDESCRIPTION=@{x}: number
@EXCEL=This function is Excel compatible.
@SEEALSO=GAMMA
@CATEGORY=Mathematics
@FUNCTION=GCD
@SHORTDESC=the greatest common divisor
@SYNTAX=GCD(n0,n1,…)
@ARGUMENTDESCRIPTION=@{n0}: positive integer
@{n1}: positive integer
@DESCRIPTION=GCD calculates the greatest common divisor of the given numbers @{n0},@{n1},..., the greatest integer that is a divisor of each argument.
@NOTE=If any of the arguments is not an integer, it is truncated.
@EXCEL=This function is Excel compatible.
@SEEALSO=LCM
@CATEGORY=Mathematics
@FUNCTION=GD
@SHORTDESC=Gudermannian function
@SYNTAX=GD(x)
@ARGUMENTDESCRIPTION=@{x}: value
@SEEALSO=TAN,TANH
@CATEGORY=Mathematics
@FUNCTION=HYPOT
@SHORTDESC=the square root of the sum of the squares of the arguments
@SYNTAX=HYPOT(n0,n1,…)
@ARGUMENTDESCRIPTION=@{n0}: number
@{n1}: number
@SEEALSO=MIN,MAX
@CATEGORY=Mathematics
@FUNCTION=IGAMMA
@SHORTDESC=the incomplete Gamma function
@SYNTAX=IGAMMA(a,x,lower,regularize,real)
@ARGUMENTDESCRIPTION=@{a}: number
@{x}: number
@{lower}: if true (the default), the lower incomplete gamma function, otherwise the upper incomplete gamma function
@{regularize}: if true (the default), the regularized version of the incomplete gamma function
@{real}: if true (the default), the real part of the result, otherwise the imaginary part
@NOTE=The regularized incomplete gamma function is the unregularized incomplete gamma function divided by GAMMA(@{a}) This is a real valued function as long as neither @{a} nor @{z} are negative.
@SEEALSO=GAMMA,IMIGAMMA
@CATEGORY=Mathematics
@FUNCTION=INT
@SHORTDESC=largest integer not larger than @{x}
@SYNTAX=INT(x)
@ARGUMENTDESCRIPTION=@{x}: number
@EXCEL=This function is Excel compatible.
@SEEALSO=CEIL,CEILING,FLOOR,ABS,MOD
@CATEGORY=Mathematics
@FUNCTION=LAMBERTW
@SHORTDESC=the Lambert W function
@SYNTAX=LAMBERTW(x,k)
@ARGUMENTDESCRIPTION=@{x}: number
@{k}: branch
@NOTE=@{k} defaults to 0, the principal branch. @{k} must be either 0 or -1.
@SEEALSO=EXP
@CATEGORY=Mathematics
@FUNCTION=LCM
@SHORTDESC=the least common multiple
@SYNTAX=LCM(n0,n1,…)
@ARGUMENTDESCRIPTION=@{n0}: positive integer
@{n1}: positive integer
@DESCRIPTION=LCM calculates the least common multiple of the given numbers @{n0},@{n1},..., the smallest integer that is a multiple of each argument.
@NOTE=If any of the arguments is not an integer, it is truncated.
@EXCEL=This function is Excel compatible.
@SEEALSO=GCD
@CATEGORY=Mathematics
@FUNCTION=LINSOLVE
@SHORTDESC=solve linear equation
@SYNTAX=LINSOLVE(A,B)
@ARGUMENTDESCRIPTION=@{A}: a matrix
@{B}: a matrix
@DESCRIPTION=Solves the equation @{A}*X=@{B} and returns X.
@NOTE=If the matrix @{A} is singular, #VALUE! is returned.
@SEEALSO=MINVERSE
@CATEGORY=Mathematics
@FUNCTION=LN
@SHORTDESC=the natural logarithm of @{x}
@SYNTAX=LN(x)
@ARGUMENTDESCRIPTION=@{x}: positive number
@NOTE=If @{x} ≤ 0, LN returns #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=EXP,LOG2,LOG10
@CATEGORY=Mathematics
@FUNCTION=LN1P
@SHORTDESC=LN(1+@{x})
@SYNTAX=LN1P(x)
@ARGUMENTDESCRIPTION=@{x}: positive number
@DESCRIPTION=LN1P calculates LN(1+@{x}) but yielding a higher precision than evaluating LN(1+@{x}).
@NOTE=If @{x} ≤ -1, LN returns #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=EXP,LN,EXPM1
@CATEGORY=Mathematics
@FUNCTION=LOG
@SHORTDESC=logarithm of @{x} with base @{base}
@SYNTAX=LOG(x,base)
@ARGUMENTDESCRIPTION=@{x}: positive number
@{base}: base of the logarithm, defaults to 10
@NOTE=@{base} must be positive and not equal to 1. If @{x} ≤ 0, LOG returns #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=LN,LOG2,LOG10
@CATEGORY=Mathematics
@FUNCTION=LOG10
@SHORTDESC=the base-10 logarithm of @{x}
@SYNTAX=LOG10(x)
@ARGUMENTDESCRIPTION=@{x}: positive number
@NOTE=If @{x} ≤ 0, LOG10 returns #NUM!
@SEEALSO=EXP,LOG2,LOG
@CATEGORY=Mathematics
@FUNCTION=LOG2
@SHORTDESC=the base-2 logarithm of @{x}
@SYNTAX=LOG2(x)
@ARGUMENTDESCRIPTION=@{x}: positive number
@NOTE=If @{x} ≤ 0, LOG2 returns #NUM!
@SEEALSO=EXP,LOG10,LOG
@CATEGORY=Mathematics
@FUNCTION=MAXIFS
@SHORTDESC=maximum of the cells in @{actual_range} for which the corresponding cells in the range meet the given criteria
@SYNTAX=MAXIFS(actual_range,range1,criteria1,…)
@ARGUMENTDESCRIPTION=@{actual_range}: cell area
@{range1}: cell area
@{criteria1}: condition for a cell to be included
@EXCEL=This function is Excel compatible.
@SEEALSO=MIN,MINIFS
@CATEGORY=Mathematics
@FUNCTION=MDETERM
@SHORTDESC=the determinant of the matrix @{matrix}
@SYNTAX=MDETERM(matrix)
@ARGUMENTDESCRIPTION=@{matrix}: a square matrix
@EXCEL=This function is Excel compatible.
@SEEALSO=MMULT,MINVERSE
@CATEGORY=Mathematics
@FUNCTION=MINIFS
@SHORTDESC=minimum of the cells in @{actual_range} for which the corresponding cells in the range meet the given criteria
@SYNTAX=MINIFS(actual_range,range1,criteria1,…)
@ARGUMENTDESCRIPTION=@{actual_range}: cell area
@{range1}: cell area
@{criteria1}: condition for a cell to be included
@EXCEL=This function is Excel compatible.
@SEEALSO=MIN,MAXIFS
@CATEGORY=Mathematics
@FUNCTION=MINVERSE
@SHORTDESC=the inverse matrix of @{matrix}
@SYNTAX=MINVERSE(matrix)
@ARGUMENTDESCRIPTION=@{matrix}: a square matrix
@NOTE=If @{matrix} is not invertible, MINVERSE returns #NUM! If @{matrix} does not contain an equal number of columns and rows, MINVERSE returns #VALUE!
@EXCEL=This function is Excel compatible.
@SEEALSO=MMULT,MDETERM,LINSOLVE
@CATEGORY=Mathematics
@FUNCTION=MMULT
@SHORTDESC=the matrix product of @{mat1} and @{mat2}
@SYNTAX=MMULT(mat1,mat2)
@ARGUMENTDESCRIPTION=@{mat1}: a matrix
@{mat2}: a matrix
@NOTE=The number of columns in @{mat1} must equal the number of rows in @{mat2}; otherwise #VALUE! is returned. The result of MMULT is an array, in which the number of rows is the same as in @{mat1}), and the number of columns is the same as in (@{mat2}).
@EXCEL=This function is Excel compatible.
@SEEALSO=TRANSPOSE,MINVERSE
@CATEGORY=Mathematics
@FUNCTION=MOD
@SHORTDESC=the remainder of @{x} under division by @{n}
@SYNTAX=MOD(x,n)
@ARGUMENTDESCRIPTION=@{x}: integer
@{n}: integer
@DESCRIPTION=MOD function returns the remainder when @{x} is divided by @{n}.
@NOTE=If @{n} is 0, MOD returns #DIV/0!
@EXCEL=This function is Excel compatible.
@SEEALSO=CEIL,CEILING,FLOOR,ABS,INT,ABS
@CATEGORY=Mathematics
@FUNCTION=MPSEUDOINVERSE
@SHORTDESC=the pseudo-inverse matrix of @{matrix}
@SYNTAX=MPSEUDOINVERSE(matrix,threshold)
@ARGUMENTDESCRIPTION=@{matrix}: a matrix
@{threshold}: a relative size threshold for discarding eigenvalues
@SEEALSO=MINVERSE
@CATEGORY=Mathematics
@FUNCTION=MROUND
@SHORTDESC=@{x} rounded to a multiple of @{m}
@SYNTAX=MROUND(x,m)
@ARGUMENTDESCRIPTION=@{x}: number
@{m}: number
@NOTE=If @{x} and @{m} have different sign, MROUND returns #NUM!
@EXCEL=This function is Excel compatible.
@SEEALSO=ROUNDDOWN,ROUND,ROUNDUP
@CATEGORY=Mathematics
@FUNCTION=MULTINOMIAL
@SHORTDESC=multinomial coefficient (@{x1}+⋯+@{xn}) choose (@{x1},…,@{xn})
@SYNTAX=MULTINOMIAL(x1,x2,xn,…)
@ARGUMENTDESCRIPTION=@{x1}: first number
@{x2}: second number
@{xn}: nth number
@EXCEL=This function is Excel compatible.
@SEEALSO=COMBIN,SUM
@CATEGORY=Mathematics
@FUNCTION=MUNIT
@SHORTDESC=the @{n} by @{n} identity matrix
@SYNTAX=MUNIT(n)
@ARGUMENTDESCRIPTION=@{n}: size of the matrix
@ODF=This function is OpenFormula compatible.
@SEEALSO=MMULT,MDETERM,MINVERSE
@CATEGORY=Mathematics
@FUNCTION=ODD
@SHORTDESC=@{x} rounded away from 0 to the next odd integer
@SYNTAX=ODD(x)
@ARGUMENTDESCRIPTION=@{x}: number
@EXCEL=This function is Excel compatible.
@SEEALSO=EVEN
@CATEGORY=Mathematics
@FUNCTION=ODF.SUMPRODUCT
@SHORTDESC=multiplies components and adds the results
@SYNTAX=ODF.SUMPRODUCT(,…)
@DESCRIPTION=Multiplies corresponding data entries in the given arrays or ranges, and then returns the sum of those products.
@NOTE=If an entry is not numeric or logical, the value zero is used instead. If arrays or range arguments do not have the same dimensions, return #VALUE! error. This function differs from SUMPRODUCT by considering booleans.
@EXCEL=This function is not Excel compatible. Use SUMPRODUCT instead.
@ODF=This function is OpenFormula compatible.
@SEEALSO=SUMPRODUCT,SUM,PRODUCT,G_PRODUCT
@CATEGORY=Mathematics
@FUNCTION=PI
@SHORTDESC=the constant 𝜋
@SYNTAX=PI()
@EXCEL=This function is Excel compatible, but it returns 𝜋 with a better precision.
@SEEALSO=SQRTPI
@CATEGORY=Mathematics
@FUNCTION=POCHHAMMER
@SHORTDESC=the value of GAMMA(@{x}+@{n})/GAMMA(@{x})
@SYNTAX=POCHHAMMER(x,n)
@ARGUMENTDESCRIPTION=@{x}: number
@{n}: number
@SEEALSO=GAMMA
@CATEGORY=Mathematics
@FUNCTION=POWER
@SHORTDESC=the value of @{x} raised to the power @{y} raised to the power of 1/@{z}
@SYNTAX=POWER(x,y,z)
@ARGUMENTDESCRIPTION=@{x}: number
@{y}: number
@{z}: number
@NOTE=If both @{x} and @{y} equal 0, POWER returns #NUM! If @{x} = 0 and @{y} < 0, POWER returns #DIV/0! If @{x} < 0 and @{y} is not an integer, POWER returns #NUM! @{z} defaults to 1 If @{z} is not a positive integer, POWER returns #NUM! If @{x} < 0, @{y} is odd, and @{z} is even, POWER returns #NUM!
@SEEALSO=EXP
@CATEGORY=Mathematics
@FUNCTION=PRODUCT
@SHORTDESC=product of the given values
@SYNTAX=PRODUCT(values,…)
@ARGUMENTDESCRIPTION=@{values}: a list of values to multiply
@DESCRIPTION=PRODUCT computes the product of all the values and cells referenced in the argument list.
@NOTE=If all cells are empty, the result will be 0.
@EXCEL=This function is Excel compatible.
@ODF=This function is OpenFormula compatible.
@SEEALSO=SUM,COUNT,G_PRODUCT
@CATEGORY=Mathematics
@FUNCTION=QUOTIENT
@SHORTDESC=integer portion of a division
@SYNTAX=QUOTIENT(numerator,denominator)
@ARGUMENTDESCRIPTION=@{numerator}: integer
@{denominator}: non-zero integer
@DESCRIPTION=QUOTIENT yields the integer portion of the division @{numerator}/@{denominator}.
QUOTIENT (@{numerator},@{denominator})⨉@{denominator}+MOD(@{numerator},@{denominator})=@{numerator}
@EXCEL=This function is Excel compatible.
@SEEALSO=MOD
@CATEGORY=Mathematics
@FUNCTION=RADIANS
@SHORTDESC=the number of radians equivalent to @{x} degrees
@SYNTAX=RADIANS(x)
@ARGUMENTDESCRIPTION=@{x}: angle in degrees
@EXCEL=This function is Excel compatible.
@SEEALSO=PI,DEGREES
@CATEGORY=Mathematics
@FUNCTION=REDUCEPI
@SHORTDESC=reduce modulo Pi divided by a power of 2
@SYNTAX=REDUCEPI(x,e,q)
@ARGUMENTDESCRIPTION=@{x}: number
@{e}: scale
@{q}: get lower bits of quotient, defaults to FALSE
@NOTE=This function returns a value, xr, such that @{x}=xr+j*Pi/2^@{e} where j is an integer and the absolute value of xr does not exceed Pi/2^(@{e}+1). If optional argument @{q} is TRUE, returns instead the @e+1 lower bits of j. The reduction is performed as-if using an exact value of Pi. The lowest valid @{e} is -1 representing reduction modulo 2*Pi; the highest is 7 representing reduction modulo Pi/256.
@SEEALSO=PI
@CATEGORY=Mathematics
@FUNCTION=ROMAN
@SHORTDESC=@{n} as a roman numeral text
@SYNTAX=ROMAN(n,type)
@ARGUMENTDESCRIPTION=@{n}: non-negative integer
@{type}: 0,1,2,3,or 4, defaults to 0
@DESCRIPTION=ROMAN returns the arabic number @{n} as a roman numeral text.
If @{type} is 0 or it is omitted, ROMAN returns classic roman numbers.
Type 1 is more concise than classic type, type 2 is more concise than type 1, and type 3 is more concise than type 2. Type 4 is a simplified type.
@EXCEL=This function is Excel compatible.
@CATEGORY=Mathematics
@FUNCTION=ROUND
@SHORTDESC=rounded @{x}
@SYNTAX=ROUND(x,d)
@ARGUMENTDESCRIPTION=@{x}: number
@{d}: integer, defaults to 0
@DESCRIPTION=If @{d} is greater than zero, @{x} is rounded to the given number of digits.
If @{d} is zero, @{x} is rounded to the next integer.
If @{d} is less than zero, @{x} is rounded to the left of the decimal point
@EXCEL=This function is Excel compatible.
@SEEALSO=ROUNDDOWN,ROUNDUP
@CATEGORY=Mathematics
@FUNCTION=ROUNDDOWN
@SHORTDESC=@{x} rounded towards 0
@SYNTAX=ROUNDDOWN(x,d)
@ARGUMENTDESCRIPTION=@{x}: number
@{d}: integer, defaults to 0
@DESCRIPTION=If @{d} is greater than zero, @{x} is rounded toward 0 to the given number of digits.
If @{d} is zero, @{x} is rounded toward 0 to the next integer.
If @{d} is less than zero, @{x} is rounded toward 0 to the left of the decimal point
@EXCEL=This function is Excel compatible.
@SEEALSO=ROUND,ROUNDUP
@CATEGORY=Mathematics
@FUNCTION=ROUNDUP
@SHORTDESC=@{x} rounded away from 0
@SYNTAX=ROUNDUP(x,d)
@ARGUMENTDESCRIPTION=@{x}: number
@{d}: integer, defaults to 0
@DESCRIPTION=If @{d} is greater than zero, @{x} is rounded away from 0 to the given number of digits.
If @{d} is zero, @{x} is rounded away from 0 to the next integer.
If @{d} is less than zero, @{x} is rounded away from 0 to the left of the decimal point
@EXCEL=This function is Excel compatible.
@SEEALSO=ROUND,ROUNDDOWN,INT
@CATEGORY=Mathematics
@FUNCTION=SEC
@SHORTDESC=Secant
@SYNTAX=SEC(x)
@ARGUMENTDESCRIPTION=@{x}: angle in radians
@EXCEL=This function is not Excel compatible.
@ODF=SEC(@{x}) is exported to OpenFormula as 1/COS(@{x}).
@SEEALSO=SIN,COS,TAN,CSC,SINH,COSH,TANH,RADIANS,DEGREES
@CATEGORY=Mathematics
@FUNCTION=SECH
@SHORTDESC=the hyperbolic secant of @{x}
@SYNTAX=SECH(x)
@ARGUMENTDESCRIPTION=@{x}: number
@EXCEL=This function is not Excel compatible.
@ODF=SECH(@{x}) is exported to OpenFormula as 1/COSH(@{x}).
@SEEALSO=SIN,COS,TAN,CSC,SEC,SINH,COSH,TANH
@CATEGORY=Mathematics
@FUNCTION=SERIESSUM
@SHORTDESC=sum of a power series at @{x}
@SYNTAX=SERIESSUM(x,n,m,coeff)
@ARGUMENTDESCRIPTION=@{x}: number where to evaluate the power series
@{n}: non-negative integer, exponent of the lowest term of the series
@{m}: increment to each exponent
@{coeff}: coefficients of the power series
@EXCEL=This function is Excel compatible.
@SEEALSO=COUNT,SUM
@CATEGORY=Mathematics
@FUNCTION=SIGN
@SHORTDESC=sign of @{x}
@SYNTAX=SIGN(x)
@ARGUMENTDESCRIPTION=@{x}: number
@DESCRIPTION=SIGN returns 1 if the @{x} is positive and it returns -1 if @{x} is negative.
@EXCEL=This function is Excel compatible.
@SEEALSO=ABS
@CATEGORY=Mathematics
@FUNCTION=SIN
@SHORTDESC=the sine of @{x}
@SYNTAX=SIN(x)
@ARGUMENTDESCRIPTION=@{x}: angle in radians
@EXCEL=This function is Excel compatible.
@SEEALSO=COS,TAN,CSC,SEC,SINH,COSH,TANH,RADIANS,DEGREES
@CATEGORY=Mathematics
@FUNCTION=SINH
@SHORTDESC=the hyperbolic sine of @{x}
@SYNTAX=SINH(x)
@ARGUMENTDESCRIPTION=@{x}: number
@EXCEL=This function is Excel compatible.
@SEEALSO=SIN,COSH,ASINH
@CATEGORY=Mathematics
@FUNCTION=SINPI
@SHORTDESC=the sine of Pi*@{x}
@SYNTAX=SINPI(x)
@ARGUMENTDESCRIPTION=@{x}: number of half turns
@SEEALSO=SIN
@CATEGORY=Mathematics
@FUNCTION=SQRT
@SHORTDESC=square root of @{x}
@SYNTAX=SQRT(x)
@ARGUMENTDESCRIPTION=@{x}: non-negative number
@NOTE=If @{x} is negative, SQRT returns #NUM!
@EXCEL=This function is Excel compatible.
@SEEALSO=POWER
@CATEGORY=Mathematics
@FUNCTION=SQRTPI
@SHORTDESC=the square root of @{x} times 𝜋
@SYNTAX=SQRTPI(x)
@ARGUMENTDESCRIPTION=@{x}: non-negative number
@EXCEL=This function is Excel compatible.
@SEEALSO=PI
@CATEGORY=Mathematics
@FUNCTION=SUM
@SHORTDESC=sum of the given values
@SYNTAX=SUM(values,…)
@ARGUMENTDESCRIPTION=@{values}: a list of values to add
@DESCRIPTION=SUM computes the sum of all the values and cells referenced in the argument list.
@EXCEL=This function is Excel compatible.
@ODF=This function is OpenFormula compatible.
@SEEALSO=AVERAGE,COUNT
@CATEGORY=Mathematics
@FUNCTION=SUMA
@SHORTDESC=sum of all values and cells referenced
@SYNTAX=SUMA(area0,area1,…)
@ARGUMENTDESCRIPTION=@{area0}: first cell area
@{area1}: second cell area
@DESCRIPTION=Numbers, text and logical values are included in the calculation too. If the cell contains text or the argument evaluates to FALSE, it is counted as value zero (0). If the argument evaluates to TRUE, it is counted as one (1).
@SEEALSO=AVERAGE,SUM,COUNT
@CATEGORY=Mathematics
@FUNCTION=SUMIF
@SHORTDESC=sum of the cells in @{actual_range} for which the corresponding cells in the range meet the given @{criteria}
@SYNTAX=SUMIF(range,criteria,actual_range)
@ARGUMENTDESCRIPTION=@{range}: cell area
@{criteria}: condition for a cell to be summed
@{actual_range}: cell area, defaults to @{range}
@NOTE=If the @{actual_range} has a size that differs from the size of @{range}, @{actual_range} is resized (retaining the top-left corner) to match the size of @{range}.
@EXCEL=This function is Excel compatible.
@SEEALSO=SUM,SUMIFS,COUNTIF
@CATEGORY=Mathematics
@FUNCTION=SUMIFS
@SHORTDESC=sum of the cells in @{actual_range} for which the corresponding cells in the range meet the given criteria
@SYNTAX=SUMIFS(actual_range,range1,criteria1,…)
@ARGUMENTDESCRIPTION=@{actual_range}: cell area
@{range1}: cell area
@{criteria1}: condition for a cell to be included
@EXCEL=This function is Excel compatible.
@SEEALSO=SUM,SUMIF
@CATEGORY=Mathematics
@FUNCTION=SUMPRODUCT
@SHORTDESC=multiplies components and adds the results
@SYNTAX=SUMPRODUCT(,…)
@DESCRIPTION=Multiplies corresponding data entries in the given arrays or ranges, and then returns the sum of those products.
@NOTE=If an entry is not numeric, the value zero is used instead. If arrays or range arguments do not have the same dimensions, return #VALUE! error. This function ignores logicals, so using SUMPRODUCT(A1:A5>0) will not work. Instead use SUMPRODUCT(--(A1:A5>0))
@EXCEL=This function is Excel compatible.
@ODF=This function is not OpenFormula compatible. Use ODF.SUMPRODUCT instead.
@SEEALSO=SUM,PRODUCT,G_PRODUCT,ODF.SUMPRODUCT
@CATEGORY=Mathematics
@FUNCTION=SUMSQ
@SHORTDESC=sum of the squares of all values and cells referenced
@SYNTAX=SUMSQ(area0,area1,…)
@ARGUMENTDESCRIPTION=@{area0}: first cell area
@{area1}: second cell area
@EXCEL=This function is Excel compatible.
@SEEALSO=SUM,COUNT
@CATEGORY=Mathematics
@FUNCTION=SUMX2MY2
@SHORTDESC=sum of the difference of squares
@SYNTAX=SUMX2MY2(array0,array1)
@ARGUMENTDESCRIPTION=@{array0}: first cell area
@{array1}: second cell area
@DESCRIPTION=SUMX2MY2 function returns the sum of the difference of squares of corresponding values in two arrays. The equation of SUMX2MY2 is SUM(x^2-y^2).
@EXCEL=This function is Excel compatible.
@SEEALSO=SUMSQ,SUMX2PY2
@CATEGORY=Mathematics
@FUNCTION=SUMX2PY2
@SHORTDESC=sum of the sum of squares
@SYNTAX=SUMX2PY2(array0,array1)
@ARGUMENTDESCRIPTION=@{array0}: first cell area
@{array1}: second cell area
@DESCRIPTION=SUMX2PY2 function returns the sum of the sum of squares of corresponding values in two arrays. The equation of SUMX2PY2 is SUM(x^2+y^2).
@NOTE=If @{array0} and @{array1} have different number of data points, SUMX2PY2 returns #N/A.
Strings and empty cells are simply ignored.
@EXCEL=This function is Excel compatible.
@SEEALSO=SUMSQ,SUMX2MY2
@CATEGORY=Mathematics
@FUNCTION=SUMXMY2
@SHORTDESC=sum of the squares of differences
@SYNTAX=SUMXMY2(array0,array1)
@ARGUMENTDESCRIPTION=@{array0}: first cell area
@{array1}: second cell area
@DESCRIPTION=SUMXMY2 function returns the sum of the squares of the differences of corresponding values in two arrays. The equation of SUMXMY2 is SUM((x-y)^2).
@NOTE=If @{array0} and @{array1} have different number of data points, SUMXMY2 returns #N/A.
Strings and empty cells are simply ignored.
@EXCEL=This function is Excel compatible.
@SEEALSO=SUMSQ,SUMX2MY2,SUMX2PY2
@CATEGORY=Mathematics
@FUNCTION=TAN
@SHORTDESC=the tangent of @{x}
@SYNTAX=TAN(x)
@ARGUMENTDESCRIPTION=@{x}: angle in radians
@EXCEL=This function is Excel compatible.
@SEEALSO=TANH,COS,COSH,SIN,SINH,DEGREES,RADIANS
@CATEGORY=Mathematics
@FUNCTION=TANH
@SHORTDESC=the hyperbolic tangent of @{x}
@SYNTAX=TANH(x)
@ARGUMENTDESCRIPTION=@{x}: number
@EXCEL=This function is Excel compatible.
@SEEALSO=TAN,SIN,SINH,COS,COSH
@CATEGORY=Mathematics
@FUNCTION=TANPI
@SHORTDESC=the tangent of Pi*@{x}
@SYNTAX=TANPI(x)
@ARGUMENTDESCRIPTION=@{x}: number of half turns
@SEEALSO=TAN
@CATEGORY=Mathematics
@FUNCTION=TRUNC
@SHORTDESC=@{x} truncated to @{d} digits
@SYNTAX=TRUNC(x,d)
@ARGUMENTDESCRIPTION=@{x}: number
@{d}: non-negative integer, defaults to 0
@NOTE=If @{d} is omitted or negative then it defaults to zero. If it is not an integer then it is truncated to an integer.
@EXCEL=This function is Excel compatible.
@SEEALSO=INT
@CATEGORY=Number Theory
@FUNCTION=ISPRIME
@SHORTDESC=whether @{n} is prime
@SYNTAX=ISPRIME(n)
@ARGUMENTDESCRIPTION=@{n}: positive integer
@DESCRIPTION=ISPRIME returns TRUE if @{n} is prime and FALSE otherwise.
@SEEALSO=NT_D, NT_SIGMA
@CATEGORY=Number Theory
@FUNCTION=ITHPRIME
@SHORTDESC=@{i}th prime
@SYNTAX=ITHPRIME(i)
@ARGUMENTDESCRIPTION=@{i}: positive integer
@DESCRIPTION=ITHPRIME finds the @{i}th prime.
@SEEALSO=NT_D,NT_SIGMA
@CATEGORY=Number Theory
@FUNCTION=NT_D
@SHORTDESC=number of divisors
@SYNTAX=NT_D(n)
@ARGUMENTDESCRIPTION=@{n}: positive integer
@DESCRIPTION=NT_D calculates the number of divisors of @{n}.
@SEEALSO=ITHPRIME,NT_PHI,NT_SIGMA
@CATEGORY=Number Theory
@FUNCTION=NT_MU
@SHORTDESC=Möbius mu function
@SYNTAX=NT_MU(n)
@ARGUMENTDESCRIPTION=@{n}: positive integer
@DESCRIPTION=NT_MU function (Möbius mu function) returns 0 if @{n} is divisible by the square of a prime. Otherwise, if @{n} has an odd number of different prime factors, NT_MU returns -1, and if @{n} has an even number of different prime factors, it returns 1. If @{n} = 1, NT_MU returns 1.
@SEEALSO=ITHPRIME,NT_PHI,NT_SIGMA,NT_D
@CATEGORY=Number Theory
@FUNCTION=NT_OMEGA
@SHORTDESC=Number of distinct prime factors
@SYNTAX=NT_OMEGA(n)
@ARGUMENTDESCRIPTION=@{n}: positive integer
@NOTE=Returns the number of distinct prime factors without multiplicity.
@SEEALSO=NT_D,ITHPRIME,NT_SIGMA
@CATEGORY=Number Theory
@FUNCTION=NT_PHI
@SHORTDESC=Euler's totient function
@SYNTAX=NT_PHI(n)
@ARGUMENTDESCRIPTION=@{n}: positive integer
@NOTE=Euler's totient function gives the number of integers less than or equal to @{n} that are relatively prime (coprime) to @{n}.
@SEEALSO=NT_D,ITHPRIME,NT_SIGMA
@CATEGORY=Number Theory
@FUNCTION=NT_PI
@SHORTDESC=number of primes upto @{n}
@SYNTAX=NT_PI(n)
@ARGUMENTDESCRIPTION=@{n}: positive integer
@DESCRIPTION=NT_PI returns the number of primes less than or equal to @{n}.
@SEEALSO=ITHPRIME,NT_PHI,NT_D,NT_SIGMA
@CATEGORY=Number Theory
@FUNCTION=NT_RADICAL
@SHORTDESC=Radical function
@SYNTAX=NT_RADICAL(n)
@ARGUMENTDESCRIPTION=@{n}: positive integer
@NOTE=The function computes the product of its distinct prime factors
@SEEALSO=NT_D,ITHPRIME,NT_SIGMA
@CATEGORY=Number Theory
@FUNCTION=NT_SIGMA
@SHORTDESC=sigma function
@SYNTAX=NT_SIGMA(n)
@ARGUMENTDESCRIPTION=@{n}: positive integer
@DESCRIPTION=NT_SIGMA calculates the sum of the divisors of @{n}.
@SEEALSO=NT_D,ITHPRIME,NT_PHI
@CATEGORY=Number Theory
@FUNCTION=PFACTOR
@SHORTDESC=smallest prime factor
@SYNTAX=PFACTOR(n)
@ARGUMENTDESCRIPTION=@{n}: positive integer
@DESCRIPTION=PFACTOR finds the smallest prime factor of its argument.
@NOTE=The argument @{n} must be at least 2. Otherwise a #VALUE! error is returned.
@SEEALSO=ITHPRIME
@CATEGORY=Random Numbers
@FUNCTION=RAND
@SHORTDESC=a random number between zero and one
@SYNTAX=RAND()
@EXCEL=This function is Excel compatible.
@SEEALSO=RANDBETWEEN
@CATEGORY=Random Numbers
@FUNCTION=RANDBERNOULLI
@SHORTDESC=random variate from a Bernoulli distribution
@SYNTAX=RANDBERNOULLI(p)
@ARGUMENTDESCRIPTION=@{p}: probability of success
@NOTE=If @{p} < 0 or @{p} > 1 RANDBERNOULLI returns #NUM!
@SEEALSO=RAND,RANDBETWEEN
@CATEGORY=Random Numbers
@FUNCTION=RANDBETA
@SHORTDESC=random variate from a Beta distribution
@SYNTAX=RANDBETA(a,b)
@ARGUMENTDESCRIPTION=@{a}: parameter of the Beta distribution
@{b}: parameter of the Beta distribution
@SEEALSO=RAND,RANDGAMMA
@CATEGORY=Random Numbers
@FUNCTION=RANDBETWEEN
@SHORTDESC=a random integer number between and including @{bottom} and @{top}
@SYNTAX=RANDBETWEEN(bottom,top)
@ARGUMENTDESCRIPTION=@{bottom}: lower limit
@{top}: upper limit
@NOTE=If @{bottom} > @{top}, RANDBETWEEN returns #NUM!
@EXCEL=This function is Excel compatible.
@SEEALSO=RAND,RANDUNIFORM
@CATEGORY=Random Numbers
@FUNCTION=RANDBINOM
@SHORTDESC=random variate from a binomial distribution
@SYNTAX=RANDBINOM(p,n)
@ARGUMENTDESCRIPTION=@{p}: probability of success in a single trial
@{n}: number of trials
@NOTE=If @{p} < 0 or @{p} > 1 RANDBINOM returns #NUM! If @{n} < 0 RANDBINOM returns #NUM!
@SEEALSO=RAND,RANDBETWEEN
@CATEGORY=Random Numbers
@FUNCTION=RANDCAUCHY
@SHORTDESC=random variate from a Cauchy or Lorentz distribution
@SYNTAX=RANDCAUCHY(a)
@ARGUMENTDESCRIPTION=@{a}: scale parameter of the distribution
@NOTE=If @{a} < 0 RANDCAUCHY returns #NUM!
@SEEALSO=RAND
@CATEGORY=Random Numbers
@FUNCTION=RANDCHISQ
@SHORTDESC=random variate from a Chi-square distribution
@SYNTAX=RANDCHISQ(df)
@ARGUMENTDESCRIPTION=@{df}: degrees of freedom
@SEEALSO=RAND,RANDGAMMA
@CATEGORY=Random Numbers
@FUNCTION=RANDDISCRETE
@SHORTDESC=random variate from a finite discrete distribution
@SYNTAX=RANDDISCRETE(val_range,prob_range)
@ARGUMENTDESCRIPTION=@{val_range}: possible values of the random variable
@{prob_range}: probabilities of the corresponding values in @{val_range}, defaults to equal probabilities
@DESCRIPTION=RANDDISCRETE returns one of the values in the @{val_range}. The probabilities for each value are given in the @{prob_range}.
@NOTE=If the sum of all values in @{prob_range} is not one, RANDDISCRETE returns #NUM! If @{val_range} and @{prob_range} are not the same size, RANDDISCRETE returns #NUM! If @{val_range} or @{prob_range} is not a range, RANDDISCRETE returns #VALUE!
@SEEALSO=RANDBETWEEN,RAND
@CATEGORY=Random Numbers
@FUNCTION=RANDEXP
@SHORTDESC=random variate from an exponential distribution
@SYNTAX=RANDEXP(b)
@ARGUMENTDESCRIPTION=@{b}: parameter of the exponential distribution
@SEEALSO=RAND,RANDBETWEEN
@CATEGORY=Random Numbers
@FUNCTION=RANDEXPPOW
@SHORTDESC=random variate from an exponential power distribution
@SYNTAX=RANDEXPPOW(a,b)
@ARGUMENTDESCRIPTION=@{a}: scale parameter of the exponential power distribution
@{b}: exponent of the exponential power distribution
@DESCRIPTION=For @{b} = 1 the exponential power distribution reduces to the Laplace distribution.
For @{b} = 2 the exponential power distribution reduces to the normal distribution with σ = a/sqrt(2)
@SEEALSO=RAND
@CATEGORY=Random Numbers
@FUNCTION=RANDFDIST
@SHORTDESC=random variate from an F distribution
@SYNTAX=RANDFDIST(df1,df2)
@ARGUMENTDESCRIPTION=@{df1}: numerator degrees of freedom
@{df2}: denominator degrees of freedom
@SEEALSO=RAND,RANDGAMMA
@CATEGORY=Random Numbers
@FUNCTION=RANDGAMMA
@SHORTDESC=random variate from a Gamma distribution
@SYNTAX=RANDGAMMA(a,b)
@ARGUMENTDESCRIPTION=@{a}: shape parameter of the Gamma distribution
@{b}: scale parameter of the Gamma distribution
@NOTE=If @{a} ≤ 0, RANDGAMMA returns #NUM!
@SEEALSO=RAND
@CATEGORY=Random Numbers
@FUNCTION=RANDGEOM
@SHORTDESC=random variate from a geometric distribution
@SYNTAX=RANDGEOM(p)
@ARGUMENTDESCRIPTION=@{p}: probability of success in a single trial
@NOTE=If @{p} < 0 or @{p} > 1 RANDGEOM returns #NUM!
@SEEALSO=RAND
@CATEGORY=Random Numbers
@FUNCTION=RANDGUMBEL
@SHORTDESC=random variate from a Gumbel distribution
@SYNTAX=RANDGUMBEL(a,b,type)
@ARGUMENTDESCRIPTION=@{a}: parameter of the Gumbel distribution
@{b}: parameter of the Gumbel distribution
@{type}: type of the Gumbel distribution, defaults to 1
@NOTE=If @{type} is neither 1 nor 2, RANDGUMBEL returns #NUM!
@SEEALSO=RAND
@CATEGORY=Random Numbers
@FUNCTION=RANDHYPERG
@SHORTDESC=random variate from a hypergeometric distribution
@SYNTAX=RANDHYPERG(n1,n2,t)
@ARGUMENTDESCRIPTION=@{n1}: number of objects of type 1
@{n2}: number of objects of type 2
@{t}: total number of objects selected
@SEEALSO=RAND
@CATEGORY=Random Numbers
@FUNCTION=RANDLANDAU
@SHORTDESC=random variate from the Landau distribution
@SYNTAX=RANDLANDAU()
@SEEALSO=RAND
@CATEGORY=Random Numbers
@FUNCTION=RANDLAPLACE
@SHORTDESC=random variate from a Laplace distribution
@SYNTAX=RANDLAPLACE(a)
@ARGUMENTDESCRIPTION=@{a}: parameter of the Laplace distribution
@SEEALSO=RAND
@CATEGORY=Random Numbers
@FUNCTION=RANDLEVY
@SHORTDESC=random variate from a Lévy distribution
@SYNTAX=RANDLEVY(c,α,β)
@ARGUMENTDESCRIPTION=@{c}: parameter of the Lévy distribution
@{α}: parameter of the Lévy distribution
@{β}: parameter of the Lévy distribution, defaults to 0
@DESCRIPTION=For @{α} = 1, @{β}=0, the Lévy distribution reduces to the Cauchy (or Lorentzian) distribution.
For @{α} = 2, @{β}=0, the Lévy distribution reduces to the normal distribution.
@NOTE=If @{α} ≤ 0 or @{α} > 2, RANDLEVY returns #NUM! If @{β} < -1 or @{β} > 1, RANDLEVY returns #NUM!
@SEEALSO=RAND
@CATEGORY=Random Numbers
@FUNCTION=RANDLOG
@SHORTDESC=random variate from a logarithmic distribution
@SYNTAX=RANDLOG(p)
@ARGUMENTDESCRIPTION=@{p}: probability
@NOTE=If @{p} < 0 or @{p} > 1 RANDLOG returns #NUM!
@SEEALSO=RAND
@CATEGORY=Random Numbers
@FUNCTION=RANDLOGISTIC
@SHORTDESC=random variate from a logistic distribution
@SYNTAX=RANDLOGISTIC(a)
@ARGUMENTDESCRIPTION=@{a}: parameter of the logistic distribution
@SEEALSO=RAND
@CATEGORY=Random Numbers
@FUNCTION=RANDLOGNORM
@SHORTDESC=random variate from a lognormal distribution
@SYNTAX=RANDLOGNORM(ζ,σ)
@ARGUMENTDESCRIPTION=@{ζ}: parameter of the lognormal distribution
@{σ}: standard deviation of the distribution
@NOTE=If @{σ} < 0, RANDLOGNORM returns #NUM!
@SEEALSO=RAND
@CATEGORY=Random Numbers
@FUNCTION=RANDNEGBINOM
@SHORTDESC=random variate from a negative binomial distribution
@SYNTAX=RANDNEGBINOM(p,n)
@ARGUMENTDESCRIPTION=@{p}: probability of success in a single trial
@{n}: number of failures
@NOTE=If @{p} < 0 or @{p} > 1 RANDNEGBINOM returns #NUM! If @{n} < 1 RANDNEGBINOM returns #NUM!
@SEEALSO=RAND,RANDBETWEEN
@CATEGORY=Random Numbers
@FUNCTION=RANDNORM
@SHORTDESC=random variate from a normal distribution
@SYNTAX=RANDNORM(μ,σ)
@ARGUMENTDESCRIPTION=@{μ}: mean of the distribution
@{σ}: standard deviation of the distribution
@NOTE=If @{σ} < 0, RANDNORM returns #NUM!
@SEEALSO=RAND
@CATEGORY=Random Numbers
@FUNCTION=RANDNORMTAIL
@SHORTDESC=random variate from the upper tail of a normal distribution with mean 0
@SYNTAX=RANDNORMTAIL(a,σ)
@ARGUMENTDESCRIPTION=@{a}: lower limit of the tail
@{σ}: standard deviation of the normal distribution
@NOTE=The method is based on Marsaglia's famous rectangle-wedge-tail algorithm (Ann Math Stat 32, 894-899 (1961)), with this aspect explained in Knuth, v2, 3rd ed, p139, 586 (exercise 11).
@SEEALSO=RAND
@CATEGORY=Random Numbers
@FUNCTION=RANDPARETO
@SHORTDESC=random variate from a Pareto distribution
@SYNTAX=RANDPARETO(a,b)
@ARGUMENTDESCRIPTION=@{a}: parameter of the Pareto distribution
@{b}: parameter of the Pareto distribution
@SEEALSO=RAND
@CATEGORY=Random Numbers
@FUNCTION=RANDPOISSON
@SHORTDESC=random variate from a Poisson distribution
@SYNTAX=RANDPOISSON(λ)
@ARGUMENTDESCRIPTION=@{λ}: parameter of the Poisson distribution
@NOTE=If @{λ} < 0 RANDPOISSON returns #NUM!
@SEEALSO=RAND,RANDBETWEEN
@CATEGORY=Random Numbers
@FUNCTION=RANDRAYLEIGH
@SHORTDESC=random variate from a Rayleigh distribution
@SYNTAX=RANDRAYLEIGH(σ)
@ARGUMENTDESCRIPTION=@{σ}: scale parameter of the Rayleigh distribution
@SEEALSO=RAND
@CATEGORY=Random Numbers
@FUNCTION=RANDRAYLEIGHTAIL
@SHORTDESC=random variate from the tail of a Rayleigh distribution
@SYNTAX=RANDRAYLEIGHTAIL(a,σ)
@ARGUMENTDESCRIPTION=@{a}: lower limit of the tail
@{σ}: scale parameter of the Rayleigh distribution
@SEEALSO=RAND,RANDRAYLEIGH
@CATEGORY=Random Numbers
@FUNCTION=RANDSNORM
@SHORTDESC=random variate from a skew-normal distribution
@SYNTAX=RANDSNORM(𝛼,𝜉,𝜔)
@ARGUMENTDESCRIPTION=@{𝛼}: shape parameter of the skew-normal distribution, defaults to 0
@{𝜉}: location parameter of the skew-normal distribution, defaults to 0
@{𝜔}: scale parameter of the skew-normal distribution, defaults to 1
@DESCRIPTION=The random variates are drawn from a skew-normal distribution with shape parameter @{𝛼}. When @{𝛼}=0, the skewness vanishes, and we obtain the standard normal density; as 𝛼 increases (in absolute value), the skewness of the distribution increases; when @{𝛼} approaches infinity the density converges to the so-called half-normal (or folded normal) density function; if the sign of @{𝛼} changes, the density is reflected on the opposite side of the vertical axis.
@NOTE=The mean of a skew-normal distribution with location parameter @{𝜉}=0 is not 0. The standard deviation of a skew-normal distribution with scale parameter @{𝜔}=1 is not 1. The skewness of a skew-normal distribution is in general not @{𝛼}. If @{𝜔} < 0, RANDSNORM returns #NUM!
@SEEALSO=RANDNORM,RANDSTDIST
@CATEGORY=Random Numbers
@FUNCTION=RANDSTDIST
@SHORTDESC=random variate from a skew-t distribution
@SYNTAX=RANDSTDIST(df,𝛼)
@ARGUMENTDESCRIPTION=@{df}: degrees of freedom
@{𝛼}: shape parameter of the skew-t distribution, defaults to 0
@NOTE=The mean of a skew-t distribution is not 0. The standard deviation of a skew-t distribution is not 1. The skewness of a skew-t distribution is in general not @{𝛼}.
@SEEALSO=RANDTDIST,RANDSNORM
@CATEGORY=Random Numbers
@FUNCTION=RANDTDIST
@SHORTDESC=random variate from a Student t distribution
@SYNTAX=RANDTDIST(df)
@ARGUMENTDESCRIPTION=@{df}: degrees of freedom
@SEEALSO=RAND
@CATEGORY=Random Numbers
@FUNCTION=RANDUNIFORM
@SHORTDESC=random variate from the uniform distribution from @{a} to @{b}
@SYNTAX=RANDUNIFORM(a,b)
@ARGUMENTDESCRIPTION=@{a}: lower limit of the uniform distribution
@{b}: upper limit of the uniform distribution
@NOTE=If @{a} > @{b} RANDUNIFORM returns #NUM!
@SEEALSO=RANDBETWEEN,RAND
@CATEGORY=Random Numbers
@FUNCTION=RANDWEIBULL
@SHORTDESC=random variate from a Weibull distribution
@SYNTAX=RANDWEIBULL(a,b)
@ARGUMENTDESCRIPTION=@{a}: scale parameter of the Weibull distribution
@{b}: shape parameter of the Weibull distribution
@SEEALSO=RAND
@CATEGORY=Random Numbers
@FUNCTION=SIMTABLE
@SHORTDESC=one of the values in the given argument list depending on the round number of the simulation tool
@SYNTAX=SIMTABLE(d1,d2,…)
@ARGUMENTDESCRIPTION=@{d1}: first value
@{d2}: second value
@DESCRIPTION=SIMTABLE returns one of the values in the given argument list depending on the round number of the simulation tool. When the simulation tool is not activated, SIMTABLE returns @{d1}.
With the simulation tool and the SIMTABLE function you can test given decision variables. Each SIMTABLE function contains the possible values of a simulation variable. In most valid simulation models you should have the same number of values @{dN} for all decision variables. If the simulation is run more rounds than there are values defined, SIMTABLE returns #N/A error (e.g. if A1 contains `=SIMTABLE(1)' and A2 `=SIMTABLE(1,2)', A1 yields #N/A error on the second round).
The successive use of the simulation tool also requires that you give to the tool at least one input variable having RAND() or any other RAND<distribution name>() function in it. On each round, the simulation tool iterates for the given number of rounds over all the input variables to reevaluate them. On each iteration, the values of the output variables are stored, and when the round is completed, descriptive statistical information is created according to the values.
@CATEGORY=Statistics
@FUNCTION=ADTEST
@SHORTDESC=Anderson-Darling Test of Normality
@SYNTAX=ADTEST(x)
@ARGUMENTDESCRIPTION=@{x}: array of sample values
@DESCRIPTION=This function returns an array with the first row giving the p-value of the Anderson-Darling Test, the second row the test statistic of the test, and the third the number of observations in the sample.
@NOTE=If there are less than 8 sample values, ADTEST returns #VALUE!
@SEEALSO=CHITEST,CVMTEST,LKSTEST,SFTEST
@CATEGORY=Statistics
@FUNCTION=AVEDEV
@SHORTDESC=average of the absolute deviations of a data set
@SYNTAX=AVEDEV(number1,number2,…)
@ARGUMENTDESCRIPTION=@{number1}: first value
@{number2}: second value
@EXCEL=This function is Excel compatible.
@SEEALSO=STDEV
@CATEGORY=Statistics
@FUNCTION=AVERAGE
@SHORTDESC=average of all the numeric values and cells
@SYNTAX=AVERAGE(number1,number2,…)
@ARGUMENTDESCRIPTION=@{number1}: first value
@{number2}: second value
@EXCEL=This function is Excel compatible.
@SEEALSO=SUM, COUNT
@CATEGORY=Statistics
@FUNCTION=AVERAGEA
@SHORTDESC=average of all the values and cells
@SYNTAX=AVERAGEA(number1,number2,…)
@ARGUMENTDESCRIPTION=@{number1}: first value
@{number2}: second value
@DESCRIPTION=Numbers, text and logical values are included in the calculation too. If the cell contains text or the argument evaluates to FALSE, it is counted as value zero (0). If the argument evaluates to TRUE, it is counted as one (1). Note that empty cells are not counted.
@EXCEL=This function is Excel compatible.
@SEEALSO=AVERAGE
@CATEGORY=Statistics
@FUNCTION=BERNOULLI
@SHORTDESC=probability mass function of a Bernoulli distribution
@SYNTAX=BERNOULLI(k,p)
@ARGUMENTDESCRIPTION=@{k}: integer
@{p}: probability of success
@NOTE=If @{k} != 0 and @{k} != 1 this function returns a #NUM! error. If @{p} < 0 or @{p} > 1 this function returns a #NUM! error.
@SEEALSO=RANDBERNOULLI
@CATEGORY=Statistics
@FUNCTION=BETA.DIST
@SHORTDESC=cumulative distribution function of the beta distribution
@SYNTAX=BETA.DIST(x,alpha,beta,cumulative,a,b)
@ARGUMENTDESCRIPTION=@{x}: number
@{alpha}: scale parameter
@{beta}: scale parameter
@{cumulative}: whether to evaluate the density function or the cumulative distribution function
@{a}: optional lower bound, defaults to 0
@{b}: optional upper bound, defaults to 1
@NOTE=If @{x} < @{a} or @{x} > @{b} this function returns a #NUM! error. If @{alpha} <= 0 or @{beta} <= 0, this function returns a #NUM! error. If @{a} >= @{b} this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=BETAINV,BETADIST
@CATEGORY=Statistics
@FUNCTION=BETADIST
@SHORTDESC=cumulative distribution function of the beta distribution
@SYNTAX=BETADIST(x,alpha,beta,a,b)
@ARGUMENTDESCRIPTION=@{x}: number
@{alpha}: scale parameter
@{beta}: scale parameter
@{a}: optional lower bound, defaults to 0
@{b}: optional upper bound, defaults to 1
@NOTE=If @{x} < @{a} or @{x} > @{b} this function returns a #NUM! error. If @{alpha} <= 0 or @{beta} <= 0, this function returns a #NUM! error. If @{a} >= @{b} this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=BETAINV, BETA.DIST
@CATEGORY=Statistics
@FUNCTION=BETAINV
@SHORTDESC=inverse of the cumulative distribution function of the beta distribution
@SYNTAX=BETAINV(p,alpha,beta,a,b)
@ARGUMENTDESCRIPTION=@{p}: probability
@{alpha}: scale parameter
@{beta}: scale parameter
@{a}: optional lower bound, defaults to 0
@{b}: optional upper bound, defaults to 1
@NOTE=If @{p} < 0 or @{p} > 1 this function returns a #NUM! error. If @{alpha} <= 0 or @{beta} <= 0, this function returns a #NUM! error. If @{a} >= @{b} this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=BETADIST,BETA.DIST
@CATEGORY=Statistics
@FUNCTION=BINOM.DIST.RANGE
@SHORTDESC=probability of the binomial distribution over an interval
@SYNTAX=BINOM.DIST.RANGE(trials,p,start,end)
@ARGUMENTDESCRIPTION=@{trials}: number of trials
@{p}: probability of success in each trial
@{start}: start of the interval
@{end}: end of the interval, defaults to @{start}
@NOTE=If @{start}, @{end} or @{trials} are non-integer they are truncated. If @{trials} < 0 this function returns a #NUM! error. If @{p} < 0 or @{p} > 1 this function returns a #NUM! error. If @{start} > @{end} this function returns 0.
@ODF=This function is OpenFormula compatible.
@SEEALSO=BINOMDIST,R.PBINOM
@CATEGORY=Statistics
@FUNCTION=BINOMDIST
@SHORTDESC=probability mass or cumulative distribution function of the binomial distribution
@SYNTAX=BINOMDIST(n,trials,p,cumulative)
@ARGUMENTDESCRIPTION=@{n}: number of successes
@{trials}: number of trials
@{p}: probability of success in each trial
@{cumulative}: whether to evaluate the mass function or the cumulative distribution function
@NOTE=If @{n} or @{trials} are non-integer they are truncated. If @{n} < 0 or @{trials} < 0 this function returns a #NUM! error. If @{n} > @{trials} this function returns a #NUM! error. If @{p} < 0 or @{p} > 1 this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=POISSON
@CATEGORY=Statistics
@FUNCTION=CAUCHY
@SHORTDESC=probability density or cumulative distribution function of the Cauchy, Lorentz or Breit-Wigner distribution
@SYNTAX=CAUCHY(x,a,cumulative)
@ARGUMENTDESCRIPTION=@{x}: number
@{a}: scale parameter
@{cumulative}: whether to evaluate the density function or the cumulative distribution function
@NOTE=If @{a} < 0 this function returns a #NUM! error. If @{cumulative} is neither TRUE nor FALSE this function returns a #VALUE! error.
@SEEALSO=RANDCAUCHY
@CATEGORY=Statistics
@FUNCTION=CHIDIST
@SHORTDESC=survival function of the chi-squared distribution
@SYNTAX=CHIDIST(x,dof)
@ARGUMENTDESCRIPTION=@{x}: number
@{dof}: number of degrees of freedom
@DESCRIPTION=The survival function is 1 minus the cumulative distribution function.
@NOTE=If @{dof} is non-integer it is truncated. If @{dof} < 1 this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@ODF=CHIDIST(@{x},@{dof}) is the OpenFormula function LEGACY.CHIDIST(@{x},@{dof}).
@SEEALSO=CHIINV,CHITEST
@CATEGORY=Statistics
@FUNCTION=CHIINV
@SHORTDESC=inverse of the survival function of the chi-squared distribution
@SYNTAX=CHIINV(p,dof)
@ARGUMENTDESCRIPTION=@{p}: probability
@{dof}: number of degrees of freedom
@DESCRIPTION=The survival function is 1 minus the cumulative distribution function.
@NOTE=If @{p} < 0 or @{p} > 1 or @{dof} < 1 this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@ODF=CHIINV(@{p},@{dof}) is the OpenFormula function LEGACY.CHIDIST(@{p},@{dof}).
@SEEALSO=CHIDIST,CHITEST
@CATEGORY=Statistics
@FUNCTION=CHITEST
@SHORTDESC=p value of the Goodness of Fit Test
@SYNTAX=CHITEST(actual_range,theoretical_range)
@ARGUMENTDESCRIPTION=@{actual_range}: observed data
@{theoretical_range}: expected values
@NOTE=If the actual range is not an n by 1 or 1 by n range, but an n by m range, then CHITEST uses (n-1) times (m-1) as degrees of freedom. This is useful if the expected values were calculated from the observed value in a test of independence or test of homogeneity.
@EXCEL=This function is Excel compatible.
@ODF=CHITEST is the OpenFormula function LEGACY.CHITEST.
@SEEALSO=CHIDIST,CHIINV
@CATEGORY=Statistics
@FUNCTION=CONFIDENCE
@SHORTDESC=margin of error of a confidence interval for the population mean
@SYNTAX=CONFIDENCE(alpha,stddev,size)
@ARGUMENTDESCRIPTION=@{alpha}: significance level
@{stddev}: population standard deviation
@{size}: sample size
@NOTE=This function requires the usually unknown population standard deviation. If @{size} is non-integer it is truncated. If @{size} < 0 this function returns a #NUM! error. If @{size} is 0 this function returns a #DIV/0! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=AVERAGE,CONFIDENCE.T
@CATEGORY=Statistics
@FUNCTION=CONFIDENCE.T
@SHORTDESC=margin of error of a confidence interval for the population mean using the Student's t-distribution
@SYNTAX=CONFIDENCE.T(alpha,stddev,size)
@ARGUMENTDESCRIPTION=@{alpha}: significance level
@{stddev}: sample standard deviation
@{size}: sample size
@NOTE=If @{stddev} < 0 or = 0 this function returns a #NUM! error. If @{size} is non-integer it is truncated. If @{size} < 1 this function returns a #NUM! error. If @{size} is 1 this function returns a #DIV/0! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=AVERAGE,CONFIDENCE
@CATEGORY=Statistics
@FUNCTION=CORREL
@SHORTDESC=Pearson correlation coefficient of two data sets
@SYNTAX=CORREL(array1,array2)
@ARGUMENTDESCRIPTION=@{array1}: first data set
@{array2}: second data set
@DESCRIPTION=Strings and empty cells are simply ignored.
@EXCEL=This function is Excel compatible.
@SEEALSO=COVAR,FISHER,FISHERINV
@CATEGORY=Statistics
@FUNCTION=COUNT
@SHORTDESC=total number of integer or floating point arguments passed
@SYNTAX=COUNT(number1,number2,…)
@ARGUMENTDESCRIPTION=@{number1}: first value
@{number2}: second value
@EXCEL=This function is Excel compatible.
@SEEALSO=AVERAGE
@CATEGORY=Statistics
@FUNCTION=COUNTA
@SHORTDESC=number of arguments passed not including empty cells
@SYNTAX=COUNTA(number1,number2,…)
@ARGUMENTDESCRIPTION=@{number1}: first value
@{number2}: second value
@EXCEL=This function is Excel compatible.
@SEEALSO=AVERAGE,COUNT,DCOUNT,DCOUNTA,PRODUCT,SUM
@CATEGORY=Statistics
@FUNCTION=COVAR
@SHORTDESC=covariance of two data sets
@SYNTAX=COVAR(array1,array2)
@ARGUMENTDESCRIPTION=@{array1}: first data set
@{array2}: set data set
@DESCRIPTION=Strings and empty cells are simply ignored.
@EXCEL=This function is Excel compatible.
@SEEALSO=CORREL,FISHER,FISHERINV
@CATEGORY=Statistics
@FUNCTION=COVARIANCE.S
@SHORTDESC=sample covariance of two data sets
@SYNTAX=COVARIANCE.S(array1,array2)
@ARGUMENTDESCRIPTION=@{array1}: first data set
@{array2}: set data set
@DESCRIPTION=Strings and empty cells are simply ignored.
@EXCEL=This function is Excel compatible.
@SEEALSO=COVAR,CORREL
@CATEGORY=Statistics
@FUNCTION=CRITBINOM
@SHORTDESC=right-tailed critical value of the binomial distribution
@SYNTAX=CRITBINOM(trials,p,alpha)
@ARGUMENTDESCRIPTION=@{trials}: number of trials
@{p}: probability of success in each trial
@{alpha}: significance level (area of the tail)
@NOTE=If @{trials} is a non-integer it is truncated. If @{trials} < 0 this function returns a #NUM! error. If @{p} < 0 or @{p} > 1 this function returns a #NUM! error. If @{alpha} < 0 or @{alpha} > 1 this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=BINOMDIST
@CATEGORY=Statistics
@FUNCTION=CRONBACH
@SHORTDESC=Cronbach's alpha
@SYNTAX=CRONBACH(ref1,ref2,…)
@ARGUMENTDESCRIPTION=@{ref1}: first data set
@{ref2}: second data set
@SEEALSO=VAR
@CATEGORY=Statistics
@FUNCTION=CVMTEST
@SHORTDESC=Cramér-von Mises Test of Normality
@SYNTAX=CVMTEST(x)
@ARGUMENTDESCRIPTION=@{x}: array of sample values
@DESCRIPTION=This function returns an array with the first row giving the p-value of the Cramér-von Mises Test, the second row the test statistic of the test, and the third the number of observations in the sample.
@NOTE=If there are less than 8 sample values, CVMTEST returns #VALUE!
@SEEALSO=CHITEST,ADTEST,LKSTEST,SFTEST
@CATEGORY=Statistics
@FUNCTION=DEVSQ
@SHORTDESC=sum of squares of deviations of a data set
@SYNTAX=DEVSQ(number1,number2,…)
@ARGUMENTDESCRIPTION=@{number1}: first value
@{number2}: second value
@DESCRIPTION=Strings and empty cells are simply ignored.
@EXCEL=This function is Excel compatible.
@SEEALSO=STDEV
@CATEGORY=Statistics
@FUNCTION=EXPONDIST
@SHORTDESC=probability density or cumulative distribution function of the exponential distribution
@SYNTAX=EXPONDIST(x,y,cumulative)
@ARGUMENTDESCRIPTION=@{x}: number
@{y}: scale parameter
@{cumulative}: whether to evaluate the density function or the cumulative distribution function
@DESCRIPTION=If @{cumulative} is false it will return: @{y} * exp (-@{y}*@{x}), otherwise it will return 1 - exp (-@{y}*@{x}).
@NOTE=If @{x} < 0 or @{y} <= 0 this will return an error.
@EXCEL=This function is Excel compatible.
@SEEALSO=POISSON
@CATEGORY=Statistics
@FUNCTION=EXPPOWDIST
@SHORTDESC=the probability density function of the Exponential Power distribution
@SYNTAX=EXPPOWDIST(x,a,b)
@ARGUMENTDESCRIPTION=@{x}: number
@{a}: scale parameter
@{b}: scale parameter
@DESCRIPTION=This distribution has been recommended for lifetime analysis when a U-shaped hazard function is desired. This corresponds to rapid failure once the product starts to wear out after a period of steady or even improving reliability.
@SEEALSO=RANDEXPPOW
@CATEGORY=Statistics
@FUNCTION=FDIST
@SHORTDESC=survival function of the F distribution
@SYNTAX=FDIST(x,dof_of_num,dof_of_denom)
@ARGUMENTDESCRIPTION=@{x}: number
@{dof_of_num}: numerator degrees of freedom
@{dof_of_denom}: denominator degrees of freedom
@DESCRIPTION=The survival function is 1 minus the cumulative distribution function.
@NOTE=If @{x} < 0 this function returns a #NUM! error. If @{dof_of_num} < 1 or @{dof_of_denom} < 1, this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@ODF=FDIST is the OpenFormula function LEGACY.FDIST.
@SEEALSO=FINV
@CATEGORY=Statistics
@FUNCTION=FINV
@SHORTDESC=inverse of the survival function of the F distribution
@SYNTAX=FINV(p,dof_of_num,dof_of_denom)
@ARGUMENTDESCRIPTION=@{p}: probability
@{dof_of_num}: numerator degrees of freedom
@{dof_of_denom}: denominator degrees of freedom
@DESCRIPTION=The survival function is 1 minus the cumulative distribution function.
@NOTE=If @{p} < 0 or @{p} > 1 this function returns a #NUM! error. If @{dof_of_num} < 1 or @{dof_of_denom} < 1 this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@ODF=FINV is the OpenFormula function LEGACY.FINV.
@SEEALSO=FDIST
@CATEGORY=Statistics
@FUNCTION=FISHER
@SHORTDESC=Fisher transformation
@SYNTAX=FISHER(x)
@ARGUMENTDESCRIPTION=@{x}: number
@NOTE=If @{x} is not a number, this function returns a #VALUE! error. If @{x} <= -1 or @{x} >= 1, this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=FISHERINV,ATANH
@CATEGORY=Statistics
@FUNCTION=FISHERINV
@SHORTDESC=inverse of the Fisher transformation
@SYNTAX=FISHERINV(x)
@ARGUMENTDESCRIPTION=@{x}: number
@NOTE=If @{x} is a non-number this function returns a #VALUE! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=FISHER,TANH
@CATEGORY=Statistics
@FUNCTION=FORECAST
@SHORTDESC=estimates a future value according to existing values using simple linear regression
@SYNTAX=FORECAST(x,known_ys,known_xs)
@ARGUMENTDESCRIPTION=@{x}: x-value whose matching y-value should be forecast
@{known_ys}: known y-values
@{known_xs}: known x-values
@DESCRIPTION=This function estimates a future value according to existing values using simple linear regression.
@NOTE=If @{known_xs} or @{known_ys} contains no data entries or different number of data entries, this function returns a #N/A error. If the variance of the @{known_xs} is zero, this function returns a #DIV/0 error.
@EXCEL=This function is Excel compatible.
@SEEALSO=INTERCEPT,TREND
@CATEGORY=Statistics
@FUNCTION=FREQUENCY
@SHORTDESC=frequency table
@SYNTAX=FREQUENCY(data_array,bins_array)
@ARGUMENTDESCRIPTION=@{data_array}: data values
@{bins_array}: array of cutoff values
@DESCRIPTION=The results are given as an array.
If the @{bins_array} is empty, this function returns the number of data points in @{data_array}.
@EXCEL=This function is Excel compatible.
@CATEGORY=Statistics
@FUNCTION=FTEST
@SHORTDESC=p-value for the two-tailed hypothesis test comparing the variances of two populations
@SYNTAX=FTEST(array1,array2)
@ARGUMENTDESCRIPTION=@{array1}: sample from the first population
@{array2}: sample from the second population
@EXCEL=This function is Excel compatible.
@SEEALSO=FDIST,FINV
@CATEGORY=Statistics
@FUNCTION=GAMMADIST
@SHORTDESC=probability density or cumulative distribution function of the gamma distribution
@SYNTAX=GAMMADIST(x,alpha,beta,cumulative)
@ARGUMENTDESCRIPTION=@{x}: number
@{alpha}: scale parameter
@{beta}: scale parameter
@{cumulative}: whether to evaluate the density function or the cumulative distribution function
@NOTE=If @{x} < 0 this function returns a #NUM! error. If @{alpha} <= 0 or @{beta} <= 0, this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=GAMMAINV
@CATEGORY=Statistics
@FUNCTION=GAMMAINV
@SHORTDESC=inverse of the cumulative gamma distribution
@SYNTAX=GAMMAINV(p,alpha,beta)
@ARGUMENTDESCRIPTION=@{p}: probability
@{alpha}: scale parameter
@{beta}: scale parameter
@NOTE=If @{p} < 0 or @{p} > 1 this function returns a #NUM! error. If @{alpha} <= 0 or @{beta} <= 0 this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=GAMMADIST
@CATEGORY=Statistics
@FUNCTION=GEOMDIST
@SHORTDESC=probability mass or cumulative distribution function of the geometric distribution
@SYNTAX=GEOMDIST(k,p,cumulative)
@ARGUMENTDESCRIPTION=@{k}: number of trials
@{p}: probability of success in any trial
@{cumulative}: whether to evaluate the mass function or the cumulative distribution function
@NOTE=If @{k} < 0 this function returns a #NUM! error. If @{p} < 0 or @{p} > 1 this function returns a #NUM! error. If @{cumulative} is neither TRUE nor FALSE this function returns a #VALUE! error.
@SEEALSO=RANDGEOM
@CATEGORY=Statistics
@FUNCTION=GEOMEAN
@SHORTDESC=geometric mean
@SYNTAX=GEOMEAN(number1,number2,…)
@ARGUMENTDESCRIPTION=@{number1}: first value
@{number2}: second value
@DESCRIPTION=The geometric mean is equal to the Nth root of the product of the N values.
@EXCEL=This function is Excel compatible.
@SEEALSO=AVERAGE,HARMEAN,MEDIAN,MODE,TRIMMEAN
@CATEGORY=Statistics
@FUNCTION=GROWTH
@SHORTDESC=exponential growth prediction
@SYNTAX=GROWTH(known_ys,known_xs,new_xs,affine)
@ARGUMENTDESCRIPTION=@{known_ys}: known y-values
@{known_xs}: known x-values; defaults to the array {1, 2, 3, …}
@{new_xs}: x-values for which to estimate the y-values; defaults to @{known_xs}
@{affine}: if true, the model contains a constant term, defaults to true
@DESCRIPTION=GROWTH function applies the “least squares” method to fit an exponential curve to your data and predicts the exponential growth by using this curve.
GROWTH returns an array having one column and a row for each data point in @{new_xs}.
@NOTE=If @{known_ys} and @{known_xs} have unequal number of data points, this function returns a #NUM! error.
@SEEALSO=LOGEST,GROWTH,TREND
@CATEGORY=Statistics
@FUNCTION=HARMEAN
@SHORTDESC=harmonic mean
@SYNTAX=HARMEAN(number1,number2,…)
@ARGUMENTDESCRIPTION=@{number1}: first value
@{number2}: second value
@DESCRIPTION=The harmonic mean of N data points is N divided by the sum of the reciprocals of the data points).
@EXCEL=This function is Excel compatible.
@SEEALSO=AVERAGE,GEOMEAN,MEDIAN,MODE,TRIMMEAN
@CATEGORY=Statistics
@FUNCTION=HYPGEOMDIST
@SHORTDESC=probability mass or cumulative distribution function of the hypergeometric distribution
@SYNTAX=HYPGEOMDIST(x,n,M,N,cumulative)
@ARGUMENTDESCRIPTION=@{x}: number of successes
@{n}: sample size
@{M}: number of possible successes in the population
@{N}: population size
@{cumulative}: whether to evaluate the mass function or the cumulative distribution function
@NOTE=If @{x},@{n},@{M} or @{N} is a non-integer it is truncated. If @{x},@{n},@{M} or @{N} < 0 this function returns a #NUM! error. If @{x} > @{M} or @{n} > @{N} this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=BINOMDIST,POISSON
@CATEGORY=Statistics
@FUNCTION=INTERCEPT
@SHORTDESC=the intercept of a linear regression line
@SYNTAX=INTERCEPT(known_ys,known_xs)
@ARGUMENTDESCRIPTION=@{known_ys}: known y-values
@{known_xs}: known x-values
@NOTE=If @{known_xs} or @{known_ys} contains no data entries or different number of data entries, this function returns a #N/A error. If the variance of the @{known_xs} is zero, this function returns #DIV/0 error.
@EXCEL=This function is Excel compatible.
@SEEALSO=FORECAST,TREND
@CATEGORY=Statistics
@FUNCTION=KURT
@SHORTDESC=unbiased estimate of the kurtosis of a data set
@SYNTAX=KURT(number1,number2,…)
@ARGUMENTDESCRIPTION=@{number1}: first value
@{number2}: second value
@DESCRIPTION=Strings and empty cells are simply ignored.
@NOTE=This is only meaningful if the underlying distribution really has a fourth moment. The kurtosis is offset by three such that a normal distribution will have zero kurtosis. If fewer than four numbers are given or all of them are equal this function returns a #DIV/0! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=AVERAGE,VAR,SKEW,KURTP
@CATEGORY=Statistics
@FUNCTION=KURTP
@SHORTDESC=population kurtosis of a data set
@SYNTAX=KURTP(number1,number2,…)
@ARGUMENTDESCRIPTION=@{number1}: first value
@{number2}: second value
@DESCRIPTION=Strings and empty cells are simply ignored.
@NOTE=If fewer than two numbers are given or all of them are equal this function returns a #DIV/0! error.
@SEEALSO=AVERAGE,VARP,SKEWP,KURT
@CATEGORY=Statistics
@FUNCTION=LANDAU
@SHORTDESC=approximate probability density function of the Landau distribution
@SYNTAX=LANDAU(x)
@ARGUMENTDESCRIPTION=@{x}: number
@SEEALSO=RANDLANDAU
@CATEGORY=Statistics
@FUNCTION=LAPLACE
@SHORTDESC=probability density function of the Laplace distribution
@SYNTAX=LAPLACE(x,a)
@ARGUMENTDESCRIPTION=@{x}: number
@{a}: mean
@SEEALSO=RANDLAPLACE
@CATEGORY=Statistics
@FUNCTION=LARGE
@SHORTDESC=@{k}-th largest value in a data set
@SYNTAX=LARGE(data,k)
@ARGUMENTDESCRIPTION=@{data}: data set
@{k}: which value to find
@NOTE=If data set is empty this function returns a #NUM! error. If @{k} <= 0 or @{k} is greater than the number of data items given this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=PERCENTILE,PERCENTRANK,QUARTILE,SMALL
@CATEGORY=Statistics
@FUNCTION=LEVERAGE
@SHORTDESC=calculate regression leverage
@SYNTAX=LEVERAGE(A)
@ARGUMENTDESCRIPTION=@{A}: a matrix
@DESCRIPTION=Returns the diagonal of @{A} (@{A}^T @{A})^-1 @{A}^T as a column vector.
@NOTE=If the matrix is singular, #VALUE! is returned.
@CATEGORY=Statistics
@FUNCTION=LINEST
@SHORTDESC=multiple linear regression coefficients and statistics
@SYNTAX=LINEST(known_ys,known_xs,affine,stats)
@ARGUMENTDESCRIPTION=@{known_ys}: vector of values of dependent variable
@{known_xs}: array of values of independent variables, defaults to a single vector {1,…,n}
@{affine}: if true, the model contains a constant term, defaults to true
@{stats}: if true, some additional statistics are provided, defaults to false
@DESCRIPTION=This function returns an array with the first row giving the regression coefficients for the independent variables x_m, x_(m-1),…,x_2, x_1 followed by the y-intercept if @{affine} is true.
If @{stats} is true, the second row contains the corresponding standard errors of the regression coefficients. In this case, the third row contains the R^2 value and the standard error for the predicted value. The fourth row contains the observed F value and its degrees of freedom. Finally, the fifth row contains the regression sum of squares and the residual sum of squares.
If @{affine} is false, R^2 is the uncentered version of the coefficient of determination; that is the proportion of the sum of squares explained by the model.
@NOTE=If the length of @{known_ys} does not match the corresponding length of @{known_xs}, this function returns a #NUM! error.
@SEEALSO=LOGEST,TREND
@CATEGORY=Statistics
@FUNCTION=LKSTEST
@SHORTDESC=Lilliefors (Kolmogorov-Smirnov) Test of Normality
@SYNTAX=LKSTEST(x)
@ARGUMENTDESCRIPTION=@{x}: array of sample values
@DESCRIPTION=This function returns an array with the first row giving the p-value of the Lilliefors (Kolmogorov-Smirnov) Test, the second row the test statistic of the test, and the third the number of observations in the sample.
@NOTE=If there are less than 5 sample values, LKSTEST returns #VALUE!
@SEEALSO=CHITEST,ADTEST,SFTEST,CVMTEST
@CATEGORY=Statistics
@FUNCTION=LOGEST
@SHORTDESC=exponential least square fit
@SYNTAX=LOGEST(known_ys,known_xs,affine,stat)
@ARGUMENTDESCRIPTION=@{known_ys}: known y-values
@{known_xs}: known x-values; default to an array {1, 2, 3, …}
@{affine}: if true, the model contains a constant term, defaults to true
@{stat}: if true, extra statistical information will be returned; defaults to FALSE
@DESCRIPTION=LOGEST function applies the “least squares” method to fit an exponential curve of the form y = b * m{1}^x{1} * m{2}^x{2}... to your data.
LOGEST returns an array { m{n},m{n-1}, ...,m{1},b }.
@NOTE=Extra statistical information is written below the regression line coefficients in the result array. Extra statistical information consists of four rows of data. In the first row the standard error values for the coefficients m1, (m2, ...), b are represented. The second row contains the square of R and the standard error for the y estimate. The third row contains the F-observed value and the degrees of freedom. The last row contains the regression sum of squares and the residual sum of squares. If @{known_ys} and @{known_xs} have unequal number of data points, this function returns a #NUM! error.
@SEEALSO=GROWTH,TREND
@CATEGORY=Statistics
@FUNCTION=LOGFIT
@SHORTDESC=logarithmic least square fit (using a trial and error method)
@SYNTAX=LOGFIT(known_ys,known_xs)
@ARGUMENTDESCRIPTION=@{known_ys}: known y-values
@{known_xs}: known x-values
@DESCRIPTION=LOGFIT function applies the “least squares” method to fit the logarithmic equation y = a + b * ln(sign * (x - c)) , sign = +1 or -1 to your data. The graph of the equation is a logarithmic curve moved horizontally by c and possibly mirrored across the y-axis (if sign = -1).
LOGFIT returns an array having five columns and one row. `Sign' is given in the first column, `a', `b', and `c' are given in columns 2 to 4. Column 5 holds the sum of squared residuals.
@NOTE=An error is returned when there are less than 3 different x's or y's, or when the shape of the point cloud is too different from a ``logarithmic'' one. You can use the above formula = a + b * ln(sign * (x - c)) or rearrange it to = (exp((y - a) / b)) / sign + c to compute unknown y's or x's, respectively. This is non-linear fitting by trial-and-error. The accuracy of `c' is: width of x-range -> rounded to the next smaller (10^integer), times 0.000001. There might be cases in which the returned fit is not the best possible.
@SEEALSO=LOGREG,LINEST,LOGEST
@CATEGORY=Statistics
@FUNCTION=LOGINV
@SHORTDESC=inverse of the cumulative distribution function of the lognormal distribution
@SYNTAX=LOGINV(p,mean,stddev)
@ARGUMENTDESCRIPTION=@{p}: probability
@{mean}: mean
@{stddev}: standard deviation
@NOTE=If @{p} < 0 or @{p} > 1 or @{stddev} <= 0 this function returns #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=EXP,LN,LOG,LOG10,LOGNORMDIST
@CATEGORY=Statistics
@FUNCTION=LOGISTIC
@SHORTDESC=probability density function of the logistic distribution
@SYNTAX=LOGISTIC(x,a)
@ARGUMENTDESCRIPTION=@{x}: number
@{a}: scale parameter
@SEEALSO=RANDLOGISTIC
@CATEGORY=Statistics
@FUNCTION=LOGNORMDIST
@SHORTDESC=cumulative distribution function of the lognormal distribution
@SYNTAX=LOGNORMDIST(x,mean,stddev)
@ARGUMENTDESCRIPTION=@{x}: number
@{mean}: mean
@{stddev}: standard deviation
@NOTE=If @{stddev} = 0 LOGNORMDIST returns a #DIV/0! error. If @{x} <= 0, @{mean} < 0 or @{stddev} <= 0 this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=NORMDIST
@CATEGORY=Statistics
@FUNCTION=LOGREG
@SHORTDESC=the logarithmic regression
@SYNTAX=LOGREG(known_ys,known_xs,affine,stat)
@ARGUMENTDESCRIPTION=@{known_ys}: known y-values
@{known_xs}: known x-values; defaults to the array {1, 2, 3, …}
@{affine}: if true, the model contains a constant term, defaults to true
@{stat}: if true, extra statistical information will be returned; defaults to FALSE
@DESCRIPTION=LOGREG function transforms your x's to z=ln(x) and applies the “least squares” method to fit the linear equation y = m * z + b to your y's and z's --- equivalent to fitting the equation y = m * ln(x) + b to y's and x's. LOGREG returns an array having two columns and one row. m is given in the first column and b in the second.
Any extra statistical information is written below m and b in the result array. This extra statistical information consists of four rows of data: In the first row the standard error values for the coefficients m, b are given. The second row contains the square of R and the standard error for the y estimate. The third row contains the F-observed value and the degrees of freedom. The last row contains the regression sum of squares and the residual sum of squares. The default of @{stat} is FALSE.
@NOTE=If @{known_ys} and @{known_xs} have unequal number of data points, this function returns a #NUM! error.
@SEEALSO=LOGFIT,LINEST,LOGEST
@CATEGORY=Statistics
@FUNCTION=MAX
@SHORTDESC=largest value, with negative numbers considered smaller than positive numbers
@SYNTAX=MAX(number1,number2,…)
@ARGUMENTDESCRIPTION=@{number1}: first value
@{number2}: second value
@EXCEL=This function is Excel compatible.
@SEEALSO=MIN,ABS
@CATEGORY=Statistics
@FUNCTION=MAXA
@SHORTDESC=largest value, with negative numbers considered smaller than positive numbers
@SYNTAX=MAXA(number1,number2,…)
@ARGUMENTDESCRIPTION=@{number1}: first value
@{number2}: second value
@DESCRIPTION=Numbers, text and logical values are included in the calculation too. If the cell contains text or the argument evaluates to FALSE, it is counted as value zero (0). If the argument evaluates to TRUE, it is counted as one (1). Note that empty cells are not counted.
@EXCEL=This function is Excel compatible.
@SEEALSO=MAX,MINA
@CATEGORY=Statistics
@FUNCTION=MEDIAN
@SHORTDESC=median of a data set
@SYNTAX=MEDIAN(number1,number2,…)
@ARGUMENTDESCRIPTION=@{number1}: first value
@{number2}: second value
@DESCRIPTION=Strings and empty cells are simply ignored.
@NOTE=If even numbers are given MEDIAN returns the average of the two numbers in the center.
@EXCEL=This function is Excel compatible.
@SEEALSO=AVERAGE,COUNT,COUNTA,DAVERAGE,MODE,SSMEDIAN,SUM
@CATEGORY=Statistics
@FUNCTION=MIN
@SHORTDESC=smallest value, with negative numbers considered smaller than positive numbers
@SYNTAX=MIN(number1,number2,…)
@ARGUMENTDESCRIPTION=@{number1}: first value
@{number2}: second value
@EXCEL=This function is Excel compatible.
@SEEALSO=MAX,ABS
@CATEGORY=Statistics
@FUNCTION=MINA
@SHORTDESC=smallest value, with negative numbers considered smaller than positive numbers
@SYNTAX=MINA(number1,number2,…)
@ARGUMENTDESCRIPTION=@{number1}: first value
@{number2}: second value
@DESCRIPTION=Numbers, text and logical values are included in the calculation too. If the cell contains text or the argument evaluates to FALSE, it is counted as value zero (0). If the argument evaluates to TRUE, it is counted as one (1). Note that empty cells are not counted.
@EXCEL=This function is Excel compatible.
@SEEALSO=MIN,MAXA
@CATEGORY=Statistics
@FUNCTION=MODE
@SHORTDESC=first most common number in the dataset
@SYNTAX=MODE(number1,number2,…)
@ARGUMENTDESCRIPTION=@{number1}: first value
@{number2}: second value
@DESCRIPTION=Strings and empty cells are simply ignored.
If the data set does not contain any duplicates this function returns a #N/A error.
@EXCEL=This function is Excel compatible.
@SEEALSO=AVERAGE,MEDIAN,MODE.MULT
@CATEGORY=Statistics
@FUNCTION=MODE.MULT
@SHORTDESC=most common numbers in the dataset
@SYNTAX=MODE.MULT(number1,number2,…)
@ARGUMENTDESCRIPTION=@{number1}: first value
@{number2}: second value
@DESCRIPTION=Strings and empty cells are simply ignored.
If the data set does not contain any duplicates this function returns a #N/A error.
@EXCEL=This function is Excel compatible.
@SEEALSO=AVERAGE,MEDIAN,MODE
@CATEGORY=Statistics
@FUNCTION=NEGBINOMDIST
@SHORTDESC=probability mass function of the negative binomial distribution
@SYNTAX=NEGBINOMDIST(f,t,p)
@ARGUMENTDESCRIPTION=@{f}: number of failures
@{t}: threshold number of successes
@{p}: probability of a success
@NOTE=If @{f} or @{t} is a non-integer it is truncated. If (@{f} + @{t} -1) <= 0 this function returns a #NUM! error. If @{p} < 0 or @{p} > 1 this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=BINOMDIST,COMBIN,FACT,HYPGEOMDIST,PERMUT
@CATEGORY=Statistics
@FUNCTION=NORMDIST
@SHORTDESC=probability density or cumulative distribution function of a normal distribution
@SYNTAX=NORMDIST(x,mean,stddev,cumulative)
@ARGUMENTDESCRIPTION=@{x}: number
@{mean}: mean of the distribution
@{stddev}: standard deviation of the distribution
@{cumulative}: whether to evaluate the density function or the cumulative distribution function
@NOTE=If @{stddev} is 0 this function returns a #DIV/0! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=POISSON
@CATEGORY=Statistics
@FUNCTION=NORMINV
@SHORTDESC=inverse of the cumulative distribution function of a normal distribution
@SYNTAX=NORMINV(p,mean,stddev)
@ARGUMENTDESCRIPTION=@{p}: probability
@{mean}: mean of the distribution
@{stddev}: standard deviation of the distribution
@NOTE=If @{p} < 0 or @{p} > 1 or @{stddev} <= 0 this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=NORMDIST,NORMSDIST,NORMSINV,STANDARDIZE,ZTEST
@CATEGORY=Statistics
@FUNCTION=NORMSDIST
@SHORTDESC=cumulative distribution function of the standard normal distribution
@SYNTAX=NORMSDIST(x)
@ARGUMENTDESCRIPTION=@{x}: number
@EXCEL=This function is Excel compatible.
@ODF=NORMSDIST is the OpenFormula function LEGACY.NORMSDIST.
@SEEALSO=NORMDIST
@CATEGORY=Statistics
@FUNCTION=NORMSINV
@SHORTDESC=inverse of the cumulative distribution function of the standard normal distribution
@SYNTAX=NORMSINV(p)
@ARGUMENTDESCRIPTION=@{p}: given probability
@NOTE=If @{p} < 0 or @{p} > 1 this function returns #NUM! error.
@EXCEL=This function is Excel compatible.
@ODF=NORMSINV is the OpenFormula function LEGACY.NORMSINV.
@SEEALSO=NORMDIST,NORMINV,NORMSDIST,STANDARDIZE,ZTEST
@CATEGORY=Statistics
@FUNCTION=OWENT
@SHORTDESC=Owen's T function
@SYNTAX=OWENT(h,a)
@ARGUMENTDESCRIPTION=@{h}: number
@{a}: number
@SEEALSO=R.PSNORM,R.PST
@CATEGORY=Statistics
@FUNCTION=PARETO
@SHORTDESC=probability density function of the Pareto distribution
@SYNTAX=PARETO(x,a,b)
@ARGUMENTDESCRIPTION=@{x}: number
@{a}: exponent
@{b}: scale parameter
@SEEALSO=RANDPARETO
@CATEGORY=Statistics
@FUNCTION=PEARSON
@SHORTDESC=Pearson correlation coefficient of the paired set of data
@SYNTAX=PEARSON(array1,array2)
@ARGUMENTDESCRIPTION=@{array1}: first component values
@{array2}: second component values
@DESCRIPTION=Strings and empty cells are simply ignored.
@EXCEL=This function is Excel compatible.
@SEEALSO=INTERCEPT,LINEST,RSQ,SLOPE,STEYX
@CATEGORY=Statistics
@FUNCTION=PERCENTILE
@SHORTDESC=determines the 100*@{k}-th percentile of the given data points (Hyndman-Fan method 7: N-1 basis)
@SYNTAX=PERCENTILE(array,k)
@ARGUMENTDESCRIPTION=@{array}: data points
@{k}: which percentile to calculate
@NOTE=If @{array} is empty, this function returns a #NUM! error. If @{k} < 0 or @{k} > 1, this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=QUARTILE
@CATEGORY=Statistics
@FUNCTION=PERCENTILE.EXC
@SHORTDESC=determines the 100*@{k}-th percentile of the given data points (Hyndman-Fan method 6: N+1 basis)
@SYNTAX=PERCENTILE.EXC(array,k)
@ARGUMENTDESCRIPTION=@{array}: data points
@{k}: which percentile to calculate
@NOTE=If @{array} is empty, this function returns a #NUM! error. If @{k} < 0 or @{k} > 1, this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=PERCENTILE,QUARTILE,QUARTILE.EXC
@CATEGORY=Statistics
@FUNCTION=PERCENTRANK
@SHORTDESC=rank of a data point in a data set (Hyndman-Fan method 7: N-1 basis)
@SYNTAX=PERCENTRANK(array,x,significance)
@ARGUMENTDESCRIPTION=@{array}: range of numeric values
@{x}: data point to be ranked
@{significance}: number of significant digits, defaults to 3
@NOTE=If @{array} contains no data points, this function returns a #NUM! error. If @{significance} is less than one, this function returns a #NUM! error. If @{x} exceeds the largest value or is less than the smallest value in @{array}, this function returns an #N/A error. If @{x} does not match any of the values in @{array} or @{x} matches more than once, this function interpolates the returned value.
@SEEALSO=LARGE,MAX,MEDIAN,MIN,PERCENTILE,QUARTILE,SMALL
@CATEGORY=Statistics
@FUNCTION=PERCENTRANK.EXC
@SHORTDESC=rank of a data point in a data set (Hyndman-Fan method 6: N+1 basis)
@SYNTAX=PERCENTRANK.EXC(array,x,significance)
@ARGUMENTDESCRIPTION=@{array}: range of numeric values
@{x}: data point to be ranked
@{significance}: number of significant digits, defaults to 3
@NOTE=If @{array} contains no data points, this function returns a #NUM! error. If @{significance} is less than one, this function returns a #NUM! error. If @{x} exceeds the largest value or is less than the smallest value in @{array}, this function returns an #N/A error. If @{x} does not match any of the values in @{array} or @{x} matches more than once, this function interpolates the returned value.
@SEEALSO=LARGE,MAX,MEDIAN,MIN,PERCENTILE,PERCENTILE.EXC,QUARTILE,QUARTILE.EXC,SMALL
@CATEGORY=Statistics
@FUNCTION=PERMUT
@SHORTDESC=number of @{k}-permutations of a @{n}-set
@SYNTAX=PERMUT(n,k)
@ARGUMENTDESCRIPTION=@{n}: size of the base set
@{k}: number of elements in each permutation
@NOTE=If @{n} = 0 this function returns a #NUM! error. If @{n} < @{k} this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=COMBIN
@CATEGORY=Statistics
@FUNCTION=PERMUTATIONA
@SHORTDESC=the number of permutations of @{y} objects chosen from @{x} objects with repetition allowed
@SYNTAX=PERMUTATIONA(x,y)
@ARGUMENTDESCRIPTION=@{x}: total number of objects
@{y}: number of selected objects
@NOTE=If both @{x} and @{y} equal 0, PERMUTATIONA returns 1. If @{x} < 0 or @{y} < 0, PERMUTATIONA returns #NUM! If @{x} or @{y} are not integers, they are truncated.
@ODF=This function is OpenFormula compatible.
@SEEALSO=POWER
@CATEGORY=Statistics
@FUNCTION=POISSON
@SHORTDESC=probability mass or cumulative distribution function of the Poisson distribution
@SYNTAX=POISSON(x,mean,cumulative)
@ARGUMENTDESCRIPTION=@{x}: number of events
@{mean}: mean of the distribution
@{cumulative}: whether to evaluate the mass function or the cumulative distribution function
@NOTE=If @{x} is a non-integer it is truncated. If @{x} < 0 this function returns a #NUM! error. If @{mean} <= 0 POISSON returns the #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=NORMDIST,WEIBULL
@CATEGORY=Statistics
@FUNCTION=PROB
@SHORTDESC=probability of an interval for a discrete (and finite) probability distribution
@SYNTAX=PROB(x_range,prob_range,lower_limit,upper_limit)
@ARGUMENTDESCRIPTION=@{x_range}: possible values
@{prob_range}: probabilities of the corresponding values
@{lower_limit}: lower interval limit
@{upper_limit}: upper interval limit, defaults to @{lower_limit}
@NOTE=If the sum of the probabilities in @{prob_range} is not equal to 1 this function returns a #NUM! error. If any value in @{prob_range} is <=0 or > 1, this function returns a #NUM! error. If @{x_range} and @{prob_range} contain a different number of data entries, this function returns a #N/A error.
@EXCEL=This function is Excel compatible.
@SEEALSO=BINOMDIST,CRITBINOM
@CATEGORY=Statistics
@FUNCTION=QUARTILE
@SHORTDESC=the @{k}-th quartile of the data points (Hyndman-Fan method 7: N-1 basis)
@SYNTAX=QUARTILE(array,quart)
@ARGUMENTDESCRIPTION=@{array}: data points
@{quart}: a number from 0 to 4, indicating which quartile to calculate
@NOTE=If @{array} is empty, this function returns a #NUM! error. If @{quart} < 0 or @{quart} > 4, this function returns a #NUM! error. If @{quart} = 0, the smallest value of @{array} to be returned. If @{quart} is not an integer, it is truncated.
@EXCEL=This function is Excel compatible.
@SEEALSO=LARGE,MAX,MEDIAN,MIN,PERCENTILE,QUARTILE.EXC,SMALL
@CATEGORY=Statistics
@FUNCTION=QUARTILE.EXC
@SHORTDESC=the @{k}-th quartile of the data points (Hyndman-Fan method 6: N+1 basis)
@SYNTAX=QUARTILE.EXC(array,quart)
@ARGUMENTDESCRIPTION=@{array}: data points
@{quart}: a number from 1 to 3, indicating which quartile to calculate
@NOTE=If @{array} is empty, this function returns a #NUM! error. If @{quart} < 0 or @{quart} > 4, this function returns a #NUM! error. If @{quart} = 0, the smallest value of @{array} to be returned. If @{quart} is not an integer, it is truncated.
@EXCEL=This function is Excel compatible.
@SEEALSO=LARGE,MAX,MEDIAN,MIN,PERCENTILE,PERCENTILE.EXC,QUARTILE,SMALL
@CATEGORY=Statistics
@FUNCTION=R.DBETA
@SHORTDESC=probability density function of the beta distribution
@SYNTAX=R.DBETA(x,a,b,give_log)
@ARGUMENTDESCRIPTION=@{x}: observation
@{a}: the first shape parameter of the distribution
@{b}: the second scale parameter of the distribution
@{give_log}: if true, log of the result will be returned instead
@DESCRIPTION=This function returns the probability density function of the beta distribution.
@SEEALSO=R.PBETA,R.QBETA
@CATEGORY=Statistics
@FUNCTION=R.DBINOM
@SHORTDESC=probability density function of the binomial distribution
@SYNTAX=R.DBINOM(x,n,psuc,give_log)
@ARGUMENTDESCRIPTION=@{x}: observation
@{n}: the number of trials
@{psuc}: the probability of success in each trial
@{give_log}: if true, log of the result will be returned instead
@DESCRIPTION=This function returns the probability density function of the binomial distribution.
@SEEALSO=R.PBINOM,R.QBINOM
@CATEGORY=Statistics
@FUNCTION=R.DCAUCHY
@SHORTDESC=probability density function of the Cauchy distribution
@SYNTAX=R.DCAUCHY(x,location,scale,give_log)
@ARGUMENTDESCRIPTION=@{x}: observation
@{location}: the center of the distribution
@{scale}: the scale parameter of the distribution
@{give_log}: if true, log of the result will be returned instead
@DESCRIPTION=This function returns the probability density function of the Cauchy distribution.
@SEEALSO=R.PCAUCHY,R.QCAUCHY
@CATEGORY=Statistics
@FUNCTION=R.DCHISQ
@SHORTDESC=probability density function of the chi-square distribution
@SYNTAX=R.DCHISQ(x,df,give_log)
@ARGUMENTDESCRIPTION=@{x}: observation
@{df}: the number of degrees of freedom of the distribution
@{give_log}: if true, log of the result will be returned instead
@DESCRIPTION=This function returns the probability density function of the chi-square distribution.
@ODF=A two argument invocation R.DCHISQ(@{x},@{df}) is exported to OpenFormula as CHISQDIST(@{x},@{df},FALSE()).
@SEEALSO=R.PCHISQ,R.QCHISQ
@CATEGORY=Statistics
@FUNCTION=R.DEXP
@SHORTDESC=probability density function of the exponential distribution
@SYNTAX=R.DEXP(x,scale,give_log)
@ARGUMENTDESCRIPTION=@{x}: observation
@{scale}: the scale parameter of the distribution
@{give_log}: if true, log of the result will be returned instead
@DESCRIPTION=This function returns the probability density function of the exponential distribution.
@SEEALSO=R.PEXP,R.QEXP
@CATEGORY=Statistics
@FUNCTION=R.DF
@SHORTDESC=probability density function of the F distribution
@SYNTAX=R.DF(x,n1,n2,give_log)
@ARGUMENTDESCRIPTION=@{x}: observation
@{n1}: the first number of degrees of freedom of the distribution
@{n2}: the second number of degrees of freedom of the distribution
@{give_log}: if true, log of the result will be returned instead
@DESCRIPTION=This function returns the probability density function of the F distribution.
@SEEALSO=R.PF,R.QF
@CATEGORY=Statistics
@FUNCTION=R.DGAMMA
@SHORTDESC=probability density function of the gamma distribution
@SYNTAX=R.DGAMMA(x,shape,scale,give_log)
@ARGUMENTDESCRIPTION=@{x}: observation
@{shape}: the shape parameter of the distribution
@{scale}: the scale parameter of the distribution
@{give_log}: if true, log of the result will be returned instead
@DESCRIPTION=This function returns the probability density function of the gamma distribution.
@SEEALSO=R.PGAMMA,R.QGAMMA
@CATEGORY=Statistics
@FUNCTION=R.DGEOM
@SHORTDESC=probability density function of the geometric distribution
@SYNTAX=R.DGEOM(x,psuc,give_log)
@ARGUMENTDESCRIPTION=@{x}: observation
@{psuc}: the probability of success in each trial
@{give_log}: if true, log of the result will be returned instead
@DESCRIPTION=This function returns the probability density function of the geometric distribution.
@SEEALSO=R.PGEOM,R.QGEOM
@CATEGORY=Statistics
@FUNCTION=R.DGUMBEL
@SHORTDESC=probability density function of the Gumbel distribution
@SYNTAX=R.DGUMBEL(x,mu,beta,give_log)
@ARGUMENTDESCRIPTION=@{x}: observation
@{mu}: the location parameter of freedom of the distribution
@{beta}: the scale parameter of freedom of the distribution
@{give_log}: if true, log of the result will be returned instead
@DESCRIPTION=This function returns the probability density function of the Gumbel distribution.
@SEEALSO=R.PGUMBEL,R.QGUMBEL
@CATEGORY=Statistics
@FUNCTION=R.DHYPER
@SHORTDESC=probability density function of the hypergeometric distribution
@SYNTAX=R.DHYPER(x,r,b,n,give_log)
@ARGUMENTDESCRIPTION=@{x}: observation
@{r}: the number of red balls
@{b}: the number of black balls
@{n}: the number of balls drawn
@{give_log}: if true, log of the result will be returned instead
@DESCRIPTION=This function returns the probability density function of the hypergeometric distribution.
@SEEALSO=R.PHYPER,R.QHYPER
@CATEGORY=Statistics
@FUNCTION=R.DLNORM
@SHORTDESC=probability density function of the log-normal distribution
@SYNTAX=R.DLNORM(x,logmean,logsd,give_log)
@ARGUMENTDESCRIPTION=@{x}: observation
@{logmean}: mean of the underlying normal distribution
@{logsd}: standard deviation of the underlying normal distribution
@{give_log}: if true, log of the result will be returned instead
@DESCRIPTION=This function returns the probability density function of the log-normal distribution.
@SEEALSO=R.PLNORM,R.QLNORM
@CATEGORY=Statistics
@FUNCTION=R.DNBINOM
@SHORTDESC=probability density function of the negative binomial distribution
@SYNTAX=R.DNBINOM(x,n,psuc,give_log)
@ARGUMENTDESCRIPTION=@{x}: observation (number of failures)
@{n}: required number of successes
@{psuc}: the probability of success in each trial
@{give_log}: if true, log of the result will be returned instead
@DESCRIPTION=This function returns the probability density function of the negative binomial distribution.
@SEEALSO=R.PNBINOM,R.QNBINOM
@CATEGORY=Statistics
@FUNCTION=R.DNORM
@SHORTDESC=probability density function of the normal distribution
@SYNTAX=R.DNORM(x,mu,sigma,give_log)
@ARGUMENTDESCRIPTION=@{x}: observation
@{mu}: mean of the distribution
@{sigma}: standard deviation of the distribution
@{give_log}: if true, log of the result will be returned instead
@DESCRIPTION=This function returns the probability density function of the normal distribution.
@SEEALSO=R.PNORM,R.QNORM
@CATEGORY=Statistics
@FUNCTION=R.DPOIS
@SHORTDESC=probability density function of the Poisson distribution
@SYNTAX=R.DPOIS(x,lambda,give_log)
@ARGUMENTDESCRIPTION=@{x}: observation
@{lambda}: the mean of the distribution
@{give_log}: if true, log of the result will be returned instead
@DESCRIPTION=This function returns the probability density function of the Poisson distribution.
@SEEALSO=R.PPOIS,R.QPOIS
@CATEGORY=Statistics
@FUNCTION=R.DRAYLEIGH
@SHORTDESC=probability density function of the Rayleigh distribution
@SYNTAX=R.DRAYLEIGH(x,scale,give_log)
@ARGUMENTDESCRIPTION=@{x}: observation
@{scale}: the scale parameter of the distribution
@{give_log}: if true, log of the result will be returned instead
@DESCRIPTION=This function returns the probability density function of the Rayleigh distribution.
@SEEALSO=R.PRAYLEIGH,R.QRAYLEIGH
@CATEGORY=Statistics
@FUNCTION=R.DSNORM
@SHORTDESC=probability density function of the skew-normal distribution
@SYNTAX=R.DSNORM(x,shape,location,scale,give_log)
@ARGUMENTDESCRIPTION=@{x}: observation
@{shape}: the shape parameter of the distribution
@{location}: the location parameter of the distribution
@{scale}: the scale parameter of the distribution
@{give_log}: if true, log of the result will be returned instead
@DESCRIPTION=This function returns the probability density function of the skew-normal distribution.
@SEEALSO=R.PSNORM,R.QSNORM
@CATEGORY=Statistics
@FUNCTION=R.DST
@SHORTDESC=probability density function of the skew-t distribution
@SYNTAX=R.DST(x,n,shape,give_log)
@ARGUMENTDESCRIPTION=@{x}: observation
@{n}: the number of degrees of freedom of the distribution
@{shape}: the shape parameter of the distribution
@{give_log}: if true, log of the result will be returned instead
@DESCRIPTION=This function returns the probability density function of the skew-t distribution.
@SEEALSO=R.PST,R.QST
@CATEGORY=Statistics
@FUNCTION=R.DT
@SHORTDESC=probability density function of the Student t distribution
@SYNTAX=R.DT(x,n,give_log)
@ARGUMENTDESCRIPTION=@{x}: observation
@{n}: the number of degrees of freedom of the distribution
@{give_log}: if true, log of the result will be returned instead
@DESCRIPTION=This function returns the probability density function of the Student t distribution.
@SEEALSO=R.PT,R.QT
@CATEGORY=Statistics
@FUNCTION=R.DWEIBULL
@SHORTDESC=probability density function of the Weibull distribution
@SYNTAX=R.DWEIBULL(x,shape,scale,give_log)
@ARGUMENTDESCRIPTION=@{x}: observation
@{shape}: the shape parameter of the distribution
@{scale}: the scale parameter of the distribution
@{give_log}: if true, log of the result will be returned instead
@DESCRIPTION=This function returns the probability density function of the Weibull distribution.
@SEEALSO=R.PWEIBULL,R.QWEIBULL
@CATEGORY=Statistics
@FUNCTION=R.PBETA
@SHORTDESC=cumulative distribution function of the beta distribution
@SYNTAX=R.PBETA(x,a,b,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{x}: observation
@{a}: the first shape parameter of the distribution
@{b}: the second scale parameter of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the cumulative distribution function of the beta distribution.
@SEEALSO=R.DBETA,R.QBETA
@CATEGORY=Statistics
@FUNCTION=R.PBINOM
@SHORTDESC=cumulative distribution function of the binomial distribution
@SYNTAX=R.PBINOM(x,n,psuc,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{x}: observation
@{n}: the number of trials
@{psuc}: the probability of success in each trial
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the cumulative distribution function of the binomial distribution.
@SEEALSO=R.DBINOM,R.QBINOM
@CATEGORY=Statistics
@FUNCTION=R.PCAUCHY
@SHORTDESC=cumulative distribution function of the Cauchy distribution
@SYNTAX=R.PCAUCHY(x,location,scale,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{x}: observation
@{location}: the center of the distribution
@{scale}: the scale parameter of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the cumulative distribution function of the Cauchy distribution.
@SEEALSO=R.DCAUCHY,R.QCAUCHY
@CATEGORY=Statistics
@FUNCTION=R.PCHISQ
@SHORTDESC=cumulative distribution function of the chi-square distribution
@SYNTAX=R.PCHISQ(x,df,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{x}: observation
@{df}: the number of degrees of freedom of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the cumulative distribution function of the chi-square distribution.
@ODF=A two argument invocation R.PCHISQ(@{x},@{df}) is exported to OpenFormula as CHISQDIST(@{x},@{df}).
@SEEALSO=R.DCHISQ,R.QCHISQ
@CATEGORY=Statistics
@FUNCTION=R.PEXP
@SHORTDESC=cumulative distribution function of the exponential distribution
@SYNTAX=R.PEXP(x,scale,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{x}: observation
@{scale}: the scale parameter of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the cumulative distribution function of the exponential distribution.
@SEEALSO=R.DEXP,R.QEXP
@CATEGORY=Statistics
@FUNCTION=R.PF
@SHORTDESC=cumulative distribution function of the F distribution
@SYNTAX=R.PF(x,n1,n2,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{x}: observation
@{n1}: the first number of degrees of freedom of the distribution
@{n2}: the second number of degrees of freedom of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the cumulative distribution function of the F distribution.
@SEEALSO=R.DF,R.QF
@CATEGORY=Statistics
@FUNCTION=R.PGAMMA
@SHORTDESC=cumulative distribution function of the gamma distribution
@SYNTAX=R.PGAMMA(x,shape,scale,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{x}: observation
@{shape}: the shape parameter of the distribution
@{scale}: the scale parameter of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the cumulative distribution function of the gamma distribution.
@SEEALSO=R.DGAMMA,R.QGAMMA
@CATEGORY=Statistics
@FUNCTION=R.PGEOM
@SHORTDESC=cumulative distribution function of the geometric distribution
@SYNTAX=R.PGEOM(x,psuc,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{x}: observation
@{psuc}: the probability of success in each trial
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the cumulative distribution function of the geometric distribution.
@SEEALSO=R.DGEOM,R.QGEOM
@CATEGORY=Statistics
@FUNCTION=R.PGUMBEL
@SHORTDESC=cumulative distribution function of the Gumbel distribution
@SYNTAX=R.PGUMBEL(x,mu,beta,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{x}: observation
@{mu}: the location parameter of freedom of the distribution
@{beta}: the scale parameter of freedom of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the cumulative distribution function of the Gumbel distribution.
@SEEALSO=R.DGUMBEL,R.QGUMBEL
@CATEGORY=Statistics
@FUNCTION=R.PHYPER
@SHORTDESC=cumulative distribution function of the hypergeometric distribution
@SYNTAX=R.PHYPER(x,r,b,n,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{x}: observation
@{r}: the number of red balls
@{b}: the number of black balls
@{n}: the number of balls drawn
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the cumulative distribution function of the hypergeometric distribution.
@SEEALSO=R.DHYPER,R.QHYPER
@CATEGORY=Statistics
@FUNCTION=R.PLNORM
@SHORTDESC=cumulative distribution function of the log-normal distribution
@SYNTAX=R.PLNORM(x,logmean,logsd,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{x}: observation
@{logmean}: mean of the underlying normal distribution
@{logsd}: standard deviation of the underlying normal distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the cumulative distribution function of the log-normal distribution.
@SEEALSO=R.DLNORM,R.QLNORM
@CATEGORY=Statistics
@FUNCTION=R.PNBINOM
@SHORTDESC=cumulative distribution function of the negative binomial distribution
@SYNTAX=R.PNBINOM(x,n,psuc,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{x}: observation (number of failures)
@{n}: required number of successes
@{psuc}: the probability of success in each trial
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the cumulative distribution function of the negative binomial distribution.
@SEEALSO=R.DNBINOM,R.QNBINOM
@CATEGORY=Statistics
@FUNCTION=R.PNORM
@SHORTDESC=cumulative distribution function of the normal distribution
@SYNTAX=R.PNORM(x,mu,sigma,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{x}: observation
@{mu}: mean of the distribution
@{sigma}: standard deviation of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the cumulative distribution function of the normal distribution.
@SEEALSO=R.DNORM,R.QNORM
@CATEGORY=Statistics
@FUNCTION=R.PPOIS
@SHORTDESC=cumulative distribution function of the Poisson distribution
@SYNTAX=R.PPOIS(x,lambda,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{x}: observation
@{lambda}: the mean of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the cumulative distribution function of the Poisson distribution.
@SEEALSO=R.DPOIS,R.QPOIS
@CATEGORY=Statistics
@FUNCTION=R.PRAYLEIGH
@SHORTDESC=cumulative distribution function of the Rayleigh distribution
@SYNTAX=R.PRAYLEIGH(x,scale,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{x}: observation
@{scale}: the scale parameter of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the cumulative distribution function of the Rayleigh distribution.
@SEEALSO=R.DRAYLEIGH,R.QRAYLEIGH
@CATEGORY=Statistics
@FUNCTION=R.PSNORM
@SHORTDESC=cumulative distribution function of the skew-normal distribution
@SYNTAX=R.PSNORM(x,shape,location,scale,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{x}: observation
@{shape}: the shape parameter of the distribution
@{location}: the location parameter of the distribution
@{scale}: the scale parameter of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the cumulative distribution function of the skew-normal distribution.
@SEEALSO=R.DSNORM,R.QSNORM
@CATEGORY=Statistics
@FUNCTION=R.PST
@SHORTDESC=cumulative distribution function of the skew-t distribution
@SYNTAX=R.PST(x,n,shape,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{x}: observation
@{n}: the number of degrees of freedom of the distribution
@{shape}: the shape parameter of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the cumulative distribution function of the skew-t distribution.
@SEEALSO=R.DST,R.QST
@CATEGORY=Statistics
@FUNCTION=R.PT
@SHORTDESC=cumulative distribution function of the Student t distribution
@SYNTAX=R.PT(x,n,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{x}: observation
@{n}: the number of degrees of freedom of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the cumulative distribution function of the Student t distribution.
@SEEALSO=R.DT,R.QT
@CATEGORY=Statistics
@FUNCTION=R.PTUKEY
@SHORTDESC=cumulative distribution function of the Studentized range distribution
@SYNTAX=R.PTUKEY(x,nmeans,df,nranges,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{x}: observation
@{nmeans}: the number of means
@{df}: the number of degrees of freedom of the distribution
@{nranges}: the number of ranges; default is 1
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the cumulative distribution function of the Studentized range distribution.
@SEEALSO=R.QTUKEY
@CATEGORY=Statistics
@FUNCTION=R.PWEIBULL
@SHORTDESC=cumulative distribution function of the Weibull distribution
@SYNTAX=R.PWEIBULL(x,shape,scale,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{x}: observation
@{shape}: the shape parameter of the distribution
@{scale}: the scale parameter of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the cumulative distribution function of the Weibull distribution.
@SEEALSO=R.DWEIBULL,R.QWEIBULL
@CATEGORY=Statistics
@FUNCTION=R.QBETA
@SHORTDESC=probability quantile function of the beta distribution
@SYNTAX=R.QBETA(p,a,b,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{p}: probability or natural logarithm of the probability
@{a}: the first shape parameter of the distribution
@{b}: the second scale parameter of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the probability quantile function, i.e., the inverse of the cumulative distribution function, of the beta distribution.
@SEEALSO=R.DBETA,R.PBETA
@CATEGORY=Statistics
@FUNCTION=R.QBINOM
@SHORTDESC=probability quantile function of the binomial distribution
@SYNTAX=R.QBINOM(p,n,psuc,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{p}: probability or natural logarithm of the probability
@{n}: the number of trials
@{psuc}: the probability of success in each trial
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the probability quantile function, i.e., the inverse of the cumulative distribution function, of the binomial distribution.
@SEEALSO=R.DBINOM,R.PBINOM
@CATEGORY=Statistics
@FUNCTION=R.QCAUCHY
@SHORTDESC=probability quantile function of the Cauchy distribution
@SYNTAX=R.QCAUCHY(p,location,scale,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{p}: probability or natural logarithm of the probability
@{location}: the center of the distribution
@{scale}: the scale parameter of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the probability quantile function, i.e., the inverse of the cumulative distribution function, of the Cauchy distribution.
@SEEALSO=R.DCAUCHY,R.PCAUCHY
@CATEGORY=Statistics
@FUNCTION=R.QCHISQ
@SHORTDESC=probability quantile function of the chi-square distribution
@SYNTAX=R.QCHISQ(p,df,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{p}: probability or natural logarithm of the probability
@{df}: the number of degrees of freedom of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the probability quantile function, i.e., the inverse of the cumulative distribution function, of the chi-square distribution.
@ODF=A two argument invocation R.QCHISQ(@{p},@{df}) is exported to OpenFormula as CHISQINV(@{p},@{df}).
@SEEALSO=R.DCHISQ,R.PCHISQ
@CATEGORY=Statistics
@FUNCTION=R.QEXP
@SHORTDESC=probability quantile function of the exponential distribution
@SYNTAX=R.QEXP(p,scale,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{p}: probability or natural logarithm of the probability
@{scale}: the scale parameter of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the probability quantile function, i.e., the inverse of the cumulative distribution function, of the exponential distribution.
@SEEALSO=R.DEXP,R.PEXP
@CATEGORY=Statistics
@FUNCTION=R.QF
@SHORTDESC=probability quantile function of the F distribution
@SYNTAX=R.QF(p,n1,n2,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{p}: probability or natural logarithm of the probability
@{n1}: the first number of degrees of freedom of the distribution
@{n2}: the second number of degrees of freedom of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the probability quantile function, i.e., the inverse of the cumulative distribution function, of the F distribution.
@SEEALSO=R.DF,R.PF
@CATEGORY=Statistics
@FUNCTION=R.QGAMMA
@SHORTDESC=probability quantile function of the gamma distribution
@SYNTAX=R.QGAMMA(p,shape,scale,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{p}: probability or natural logarithm of the probability
@{shape}: the shape parameter of the distribution
@{scale}: the scale parameter of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the probability quantile function, i.e., the inverse of the cumulative distribution function, of the gamma distribution.
@SEEALSO=R.DGAMMA,R.PGAMMA
@CATEGORY=Statistics
@FUNCTION=R.QGEOM
@SHORTDESC=probability quantile function of the geometric distribution
@SYNTAX=R.QGEOM(p,psuc,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{p}: probability or natural logarithm of the probability
@{psuc}: the probability of success in each trial
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the probability quantile function, i.e., the inverse of the cumulative distribution function, of the geometric distribution.
@SEEALSO=R.DGEOM,R.PGEOM
@CATEGORY=Statistics
@FUNCTION=R.QGUMBEL
@SHORTDESC=probability quantile function of the Gumbel distribution
@SYNTAX=R.QGUMBEL(p,mu,beta,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{p}: probability or natural logarithm of the probability
@{mu}: the location parameter of freedom of the distribution
@{beta}: the scale parameter of freedom of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the probability quantile function, i.e., the inverse of the cumulative distribution function, of the Gumbel distribution.
@SEEALSO=R.DGUMBEL,R.PGUMBEL
@CATEGORY=Statistics
@FUNCTION=R.QHYPER
@SHORTDESC=probability quantile function of the hypergeometric distribution
@SYNTAX=R.QHYPER(p,r,b,n,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{p}: probability or natural logarithm of the probability
@{r}: the number of red balls
@{b}: the number of black balls
@{n}: the number of balls drawn
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the probability quantile function, i.e., the inverse of the cumulative distribution function, of the hypergeometric distribution.
@SEEALSO=R.DHYPER,R.PHYPER
@CATEGORY=Statistics
@FUNCTION=R.QLNORM
@SHORTDESC=probability quantile function of the log-normal distribution
@SYNTAX=R.QLNORM(p,logmean,logsd,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{p}: probability or natural logarithm of the probability
@{logmean}: mean of the underlying normal distribution
@{logsd}: standard deviation of the underlying normal distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the probability quantile function, i.e., the inverse of the cumulative distribution function, of the log-normal distribution.
@SEEALSO=R.DLNORM,R.PLNORM
@CATEGORY=Statistics
@FUNCTION=R.QNBINOM
@SHORTDESC=probability quantile function of the negative binomial distribution
@SYNTAX=R.QNBINOM(p,n,psuc,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{p}: probability or natural logarithm of the probability
@{n}: required number of successes
@{psuc}: the probability of success in each trial
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the probability quantile function, i.e., the inverse of the cumulative distribution function, of the negative binomial distribution.
@SEEALSO=R.DNBINOM,R.PNBINOM
@CATEGORY=Statistics
@FUNCTION=R.QNORM
@SHORTDESC=probability quantile function of the normal distribution
@SYNTAX=R.QNORM(p,mu,sigma,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{p}: probability or natural logarithm of the probability
@{mu}: mean of the distribution
@{sigma}: standard deviation of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the probability quantile function, i.e., the inverse of the cumulative distribution function, of the normal distribution.
@SEEALSO=R.DNORM,R.PNORM
@CATEGORY=Statistics
@FUNCTION=R.QPOIS
@SHORTDESC=probability quantile function of the Poisson distribution
@SYNTAX=R.QPOIS(p,lambda,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{p}: probability or natural logarithm of the probability
@{lambda}: the mean of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the probability quantile function, i.e., the inverse of the cumulative distribution function, of the Poisson distribution.
@SEEALSO=R.DPOIS,R.PPOIS
@CATEGORY=Statistics
@FUNCTION=R.QRAYLEIGH
@SHORTDESC=probability quantile function of the Rayleigh distribution
@SYNTAX=R.QRAYLEIGH(p,scale,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{p}: probability or natural logarithm of the probability
@{scale}: the scale parameter of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the probability quantile function, i.e., the inverse of the cumulative distribution function, of the Rayleigh distribution.
@SEEALSO=R.DRAYLEIGH,R.PRAYLEIGH
@CATEGORY=Statistics
@FUNCTION=R.QSNORM
@SHORTDESC=probability quantile function of the skew-normal distribution
@SYNTAX=R.QSNORM(p,shape,location,scale,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{p}: probability or natural logarithm of the probability
@{shape}: the shape parameter of the distribution
@{location}: the location parameter of the distribution
@{scale}: the scale parameter of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the probability quantile function, i.e., the inverse of the cumulative distribution function, of the skew-normal distribution.
@SEEALSO=R.DSNORM,R.PSNORM
@CATEGORY=Statistics
@FUNCTION=R.QST
@SHORTDESC=probability quantile function of the skew-t distribution
@SYNTAX=R.QST(p,n,shape,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{p}: probability or natural logarithm of the probability
@{n}: the number of degrees of freedom of the distribution
@{shape}: the shape parameter of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the probability quantile function, i.e., the inverse of the cumulative distribution function, of the skew-t distribution.
@SEEALSO=R.DST,R.PST
@CATEGORY=Statistics
@FUNCTION=R.QT
@SHORTDESC=probability quantile function of the Student t distribution
@SYNTAX=R.QT(p,n,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{p}: probability or natural logarithm of the probability
@{n}: the number of degrees of freedom of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the probability quantile function, i.e., the inverse of the cumulative distribution function, of the Student t distribution.
@SEEALSO=R.DT,R.PT
@CATEGORY=Statistics
@FUNCTION=R.QTUKEY
@SHORTDESC=probability quantile function of the Studentized range distribution
@SYNTAX=R.QTUKEY(p,nmeans,df,nranges,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{p}: probability or natural logarithm of the probability
@{nmeans}: the number of means
@{df}: the number of degrees of freedom of the distribution
@{nranges}: the number of ranges; default is 1
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the probability quantile function, i.e., the inverse of the cumulative distribution function, of the Studentized range distribution.
@SEEALSO=R.PTUKEY
@CATEGORY=Statistics
@FUNCTION=R.QWEIBULL
@SHORTDESC=probability quantile function of the Weibull distribution
@SYNTAX=R.QWEIBULL(p,shape,scale,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{p}: probability or natural logarithm of the probability
@{shape}: the shape parameter of the distribution
@{scale}: the scale parameter of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the probability quantile function, i.e., the inverse of the cumulative distribution function, of the Weibull distribution.
@SEEALSO=R.DWEIBULL,R.PWEIBULL
@CATEGORY=Statistics
@FUNCTION=RANK
@SHORTDESC=rank of a number in a list of numbers
@SYNTAX=RANK(x,ref,order)
@ARGUMENTDESCRIPTION=@{x}: number whose rank you want to find
@{ref}: list of numbers
@{order}: 0 (descending order) or non-zero (ascending order); defaults to 0
@NOTE=In case of a tie, RANK returns the largest possible rank.
@EXCEL=This function is Excel compatible.
@SEEALSO=PERCENTRANK,RANK.AVG
@CATEGORY=Statistics
@FUNCTION=RANK.AVG
@SHORTDESC=rank of a number in a list of numbers
@SYNTAX=RANK.AVG(x,ref,order)
@ARGUMENTDESCRIPTION=@{x}: number whose rank you want to find
@{ref}: list of numbers
@{order}: 0 (descending order) or non-zero (ascending order); defaults to 0
@NOTE=In case of a tie, RANK.AVG returns the average rank.
@EXCEL=This function is Excel 2010 compatible.
@SEEALSO=PERCENTRANK,RANK
@CATEGORY=Statistics
@FUNCTION=RAYLEIGH
@SHORTDESC=probability density function of the Rayleigh distribution
@SYNTAX=RAYLEIGH(x,sigma)
@ARGUMENTDESCRIPTION=@{x}: number
@{sigma}: scale parameter
@SEEALSO=RANDRAYLEIGH
@CATEGORY=Statistics
@FUNCTION=RAYLEIGHTAIL
@SHORTDESC=probability density function of the Rayleigh tail distribution
@SYNTAX=RAYLEIGHTAIL(x,a,sigma)
@ARGUMENTDESCRIPTION=@{x}: number
@{a}: lower limit
@{sigma}: scale parameter
@SEEALSO=RANDRAYLEIGHTAIL
@CATEGORY=Statistics
@FUNCTION=RSQ
@SHORTDESC=square of the Pearson correlation coefficient of the paired set of data
@SYNTAX=RSQ(array1,array2)
@ARGUMENTDESCRIPTION=@{array1}: first component values
@{array2}: second component values
@DESCRIPTION=Strings and empty cells are simply ignored.
@EXCEL=This function is Excel compatible.
@SEEALSO=CORREL,COVAR,INTERCEPT,LINEST,LOGEST,PEARSON,SLOPE,STEYX,TREND
@CATEGORY=Statistics
@FUNCTION=SFTEST
@SHORTDESC=Shapiro-Francia Test of Normality
@SYNTAX=SFTEST(x)
@ARGUMENTDESCRIPTION=@{x}: array of sample values
@DESCRIPTION=This function returns an array with the first row giving the p-value of the Shapiro-Francia Test, the second row the test statistic of the test, and the third the number of observations in the sample.
@NOTE=If there are less than 5 or more than 5000 sample values, SFTEST returns #VALUE!
@SEEALSO=CHITEST,ADTEST,LKSTEST,CVMTEST
@CATEGORY=Statistics
@FUNCTION=SKEW
@SHORTDESC=unbiased estimate for skewness of a distribution
@SYNTAX=SKEW(number1,number2,…)
@ARGUMENTDESCRIPTION=@{number1}: first value
@{number2}: second value
@DESCRIPTION=Strings and empty cells are simply ignored.
@NOTE=This is only meaningful if the underlying distribution really has a third moment. The skewness of a symmetric (e.g., normal) distribution is zero. If less than three numbers are given, this function returns a #DIV/0! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=AVERAGE,VAR,SKEWP,KURT
@CATEGORY=Statistics
@FUNCTION=SKEWP
@SHORTDESC=population skewness of a data set
@SYNTAX=SKEWP(number1,number2,…)
@ARGUMENTDESCRIPTION=@{number1}: first value
@{number2}: second value
@DESCRIPTION=Strings and empty cells are simply ignored.
@NOTE=If less than two numbers are given, SKEWP returns a #DIV/0! error.
@SEEALSO=AVERAGE,VARP,SKEW,KURTP
@CATEGORY=Statistics
@FUNCTION=SLOPE
@SHORTDESC=the slope of a linear regression line
@SYNTAX=SLOPE(known_ys,known_xs)
@ARGUMENTDESCRIPTION=@{known_ys}: known y-values
@{known_xs}: known x-values
@NOTE=If @{known_xs} or @{known_ys} contains no data entries or different number of data entries, this function returns a #N/A error. If the variance of the @{known_xs} is zero, this function returns #DIV/0 error.
@EXCEL=This function is Excel compatible.
@SEEALSO=STDEV,STDEVPA
@CATEGORY=Statistics
@FUNCTION=SMALL
@SHORTDESC=@{k}-th smallest value in a data set
@SYNTAX=SMALL(data,k)
@ARGUMENTDESCRIPTION=@{data}: data set
@{k}: which value to find
@NOTE=If data set is empty this function returns a #NUM! error. If @{k} <= 0 or @{k} is greater than the number of data items given this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=PERCENTILE,PERCENTRANK,QUARTILE,LARGE
@CATEGORY=Statistics
@FUNCTION=SNORM.DIST.RANGE
@SHORTDESC=probability of the standard normal distribution over an interval
@SYNTAX=SNORM.DIST.RANGE(x1,x2)
@ARGUMENTDESCRIPTION=@{x1}: start of the interval
@{x2}: end of the interval
@DESCRIPTION=This function returns the cumulative probability over a range of the standard normal distribution; that is the integral over the probability density function from @{x1} to @{x2}.
@NOTE=If @{x1}>@{x2}, this function returns a negative value.
@SEEALSO=NORMSDIST,R.PNORM,R.QNORM,R.DNORM
@CATEGORY=Statistics
@FUNCTION=SSMEDIAN
@SHORTDESC=median for grouped data
@SYNTAX=SSMEDIAN(array,interval)
@ARGUMENTDESCRIPTION=@{array}: data set
@{interval}: length of each grouping interval, defaults to 1
@DESCRIPTION=The data are assumed to be grouped into intervals of width @{interval}. Each data point in @{array} is the midpoint of the interval containing the true value. The median is calculated by interpolation within the median interval (the interval containing the median value), assuming that the true values within that interval are distributed uniformly:
median = L + @{interval}*(N/2 - CF)/F
where:
L = the lower limit of the median interval
N = the total number of data points
CF = the number of data points below the median interval
F = the number of data points in the median interval
@NOTE=If @{array} is empty, this function returns a #NUM! error. If @{interval} <= 0, this function returns a #NUM! error. SSMEDIAN does not check whether the data points are at least @{interval} apart.
@SEEALSO=MEDIAN
@CATEGORY=Statistics
@FUNCTION=STANDARDIZE
@SHORTDESC=z-score of a value
@SYNTAX=STANDARDIZE(x,mean,stddev)
@ARGUMENTDESCRIPTION=@{x}: value
@{mean}: mean of the original distribution
@{stddev}: standard deviation of the original distribution
@NOTE=If @{stddev} is 0 this function returns a #DIV/0! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=AVERAGE
@CATEGORY=Statistics
@FUNCTION=STDEV
@SHORTDESC=sample standard deviation of the given sample
@SYNTAX=STDEV(area1,area2,…)
@ARGUMENTDESCRIPTION=@{area1}: first cell area
@{area2}: second cell area
@DESCRIPTION=STDEV is also known as the N-1-standard deviation.
To obtain the population standard deviation of a whole population use STDEVP.
@EXCEL=This function is Excel compatible.
@SEEALSO=AVERAGE,DSTDEV,DSTDEVP,STDEVA,STDEVPA,VAR
@CATEGORY=Statistics
@FUNCTION=STDEVA
@SHORTDESC=sample standard deviation of the given sample
@SYNTAX=STDEVA(area1,area2,…)
@ARGUMENTDESCRIPTION=@{area1}: first cell area
@{area2}: second cell area
@DESCRIPTION=STDEVA is also known as the N-1-standard deviation.
To obtain the population standard deviation of a whole population use STDEVPA.
Numbers, text and logical values are included in the calculation too. If the cell contains text or the argument evaluates to FALSE, it is counted as value zero (0). If the argument evaluates to TRUE, it is counted as one (1). Note that empty cells are not counted.
@EXCEL=This function is Excel compatible.
@SEEALSO=STDEV,STDEVPA
@CATEGORY=Statistics
@FUNCTION=STDEVP
@SHORTDESC=population standard deviation of the given population
@SYNTAX=STDEVP(area1,area2,…)
@ARGUMENTDESCRIPTION=@{area1}: first cell area
@{area2}: second cell area
@DESCRIPTION=This is also known as the N-standard deviation
@EXCEL=This function is Excel compatible.
@SEEALSO=STDEV,STDEVA,STDEVPA
@CATEGORY=Statistics
@FUNCTION=STDEVPA
@SHORTDESC=population standard deviation of an entire population
@SYNTAX=STDEVPA(area1,area2,…)
@ARGUMENTDESCRIPTION=@{area1}: first cell area
@{area2}: second cell area
@DESCRIPTION=This is also known as the N-standard deviation
Numbers, text and logical values are included in the calculation too. If the cell contains text or the argument evaluates to FALSE, it is counted as value zero (0). If the argument evaluates to TRUE, it is counted as one (1). Note that empty cells are not counted.
@EXCEL=This function is Excel compatible.
@SEEALSO=STDEVA,STDEVP
@CATEGORY=Statistics
@FUNCTION=STEYX
@SHORTDESC=standard error of the predicted y-value in the regression
@SYNTAX=STEYX(known_ys,known_xs)
@ARGUMENTDESCRIPTION=@{known_ys}: known y-values
@{known_xs}: known x-values
@NOTE=If @{known_ys} and @{known_xs} are empty or have a different number of arguments then this function returns a #N/A error.
@EXCEL=This function is Excel compatible.
@SEEALSO=PEARSON,RSQ,SLOPE
@CATEGORY=Statistics
@FUNCTION=SUBTOTAL
@SHORTDESC=the subtotal of the given list of arguments
@SYNTAX=SUBTOTAL(function_nbr,ref1,ref2,…)
@ARGUMENTDESCRIPTION=@{function_nbr}: determines which function to use according to the following table:
1 AVERAGE
2 COUNT
3 COUNTA
4 MAX
5 MIN
6 PRODUCT
7 STDEV
8 STDEVP
9 SUM
10 VAR
11 VARP
@{ref1}: first value
@{ref2}: second value
@EXCEL=This function is Excel compatible.
@SEEALSO=COUNT,SUM
@CATEGORY=Statistics
@FUNCTION=TDIST
@SHORTDESC=survival function of the Student t-distribution
@SYNTAX=TDIST(x,dof,tails)
@ARGUMENTDESCRIPTION=@{x}: number
@{dof}: number of degrees of freedom
@{tails}: 1 or 2
@DESCRIPTION=The survival function is 1 minus the cumulative distribution function.
This function is Excel compatible for non-negative @{x}.
@NOTE=If @{dof} < 1 this function returns a #NUM! error. If @{tails} is neither 1 or 2 this function returns a #NUM! error. The parameterization of this function is different from what is used for, e.g., NORMSDIST. This is a common source of mistakes, but necessary for compatibility.
@SEEALSO=TINV,TTEST
@CATEGORY=Statistics
@FUNCTION=TINV
@SHORTDESC=two tailed inverse of the Student t-distribution
@SYNTAX=TINV(p,dof)
@ARGUMENTDESCRIPTION=@{p}: probability in both tails
@{dof}: number of degrees of freedom
@DESCRIPTION=This function returns the non-negative value x such that the area under the Student t density with @{dof} degrees of freedom to the right of x is @{p}/2.
@NOTE=If @{p} < 0 or @{p} > 1 or @{dof} < 1 this function returns a #NUM! error. The parameterization of this function is different from what is used for, e.g., NORMSINV. This is a common source of mistakes, but necessary for compatibility.
@EXCEL=This function is Excel compatible.
@SEEALSO=TDIST,TTEST
@CATEGORY=Statistics
@FUNCTION=TREND
@SHORTDESC=estimates future values of a given data set using a least squares approximation
@SYNTAX=TREND(known_ys,known_xs,new_xs,affine)
@ARGUMENTDESCRIPTION=@{known_ys}: vector of values of dependent variable
@{known_xs}: array of values of independent variables, defaults to a single vector {1,…,n}
@{new_xs}: array of x-values for which to estimate the y-values; defaults to @{known_xs}
@{affine}: if true, the model contains a constant term, defaults to true
@NOTE=If the length of @{known_ys} does not match the corresponding length of @{known_xs}, this function returns a #NUM! error.
@SEEALSO=LINEST
@CATEGORY=Statistics
@FUNCTION=TRIMMEAN
@SHORTDESC=mean of the interior of a data set
@SYNTAX=TRIMMEAN(ref,fraction)
@ARGUMENTDESCRIPTION=@{ref}: list of numbers whose mean you want to calculate
@{fraction}: fraction of the data set excluded from the mean
@DESCRIPTION=If @{fraction}=0.2 and the data set contains 40 numbers, 8 numbers are trimmed from the data set (40 x 0.2): the 4 largest and the 4 smallest. To avoid a bias, the number of points to be excluded is always rounded down to the nearest even number.
@EXCEL=This function is Excel compatible.
@SEEALSO=AVERAGE,GEOMEAN,HARMEAN,MEDIAN,MODE
@CATEGORY=Statistics
@FUNCTION=TTEST
@SHORTDESC=p-value for a hypothesis test comparing the means of two populations using the Student t-distribution
@SYNTAX=TTEST(array1,array2,tails,type)
@ARGUMENTDESCRIPTION=@{array1}: sample from the first population
@{array2}: sample from the second population
@{tails}: number of tails to consider
@{type}: Type of test to perform. 1 indicates a test for paired variables, 2 a test of unpaired variables with equal variances, and 3 a test of unpaired variables with unequal variances
@NOTE=If the data sets contain a different number of data points and the test is paired (@{type} one), TTEST returns the #N/A error. @{tails} and @{type} are truncated to integers. If @{tails} is not one or two, this function returns a #NUM! error. If @{type} is any other than one, two, or three, this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=FDIST,FINV
@CATEGORY=Statistics
@FUNCTION=VAR
@SHORTDESC=sample variance of the given sample
@SYNTAX=VAR(area1,area2,…)
@ARGUMENTDESCRIPTION=@{area1}: first cell area
@{area2}: second cell area
@DESCRIPTION=VAR is also known as the N-1-variance.
@NOTE=Since the N-1-variance includes Bessel's correction, whereas the N-variance calculated by VARPA or VARP does not, under reasonable conditions the N-1-variance is an unbiased estimator of the variance of the population from which the sample is drawn.
@EXCEL=This function is Excel compatible.
@SEEALSO=VARP,STDEV,VARA
@CATEGORY=Statistics
@FUNCTION=VARA
@SHORTDESC=sample variance of the given sample
@SYNTAX=VARA(area1,area2,…)
@ARGUMENTDESCRIPTION=@{area1}: first cell area
@{area2}: second cell area
@DESCRIPTION=VARA is also known as the N-1-variance.
To get the true variance of a complete population use VARPA.
Numbers, text and logical values are included in the calculation too. If the cell contains text or the argument evaluates to FALSE, it is counted as value zero (0). If the argument evaluates to TRUE, it is counted as one (1). Note that empty cells are not counted.
@NOTE=Since the N-1-variance includes Bessel's correction, whereas the N-variance calculated by VARPA or VARP does not, under reasonable conditions the N-1-variance is an unbiased estimator of the variance of the population from which the sample is drawn.
@EXCEL=This function is Excel compatible.
@SEEALSO=VAR,VARPA
@CATEGORY=Statistics
@FUNCTION=VARP
@SHORTDESC=variance of an entire population
@SYNTAX=VARP(area1,area2,…)
@ARGUMENTDESCRIPTION=@{area1}: first cell area
@{area2}: second cell area
@DESCRIPTION=VARP is also known as the N-variance.
@SEEALSO=AVERAGE,DVAR,DVARP,STDEV,VAR
@CATEGORY=Statistics
@FUNCTION=VARPA
@SHORTDESC=variance of an entire population
@SYNTAX=VARPA(area1,area2,…)
@ARGUMENTDESCRIPTION=@{area1}: first cell area
@{area2}: second cell area
@DESCRIPTION=VARPA is also known as the N-variance.
Numbers, text and logical values are included in the calculation too. If the cell contains text or the argument evaluates to FALSE, it is counted as value zero (0). If the argument evaluates to TRUE, it is counted as one (1). Note that empty cells are not counted.
@EXCEL=This function is Excel compatible.
@SEEALSO=VARA,VARP
@CATEGORY=Statistics
@FUNCTION=WEIBULL
@SHORTDESC=probability density or cumulative distribution function of the Weibull distribution
@SYNTAX=WEIBULL(x,alpha,beta,cumulative)
@ARGUMENTDESCRIPTION=@{x}: number
@{alpha}: scale parameter
@{beta}: scale parameter
@{cumulative}: whether to evaluate the density function or the cumulative distribution function
@DESCRIPTION=If the @{cumulative} boolean is true it will return: 1 - exp (-(@{x}/@{beta})^@{alpha}), otherwise it will return (@{alpha}/@{beta}^@{alpha}) * @{x}^(@{alpha}-1) * exp(-(@{x}/@{beta}^@{alpha})).
@NOTE=If @{x} < 0 this function returns a #NUM! error. If @{alpha} <= 0 or @{beta} <= 0 this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=POISSON
@CATEGORY=Statistics
@FUNCTION=ZTEST
@SHORTDESC=the probability of observing a sample mean as large as or larger than the mean of the given sample
@SYNTAX=ZTEST(ref,x,stddev)
@ARGUMENTDESCRIPTION=@{ref}: data set (sample)
@{x}: population mean
@{stddev}: population standard deviation, defaults to the sample standard deviation
@DESCRIPTION=ZTEST calculates the probability of observing a sample mean as large as or larger than the mean of the given sample for samples drawn from a normal distribution with mean @{x} and standard deviation @{stddev}.
@NOTE=If @{ref} contains less than two data items ZTEST returns #DIV/0! error.
@EXCEL=This function is Excel compatible.
@ODF=This function is OpenFormula compatible.
@SEEALSO=CONFIDENCE,NORMDIST,NORMINV,NORMSDIST,NORMSINV,STANDARDIZE
@CATEGORY=String
@FUNCTION=ASC
@SHORTDESC=text with full-width katakana and ASCII characters converted to half-width
@SYNTAX=ASC(text)
@ARGUMENTDESCRIPTION=@{text}: string
@DESCRIPTION=ASC converts full-width katakana and ASCII characters to half-width equivalent characters, copying all others.
The distinction between half-width and full-width characters is described in http://www.unicode.org/reports/tr11/.
@NOTE=While in obsolete encodings ASC used to translate between 2-byte and 1-byte characters, this is not the case in UTF-8.
@EXCEL=For most strings, this function has the same effect as in Excel.
@ODF=This function is OpenFormula compatible.
@SEEALSO=JIS
@CATEGORY=String
@FUNCTION=CHAR
@SHORTDESC=the CP1252 (Windows-1252) character for the code point @{x}
@SYNTAX=CHAR(x)
@ARGUMENTDESCRIPTION=@{x}: code point
@DESCRIPTION=CHAR(@{x}) returns the CP1252 (Windows-1252) character with code @{x}.
@{x} must be in the range 1 to 255.
CP1252 (Windows-1252) is also known as the "ANSI code page", but it is not an ANSI standard.
CP1252 (Windows-1252) is based on an early draft of ISO-8859-1, and contains all of its printable characters. It also contains all of ISO-8859-15's printable characters (but partially at different positions.)
This function is Excel compatible.
@NOTE=In CP1252 (Windows-1252), 129, 141, 143, 144, and 157 do not have matching characters. For @{x} from 1 to 255 except 129, 141, 143, 144, and 157 we have CODE(CHAR(@{x}))=@{x}.
@SEEALSO=CODE
@CATEGORY=String
@FUNCTION=CLEAN
@SHORTDESC=@{text} with any non-printable characters removed
@SYNTAX=CLEAN(text)
@ARGUMENTDESCRIPTION=@{text}: string
@DESCRIPTION=CLEAN removes non-printable characters from its argument leaving only regular characters and white-space.
@EXCEL=This function is Excel compatible.
@CATEGORY=String
@FUNCTION=CODE
@SHORTDESC=the CP1252 (Windows-1252) code point for the character @{c}
@SYNTAX=CODE(c)
@ARGUMENTDESCRIPTION=@{c}: character
@DESCRIPTION=@{c} must be a valid CP1252 (Windows-1252) character.
CP1252 (Windows-1252) is also known as the "ANSI code page", but it is not an ANSI standard.
CP1252 (Windows-1252) is based on an early draft of ISO-8859-1, and contains all of its printable characters (but partially at different positions.)
This function is Excel compatible.
@NOTE=In CP1252 (Windows-1252), 129, 141, 143, 144, and 157 do not have matching characters. For @{x} from 1 to 255 except 129, 141, 143, 144, and 157 we have CODE(CHAR(@{x}))=@{x}.
@SEEALSO=CHAR
@CATEGORY=String
@FUNCTION=CONCAT
@SHORTDESC=the concatenation of the strings @{s1}, @{s2},…
@SYNTAX=CONCAT(s1,s2,…)
@ARGUMENTDESCRIPTION=@{s1}: first string
@{s2}: second string
@NOTE=This function is identical to CONCATENATE
@EXCEL=This function is Excel compatible.
@SEEALSO=LEFT,MID,RIGHT
@CATEGORY=String
@FUNCTION=CONCATENATE
@SHORTDESC=the concatenation of the strings @{s1}, @{s2},…
@SYNTAX=CONCATENATE(s1,s2,…)
@ARGUMENTDESCRIPTION=@{s1}: first string
@{s2}: second string
@EXCEL=This function is Excel compatible.
@SEEALSO=LEFT,MID,RIGHT
@CATEGORY=String
@FUNCTION=DOLLAR
@SHORTDESC=@{num} formatted as currency
@SYNTAX=DOLLAR(num,decimals)
@ARGUMENTDESCRIPTION=@{num}: number
@{decimals}: decimals
@EXCEL=This function is Excel compatible.
@SEEALSO=FIXED,TEXT,VALUE
@CATEGORY=String
@FUNCTION=EXACT
@SHORTDESC=TRUE if @{string1} is exactly equal to @{string2}
@SYNTAX=EXACT(string1,string2)
@ARGUMENTDESCRIPTION=@{string1}: first string
@{string2}: second string
@EXCEL=This function is Excel compatible.
@SEEALSO=LEN,SEARCH,DELTA
@CATEGORY=String
@FUNCTION=FIND
@SHORTDESC=first position of @{string1} in @{string2} following position @{start}
@SYNTAX=FIND(string1,string2,start)
@ARGUMENTDESCRIPTION=@{string1}: search string
@{string2}: search field
@{start}: starting position, defaults to 1
@NOTE=This search is case-sensitive.
@EXCEL=This function is Excel compatible.
@SEEALSO=EXACT,LEN,MID,SEARCH
@CATEGORY=String
@FUNCTION=FINDB
@SHORTDESC=first byte position of @{string1} in @{string2} following byte position @{start}
@SYNTAX=FINDB(string1,string2,start)
@ARGUMENTDESCRIPTION=@{string1}: search string
@{string2}: search field
@{start}: starting byte position, defaults to 1
@NOTE=This search is case-sensitive.
@EXCEL=While this function is syntactically Excel compatible, the differences in the underlying text encoding will usually yield different results.
@ODF=While this function is OpenFormula compatible, most of its behavior is, at this time, implementation specific.
@SEEALSO=FIND,LEFTB,RIGHTB,LENB,LEFT,MID,RIGHT,LEN
@CATEGORY=String
@FUNCTION=FIXED
@SHORTDESC=formatted string representation of @{num}
@SYNTAX=FIXED(num,decimals,no_commas)
@ARGUMENTDESCRIPTION=@{num}: number
@{decimals}: number of decimals
@{no_commas}: TRUE if no thousand separators should be used, defaults to FALSE
@EXCEL=This function is Excel compatible.
@SEEALSO=TEXT,VALUE,DOLLAR
@CATEGORY=String
@FUNCTION=JIS
@SHORTDESC=text with half-width katakana and ASCII characters converted to full-width
@SYNTAX=JIS(text)
@ARGUMENTDESCRIPTION=@{text}: original text
@DESCRIPTION=JIS converts half-width katakana and ASCII characters to full-width equivalent characters, copying all others.
The distinction between half-width and full-width characters is described in http://www.unicode.org/reports/tr11/.
@NOTE=While in obsolete encodings JIS used to translate between 1-byte and 2-byte characters, this is not the case in UTF-8.
@EXCEL=For most strings, this function has the same effect as in Excel.
@ODF=This function is OpenFormula compatible.
@SEEALSO=ASC
@CATEGORY=String
@FUNCTION=LEFT
@SHORTDESC=the first @{num_chars} characters of the string @{s}
@SYNTAX=LEFT(s,num_chars)
@ARGUMENTDESCRIPTION=@{s}: the string
@{num_chars}: the number of characters to return (defaults to 1)
@NOTE=If the string @{s} is in a right-to-left script, the returned first characters are from the right of the string.
@EXCEL=This function is Excel compatible.
@ODF=This function is OpenFormula compatible.
@SEEALSO=MID,RIGHT,LEN,MIDB,RIGHTB,LENB
@CATEGORY=String
@FUNCTION=LEFTB
@SHORTDESC=the first characters of the string @{s} comprising at most @{num_bytes} bytes
@SYNTAX=LEFTB(s,num_bytes)
@ARGUMENTDESCRIPTION=@{s}: the string
@{num_bytes}: the maximum number of bytes to return (defaults to 1)
@NOTE=The semantics of this function is subject to change as various applications implement it. If the string is in a right-to-left script, the returned first characters are from the right of the string.
@EXCEL=While this function is syntactically Excel compatible, the differences in the underlying text encoding will usually yield different results.
@ODF=While this function is OpenFormula compatible, most of its behavior is, at this time, implementation specific.
@SEEALSO=MIDB,RIGHTB,LENB,LEFT,MID,RIGHT,LEN
@CATEGORY=String
@FUNCTION=LEN
@SHORTDESC=the number of characters of the string @{s}
@SYNTAX=LEN(s)
@ARGUMENTDESCRIPTION=@{s}: the string
@EXCEL=This function is Excel compatible.
@SEEALSO=CHAR,CODE,LENB
@CATEGORY=String
@FUNCTION=LENB
@SHORTDESC=the number of bytes in the string @{s}
@SYNTAX=LENB(s)
@ARGUMENTDESCRIPTION=@{s}: the string
@EXCEL=This function is Excel compatible.
@SEEALSO=CHAR, CODE, LEN
@CATEGORY=String
@FUNCTION=LOWER
@SHORTDESC=a lower-case version of the string @{text}
@SYNTAX=LOWER(text)
@ARGUMENTDESCRIPTION=@{text}: string
@EXCEL=This function is Excel compatible.
@SEEALSO=UPPER
@CATEGORY=String
@FUNCTION=MID
@SHORTDESC=the substring of the string @{s} starting at position @{position} consisting of @{length} characters
@SYNTAX=MID(s,position,length)
@ARGUMENTDESCRIPTION=@{s}: the string
@{position}: the starting position
@{length}: the number of characters to return
@EXCEL=This function is Excel compatible.
@ODF=This function is OpenFormula compatible.
@SEEALSO=LEFT,RIGHT,LEN,LEFTB,MIDB,RIGHTB,LENB
@CATEGORY=String
@FUNCTION=MIDB
@SHORTDESC=the characters following the first @{start_pos} bytes comprising at most @{num_bytes} bytes
@SYNTAX=MIDB(s,start_pos,num_bytes)
@ARGUMENTDESCRIPTION=@{s}: the string
@{start_pos}: the number of the byte with which to start (defaults to 1)
@{num_bytes}: the maximum number of bytes to return (defaults to 1)
@NOTE=The semantics of this function is subject to change as various applications implement it.
@EXCEL=While this function is syntactically Excel compatible, the differences in the underlying text encoding will usually yield different results.
@ODF=While this function is OpenFormula compatible, most of its behavior is, at this time, implementation specific.
@SEEALSO=LEFTB,RIGHTB,LENB,LEFT,MID,RIGHT,LEN
@CATEGORY=String
@FUNCTION=NUMBERVALUE
@SHORTDESC=numeric value of @{text}
@SYNTAX=NUMBERVALUE(text,separator)
@ARGUMENTDESCRIPTION=@{text}: string
@{separator}: decimal separator
@NOTE=If @{text} does not look like a decimal number, NUMBERVALUE returns the value VALUE would return (ignoring the given @{separator}).
@ODF=This function is OpenFormula compatible.
@SEEALSO=VALUE
@CATEGORY=String
@FUNCTION=PROPER
@SHORTDESC=@{text} with initial of each word capitalised
@SYNTAX=PROPER(text)
@ARGUMENTDESCRIPTION=@{text}: string
@EXCEL=This function is Excel compatible.
@SEEALSO=LOWER,UPPER
@CATEGORY=String
@FUNCTION=REPLACE
@SHORTDESC=string @{old} with @{num} characters starting at @{start} replaced by @{new}
@SYNTAX=REPLACE(old,start,num,new)
@ARGUMENTDESCRIPTION=@{old}: original text
@{start}: starting position
@{num}: number of characters to be replaced
@{new}: replacement string
@EXCEL=This function is Excel compatible.
@SEEALSO=MID,SEARCH,SUBSTITUTE,TRIM
@CATEGORY=String
@FUNCTION=REPLACEB
@SHORTDESC=string @{old} with up to @{num} bytes starting at @{start} replaced by @{new}
@SYNTAX=REPLACEB(old,start,num,new)
@ARGUMENTDESCRIPTION=@{old}: original text
@{start}: starting byte position
@{num}: number of bytes to be replaced
@{new}: replacement string
@DESCRIPTION=REPLACEB replaces the string of valid unicode characters starting at the byte @{start} and ending at @{start}+@{num}-1 with the string @{new}.
@NOTE=The semantics of this function is subject to change as various applications implement it.
@EXCEL=While this function is syntactically Excel compatible, the differences in the underlying text encoding will usually yield different results.
@ODF=While this function is OpenFormula compatible, most of its behavior is, at this time, implementation specific.
@SEEALSO=MID,SEARCH,SUBSTITUTE,TRIM
@CATEGORY=String
@FUNCTION=REPT
@SHORTDESC=@{num} repetitions of string @{text}
@SYNTAX=REPT(text,num)
@ARGUMENTDESCRIPTION=@{text}: string
@{num}: non-negative integer
@EXCEL=This function is Excel compatible.
@SEEALSO=CONCATENATE
@CATEGORY=String
@FUNCTION=RIGHT
@SHORTDESC=the last @{num_chars} characters of the string @{s}
@SYNTAX=RIGHT(s,num_chars)
@ARGUMENTDESCRIPTION=@{s}: the string
@{num_chars}: the number of characters to return (defaults to 1)
@NOTE=If the string @{s} is in a right-to-left script, the returned last characters are from the left of the string.
@EXCEL=This function is Excel compatible.
@ODF=This function is OpenFormula compatible.
@SEEALSO=LEFT,MID,LEN,LEFTB,MIDB,RIGHTB,LENB
@CATEGORY=String
@FUNCTION=RIGHTB
@SHORTDESC=the last characters of the string @{s} comprising at most @{num_bytes} bytes
@SYNTAX=RIGHTB(s,num_bytes)
@ARGUMENTDESCRIPTION=@{s}: the string
@{num_bytes}: the maximum number of bytes to return (defaults to 1)
@NOTE=The semantics of this function is subject to change as various applications implement it. If the string @{s} is in a right-to-left script, the returned last characters are from the left of the string.
@EXCEL=While this function is syntactically Excel compatible, the differences in the underlying text encoding will usually yield different results.
@ODF=While this function is OpenFormula compatible, most of its behavior is, at this time, implementation specific.
@SEEALSO=LEFTB,MIDB,LENB,LEFT,MID,RIGHT,LEN
@CATEGORY=String
@FUNCTION=SEARCH
@SHORTDESC=the location of the @{search} string within @{text} after position @{start}
@SYNTAX=SEARCH(search,text,start)
@ARGUMENTDESCRIPTION=@{search}: search string
@{text}: search field
@{start}: starting position, defaults to 1
@DESCRIPTION=@{search} may contain wildcard characters (*) and question marks (?). A question mark matches any single character, and a wildcard matches any string including the empty string. To search for * or ?, precede the symbol with ~.
@NOTE=This search is not case sensitive. If @{search} is not found, SEARCH returns #VALUE! If @{start} is less than one or it is greater than the length of @{text}, SEARCH returns #VALUE!
@EXCEL=This function is Excel compatible.
@SEEALSO=FIND,SEARCHB
@CATEGORY=String
@FUNCTION=SEARCHB
@SHORTDESC=the location of the @{search} string within @{text} after byte position @{start}
@SYNTAX=SEARCHB(search,text,start)
@ARGUMENTDESCRIPTION=@{search}: search string
@{text}: search field
@{start}: starting byte position, defaults to 1
@DESCRIPTION=@{search} may contain wildcard characters (*) and question marks (?). A question mark matches any single character, and a wildcard matches any string including the empty string. To search for * or ?, precede the symbol with ~.
@NOTE=This search is not case sensitive. If @{search} is not found, SEARCHB returns #VALUE! If @{start} is less than one or it is greater than the byte length of @{text}, SEARCHB returns #VALUE! The semantics of this function is subject to change as various applications implement it.
@EXCEL=While this function is syntactically Excel compatible, the differences in the underlying text encoding will usually yield different results.
@ODF=While this function is OpenFormula compatible, most of its behavior is, at this time, implementation specific.
@SEEALSO=FINDB,SEARCH
@CATEGORY=String
@FUNCTION=SUBSTITUTE
@SHORTDESC=@{text} with all occurrences of @{old} replaced by @{new}
@SYNTAX=SUBSTITUTE(text,old,new,num)
@ARGUMENTDESCRIPTION=@{text}: original text
@{old}: string to be replaced
@{new}: replacement string
@{num}: if @{num} is specified and a number only the @{num}th occurrence of @{old} is replaced
@EXCEL=This function is Excel compatible.
@SEEALSO=REPLACE,TRIM
@CATEGORY=String
@FUNCTION=T
@SHORTDESC=@{value} if and only if @{value} is text, otherwise empty
@SYNTAX=T(value)
@ARGUMENTDESCRIPTION=@{value}: original value
@EXCEL=This function is Excel compatible.
@SEEALSO=CELL,N,VALUE
@CATEGORY=String
@FUNCTION=TEXT
@SHORTDESC=@{value} as a string formatted as @{format}
@SYNTAX=TEXT(value,format)
@ARGUMENTDESCRIPTION=@{value}: value to be formatted
@{format}: desired format
@EXCEL=This function is Excel compatible.
@SEEALSO=DOLLAR,FIXED,VALUE
@CATEGORY=String
@FUNCTION=TEXTJOIN
@SHORTDESC=the concatenation of the strings @{s1}, @{s2},… delimited by @{del}
@SYNTAX=TEXTJOIN(del,blank,s1,s2,…)
@ARGUMENTDESCRIPTION=@{del}: delimiter
@{blank}: ignore blanks
@{s1}: first string
@{s2}: second string
@EXCEL=This function is Excel compatible.
@SEEALSO=CONCATENATE
@CATEGORY=String
@FUNCTION=TRIM
@SHORTDESC=@{text} with only single spaces between words
@SYNTAX=TRIM(text)
@ARGUMENTDESCRIPTION=@{text}: string
@EXCEL=This function is Excel compatible.
@SEEALSO=CLEAN,MID,REPLACE,SUBSTITUTE
@CATEGORY=String
@FUNCTION=UNICHAR
@SHORTDESC=the Unicode character represented by the Unicode code point @{x}
@SYNTAX=UNICHAR(x)
@ARGUMENTDESCRIPTION=@{x}: Unicode code point
@SEEALSO=CHAR,UNICODE,CODE
@CATEGORY=String
@FUNCTION=UNICODE
@SHORTDESC=the Unicode code point for the character @{c}
@SYNTAX=UNICODE(c)
@ARGUMENTDESCRIPTION=@{c}: character
@SEEALSO=UNICHAR,CODE,CHAR
@CATEGORY=String
@FUNCTION=UPPER
@SHORTDESC=an upper-case version of the string @{text}
@SYNTAX=UPPER(text)
@ARGUMENTDESCRIPTION=@{text}: string
@EXCEL=This function is Excel compatible.
@SEEALSO=LOWER
@CATEGORY=String
@FUNCTION=VALUE
@SHORTDESC=numeric value of @{text}
@SYNTAX=VALUE(text)
@ARGUMENTDESCRIPTION=@{text}: string
@EXCEL=This function is Excel compatible.
@SEEALSO=DOLLAR,FIXED,TEXT
@CATEGORY=Time Series Analysis
@FUNCTION=FOURIER
@SHORTDESC=Fourier or inverse Fourier transform
@SYNTAX=FOURIER(Sequence,Inverse,Separate)
@ARGUMENTDESCRIPTION=@{Sequence}: the data sequence to be transformed
@{Inverse}: if true, the inverse Fourier transform is calculated, defaults to false
@{Separate}: if true, the real and imaginary parts are given separately, defaults to false
@DESCRIPTION=This array function returns the Fourier or inverse Fourier transform of the given data sequence.
The output consists of one column of complex numbers if @{Separate} is false and of two columns of real numbers if @{Separate} is true.
If @{Separate} is true the first output column contains the real parts and the second column the imaginary parts.
@NOTE=If @{Sequence} is neither an n by 1 nor 1 by n array, this function returns #VALUE!
@CATEGORY=Time Series Analysis
@FUNCTION=HPFILTER
@SHORTDESC=Hodrick Prescott Filter
@SYNTAX=HPFILTER(Sequence,λ)
@ARGUMENTDESCRIPTION=@{Sequence}: the data sequence to be transformed
@{λ}: filter parameter λ, defaults to 1600
@DESCRIPTION=This array function returns the trend and cyclical components obtained by applying the Hodrick Prescott Filter with parameter @{λ} to the given data sequence.
The output consists of two columns of numbers, the first containing the trend component, the second the cyclical component.
@NOTE=If @{Sequence} is neither an n by 1 nor 1 by n array, this function returns #VALUE! If @{Sequence} contains less than 6 numerical values, this function returns #VALUE!
@CATEGORY=Time Series Analysis
@FUNCTION=INTERPOLATION
@SHORTDESC=interpolated values corresponding to the given abscissa targets
@SYNTAX=INTERPOLATION(abscissae,ordinates,targets,interpolation)
@ARGUMENTDESCRIPTION=@{abscissae}: abscissae of the given data points
@{ordinates}: ordinates of the given data points
@{targets}: abscissae of the interpolated data
@{interpolation}: method of interpolation, defaults to 0 ('linear')
@DESCRIPTION=The output consists always of one column of numbers.
Possible interpolation methods are:
0: linear;
1: linear with averaging;
2: staircase;
3: staircase with averaging;
4: natural cubic spline;
5: natural cubic spline with averaging.
@NOTE=The @{abscissae} should be given in increasing order. If the @{abscissae} is not in increasing order the INTERPOLATION function is significantly slower. If any two @{abscissae} values are equal an error is returned. If any of interpolation methods 1 ('linear with averaging'), 3 ('staircase with averaging'), and 5 ('natural cubic spline with averaging') is used, the number of returned values is one less than the number of targets and the target values must be given in increasing order. The values returned are the average heights of the interpolation function on the intervals determined by consecutive target values. Strings and empty cells in @{abscissae} and @{ordinates} are ignored. If several target data are provided they must be in the same column in consecutive cells.
@SEEALSO=PERIODOGRAM
@CATEGORY=Time Series Analysis
@FUNCTION=PERIODOGRAM
@SHORTDESC=periodogram of the given data
@SYNTAX=PERIODOGRAM(ordinates,filter,abscissae,interpolation,number)
@ARGUMENTDESCRIPTION=@{ordinates}: ordinates of the given data
@{filter}: windowing function to be used, defaults to no filter
@{abscissae}: abscissae of the given data, defaults to regularly spaced abscissae
@{interpolation}: method of interpolation, defaults to none
@{number}: number of interpolated data points
@DESCRIPTION=If an interpolation method is used, the number of returned values is one less than the number of targets and the targets values must be given in increasing order.
The output consists always of one column of numbers.
Possible interpolation methods are:
0: linear;
1: linear with averaging;
2: staircase;
3: staircase with averaging;
4: natural cubic spline;
5: natural cubic spline with averaging.
Possible window functions are:
0: no filter (rectangular window)
1: Bartlett (triangular window)
2: Hahn (cosine window)
3: Welch (parabolic window)
@NOTE=Strings and empty cells in @{abscissae} and @{ordinates} are ignored. If several target data are provided they must be in the same column in consecutive cells.
@SEEALSO=INTERPOLATION
|