File: func.defs

package info (click to toggle)
gnumeric 1.12.48-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 115,524 kB
  • sloc: ansic: 294,183; xml: 56,297; perl: 6,219; sh: 4,536; makefile: 2,947; yacc: 1,341; python: 384
file content (6794 lines) | stat: -rw-r--r-- 314,565 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
@CATEGORY=Bitwise Operations
@FUNCTION=BITAND
@SHORTDESC=bitwise and
@SYNTAX=BITAND(a,b)
@ARGUMENTDESCRIPTION=@{a}: non-negative integer
@{b}: non-negative integer
@DESCRIPTION=BITAND returns the bitwise and of the binary representations of its arguments.
@SEEALSO=BITOR,BITXOR

@CATEGORY=Bitwise Operations
@FUNCTION=BITLSHIFT
@SHORTDESC=bit-shift to the left
@SYNTAX=BITLSHIFT(a,n)
@ARGUMENTDESCRIPTION=@{a}: non-negative integer
@{n}: integer
@DESCRIPTION=BITLSHIFT returns the binary representations of @{a} shifted @{n} positions to the left.
@NOTE=If @{n} is negative, BITLSHIFT shifts the bits to the right by ABS(@{n}) positions.
@SEEALSO=BITRSHIFT

@CATEGORY=Bitwise Operations
@FUNCTION=BITOR
@SHORTDESC=bitwise or
@SYNTAX=BITOR(a,b)
@ARGUMENTDESCRIPTION=@{a}: non-negative integer
@{b}: non-negative integer
@DESCRIPTION=BITOR returns the bitwise or of the binary representations of its arguments.
@SEEALSO=BITXOR,BITAND

@CATEGORY=Bitwise Operations
@FUNCTION=BITRSHIFT
@SHORTDESC=bit-shift to the right
@SYNTAX=BITRSHIFT(a,n)
@ARGUMENTDESCRIPTION=@{a}: non-negative integer
@{n}: integer
@DESCRIPTION=BITRSHIFT returns the binary representations of @{a} shifted @{n} positions to the right.
@NOTE=If @{n} is negative, BITRSHIFT shifts the bits to the left by ABS(@{n}) positions.
@SEEALSO=BITLSHIFT

@CATEGORY=Bitwise Operations
@FUNCTION=BITXOR
@SHORTDESC=bitwise exclusive or
@SYNTAX=BITXOR(a,b)
@ARGUMENTDESCRIPTION=@{a}: non-negative integer
@{b}: non-negative integer
@DESCRIPTION=BITXOR returns the bitwise exclusive or of the binary representations of its arguments.
@SEEALSO=BITOR,BITAND

@CATEGORY=Complex
@FUNCTION=COMPLEX
@SHORTDESC=a complex number of the form @{x} + @{y}@{i}
@SYNTAX=COMPLEX(x,y,i)
@ARGUMENTDESCRIPTION=@{x}: real part
@{y}: imaginary part
@{i}: the suffix for the complex number, either "i" or "j"; defaults to "i"
@NOTE=If @{i} is neither "i" nor "j", COMPLEX returns #VALUE!
@EXCEL=This function is Excel compatible.

@CATEGORY=Complex
@FUNCTION=IMABS
@SHORTDESC=the absolute value of the complex number @{z}
@SYNTAX=IMABS(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@EXCEL=This function is Excel compatible.
@SEEALSO=IMAGINARY,IMREAL

@CATEGORY=Complex
@FUNCTION=IMAGINARY
@SHORTDESC=the imaginary part of the complex number @{z}
@SYNTAX=IMAGINARY(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@EXCEL=This function is Excel compatible.
@SEEALSO=IMREAL

@CATEGORY=Complex
@FUNCTION=IMARCCOS
@SHORTDESC=the complex arccosine of the complex number 
@SYNTAX=IMARCCOS(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@DESCRIPTION=IMARCCOS returns the complex arccosine of the complex number @{z}. The branch cuts are on the real axis, less than -1 and greater than 1.
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMARCSIN,IMARCTAN

@CATEGORY=Complex
@FUNCTION=IMARCCOSH
@SHORTDESC=the complex hyperbolic arccosine of the complex number @{z}
@SYNTAX=IMARCCOSH(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@DESCRIPTION=IMARCCOSH returns the complex hyperbolic arccosine of the complex number @{z}. The branch cut is on the real axis, less than 1.
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMARCSINH,IMARCTANH

@CATEGORY=Complex
@FUNCTION=IMARCCOT
@SHORTDESC=the complex arccotangent of the complex number @{z}
@SYNTAX=IMARCCOT(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMARCSEC,IMARCCSC

@CATEGORY=Complex
@FUNCTION=IMARCCOTH
@SHORTDESC=the complex hyperbolic arccotangent of the complex number @{z}
@SYNTAX=IMARCCOTH(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMARCSECH,IMARCCSCH

@CATEGORY=Complex
@FUNCTION=IMARCCSC
@SHORTDESC=the complex arccosecant of the complex number @{z}
@SYNTAX=IMARCCSC(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMARCSEC,IMARCCOT

@CATEGORY=Complex
@FUNCTION=IMARCCSCH
@SHORTDESC=the complex hyperbolic arccosecant of the complex number @{z}
@SYNTAX=IMARCCSCH(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMARCSECH,IMARCCOTH

@CATEGORY=Complex
@FUNCTION=IMARCSEC
@SHORTDESC=the complex arcsecant of the complex number @{z}
@SYNTAX=IMARCSEC(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMARCCSC,IMARCCOT

@CATEGORY=Complex
@FUNCTION=IMARCSECH
@SHORTDESC=the complex hyperbolic arcsecant of the complex number @{z}
@SYNTAX=IMARCSECH(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMARCCSCH,IMARCCOTH

@CATEGORY=Complex
@FUNCTION=IMARCSIN
@SHORTDESC=the complex arcsine of the complex number @{z}
@SYNTAX=IMARCSIN(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@DESCRIPTION=IMARCSIN returns the complex arcsine of the complex number @{z}. The branch cuts are on the real axis, less than -1 and greater than 1.
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMARCCOS,IMARCTAN

@CATEGORY=Complex
@FUNCTION=IMARCSINH
@SHORTDESC=the complex hyperbolic arcsine of the complex number @{z}
@SYNTAX=IMARCSINH(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@DESCRIPTION=IMARCSINH returns the complex hyperbolic arcsine of the complex number @{z}.  The branch cuts are on the imaginary axis, below -i and above i.
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMARCCOSH,IMARCTANH

@CATEGORY=Complex
@FUNCTION=IMARCTAN
@SHORTDESC=the complex arctangent of the complex number 
@SYNTAX=IMARCTAN(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@DESCRIPTION=IMARCTAN returns the complex arctangent of the complex number @{z}. The branch cuts are on the imaginary axis, below -i and above i.
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMARCSIN,IMARCCOS

@CATEGORY=Complex
@FUNCTION=IMARCTANH
@SHORTDESC=the complex hyperbolic arctangent of the complex number @{z}
@SYNTAX=IMARCTANH(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@DESCRIPTION=IMARCTANH returns the complex hyperbolic arctangent of the complex number @{z}. The branch cuts are on the real axis, less than -1 and greater than 1.
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMARCSINH,IMARCCOSH

@CATEGORY=Complex
@FUNCTION=IMARGUMENT
@SHORTDESC=the argument theta of the complex number @{z} 
@SYNTAX=IMARGUMENT(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@DESCRIPTION=The argument theta of a complex number is its angle in radians from the real axis.
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned. If @{z} is 0, 0 is returned.  This is different from Excel which returns an error.

@CATEGORY=Complex
@FUNCTION=IMCONJUGATE
@SHORTDESC=the complex conjugate of the complex number @{z}
@SYNTAX=IMCONJUGATE(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@EXCEL=This function is Excel compatible.
@SEEALSO=IMAGINARY,IMREAL

@CATEGORY=Complex
@FUNCTION=IMCOS
@SHORTDESC=the cosine of the complex number @{z}
@SYNTAX=IMCOS(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@EXCEL=This function is Excel compatible.
@SEEALSO=IMSIN,IMTAN

@CATEGORY=Complex
@FUNCTION=IMCOSH
@SHORTDESC=the hyperbolic cosine of the complex number @{z}
@SYNTAX=IMCOSH(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMSINH,IMTANH

@CATEGORY=Complex
@FUNCTION=IMCOT
@SHORTDESC=the cotangent of the complex number @{z}
@SYNTAX=IMCOT(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@DESCRIPTION=IMCOT(@{z}) = IMCOS(@{z})/IMSIN(@{z}).
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMSEC,IMCSC

@CATEGORY=Complex
@FUNCTION=IMCOTH
@SHORTDESC=the hyperbolic cotangent of the complex number @{z}
@SYNTAX=IMCOTH(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMSECH,IMCSCH

@CATEGORY=Complex
@FUNCTION=IMCSC
@SHORTDESC=the cosecant of the complex number @{z}
@SYNTAX=IMCSC(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@DESCRIPTION=IMCSC(@{z}) = 1/IMSIN(@{z}).
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMSEC,IMCOT

@CATEGORY=Complex
@FUNCTION=IMCSCH
@SHORTDESC=the hyperbolic cosecant of the complex number @{z}
@SYNTAX=IMCSCH(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMSECH,IMCOTH

@CATEGORY=Complex
@FUNCTION=IMDIV
@SHORTDESC=the quotient of two complex numbers @{z1}/@{z2}
@SYNTAX=IMDIV(z1,z2)
@ARGUMENTDESCRIPTION=@{z1}: a complex number
@{z2}: a complex number
@NOTE=If @{z1} or @{z2} is not a valid complex number, #VALUE! is returned.
@EXCEL=This function is Excel compatible.
@SEEALSO=IMPRODUCT

@CATEGORY=Complex
@FUNCTION=IMEXP
@SHORTDESC=the exponential of the complex number @{z}
@SYNTAX=IMEXP(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@EXCEL=This function is Excel compatible.
@SEEALSO=IMLN

@CATEGORY=Complex
@FUNCTION=IMFACT
@SHORTDESC=the factorial of the complex number @{z}
@SYNTAX=IMFACT(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMGAMMA

@CATEGORY=Complex
@FUNCTION=IMGAMMA
@SHORTDESC=the gamma function of the complex number @{z}
@SYNTAX=IMGAMMA(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMGAMMA

@CATEGORY=Complex
@FUNCTION=IMIGAMMA
@SHORTDESC=the incomplete Gamma function
@SYNTAX=IMIGAMMA(a,z,lower,regularize)
@ARGUMENTDESCRIPTION=@{a}: a complex number
@{z}: a complex number
@{lower}: if true (the default), the lower incomplete gamma function, otherwise the upper incomplete gamma function
@{regularize}: if true (the default), the regularized version of the incomplete gamma function
@NOTE=The regularized incomplete gamma function is the unregularized incomplete gamma function divided by GAMMA(@{a}).
@SEEALSO=GAMMA,IMIGAMMA

@CATEGORY=Complex
@FUNCTION=IMINV
@SHORTDESC=the reciprocal, or inverse, of the complex number @{z}
@SYNTAX=IMINV(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.

@CATEGORY=Complex
@FUNCTION=IMLN
@SHORTDESC=the natural logarithm of the complex number @{z}
@SYNTAX=IMLN(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@DESCRIPTION=The result will have an imaginary part between -π and +π.
The natural logarithm is not uniquely defined on complex numbers. You may need to add or subtract an even multiple of π to the imaginary part.
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@EXCEL=This function is Excel compatible.
@SEEALSO=IMEXP,IMLOG2,IMLOG10

@CATEGORY=Complex
@FUNCTION=IMLOG10
@SHORTDESC=the base-10 logarithm of the complex number @{z}
@SYNTAX=IMLOG10(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@EXCEL=This function is Excel compatible.
@SEEALSO=IMLN,IMLOG2

@CATEGORY=Complex
@FUNCTION=IMLOG2
@SHORTDESC=the base-2 logarithm of the complex number @{z}
@SYNTAX=IMLOG2(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@EXCEL=This function is Excel compatible.
@SEEALSO=IMLN,IMLOG10

@CATEGORY=Complex
@FUNCTION=IMNEG
@SHORTDESC=the negative of the complex number @{z}
@SYNTAX=IMNEG(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.

@CATEGORY=Complex
@FUNCTION=IMPOWER
@SHORTDESC=the complex number @{z1} raised to the @{z2}th power
@SYNTAX=IMPOWER(z1,z2)
@ARGUMENTDESCRIPTION=@{z1}: a complex number
@{z2}: a complex number
@NOTE=If @{z1} or @{z2} is not a valid complex number, #VALUE! is returned.
@EXCEL=This function is Excel compatible.
@SEEALSO=IMSQRT

@CATEGORY=Complex
@FUNCTION=IMPRODUCT
@SHORTDESC=the product of the given complex numbers
@SYNTAX=IMPRODUCT(z1,z2,…)
@ARGUMENTDESCRIPTION=@{z1}: a complex number
@{z2}: a complex number
@NOTE=If any of @{z1}, @{z2},... is not a valid complex number, #VALUE! is returned.
@EXCEL=This function is Excel compatible.
@SEEALSO=IMDIV

@CATEGORY=Complex
@FUNCTION=IMREAL
@SHORTDESC=the real part of the complex number @{z}
@SYNTAX=IMREAL(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@EXCEL=This function is Excel compatible.
@SEEALSO=IMAGINARY

@CATEGORY=Complex
@FUNCTION=IMSEC
@SHORTDESC=the secant of the complex number @{z}
@SYNTAX=IMSEC(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@DESCRIPTION=IMSEC(@{z}) = 1/IMCOS(@{z}).
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMCSC,IMCOT

@CATEGORY=Complex
@FUNCTION=IMSECH
@SHORTDESC=the hyperbolic secant of the complex number @{z}
@SYNTAX=IMSECH(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMCSCH,IMCOTH

@CATEGORY=Complex
@FUNCTION=IMSIN
@SHORTDESC=the sine of the complex number @{z}
@SYNTAX=IMSIN(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@EXCEL=This function is Excel compatible.
@SEEALSO=IMCOS,IMTAN

@CATEGORY=Complex
@FUNCTION=IMSINH
@SHORTDESC=the hyperbolic sine of the complex number @{z}
@SYNTAX=IMSINH(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMCOSH,IMTANH

@CATEGORY=Complex
@FUNCTION=IMSQRT
@SHORTDESC=the square root of the complex number @{z}
@SYNTAX=IMSQRT(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@EXCEL=This function is Excel compatible.
@SEEALSO=IMPOWER

@CATEGORY=Complex
@FUNCTION=IMSUB
@SHORTDESC=the difference of two complex numbers
@SYNTAX=IMSUB(z1,z2)
@ARGUMENTDESCRIPTION=@{z1}: a complex number
@{z2}: a complex number
@NOTE=If @{z1} or @{z2} is not a valid complex number, #VALUE! is returned.
@EXCEL=This function is Excel compatible.
@SEEALSO=IMSUM

@CATEGORY=Complex
@FUNCTION=IMSUM
@SHORTDESC=the sum of the given complex numbers
@SYNTAX=IMSUM(z1,z2,…)
@ARGUMENTDESCRIPTION=@{z1}: a complex number
@{z2}: a complex number
@NOTE=If any of @{z1}, @{z2},... is not a valid complex number, #VALUE! is returned.
@EXCEL=This function is Excel compatible.
@SEEALSO=IMSUB

@CATEGORY=Complex
@FUNCTION=IMTAN
@SHORTDESC=the tangent of the complex number @{z}
@SYNTAX=IMTAN(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@EXCEL=This function is Excel compatible.
@SEEALSO=IMSIN,IMCOS

@CATEGORY=Complex
@FUNCTION=IMTANH
@SHORTDESC=the hyperbolic tangent of the complex number @{z}
@SYNTAX=IMTANH(z)
@ARGUMENTDESCRIPTION=@{z}: a complex number
@NOTE=If @{z} is not a valid complex number, #VALUE! is returned.
@SEEALSO=IMSINH,IMCOSH

@CATEGORY=Database
@FUNCTION=DAVERAGE
@SHORTDESC=average of the values in @{field} in @{database} belonging to records that match @{criteria}
@SYNTAX=DAVERAGE(database,field,criteria)
@ARGUMENTDESCRIPTION=@{database}: a range in which rows of related information are records and columns of data are fields
@{field}: a string or integer specifying which field is to be used
@{criteria}: a range containing conditions
@DESCRIPTION=@{database} is a range in which rows of related information are records and columns of data are fields. The first row of a database contains labels for each column.
@{field} is a string or integer specifying which field is to be used. If @{field} is an integer n then the nth column will be used. If @{field} is a string, then the column with the matching label will be used.
@{criteria} is a range containing conditions. The first row of a @{criteria} should contain labels. Each label specifies to which field the conditions given in that column apply. Each cell below the label specifies a condition such as ">3" or "<9". An equality condition can be given by simply specifying a value, e. g. "3" or "Jody". For a record to be considered it must satisfy all conditions in at least one of the rows of @{criteria}.
@SEEALSO=DCOUNT

@CATEGORY=Database
@FUNCTION=DCOUNT
@SHORTDESC=count of numbers in @{field} in @{database} belonging to records that match @{criteria}
@SYNTAX=DCOUNT(database,field,criteria)
@ARGUMENTDESCRIPTION=@{database}: a range in which rows of related information are records and columns of data are fields
@{field}: a string or integer specifying which field is to be used
@{criteria}: a range containing conditions
@DESCRIPTION=@{database} is a range in which rows of related information are records and columns of data are fields. The first row of a database contains labels for each column.
@{field} is a string or integer specifying which field is to be used. If @{field} is an integer n then the nth column will be used. If @{field} is a string, then the column with the matching label will be used.
@{criteria} is a range containing conditions. The first row of a @{criteria} should contain labels. Each label specifies to which field the conditions given in that column apply. Each cell below the label specifies a condition such as ">3" or "<9". An equality condition can be given by simply specifying a value, e. g. "3" or "Jody". For a record to be considered it must satisfy all conditions in at least one of the rows of @{criteria}.
@SEEALSO=DAVERAGE,DCOUNTA

@CATEGORY=Database
@FUNCTION=DCOUNTA
@SHORTDESC=count of cells with data in @{field} in @{database} belonging to records that match @{criteria}
@SYNTAX=DCOUNTA(database,field,criteria)
@ARGUMENTDESCRIPTION=@{database}: a range in which rows of related information are records and columns of data are fields
@{field}: a string or integer specifying which field is to be used
@{criteria}: a range containing conditions
@DESCRIPTION=@{database} is a range in which rows of related information are records and columns of data are fields. The first row of a database contains labels for each column.
@{field} is a string or integer specifying which field is to be used. If @{field} is an integer n then the nth column will be used. If @{field} is a string, then the column with the matching label will be used.
@{criteria} is a range containing conditions. The first row of a @{criteria} should contain labels. Each label specifies to which field the conditions given in that column apply. Each cell below the label specifies a condition such as ">3" or "<9". An equality condition can be given by simply specifying a value, e. g. "3" or "Jody". For a record to be considered it must satisfy all conditions in at least one of the rows of @{criteria}.
@SEEALSO=DCOUNT

@CATEGORY=Database
@FUNCTION=DGET
@SHORTDESC=a value from @{field} in @{database} belonging to records that match @{criteria}
@SYNTAX=DGET(database,field,criteria)
@ARGUMENTDESCRIPTION=@{database}: a range in which rows of related information are records and columns of data are fields
@{field}: a string or integer specifying which field is to be used
@{criteria}: a range containing conditions
@DESCRIPTION=@{database} is a range in which rows of related information are records and columns of data are fields. The first row of a database contains labels for each column.
@{field} is a string or integer specifying which field is to be used. If @{field} is an integer n then the nth column will be used. If @{field} is a string, then the column with the matching label will be used.
@{criteria} is a range containing conditions. The first row of a @{criteria} should contain labels. Each label specifies to which field the conditions given in that column apply. Each cell below the label specifies a condition such as ">3" or "<9". An equality condition can be given by simply specifying a value, e. g. "3" or "Jody". For a record to be considered it must satisfy all conditions in at least one of the rows of @{criteria}.
@NOTE=If none of the records match the conditions, DGET returns #VALUE! If more than one record match the conditions, DGET returns #NUM!
@SEEALSO=DCOUNT

@CATEGORY=Database
@FUNCTION=DMAX
@SHORTDESC=largest number in @{field} in @{database} belonging to a record that match @{criteria}
@SYNTAX=DMAX(database,field,criteria)
@ARGUMENTDESCRIPTION=@{database}: a range in which rows of related information are records and columns of data are fields
@{field}: a string or integer specifying which field is to be used
@{criteria}: a range containing conditions
@DESCRIPTION=@{database} is a range in which rows of related information are records and columns of data are fields. The first row of a database contains labels for each column.
@{field} is a string or integer specifying which field is to be used. If @{field} is an integer n then the nth column will be used. If @{field} is a string, then the column with the matching label will be used.
@{criteria} is a range containing conditions. The first row of a @{criteria} should contain labels. Each label specifies to which field the conditions given in that column apply. Each cell below the label specifies a condition such as ">3" or "<9". An equality condition can be given by simply specifying a value, e. g. "3" or "Jody". For a record to be considered it must satisfy all conditions in at least one of the rows of @{criteria}.
@SEEALSO=DMIN

@CATEGORY=Database
@FUNCTION=DMIN
@SHORTDESC=smallest number in @{field} in @{database} belonging to a record that match @{criteria}
@SYNTAX=DMIN(database,field,criteria)
@ARGUMENTDESCRIPTION=@{database}: a range in which rows of related information are records and columns of data are fields
@{field}: a string or integer specifying which field is to be used
@{criteria}: a range containing conditions
@DESCRIPTION=@{database} is a range in which rows of related information are records and columns of data are fields. The first row of a database contains labels for each column.
@{field} is a string or integer specifying which field is to be used. If @{field} is an integer n then the nth column will be used. If @{field} is a string, then the column with the matching label will be used.
@{criteria} is a range containing conditions. The first row of a @{criteria} should contain labels. Each label specifies to which field the conditions given in that column apply. Each cell below the label specifies a condition such as ">3" or "<9". An equality condition can be given by simply specifying a value, e. g. "3" or "Jody". For a record to be considered it must satisfy all conditions in at least one of the rows of @{criteria}.
@SEEALSO=DCOUNT

@CATEGORY=Database
@FUNCTION=DPRODUCT
@SHORTDESC=product of all values in @{field} in @{database} belonging to records that match @{criteria}
@SYNTAX=DPRODUCT(database,field,criteria)
@ARGUMENTDESCRIPTION=@{database}: a range in which rows of related information are records and columns of data are fields
@{field}: a string or integer specifying which field is to be used
@{criteria}: a range containing conditions
@DESCRIPTION=@{database} is a range in which rows of related information are records and columns of data are fields. The first row of a database contains labels for each column.
@{field} is a string or integer specifying which field is to be used. If @{field} is an integer n then the nth column will be used. If @{field} is a string, then the column with the matching label will be used.
@{criteria} is a range containing conditions. The first row of a @{criteria} should contain labels. Each label specifies to which field the conditions given in that column apply. Each cell below the label specifies a condition such as ">3" or "<9". An equality condition can be given by simply specifying a value, e. g. "3" or "Jody". For a record to be considered it must satisfy all conditions in at least one of the rows of @{criteria}.
@SEEALSO=DSUM

@CATEGORY=Database
@FUNCTION=DSTDEV
@SHORTDESC=sample standard deviation of the values in @{field} in @{database} belonging to records that match @{criteria}
@SYNTAX=DSTDEV(database,field,criteria)
@ARGUMENTDESCRIPTION=@{database}: a range in which rows of related information are records and columns of data are fields
@{field}: a string or integer specifying which field is to be used
@{criteria}: a range containing conditions
@DESCRIPTION=@{database} is a range in which rows of related information are records and columns of data are fields. The first row of a database contains labels for each column.
@{field} is a string or integer specifying which field is to be used. If @{field} is an integer n then the nth column will be used. If @{field} is a string, then the column with the matching label will be used.
@{criteria} is a range containing conditions. The first row of a @{criteria} should contain labels. Each label specifies to which field the conditions given in that column apply. Each cell below the label specifies a condition such as ">3" or "<9". An equality condition can be given by simply specifying a value, e. g. "3" or "Jody". For a record to be considered it must satisfy all conditions in at least one of the rows of @{criteria}.
@SEEALSO=DSTDEVP

@CATEGORY=Database
@FUNCTION=DSTDEVP
@SHORTDESC=standard deviation of the population of values in @{field} in @{database} belonging to records that match @{criteria}
@SYNTAX=DSTDEVP(database,field,criteria)
@ARGUMENTDESCRIPTION=@{database}: a range in which rows of related information are records and columns of data are fields
@{field}: a string or integer specifying which field is to be used
@{criteria}: a range containing conditions
@DESCRIPTION=@{database} is a range in which rows of related information are records and columns of data are fields. The first row of a database contains labels for each column.
@{field} is a string or integer specifying which field is to be used. If @{field} is an integer n then the nth column will be used. If @{field} is a string, then the column with the matching label will be used.
@{criteria} is a range containing conditions. The first row of a @{criteria} should contain labels. Each label specifies to which field the conditions given in that column apply. Each cell below the label specifies a condition such as ">3" or "<9". An equality condition can be given by simply specifying a value, e. g. "3" or "Jody". For a record to be considered it must satisfy all conditions in at least one of the rows of @{criteria}.
@SEEALSO=DSTDEV

@CATEGORY=Database
@FUNCTION=DSUM
@SHORTDESC=sum of the values in @{field} in @{database} belonging to records that match @{criteria}
@SYNTAX=DSUM(database,field,criteria)
@ARGUMENTDESCRIPTION=@{database}: a range in which rows of related information are records and columns of data are fields
@{field}: a string or integer specifying which field is to be used
@{criteria}: a range containing conditions
@DESCRIPTION=@{database} is a range in which rows of related information are records and columns of data are fields. The first row of a database contains labels for each column.
@{field} is a string or integer specifying which field is to be used. If @{field} is an integer n then the nth column will be used. If @{field} is a string, then the column with the matching label will be used.
@{criteria} is a range containing conditions. The first row of a @{criteria} should contain labels. Each label specifies to which field the conditions given in that column apply. Each cell below the label specifies a condition such as ">3" or "<9". An equality condition can be given by simply specifying a value, e. g. "3" or "Jody". For a record to be considered it must satisfy all conditions in at least one of the rows of @{criteria}.
@SEEALSO=DPRODUCT

@CATEGORY=Database
@FUNCTION=DVAR
@SHORTDESC=sample variance of the values in @{field} in @{database} belonging to records that match @{criteria}
@SYNTAX=DVAR(database,field,criteria)
@ARGUMENTDESCRIPTION=@{database}: a range in which rows of related information are records and columns of data are fields
@{field}: a string or integer specifying which field is to be used
@{criteria}: a range containing conditions
@DESCRIPTION=@{database} is a range in which rows of related information are records and columns of data are fields. The first row of a database contains labels for each column.
@{field} is a string or integer specifying which field is to be used. If @{field} is an integer n then the nth column will be used. If @{field} is a string, then the column with the matching label will be used.
@{criteria} is a range containing conditions. The first row of a @{criteria} should contain labels. Each label specifies to which field the conditions given in that column apply. Each cell below the label specifies a condition such as ">3" or "<9". An equality condition can be given by simply specifying a value, e. g. "3" or "Jody". For a record to be considered it must satisfy all conditions in at least one of the rows of @{criteria}.
@SEEALSO=DVARP

@CATEGORY=Database
@FUNCTION=DVARP
@SHORTDESC=variance of the population of values in @{field} in @{database} belonging to records that match @{criteria}
@SYNTAX=DVARP(database,field,criteria)
@ARGUMENTDESCRIPTION=@{database}: a range in which rows of related information are records and columns of data are fields
@{field}: a string or integer specifying which field is to be used
@{criteria}: a range containing conditions
@DESCRIPTION=@{database} is a range in which rows of related information are records and columns of data are fields. The first row of a database contains labels for each column.
@{field} is a string or integer specifying which field is to be used. If @{field} is an integer n then the nth column will be used. If @{field} is a string, then the column with the matching label will be used.
@{criteria} is a range containing conditions. The first row of a @{criteria} should contain labels. Each label specifies to which field the conditions given in that column apply. Each cell below the label specifies a condition such as ">3" or "<9". An equality condition can be given by simply specifying a value, e. g. "3" or "Jody". For a record to be considered it must satisfy all conditions in at least one of the rows of @{criteria}.
@SEEALSO=DVAR

@CATEGORY=Database
@FUNCTION=GETPIVOTDATA
@SHORTDESC=summary data from a pivot table
@SYNTAX=GETPIVOTDATA(pivot_table,field_name)
@ARGUMENTDESCRIPTION=@{pivot_table}: cell range containing the pivot table
@{field_name}: name of the field for which the summary data is requested
@NOTE=If the summary data is unavailable, GETPIVOTDATA returns #REF!

@CATEGORY=Date/Time
@FUNCTION=ASCENSIONTHURSDAY
@SHORTDESC=Ascension Thursday in the Gregorian calendar according to the Roman rite of the Christian Church
@SYNTAX=ASCENSIONTHURSDAY(year)
@ARGUMENTDESCRIPTION=@{year}: year between 1582 and 9956, defaults to the year of the next Ascension Thursday
@NOTE=Two digit years are adjusted as elsewhere in Gnumeric. Dates before 1904 may also be prohibited.
@SEEALSO=EASTERSUNDAY

@CATEGORY=Date/Time
@FUNCTION=ASHWEDNESDAY
@SHORTDESC=Ash Wednesday in the Gregorian calendar according to the Roman rite of the Christian Church
@SYNTAX=ASHWEDNESDAY(year)
@ARGUMENTDESCRIPTION=@{year}: year between 1582 and 9956, defaults to the year of the next Ash Wednesday
@NOTE=Two digit years are adjusted as elsewhere in Gnumeric. Dates before 1904 may also be prohibited.
@SEEALSO=EASTERSUNDAY

@CATEGORY=Date/Time
@FUNCTION=DATE
@SHORTDESC=create a date serial value
@SYNTAX=DATE(year,month,day)
@ARGUMENTDESCRIPTION=@{year}: year of date
@{month}: month of year
@{day}: day of month
@DESCRIPTION=The DATE function creates date serial values.  1-Jan-1900 is serial value 1, 2-Jan-1900 is serial value 2, and so on.  For compatibility reasons, a serial value is reserved for the non-existing date 29-Feb-1900.
@NOTE=If @{month} or @{day} is less than 1 or too big, then the year and/or month will be adjusted. For spreadsheets created with the Mac version of Excel, serial 1 is 1-Jan-1904.
@EXCEL=This function is Excel compatible.
@SEEALSO=TODAY,YEAR,MONTH,DAY

@CATEGORY=Date/Time
@FUNCTION=DATE2HDATE
@SHORTDESC=Hebrew date
@SYNTAX=DATE2HDATE(date)
@ARGUMENTDESCRIPTION=@{date}: Gregorian date, defaults to today
@SEEALSO=HDATE,DATE2HDATE_HEB

@CATEGORY=Date/Time
@FUNCTION=DATE2HDATE_HEB
@SHORTDESC=Hebrew date in Hebrew
@SYNTAX=DATE2HDATE_HEB(date)
@ARGUMENTDESCRIPTION=@{date}: Gregorian date, defaults to today
@SEEALSO=DATE2HDATE,HDATE_HEB

@CATEGORY=Date/Time
@FUNCTION=DATE2JULIAN
@SHORTDESC=Julian day number for given Gregorian date
@SYNTAX=DATE2JULIAN(date)
@ARGUMENTDESCRIPTION=@{date}: Gregorian date, defaults to today
@SEEALSO=HDATE_JULIAN

@CATEGORY=Date/Time
@FUNCTION=DATE2UNIX
@SHORTDESC=the Unix timestamp corresponding to a date @{d}
@SYNTAX=DATE2UNIX(d)
@ARGUMENTDESCRIPTION=@{d}: date
@DESCRIPTION=The DATE2UNIX function translates a date into a Unix timestamp. A Unix timestamp is the number of seconds since midnight (0:00) of January 1st, 1970 GMT.
@SEEALSO=UNIX2DATE,DATE

@CATEGORY=Date/Time
@FUNCTION=DATEDIF
@SHORTDESC=difference between dates
@SYNTAX=DATEDIF(start_date,end_date,interval)
@ARGUMENTDESCRIPTION=@{start_date}: starting date serial value
@{end_date}: ending date serial value
@{interval}: counting unit
@DESCRIPTION=DATEDIF returns the distance from @{start_date} to @{end_date} according to the unit specified by @{interval}.
@NOTE=If @{interval} is "y", "m", or "d" then the distance is measured in complete years, months, or days respectively. If @{interval} is "ym" or "yd" then the distance is measured in complete months or days, respectively, but excluding any difference in years. If @{interval} is "md" then the distance is measured in complete days but excluding any difference in months.
@EXCEL=This function is Excel compatible.
@SEEALSO=DAYS360

@CATEGORY=Date/Time
@FUNCTION=DATEVALUE
@SHORTDESC=the date part of a date and time serial value
@SYNTAX=DATEVALUE(serial)
@ARGUMENTDESCRIPTION=@{serial}: date and time serial value
@DESCRIPTION=DATEVALUE returns the date serial value part of a date and time serial value.
@EXCEL=This function is Excel compatible.
@SEEALSO=TIMEVALUE,DATE

@CATEGORY=Date/Time
@FUNCTION=DAY
@SHORTDESC=the day-of-month part of a date serial value
@SYNTAX=DAY(date)
@ARGUMENTDESCRIPTION=@{date}: date serial value
@DESCRIPTION=The DAY function returns the day-of-month part of @{date}.
@EXCEL=This function is Excel compatible.
@SEEALSO=DATE,YEAR,MONTH

@CATEGORY=Date/Time
@FUNCTION=DAYS
@SHORTDESC=difference between dates in days
@SYNTAX=DAYS(end_date,start_date)
@ARGUMENTDESCRIPTION=@{end_date}: ending date serial value
@{start_date}: starting date serial value
@DESCRIPTION=DAYS returns the positive or negative number of days from @{start_date} to @{end_date}.
@ODF=This function is OpenFormula compatible.
@SEEALSO=DATEDIF

@CATEGORY=Date/Time
@FUNCTION=DAYS360
@SHORTDESC=days between dates
@SYNTAX=DAYS360(start_date,end_date,method)
@ARGUMENTDESCRIPTION=@{start_date}: starting date serial value
@{end_date}: ending date serial value
@{method}: counting method
@DESCRIPTION=DAYS360 returns the number of days from @{start_date} to @{end_date}.
@NOTE=If @{method} is 0, the default, the MS Excel (tm) US method will be used. This is a somewhat complicated industry standard method where the last day of February is considered to be the 30th day of the month, but only for @{start_date}. If @{method} is 1, the European method will be used.  In this case, if the day of the month is 31 it will be considered as 30 If @{method} is 2, a saner version of the US method is used in which both dates get the same February treatment.
@EXCEL=This function is Excel compatible.
@SEEALSO=DATEDIF

@CATEGORY=Date/Time
@FUNCTION=EASTERSUNDAY
@SHORTDESC=Easter Sunday in the Gregorian calendar according to the Roman rite of the Christian Church
@SYNTAX=EASTERSUNDAY(year)
@ARGUMENTDESCRIPTION=@{year}: year between 1582 and 9956, defaults to the year of the next Easter Sunday
@NOTE=Two digit years are adjusted as elsewhere in Gnumeric. Dates before 1904 may also be prohibited.
@ODF=The 1-argument version of EASTERSUNDAY is compatible with OpenOffice for years after 1904. This function is not specified in ODF/OpenFormula.
@SEEALSO=ASHWEDNESDAY

@CATEGORY=Date/Time
@FUNCTION=EDATE
@SHORTDESC=adjust a date by a number of months
@SYNTAX=EDATE(date,months)
@ARGUMENTDESCRIPTION=@{date}: date serial value
@{months}: signed number of months
@DESCRIPTION=EDATE returns @{date} moved forward or backward the number of months specified by @{months}.
@EXCEL=This function is Excel compatible.
@SEEALSO=DATE

@CATEGORY=Date/Time
@FUNCTION=EOMONTH
@SHORTDESC=end of month
@SYNTAX=EOMONTH(date,months)
@ARGUMENTDESCRIPTION=@{date}: date serial value
@{months}: signed number of months
@DESCRIPTION=EOMONTH returns the date serial value of the end of the month specified by @{date} adjusted forward or backward the number of months specified by @{months}.
@EXCEL=This function is Excel compatible.
@SEEALSO=EDATE

@CATEGORY=Date/Time
@FUNCTION=GOODFRIDAY
@SHORTDESC=Good Friday in the Gregorian calendar according to the Roman rite of the Christian Church
@SYNTAX=GOODFRIDAY(year)
@ARGUMENTDESCRIPTION=@{year}: year between 1582 and 9956, defaults to the year of the next Good Friday
@NOTE=Two digit years are adjusted as elsewhere in Gnumeric. Dates before 1904 may also be prohibited.
@SEEALSO=EASTERSUNDAY

@CATEGORY=Date/Time
@FUNCTION=HDATE
@SHORTDESC=Hebrew date
@SYNTAX=HDATE(year,month,day)
@ARGUMENTDESCRIPTION=@{year}: Gregorian year of date, defaults to the current year
@{month}: Gregorian month of year, defaults to the current month
@{day}: Gregorian day of month, defaults to the current day
@SEEALSO=HDATE_HEB,DATE

@CATEGORY=Date/Time
@FUNCTION=HDATE_DAY
@SHORTDESC=Hebrew day of Gregorian date
@SYNTAX=HDATE_DAY(year,month,day)
@ARGUMENTDESCRIPTION=@{year}: Gregorian year of date, defaults to the current year
@{month}: Gregorian month of year, defaults to the current month
@{day}: Gregorian day of month, defaults to the current day
@SEEALSO=HDATE_JULIAN

@CATEGORY=Date/Time
@FUNCTION=HDATE_HEB
@SHORTDESC=Hebrew date in Hebrew
@SYNTAX=HDATE_HEB(year,month,day)
@ARGUMENTDESCRIPTION=@{year}: Gregorian year of date, defaults to the current year
@{month}: Gregorian month of year, defaults to the current month
@{day}: Gregorian day of month, defaults to the current day
@SEEALSO=HDATE,DATE

@CATEGORY=Date/Time
@FUNCTION=HDATE_JULIAN
@SHORTDESC=Julian day number for given Gregorian date
@SYNTAX=HDATE_JULIAN(year,month,day)
@ARGUMENTDESCRIPTION=@{year}: Gregorian year of date, defaults to the current year
@{month}: Gregorian month of year, defaults to the current month
@{day}: Gregorian day of month, defaults to the current day
@SEEALSO=HDATE

@CATEGORY=Date/Time
@FUNCTION=HDATE_MONTH
@SHORTDESC=Hebrew month of Gregorian date
@SYNTAX=HDATE_MONTH(year,month,day)
@ARGUMENTDESCRIPTION=@{year}: Gregorian year of date, defaults to the current year
@{month}: Gregorian month of year, defaults to the current month
@{day}: Gregorian day of month, defaults to the current day
@SEEALSO=HDATE_JULIAN

@CATEGORY=Date/Time
@FUNCTION=HDATE_YEAR
@SHORTDESC=Hebrew year of Gregorian date
@SYNTAX=HDATE_YEAR(year,month,day)
@ARGUMENTDESCRIPTION=@{year}: Gregorian year of date, defaults to the current year
@{month}: Gregorian month of year, defaults to the current month
@{day}: Gregorian day of month, defaults to the current day
@SEEALSO=HDATE_JULIAN

@CATEGORY=Date/Time
@FUNCTION=HOUR
@SHORTDESC=compute hour part of fractional day
@SYNTAX=HOUR(time)
@ARGUMENTDESCRIPTION=@{time}: time of day as fractional day
@DESCRIPTION=The HOUR function computes the hour part of the fractional day given by @{time}.
@EXCEL=This function is Excel compatible.
@SEEALSO=TIME,MINUTE,SECOND

@CATEGORY=Date/Time
@FUNCTION=ISOWEEKNUM
@SHORTDESC=ISO week number
@SYNTAX=ISOWEEKNUM(date)
@ARGUMENTDESCRIPTION=@{date}: date serial value
@DESCRIPTION=ISOWEEKNUM calculates the week number according to the ISO 8601 standard.  Weeks start on Mondays and week 1 contains the first Thursday of the year.
@NOTE=January 1 of a year is sometimes in week 52 or 53 of the previous year.  Similarly, December 31 is sometimes in week 1 of the following year.
@SEEALSO=ISOYEAR,WEEKNUM

@CATEGORY=Date/Time
@FUNCTION=ISOYEAR
@SHORTDESC=year corresponding to the ISO week number
@SYNTAX=ISOYEAR(date)
@ARGUMENTDESCRIPTION=@{date}: date serial value
@DESCRIPTION=ISOYEAR calculates the year to go with week number according to the ISO 8601 standard.
@NOTE=January 1 of a year is sometimes in week 52 or 53 of the previous year.  Similarly, December 31 is sometimes in week 1 of the following year.
@SEEALSO=ISOWEEKNUM,YEAR

@CATEGORY=Date/Time
@FUNCTION=MINUTE
@SHORTDESC=compute minute part of fractional day
@SYNTAX=MINUTE(time)
@ARGUMENTDESCRIPTION=@{time}: time of day as fractional day
@DESCRIPTION=The MINUTE function computes the minute part of the fractional day given by @{time}.
@EXCEL=This function is Excel compatible.
@SEEALSO=TIME,HOUR,SECOND

@CATEGORY=Date/Time
@FUNCTION=MONTH
@SHORTDESC=the month part of a date serial value
@SYNTAX=MONTH(date)
@ARGUMENTDESCRIPTION=@{date}: date serial value
@DESCRIPTION=The MONTH function returns the month part of @{date}.
@EXCEL=This function is Excel compatible.
@SEEALSO=DATE,YEAR,DAY

@CATEGORY=Date/Time
@FUNCTION=NETWORKDAYS
@SHORTDESC=number of workdays in range
@SYNTAX=NETWORKDAYS(start_date,end_date,holidays,weekend)
@ARGUMENTDESCRIPTION=@{start_date}: starting date serial value
@{end_date}: ending date serial value
@{holidays}: array of holidays
@{weekend}: array of 0s and 1s, indicating whether a weekday (S, M, T, W, T, F, S) is on the weekend, defaults to {1,0,0,0,0,0,1}
@DESCRIPTION=NETWORKDAYS calculates the number of days from @{start_date} to @{end_date} skipping weekends and @{holidays} in the process.
@NOTE=If an entry of @{weekend} is non-zero, the corresponding weekday is not a work day.
@EXCEL=This function is Excel compatible if the last argument is omitted.
@ODF=This function is OpenFormula compatible.
@SEEALSO=WORKDAY

@CATEGORY=Date/Time
@FUNCTION=NOW
@SHORTDESC=the date and time serial value of the current time
@SYNTAX=NOW()
@DESCRIPTION=The NOW function returns the date and time serial value of the moment it is computed.  Recomputing later will produce a different value.
@EXCEL=This function is Excel compatible.
@SEEALSO=DATE

@CATEGORY=Date/Time
@FUNCTION=ODF.TIME
@SHORTDESC=create a time serial value
@SYNTAX=ODF.TIME(hour,minute,second)
@ARGUMENTDESCRIPTION=@{hour}: hour
@{minute}: minute
@{second}: second
@DESCRIPTION=The ODF.TIME function computes the time given by @{hour}, @{minute}, and @{second} as a fraction of a day.
@NOTE=While the return value is automatically formatted to look like a time between 0:00 and 24:00, the underlying serial time value can be any number.
@ODF=This function is OpenFormula compatible.
@SEEALSO=TIME,HOUR,MINUTE,SECOND

@CATEGORY=Date/Time
@FUNCTION=PENTECOSTSUNDAY
@SHORTDESC=Pentecost Sunday in the Gregorian calendar according to the Roman rite of the Christian Church
@SYNTAX=PENTECOSTSUNDAY(year)
@ARGUMENTDESCRIPTION=@{year}: year between 1582 and 9956, defaults to the year of the next Pentecost Sunday
@NOTE=Two digit years are adjusted as elsewhere in Gnumeric. Dates before 1904 may also be prohibited.
@SEEALSO=EASTERSUNDAY

@CATEGORY=Date/Time
@FUNCTION=SECOND
@SHORTDESC=compute seconds part of fractional day
@SYNTAX=SECOND(time)
@ARGUMENTDESCRIPTION=@{time}: time of day as fractional day
@DESCRIPTION=The SECOND function computes the seconds part of the fractional day given by @{time}.
@EXCEL=This function is Excel compatible.
@SEEALSO=TIME,HOUR,MINUTE

@CATEGORY=Date/Time
@FUNCTION=TIME
@SHORTDESC=create a time serial value
@SYNTAX=TIME(hour,minute,second)
@ARGUMENTDESCRIPTION=@{hour}: hour of the day
@{minute}: minute within the hour
@{second}: second within the minute
@DESCRIPTION=The TIME function computes the fractional day after midnight at the time given by @{hour}, @{minute}, and @{second}.
@NOTE=While the return value is automatically formatted to look like a time between 0:00 and 24:00, the underlying serial time value is a number between 0 and 1. If any of @{hour}, @{minute}, and @{second} is negative, #NUM! is returned
@EXCEL=This function is Excel compatible.
@SEEALSO=ODF.TIME,HOUR,MINUTE,SECOND

@CATEGORY=Date/Time
@FUNCTION=TIMEVALUE
@SHORTDESC=the time part of a date and time serial value
@SYNTAX=TIMEVALUE(serial)
@ARGUMENTDESCRIPTION=@{serial}: date and time serial value
@DESCRIPTION=TIMEVALUE returns the time-of-day part of a date and time serial value.
@EXCEL=This function is Excel compatible.
@SEEALSO=DATEVALUE,TIME

@CATEGORY=Date/Time
@FUNCTION=TODAY
@SHORTDESC=the date serial value of today
@SYNTAX=TODAY()
@DESCRIPTION=The TODAY function returns the date serial value of the day it is computed.  Recomputing on a later date will produce a different value.
@EXCEL=This function is Excel compatible.
@SEEALSO=DATE

@CATEGORY=Date/Time
@FUNCTION=UNIX2DATE
@SHORTDESC=date value corresponding to the Unix timestamp @{t}
@SYNTAX=UNIX2DATE(t)
@ARGUMENTDESCRIPTION=@{t}: Unix time stamp
@DESCRIPTION=The UNIX2DATE function translates Unix timestamps into the corresponding date.  A Unix timestamp is the number of seconds since midnight (0:00) of January 1st, 1970 GMT.
@SEEALSO=DATE2UNIX,DATE

@CATEGORY=Date/Time
@FUNCTION=WEEKDAY
@SHORTDESC=day-of-week
@SYNTAX=WEEKDAY(date,method)
@ARGUMENTDESCRIPTION=@{date}: date serial value
@{method}: numbering system, defaults to 1
@DESCRIPTION=The WEEKDAY function returns the day-of-week of @{date}.  The value of @{method} determines how days are numbered; it defaults to 1.
@NOTE=If @{method} is 1, then Sunday is 1, Monday is 2, etc. If @{method} is 2, then Monday is 1, Tuesday is 2, etc. If @{method} is 3, then Monday is 0, Tuesday is 1, etc. If @{method} is 11, then Monday is 1, Tuesday is 2, etc. If @{method} is 12, then Tuesday is 1, Wednesday is 2, etc. If @{method} is 13, then Wednesday is 1, Thursday is 2, etc. If @{method} is 14, then Thursday is 1, Friday is 2, etc. If @{method} is 15, then Friday is 1, Saturday is 2, etc. If @{method} is 16, then Saturday is 1, Sunday is 2, etc. If @{method} is 17, then Sunday is 1, Monday is 2, etc.
@EXCEL=This function is Excel compatible.
@SEEALSO=DATE,ISOWEEKNUM

@CATEGORY=Date/Time
@FUNCTION=WEEKNUM
@SHORTDESC=week number
@SYNTAX=WEEKNUM(date,method)
@ARGUMENTDESCRIPTION=@{date}: date serial value
@{method}: numbering system, defaults to 1
@DESCRIPTION=WEEKNUM calculates the week number according to @{method} which defaults to 1.
@NOTE=If @{method} is 1, then weeks start on Sundays and January 1 is in week 1. If @{method} is 2, then weeks start on Mondays and January 1 is in week 1. If @{method} is 150, then the ISO 8601 numbering is used.
@SEEALSO=ISOWEEKNUM

@CATEGORY=Date/Time
@FUNCTION=WORKDAY
@SHORTDESC=add working days
@SYNTAX=WORKDAY(date,days,holidays,weekend)
@ARGUMENTDESCRIPTION=@{date}: date serial value
@{days}: number of days to add
@{holidays}: array of holidays
@{weekend}: array of 0s and 1s, indicating whether a weekday (S, M, T, W, T, F, S) is on the weekend, defaults to {1,0,0,0,0,0,1}
@DESCRIPTION=WORKDAY adjusts @{date} by @{days} skipping over weekends and @{holidays} in the process.
@NOTE=@{days} may be negative. If an entry of @{weekend} is non-zero, the corresponding weekday is not a work day.
@EXCEL=This function is Excel compatible if the last argument is omitted.
@ODF=This function is OpenFormula compatible.
@SEEALSO=NETWORKDAYS

@CATEGORY=Date/Time
@FUNCTION=YEAR
@SHORTDESC=the year part of a date serial value
@SYNTAX=YEAR(date)
@ARGUMENTDESCRIPTION=@{date}: date serial value
@DESCRIPTION=The YEAR function returns the year part of @{date}.
@EXCEL=This function is Excel compatible.
@SEEALSO=DATE,MONTH,DAY

@CATEGORY=Date/Time
@FUNCTION=YEARFRAC
@SHORTDESC=fractional number of years between dates
@SYNTAX=YEARFRAC(start_date,end_date,basis)
@ARGUMENTDESCRIPTION=@{start_date}: starting date serial value
@{end_date}: ending date serial value
@{basis}: calendar basis
@DESCRIPTION=YEARFRAC calculates the number of days from @{start_date} to @{end_date} according to the calendar specified by @{basis}, which defaults to 0, and expresses the result as a fractional number of years.
@NOTE=If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=DATE

@CATEGORY=Engineering
@FUNCTION=BASE
@SHORTDESC=string of digits representing the number @{n} in base @{b}
@SYNTAX=BASE(n,b,length)
@ARGUMENTDESCRIPTION=@{n}: integer
@{b}: base (2 ≤ @{b} ≤ 36)
@{length}: minimum length of the resulting string
@DESCRIPTION=BASE converts @{n} to its string representation in base @{b}. Leading zeroes will be added to reach the minimum length given by @{length}.
@ODF=This function is OpenFormula compatible.
@SEEALSO=DECIMAL

@CATEGORY=Engineering
@FUNCTION=BESSELI
@SHORTDESC=Modified Bessel function of the first kind of order @{α} at @{x}
@SYNTAX=BESSELI(X,α)
@ARGUMENTDESCRIPTION=@{X}: number
@{α}: order (any non-negative number)
@NOTE=If @{x} or @{α} are not numeric, #VALUE! is returned. If @{α} < 0, #NUM! is returned.
@EXCEL=This function is Excel compatible if only integer orders @{α} are used.
@SEEALSO=BESSELJ,BESSELK,BESSELY

@CATEGORY=Engineering
@FUNCTION=BESSELJ
@SHORTDESC=Bessel function of the first kind of order @{α} at @{x}
@SYNTAX=BESSELJ(X,α)
@ARGUMENTDESCRIPTION=@{X}: number
@{α}: order (any non-negative integer)
@NOTE=If @{x} or @{α} are not numeric, #VALUE! is returned. If @{α} < 0, #NUM! is returned.
@EXCEL=This function is Excel compatible if only integer orders @{α} are used.
@SEEALSO=BESSELI,BESSELK,BESSELY

@CATEGORY=Engineering
@FUNCTION=BESSELK
@SHORTDESC=Modified Bessel function of the second kind of order @{α} at @{x}
@SYNTAX=BESSELK(X,α)
@ARGUMENTDESCRIPTION=@{X}: number
@{α}: order (any non-negative number)
@NOTE=If @{x} or @{α} are not numeric, #VALUE! is returned. If @{α} < 0, #NUM! is returned.
@EXCEL=This function is Excel compatible if only integer orders @{α} are used.
@SEEALSO=BESSELI,BESSELJ,BESSELY

@CATEGORY=Engineering
@FUNCTION=BESSELY
@SHORTDESC=Bessel function of the second kind of order @{α} at @{x}
@SYNTAX=BESSELY(X,α)
@ARGUMENTDESCRIPTION=@{X}: number
@{α}: order (any non-negative integer)
@NOTE=If @{x} or @{α} are not numeric, #VALUE! is returned. If @{α} < 0, #NUM! is returned.
@EXCEL=This function is Excel compatible if only integer orders @{α} are used.
@SEEALSO=BESSELI,BESSELJ,BESSELK

@CATEGORY=Engineering
@FUNCTION=BIN2DEC
@SHORTDESC=decimal representation of the binary number @{x}
@SYNTAX=BIN2DEC(x)
@ARGUMENTDESCRIPTION=@{x}: a binary number, either as a string or as a number involving only the digits 0 and 1
@EXCEL=This function is Excel compatible.
@SEEALSO=DEC2BIN,BIN2OCT,BIN2HEX

@CATEGORY=Engineering
@FUNCTION=BIN2HEX
@SHORTDESC=hexadecimal representation of the binary number @{x}
@SYNTAX=BIN2HEX(x,places)
@ARGUMENTDESCRIPTION=@{x}: a binary number, either as a string or as a number involving only the digits 0 and 1
@{places}: number of digits
@DESCRIPTION=If @{places} is given, BIN2HEX pads the result with zeros to achieve exactly @{places} digits. If this is not possible, BIN2HEX returns #NUM!
@EXCEL=This function is Excel compatible.
@SEEALSO=HEX2BIN,BIN2OCT,BIN2DEC

@CATEGORY=Engineering
@FUNCTION=BIN2OCT
@SHORTDESC=octal representation of the binary number @{x}
@SYNTAX=BIN2OCT(x,places)
@ARGUMENTDESCRIPTION=@{x}: a binary number, either as a string or as a number involving only the digits 0 and 1
@{places}: number of digits
@DESCRIPTION=If @{places} is given, BIN2OCT pads the result with zeros to achieve exactly @{places} digits. If this is not possible, BIN2OCT returns #NUM!
@EXCEL=This function is Excel compatible.
@SEEALSO=OCT2BIN,BIN2DEC,BIN2HEX

@CATEGORY=Engineering
@FUNCTION=CONVERT
@SHORTDESC=a converted measurement
@SYNTAX=CONVERT(x,from,to)
@ARGUMENTDESCRIPTION=@{x}: number
@{from}: unit (string)
@{to}: unit (string)
@DESCRIPTION=CONVERT returns a conversion from one measurement system to another. @{x} is a value in @{from} units that is to be converted into @{to} units.
@{from} and @{to} can be any of the following:

Weight and mass:
	'brton'		Imperial ton
	'cwt'			U.S. (short) hundredweight
	'g'  			Gram
	'grain'		Grain
	'hweight'		Imperial (long) hundredweight
	'LTON'		Imperial ton
	'sg' 			Slug
	'shweight'	U.S. (short) hundredweight
	'lbm'		Pound
	'lcwt'		Imperial  (long) hundredweight
	'u'  			U (atomic mass)
	'uk_cwt'		Imperial  (long) hundredweight
	'uk_ton'		Imperial ton
	'ozm'		Ounce
	'stone'		Stone
	'ton'			Ton

Distance:
	'm'   		Meter
	'mi'  		Statute mile
	'survey_mi' 	U.S. survey mile
	'Nmi' 		Nautical mile
	'in'  			Inch
	'ft'  			Foot
	'yd'  		Yard
	'ell' 			English Ell
	'ang' 		Angstrom
	'ly' 			Light-Year
	'pc' 			Parsec
	'parsec' 		Parsec
	'Pica'		Pica Points
	'Picapt'		Pica Points
	'picapt'		Pica Points
	'pica'		Pica

Time:
	'yr'  			Year
	'day' 		Day
	'hr'  			Hour
	'mn'  		Minute
	'sec' 		Second

Pressure:
	'Pa'  			Pascal
	'psi' 			PSI
	'atm' 		Atmosphere
	'Pa'  			Pascal
	'mmHg'		mm of Mercury
	'Torr'			Torr

Force:
	'N'   			Newton
	'dyn' 		Dyne
	'pond' 		Pond
	'lbf' 			Pound force

Energy:
	'J'    			Joule
	'e'    		Erg
	'c'    		Thermodynamic calorie
	'cal'  		IT calorie
	'eV'   		Electron volt
	'HPh'  		Horsepower-hour
	'Wh'   		Watt-hour
	'flb'  		Foot-pound
	'BTU'  		BTU

Power:
	'HP'   		Horsepower
	'PS'   		Pferdestärke
	'W'    		Watt

Magnetism:
	'T'    		Tesla
	'ga'   		Gauss

Temperature:
	'C'    		Degree Celsius
	'F'    		Degree Fahrenheit
	'K'    		Kelvin
	'Rank' 		Degree Rankine
	'Reau' 		Degree Réaumur

Volume (liquid measure):
	'tsp'  		Teaspoon
	'tspm'  		Teaspoon (modern, metric)
	'tbs'  		Tablespoon
	'oz'   		Fluid ounce
	'cup'  		Cup
	'pt'   		Pint
	'us_pt'		U.S. pint
	'uk_pt'		Imperial pint (U.K.)
	'qt'   		Quart
	'uk_qt'   		Imperial quart
	'gal'  		Gallon
	'uk_gal'  		Imperial gallon
	'GRT'  		Registered ton
	'regton' 		Registered ton
	'MTON' 		Measurement ton (freight ton)
	'l'    			Liter
	'L'    		Liter
	'lt'   			Liter
	'ang3' 		Cubic Angstrom
	'ang^3' 		Cubic Angstrom
	'barrel' 		U.S. oil barrel (bbl)
	'bushel' 		U.S. bushel
	'ft3' 			Cubic feet
	'ft^3' 		Cubic feet
	'in3' 		Cubic inch
	'in^3' 		Cubic inch
	'ly3' 			Cubic light-year
	'ly^3' 		Cubic light-year
	'm3' 		Cubic meter
	'm^3' 		Cubic meter
	'mi3' 		Cubic mile
	'mi^3' 		Cubic mile
	'yd3' 		Cubic yard
	'yd^3' 		Cubic yard
	'Nmi3' 		Cubic nautical mile
	'Nmi^3' 		Cubic nautical mile
	'Picapt3' 		Cubic Pica
	'Picapt^3' 	Cubic Pica
	'Pica3' 		Cubic Pica
	'Pica^3' 		Cubic Pica

Area:
	'uk_acre' 		International acre
	'us_acre' 		U.S. survey/statute acre
	'ang2' 		Square angstrom
	'ang^2' 		Square angstrom
	'ar' 			Are
	'ha' 			Hectare
	'in2' 		Square inches
	'in^2' 		Square inches
	'ly2' 			Square light-year
	'ly^2' 		Square light-year
	'm2' 		Square meter
	'm^2' 		Square meter
	'Morgen' 		Morgen (North German Confederation)
	'mi2' 		Square miles
	'mi^2' 		Square miles
	'Nmi2' 		Square nautical miles
	'Nmi^2' 		Square nautical miles
	'Picapt2' 		Square Pica
	'Picapt^2' 	Square Pica
	'Pica2' 		Square Pica
	'Pica^2' 		Square Pica
	'yd2' 		Square yards
	'yd^2' 		Square yards

Bits and Bytes:
	'bit' 			Bit
	'byte' 		Byte

Speed:
	'admkn' 		Admiralty knot
	'kn' 			knot
	'm/h' 		Meters per hour
	'm/hr' 		Meters per hour
	'm/s' 		Meters per second
	'm/sec' 		Meters per second
	'mph' 		Miles per hour

For metric units any of the following prefixes can be used:
	'Y'  	yotta 		1E+24
	'Z'  	zetta 		1E+21
	'E'  	exa   		1E+18
	'P'  	peta  		1E+15
	'T'  	tera  		1E+12
	'G'  	giga  		1E+09
	'M'  	mega  		1E+06
	'k'  	kilo  			1E+03
	'h'  	hecto 		1E+02
	'e'  	deca (deka)	1E+01
	'd'  	deci  		1E-01
	'c'  	centi 		1E-02
	'm'  	milli 			1E-03
	'u'  	micro 		1E-06
	'n'  	nano  		1E-09
	'p'  	pico  		1E-12
	'f'  	femto 		1E-15
	'a'  	atto  		1E-18
	'z'  	zepto 		1E-21
	'y'  	yocto 		1E-24

For bits and bytes any of the following prefixes can be also be used:
	'Yi'  	yobi 		2^80
	'Zi'  	zebi 			2^70
	'Ei'  	exbi 		2^60
	'Pi'  	pebi 		2^50
	'Ti'  	tebi 			2^40
	'Gi'  	gibi 			2^30
	'Mi'  	mebi 		2^20
	'ki'  	kibi 			2^10
@NOTE=If @{from} and @{to} are different types, CONVERT returns #N/A!
@EXCEL=This function is Excel compatible (except "picapt").
@ODF=This function is OpenFormula compatible.

@CATEGORY=Engineering
@FUNCTION=DEC2BIN
@SHORTDESC=binary representation of the decimal number @{x}
@SYNTAX=DEC2BIN(x,places)
@ARGUMENTDESCRIPTION=@{x}: integer (− 513 < @{x} < 512)
@{places}: number of digits
@DESCRIPTION=If @{places} is given and @{x} is non-negative, DEC2BIN pads the result with zeros to achieve exactly @{places} digits. If this is not possible, DEC2BIN returns #NUM!
If @{places} is given and @{x} is negative, @{places} is ignored.
@NOTE=If @{x} < − 512 or @{x} > 511, DEC2BIN returns #NUM!
@EXCEL=This function is Excel compatible.
@ODF=This function is OpenFormula compatible.
@SEEALSO=BIN2DEC,DEC2OCT,DEC2HEX

@CATEGORY=Engineering
@FUNCTION=DEC2HEX
@SHORTDESC=hexadecimal representation of the decimal number @{x}
@SYNTAX=DEC2HEX(x,places)
@ARGUMENTDESCRIPTION=@{x}: integer
@{places}: number of digits
@DESCRIPTION=If @{places} is given, DEC2HEX pads the result with zeros to achieve exactly @{places} digits. If this is not possible, DEC2HEX returns #NUM!
@EXCEL=This function is Excel compatible.
@SEEALSO=HEX2DEC,DEC2BIN,DEC2OCT

@CATEGORY=Engineering
@FUNCTION=DEC2OCT
@SHORTDESC=octal representation of the decimal number @{x}
@SYNTAX=DEC2OCT(x,places)
@ARGUMENTDESCRIPTION=@{x}: integer
@{places}: number of digits
@DESCRIPTION=If @{places} is given, DEC2OCT pads the result with zeros to achieve exactly @{places} digits. If this is not possible, DEC2OCT returns #NUM!
@EXCEL=This function is Excel compatible.
@SEEALSO=OCT2DEC,DEC2BIN,DEC2HEX

@CATEGORY=Engineering
@FUNCTION=DECIMAL
@SHORTDESC=decimal representation of @{x}
@SYNTAX=DECIMAL(x,base)
@ARGUMENTDESCRIPTION=@{x}: number in base @{base}
@{base}: base of @{x}, (2 ≤ @{base} ≤ 36)
@ODF=This function is OpenFormula compatible.
@SEEALSO=BASE

@CATEGORY=Engineering
@FUNCTION=DELTA
@SHORTDESC=Kronecker delta function
@SYNTAX=DELTA(x0,x1)
@ARGUMENTDESCRIPTION=@{x0}: number
@{x1}: number, defaults to 0
@DESCRIPTION=DELTA  returns 1 if  @{x1} = @{x0} and 0 otherwise.
@NOTE=If either argument is non-numeric, #VALUE! is returned.
@EXCEL=This function is Excel compatible.
@SEEALSO=EXACT,GESTEP

@CATEGORY=Engineering
@FUNCTION=ERF
@SHORTDESC=Gauss error function
@SYNTAX=ERF(lower,upper)
@ARGUMENTDESCRIPTION=@{lower}: lower limit of the integral, defaults to 0
@{upper}: upper limit of the integral
@DESCRIPTION=ERF returns 2/sqrt(π)* integral from @{lower} to @{upper} of exp(-t*t) dt
@EXCEL=This function is Excel compatible if two arguments are supplied and neither is negative.
@SEEALSO=ERFC

@CATEGORY=Engineering
@FUNCTION=ERFC
@SHORTDESC=Complementary Gauss error function
@SYNTAX=ERFC(x)
@ARGUMENTDESCRIPTION=@{x}: number
@DESCRIPTION=ERFC returns 2/sqrt(π)* integral from @{x} to ∞ of exp(-t*t) dt
@SEEALSO=ERF

@CATEGORY=Engineering
@FUNCTION=GESTEP
@SHORTDESC=step function with step at @{x1} evaluated at @{x0}
@SYNTAX=GESTEP(x0,x1)
@ARGUMENTDESCRIPTION=@{x0}: number
@{x1}: number, defaults to 0
@DESCRIPTION=GESTEP returns 1 if  @{x1} ≤ @{x0} and 0 otherwise.
@NOTE=If either argument is non-numeric, #VALUE! is returned.
@EXCEL=This function is Excel compatible.
@SEEALSO=DELTA

@CATEGORY=Engineering
@FUNCTION=HEX2BIN
@SHORTDESC=binary representation of the hexadecimal number @{x}
@SYNTAX=HEX2BIN(x,places)
@ARGUMENTDESCRIPTION=@{x}: a hexadecimal number, either as a string or as a number if no A to F are needed
@{places}: number of digits
@DESCRIPTION=If @{places} is given, HEX2BIN pads the result with zeros to achieve exactly @{places} digits. If this is not possible, HEX2BIN returns #NUM!
@EXCEL=This function is Excel compatible.
@SEEALSO=BIN2HEX,HEX2OCT,HEX2DEC

@CATEGORY=Engineering
@FUNCTION=HEX2DEC
@SHORTDESC=decimal representation of the hexadecimal number @{x}
@SYNTAX=HEX2DEC(x)
@ARGUMENTDESCRIPTION=@{x}: a hexadecimal number, either as a string or as a number if no A to F are needed
@EXCEL=This function is Excel compatible.
@SEEALSO=DEC2HEX,HEX2BIN,HEX2OCT

@CATEGORY=Engineering
@FUNCTION=HEX2OCT
@SHORTDESC=octal representation of the hexadecimal number @{x}
@SYNTAX=HEX2OCT(x,places)
@ARGUMENTDESCRIPTION=@{x}: a hexadecimal number, either as a string or as a number if no A to F are needed
@{places}: number of digits
@DESCRIPTION=If @{places} is given, HEX2OCT pads the result with zeros to achieve exactly @{places} digits. If this is not possible, HEX2OCT returns #NUM!
@EXCEL=This function is Excel compatible.
@SEEALSO=OCT2HEX,HEX2BIN,HEX2DEC

@CATEGORY=Engineering
@FUNCTION=HEXREP
@SHORTDESC=hexadecimal representation of numeric value
@SYNTAX=HEXREP(x)
@ARGUMENTDESCRIPTION=@{x}: number
@DESCRIPTION=HEXREP returns a hexadecimal string representation of @{x}.
@NOTE=This is a function meant for debugging.  The layout of the result may change and even depend on how Gnumeric was compiled.

@CATEGORY=Engineering
@FUNCTION=INVSUMINV
@SHORTDESC=the reciprocal of the sum of reciprocals of the arguments
@SYNTAX=INVSUMINV(x0,x1,…)
@ARGUMENTDESCRIPTION=@{x0}: non-negative number
@{x1}: non-negative number
@DESCRIPTION=INVSUMINV sum calculates the reciprocal (the inverse) of the sum of reciprocals (inverses) of all its arguments.
@NOTE=If any of the arguments is negative, #VALUE! is returned.
If any argument is zero, the result is zero.
@SEEALSO=HARMEAN

@CATEGORY=Engineering
@FUNCTION=OCT2BIN
@SHORTDESC=binary representation of the octal number @{x}
@SYNTAX=OCT2BIN(x,places)
@ARGUMENTDESCRIPTION=@{x}: a octal number, either as a string or as a number
@{places}: number of digits
@DESCRIPTION=If @{places} is given, OCT2BIN pads the result with zeros to achieve exactly @{places} digits. If this is not possible, OCT2BIN returns #NUM!
@EXCEL=This function is Excel compatible.
@SEEALSO=BIN2OCT,OCT2DEC,OCT2HEX

@CATEGORY=Engineering
@FUNCTION=OCT2DEC
@SHORTDESC=decimal representation of the octal number @{x}
@SYNTAX=OCT2DEC(x)
@ARGUMENTDESCRIPTION=@{x}: a octal number, either as a string or as a number
@EXCEL=This function is Excel compatible.
@SEEALSO=DEC2OCT,OCT2BIN,OCT2HEX

@CATEGORY=Engineering
@FUNCTION=OCT2HEX
@SHORTDESC=hexadecimal representation of the octal number @{x}
@SYNTAX=OCT2HEX(x,places)
@ARGUMENTDESCRIPTION=@{x}: a octal number, either as a string or as a number
@{places}: number of digits
@DESCRIPTION=If @{places} is given, OCT2HEX pads the result with zeros to achieve exactly @{places} digits. If this is not possible, OCT2HEX returns #NUM!
@EXCEL=This function is Excel compatible.
@SEEALSO=HEX2OCT,OCT2BIN,OCT2DEC

@CATEGORY=Erlang
@FUNCTION=DIMCIRC
@SHORTDESC=number of circuits required
@SYNTAX=DIMCIRC(traffic,gos)
@ARGUMENTDESCRIPTION=@{traffic}: number of calls
@{gos}: grade of service
@DESCRIPTION=DIMCIRC returns the number of circuits required given @{traffic} calls with grade of service @{gos}.
@SEEALSO=OFFCAP,OFFTRAF,PROBBLOCK

@CATEGORY=Erlang
@FUNCTION=OFFCAP
@SHORTDESC=traffic capacity
@SYNTAX=OFFCAP(circuits,gos)
@ARGUMENTDESCRIPTION=@{circuits}: number of circuits
@{gos}: grade of service
@DESCRIPTION=OFFCAP returns the traffic capacity given @{circuits} circuits with grade of service @{gos}.
@SEEALSO=DIMCIRC,OFFTRAF,PROBBLOCK

@CATEGORY=Erlang
@FUNCTION=OFFTRAF
@SHORTDESC=predicted number of offered calls
@SYNTAX=OFFTRAF(traffic,circuits)
@ARGUMENTDESCRIPTION=@{traffic}: number of carried calls
@{circuits}: number of circuits
@DESCRIPTION=OFFTRAF returns the predicted number of offered calls given @{traffic} carried calls (taken from measurements) on @{circuits} circuits.
@NOTE=@{traffic} cannot exceed @{circuits}.
@SEEALSO=PROBBLOCK,DIMCIRC,OFFCAP

@CATEGORY=Erlang
@FUNCTION=PROBBLOCK
@SHORTDESC=probability of blocking
@SYNTAX=PROBBLOCK(traffic,circuits)
@ARGUMENTDESCRIPTION=@{traffic}: number of calls
@{circuits}: number of circuits
@DESCRIPTION=PROBBLOCK returns probability of blocking when @{traffic} calls load into @{circuits} circuits.
@NOTE=@{traffic} cannot exceed @{circuits}.
@SEEALSO=OFFTRAF,DIMCIRC,OFFCAP

@CATEGORY=Finance
@FUNCTION=ACCRINT
@SHORTDESC=accrued interest
@SYNTAX=ACCRINT(issue,first_interest,settlement,rate,par,frequency,basis,calc_method)
@ARGUMENTDESCRIPTION=@{issue}: date of issue
@{first_interest}: date of first interest payment
@{settlement}: settlement date
@{rate}: nominal annual interest rate
@{par}: par value, defaults to $1000
@{frequency}: number of interest payments per year
@{basis}: calendar basis, defaults to 0
@{calc_method}: calculation method, defaults to TRUE
@DESCRIPTION=If @{first_interest} < @{settlement} and @{calc_method} is TRUE, then ACCRINT returns the sum of the interest accrued in all coupon periods from @{issue}  date until @{settlement} date.
If @{first_interest} < @{settlement} and @{calc_method} is FALSE, then ACCRINT returns the sum of the interest accrued in all coupon periods from @{first_interest}  date until @{settlement} date.
Otherwise ACCRINT returns the sum of the interest accrued in all coupon periods from @{issue}  date until @{settlement} date.
@NOTE=@{frequency} must be one of 1, 2 or 4, but the exact value does not affect the result. @{issue} must precede both @{first_interest} and @{settlement}. @{frequency} may be 1 (annual), 2 (semi-annual), or 4 (quarterly). If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=ACCRINTM

@CATEGORY=Finance
@FUNCTION=ACCRINTM
@SHORTDESC=accrued interest
@SYNTAX=ACCRINTM(issue,maturity,rate,par,basis)
@ARGUMENTDESCRIPTION=@{issue}: date of issue
@{maturity}: maturity date
@{rate}: nominal annual interest rate
@{par}: par value
@{basis}: calendar basis
@DESCRIPTION=ACCRINTM calculates the accrued interest from @{issue} to @{maturity}.
@NOTE=@{par} defaults to $1000. If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=ACCRINT

@CATEGORY=Finance
@FUNCTION=AMORDEGRC
@SHORTDESC=depreciation of an asset using French accounting conventions
@SYNTAX=AMORDEGRC(cost,purchase_date,first_period,salvage,period,rate,basis)
@ARGUMENTDESCRIPTION=@{cost}: initial cost of asset
@{purchase_date}: date of purchase
@{first_period}: end of first period
@{salvage}: value after depreciation
@{period}: subject period
@{rate}: depreciation rate
@{basis}: calendar basis
@DESCRIPTION=AMORDEGRC calculates the depreciation of an asset using French accounting conventions. Assets purchased in the middle of a period take prorated depreciation into account. This is similar to AMORLINC, except that a depreciation coefficient is applied in the calculation depending on the life of the assets.
The depreciation coefficient used is:
1.0 for an expected lifetime less than 3 years,
1.5 for an expected lifetime of at least 3 years but less than 5 years,
2.0 for an expected lifetime of at least 5 years but at most 6 years,
2.5 for an expected lifetime of more than 6 years.
@NOTE=Special depreciation rules are applied for the last two periods resulting in a possible total depreciation exceeding the difference of @{cost} - @{salvage}. Named for AMORtissement DEGRessif Comptabilite. If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=AMORLINC

@CATEGORY=Finance
@FUNCTION=AMORLINC
@SHORTDESC=depreciation of an asset using French accounting conventions
@SYNTAX=AMORLINC(cost,purchase_date,first_period,salvage,period,rate,basis)
@ARGUMENTDESCRIPTION=@{cost}: initial cost of asset
@{purchase_date}: date of purchase
@{first_period}: end of first period
@{salvage}: value after depreciation
@{period}: subject period
@{rate}: depreciation rate
@{basis}: calendar basis
@DESCRIPTION=AMORLINC calculates the depreciation of an asset using French accounting conventions. Assets purchased in the middle of a period take prorated depreciation into account.
@NOTE=Named for AMORtissement LINeaire Comptabilite. If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=AMORDEGRC

@CATEGORY=Finance
@FUNCTION=COUPDAYBS
@SHORTDESC=number of days from coupon period to settlement
@SYNTAX=COUPDAYBS(settlement,maturity,frequency,basis,eom)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{frequency}: number of interest payments per year
@{basis}: calendar basis
@{eom}: end-of-month flag
@DESCRIPTION=COUPDAYBS calculates the number of days from the beginning of the coupon period to the settlement date.
@NOTE=@{frequency} may be 1 (annual), 2 (semi-annual), or 4 (quarterly). If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=COUPDAYS

@CATEGORY=Finance
@FUNCTION=COUPDAYS
@SHORTDESC=number of days in the coupon period of the settlement date
@SYNTAX=COUPDAYS(settlement,maturity,frequency,basis,eom)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{frequency}: number of interest payments per year
@{basis}: calendar basis
@{eom}: end-of-month flag
@DESCRIPTION=COUPDAYS calculates the number of days in the coupon period of the settlement date.
@NOTE=@{frequency} may be 1 (annual), 2 (semi-annual), or 4 (quarterly). If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=COUPDAYBS,COUPDAYSNC

@CATEGORY=Finance
@FUNCTION=COUPDAYSNC
@SHORTDESC=number of days from the settlement date to the next coupon period
@SYNTAX=COUPDAYSNC(settlement,maturity,frequency,basis,eom)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{frequency}: number of interest payments per year
@{basis}: calendar basis
@{eom}: end-of-month flag
@DESCRIPTION=COUPDAYSNC calculates number of days from the settlement date to the next coupon period.
@NOTE=@{frequency} may be 1 (annual), 2 (semi-annual), or 4 (quarterly). If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=COUPDAYS,COUPDAYBS

@CATEGORY=Finance
@FUNCTION=COUPNCD
@SHORTDESC=the next coupon date after settlement
@SYNTAX=COUPNCD(settlement,maturity,frequency,basis,eom)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{frequency}: number of interest payments per year
@{basis}: calendar basis
@{eom}: end-of-month flag
@DESCRIPTION=COUPNCD calculates the coupon date following settlement.
@NOTE=@{frequency} may be 1 (annual), 2 (semi-annual), or 4 (quarterly). If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=COUPPCD,COUPDAYS,COUPDAYBS

@CATEGORY=Finance
@FUNCTION=COUPNUM
@SHORTDESC=number of coupons
@SYNTAX=COUPNUM(settlement,maturity,frequency,basis,eom)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{frequency}: number of interest payments per year
@{basis}: calendar basis
@{eom}: end-of-month flag
@DESCRIPTION=COUPNUM calculates the number of coupons to be paid between the settlement and maturity dates, rounded up.
@NOTE=@{frequency} may be 1 (annual), 2 (semi-annual), or 4 (quarterly). If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=COUPNCD,COUPPCD

@CATEGORY=Finance
@FUNCTION=COUPPCD
@SHORTDESC=the last coupon date before settlement
@SYNTAX=COUPPCD(settlement,maturity,frequency,basis,eom)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{frequency}: number of interest payments per year
@{basis}: calendar basis
@{eom}: end-of-month flag
@DESCRIPTION=COUPPCD calculates the coupon date preceding settlement.
@NOTE=@{frequency} may be 1 (annual), 2 (semi-annual), or 4 (quarterly). If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=COUPNCD,COUPDAYS,COUPDAYBS

@CATEGORY=Finance
@FUNCTION=CUM_BIV_NORM_DIST
@SHORTDESC=cumulative bivariate normal distribution
@SYNTAX=CUM_BIV_NORM_DIST(a,b,rho)
@ARGUMENTDESCRIPTION=@{a}: limit for first random variable
@{b}: limit for second random variable
@{rho}: correlation of the two random variables
@DESCRIPTION=CUM_BIV_NORM_DIST calculates the probability that two standard normal distributed random variables with correlation @{rho} are respectively each less than @{a} and @{b}.

@CATEGORY=Finance
@FUNCTION=CUMIPMT
@SHORTDESC=cumulative interest payment
@SYNTAX=CUMIPMT(rate,nper,pv,start_period,end_period,type)
@ARGUMENTDESCRIPTION=@{rate}: interest rate per period
@{nper}: number of periods
@{pv}: present value
@{start_period}: first period to accumulate for
@{end_period}: last period to accumulate for
@{type}: payment type
@DESCRIPTION=CUMIPMT calculates the cumulative interest paid on a loan from @{start_period} to @{end_period}.
@NOTE=If @{type} is 0, the default, payment is at the end of each period.  If @{type} is 1, payment is at the beginning of each period.
@SEEALSO=IPMT

@CATEGORY=Finance
@FUNCTION=CUMPRINC
@SHORTDESC=cumulative principal
@SYNTAX=CUMPRINC(rate,nper,pv,start_period,end_period,type)
@ARGUMENTDESCRIPTION=@{rate}: interest rate per period
@{nper}: number of periods
@{pv}: present value
@{start_period}: first period to accumulate for
@{end_period}: last period to accumulate for
@{type}: payment type
@DESCRIPTION=CUMPRINC calculates the cumulative principal paid on a loan from @{start_period} to @{end_period}.
@NOTE=If @{type} is 0, the default, payment is at the end of each period.  If @{type} is 1, payment is at the beginning of each period.
@SEEALSO=PPMT

@CATEGORY=Finance
@FUNCTION=DB
@SHORTDESC=depreciation of an asset
@SYNTAX=DB(cost,salvage,life,period,month)
@ARGUMENTDESCRIPTION=@{cost}: initial cost of asset
@{salvage}: value after depreciation
@{life}: number of periods
@{period}: subject period
@{month}: number of months in first year of depreciation
@DESCRIPTION=DB calculates the depreciation of an asset for a given period using the fixed-declining balance method.
@SEEALSO=DDB,SLN,SYD

@CATEGORY=Finance
@FUNCTION=DDB
@SHORTDESC=depreciation of an asset
@SYNTAX=DDB(cost,salvage,life,period,factor)
@ARGUMENTDESCRIPTION=@{cost}: initial cost of asset
@{salvage}: value after depreciation
@{life}: number of periods
@{period}: subject period
@{factor}: factor at which the balance declines
@DESCRIPTION=DDB calculates the depreciation of an asset for a given period using the double-declining balance method.
@SEEALSO=DB,SLN,SYD

@CATEGORY=Finance
@FUNCTION=DISC
@SHORTDESC=discount rate
@SYNTAX=DISC(settlement,maturity,par,redemption,basis)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{par}: price per $100 face value
@{redemption}: amount received at maturity
@{basis}: calendar basis
@DESCRIPTION=DISC calculates the discount rate for a security.
@NOTE=@{redemption} is the redemption value per $100 face value. If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=PRICEMAT

@CATEGORY=Finance
@FUNCTION=DOLLARDE
@SHORTDESC=convert to decimal dollar amount
@SYNTAX=DOLLARDE(fractional_dollar,fraction)
@ARGUMENTDESCRIPTION=@{fractional_dollar}: amount to convert
@{fraction}: denominator
@DESCRIPTION=DOLLARDE converts a fractional dollar amount into a decimal amount.  This is the inverse of the DOLLARFR function.
@SEEALSO=DOLLARFR

@CATEGORY=Finance
@FUNCTION=DOLLARFR
@SHORTDESC=convert to dollar fraction
@SYNTAX=DOLLARFR(decimal_dollar,fraction)
@ARGUMENTDESCRIPTION=@{decimal_dollar}: amount to convert
@{fraction}: denominator
@DESCRIPTION=DOLLARFR converts a decimal dollar amount into a fractional amount which is represented as the digits after the decimal point.  For example, 2/8 would be represented as .2 while 3/16 would be represented as .03. This is the inverse of the DOLLARDE function.
@SEEALSO=DOLLARDE

@CATEGORY=Finance
@FUNCTION=DURATION
@SHORTDESC=the (Macaulay) duration of a security
@SYNTAX=DURATION(settlement,maturity,coupon,yield,frequency,basis)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{coupon}: annual coupon rate
@{yield}: annual yield of security
@{frequency}: number of interest payments per year
@{basis}: calendar basis
@DESCRIPTION=DURATION calculates the (Macaulay) duration of a security.
@NOTE=@{frequency} may be 1 (annual), 2 (semi-annual), or 4 (quarterly). If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=MDURATION, G_DURATION

@CATEGORY=Finance
@FUNCTION=EFFECT
@SHORTDESC=effective interest rate
@SYNTAX=EFFECT(rate,nper)
@ARGUMENTDESCRIPTION=@{rate}: nominal annual interest rate
@{nper}: number of periods used for compounding
@DESCRIPTION=EFFECT calculates the effective interest rate using the formula (1+@{rate}/@{nper})^@{nper}-1.
@SEEALSO=NOMINAL

@CATEGORY=Finance
@FUNCTION=EURO
@SHORTDESC=equivalent of 1 EUR
@SYNTAX=EURO(currency)
@ARGUMENTDESCRIPTION=@{currency}: three-letter currency code
@DESCRIPTION=EURO calculates the national currency amount corresponding to 1 EUR for any of the national currencies that were replaced by the Euro on its introduction.
@NOTE=@{currency} must be one of ATS (Austria), BEF (Belgium), CYP (Cyprus), DEM (Germany), EEK (Estonia), ESP (Spain), EUR (Euro), FIM (Finland), FRF (France), GRD (Greece), IEP (Ireland), ITL (Italy), LUF (Luxembourg), MTL (Malta), NLG (The Netherlands), PTE (Portugal), SIT (Slovenia), or SKK (Slovakia). This function is not likely to be useful anymore.
@SEEALSO=EUROCONVERT

@CATEGORY=Finance
@FUNCTION=EUROCONVERT
@SHORTDESC=pre-Euro amount from one currency to another
@SYNTAX=EUROCONVERT(n,source,target,full_precision,triangulation_precision)
@ARGUMENTDESCRIPTION=@{n}: amount
@{source}: three-letter source currency code
@{target}: three-letter target currency code
@{full_precision}: whether to provide the full precision; defaults to false
@{triangulation_precision}: number of digits (at least 3) to be rounded to after conversion of the source currency to euro; defaults to no rounding
@DESCRIPTION=EUROCONVERT converts @{n} units of currency @{source} to currency @{target}.  The rates used are the official ones used on the introduction of the Euro.
@NOTE=If @{full_precision} is true, the result is not rounded; if it false the result is rounded to 0 or 2 decimals depending on the target currency; defaults to false. @{source} and @{target} must be one of the currencies listed for the EURO function. This function is not likely to be useful anymore.
@SEEALSO=EURO

@CATEGORY=Finance
@FUNCTION=FV
@SHORTDESC=future value
@SYNTAX=FV(rate,nper,pmt,pv,type)
@ARGUMENTDESCRIPTION=@{rate}: effective interest rate per period
@{nper}: number of periods
@{pmt}: payment at each period
@{pv}: present value
@{type}: payment type
@DESCRIPTION=FV calculates the future value of @{pv} moved @{nper} periods into the future, assuming a periodic payment of @{pmt} and an interest rate of @{rate} per period.
@NOTE=If @{type} is 0, the default, payment is at the end of each period.  If @{type} is 1, payment is at the beginning of each period.
@SEEALSO=PV

@CATEGORY=Finance
@FUNCTION=FVSCHEDULE
@SHORTDESC=future value
@SYNTAX=FVSCHEDULE(principal,schedule)
@ARGUMENTDESCRIPTION=@{principal}: initial value
@{schedule}: range of interest rates
@DESCRIPTION=FVSCHEDULE calculates the future value of @{principal} after applying a range of interest rates with compounding.
@SEEALSO=FV

@CATEGORY=Finance
@FUNCTION=G_DURATION
@SHORTDESC=the duration of a investment
@SYNTAX=G_DURATION(rate,pv,fv)
@ARGUMENTDESCRIPTION=@{rate}: effective annual interest rate
@{pv}: present value
@{fv}: future value
@DESCRIPTION=G_DURATION calculates the number of periods needed for an investment to attain a desired value.
@ODF=G_DURATION is the OpenFormula function PDURATION.
@SEEALSO=FV,PV,DURATION,MDURATION

@CATEGORY=Finance
@FUNCTION=INTRATE
@SHORTDESC=interest rate
@SYNTAX=INTRATE(settlement,maturity,investment,redemption,basis)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{investment}: amount paid on settlement
@{redemption}: amount received at maturity
@{basis}: calendar basis
@DESCRIPTION=INTRATE calculates the interest of a fully vested security.
@NOTE=If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=RECEIVED

@CATEGORY=Finance
@FUNCTION=IPMT
@SHORTDESC=interest payment for period
@SYNTAX=IPMT(rate,per,nper,pv,fv,type)
@ARGUMENTDESCRIPTION=@{rate}: effective annual interest rate
@{per}: period number
@{nper}: number of periods
@{pv}: present value
@{fv}: future value
@{type}: payment type
@DESCRIPTION=IPMT calculates the interest part of an annuity's payment for period number @{per}.
@NOTE=If @{type} is 0, the default, payment is at the end of each period.  If @{type} is 1, payment is at the beginning of each period.
@SEEALSO=PPMT

@CATEGORY=Finance
@FUNCTION=IRR
@SHORTDESC=internal rate of return
@SYNTAX=IRR(values,guess)
@ARGUMENTDESCRIPTION=@{values}: cash flow
@{guess}: an estimate of what the result should be
@DESCRIPTION=IRR calculates the internal rate of return of a cash flow with periodic payments.  @{values} lists the payments (negative values) and receipts (positive values) for each period.
@NOTE=The optional @{guess} is needed because there can be more than one valid result.  It defaults to 10%.
@SEEALSO=XIRR

@CATEGORY=Finance
@FUNCTION=ISPMT
@SHORTDESC=interest payment for period
@SYNTAX=ISPMT(rate,per,nper,pv)
@ARGUMENTDESCRIPTION=@{rate}: effective annual interest rate
@{per}: period number
@{nper}: number of periods
@{pv}: present value
@DESCRIPTION=ISPMT calculates the interest payment for period number @{per}.
@SEEALSO=PV

@CATEGORY=Finance
@FUNCTION=MDURATION
@SHORTDESC=the modified (Macaulay) duration of a security
@SYNTAX=MDURATION(settlement,maturity,coupon,yield,frequency,basis)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{coupon}: annual coupon rate
@{yield}: annual yield of security
@{frequency}: number of interest payments per year
@{basis}: calendar basis
@DESCRIPTION=MDURATION calculates the modified (Macaulay) duration of a security.
@NOTE=@{frequency} may be 1 (annual), 2 (semi-annual), or 4 (quarterly). If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=DURATION,G_DURATION

@CATEGORY=Finance
@FUNCTION=MIRR
@SHORTDESC=modified internal rate of return
@SYNTAX=MIRR(values,finance_rate,reinvest_rate)
@ARGUMENTDESCRIPTION=@{values}: cash flow
@{finance_rate}: interest rate for financing cost
@{reinvest_rate}: interest rate for reinvestments
@DESCRIPTION=MIRR calculates the modified internal rate of return of a periodic cash flow.
@SEEALSO=IRR,XIRR

@CATEGORY=Finance
@FUNCTION=NOMINAL
@SHORTDESC=nominal interest rate
@SYNTAX=NOMINAL(rate,nper)
@ARGUMENTDESCRIPTION=@{rate}: effective annual interest rate
@{nper}: number of periods used for compounding
@DESCRIPTION=NOMINAL calculates the nominal interest rate from the effective rate.
@SEEALSO=EFFECT

@CATEGORY=Finance
@FUNCTION=NPER
@SHORTDESC=number of periods
@SYNTAX=NPER(rate,pmt,pv,fv,type)
@ARGUMENTDESCRIPTION=@{rate}: effective annual interest rate
@{pmt}: payment at each period
@{pv}: present value
@{fv}: future value
@{type}: payment type
@DESCRIPTION=NPER calculates the number of periods of an investment based on periodic constant payments and a constant interest rate.
@NOTE=If @{type} is 0, the default, payment is at the end of each period.  If @{type} is 1, payment is at the beginning of each period.
@SEEALSO=PV,FV

@CATEGORY=Finance
@FUNCTION=NPV
@SHORTDESC=net present value
@SYNTAX=NPV(rate,value1,value2,…)
@ARGUMENTDESCRIPTION=@{rate}: effective interest rate per period
@{value1}: cash flow for period 1
@{value2}: cash flow for period 2
@DESCRIPTION=NPV calculates the net present value of a cash flow.
@SEEALSO=PV

@CATEGORY=Finance
@FUNCTION=ODDFPRICE
@SHORTDESC=price of a security that has an odd first period
@SYNTAX=ODDFPRICE(settlement,maturity,issue,first_interest,rate,yield,redemption,frequency,basis)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{issue}: date of issue
@{first_interest}: first interest date
@{rate}: nominal annual interest rate
@{yield}: annual yield of security
@{redemption}: amount received at maturity
@{frequency}: number of interest payments per year
@{basis}: calendar basis
@DESCRIPTION=ODDFPRICE calculates the price per $100 face value of a security that pays periodic interest, but has an odd first period.
@NOTE=@{frequency} may be 1 (annual), 2 (semi-annual), or 4 (quarterly). If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=ODDLPRICE,ODDFYIELD

@CATEGORY=Finance
@FUNCTION=ODDFYIELD
@SHORTDESC=yield of a security that has an odd first period
@SYNTAX=ODDFYIELD(settlement,maturity,issue,first_interest,rate,price,redemption,frequency,basis)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{issue}: date of issue
@{first_interest}: first interest date
@{rate}: nominal annual interest rate
@{price}: price of security
@{redemption}: amount received at maturity
@{frequency}: number of interest payments per year
@{basis}: calendar basis
@DESCRIPTION=ODDFYIELD calculates the yield of a security that pays periodic interest, but has an odd first period.
@NOTE=@{frequency} may be 1 (annual), 2 (semi-annual), or 4 (quarterly). If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=ODDFPRICE,ODDLYIELD

@CATEGORY=Finance
@FUNCTION=ODDLPRICE
@SHORTDESC=price of a security that has an odd last period
@SYNTAX=ODDLPRICE(settlement,maturity,last_interest,rate,yield,redemption,frequency,basis)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{last_interest}: last interest date
@{rate}: nominal annual interest rate
@{yield}: annual yield of security
@{redemption}: amount received at maturity
@{frequency}: number of interest payments per year
@{basis}: calendar basis
@DESCRIPTION=ODDLPRICE calculates the price per $100 face value of a security that pays periodic interest, but has an odd last period.
@NOTE=@{frequency} may be 1 (annual), 2 (semi-annual), or 4 (quarterly). If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=YIELD,DURATION

@CATEGORY=Finance
@FUNCTION=ODDLYIELD
@SHORTDESC=yield of a security that has an odd last period
@SYNTAX=ODDLYIELD(settlement,maturity,last_interest,rate,price,redemption,frequency,basis)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{last_interest}: last interest date
@{rate}: nominal annual interest rate
@{price}: price of security
@{redemption}: amount received at maturity
@{frequency}: number of interest payments per year
@{basis}: calendar basis
@DESCRIPTION=ODDLYIELD calculates the yield of a security that pays periodic interest, but has an odd last period.
@NOTE=@{frequency} may be 1 (annual), 2 (semi-annual), or 4 (quarterly). If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=YIELD,DURATION

@CATEGORY=Finance
@FUNCTION=OPT_2_ASSET_CORRELATION
@SHORTDESC=theoretical price of options on 2 assets with correlation @{rho}
@SYNTAX=OPT_2_ASSET_CORRELATION(call_put_flag,spot1,spot2,strike1,strike2,time,cost_of_carry1,cost_of_carry2,rate,volatility1,volatility2,rho)
@ARGUMENTDESCRIPTION=@{call_put_flag}: 'c' for a call and 'p' for a put
@{spot1}: spot price of the underlying asset of the first option
@{spot2}: spot price of the underlying asset of the second option
@{strike1}: strike prices of the first option
@{strike2}: strike prices of the second option
@{time}: time to maturity in years
@{cost_of_carry1}: net cost of holding the underlying asset of the first option (for common stocks, the risk free rate less the dividend yield)
@{cost_of_carry2}: net cost of holding the underlying asset of the second option (for common stocks, the risk free rate less the dividend yield)
@{rate}: annualized risk-free interest rate
@{volatility1}: annualized volatility in price of the underlying asset of the first option
@{volatility2}: annualized volatility in price of the underlying asset of the second option
@{rho}: correlation between the two underlying assets
@DESCRIPTION=OPT_2_ASSET_CORRELATION models the theoretical price of options on 2 assets with correlation @{rho}. The payoff for a call is max(@{spot2} - @{strike2},0) if @{spot1} > @{strike1} or 0 otherwise. The payoff for a put is max (@{strike2} - @{spot2}, 0) if @{spot1} < @{strike1} or 0 otherwise.
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA

@CATEGORY=Finance
@FUNCTION=OPT_AMER_EXCHANGE
@SHORTDESC=theoretical price of an American option to exchange assets
@SYNTAX=OPT_AMER_EXCHANGE(spot1,spot2,qty1,qty2,time,rate,cost_of_carry1,cost_of_carry2,volatility1,volatility2,rho)
@ARGUMENTDESCRIPTION=@{spot1}: spot price of asset 1
@{spot2}: spot price of asset 2
@{qty1}: quantity of asset 1
@{qty2}: quantity of asset 2
@{time}: time to maturity in years
@{rate}: annualized risk-free interest rate
@{cost_of_carry1}: net cost of holding asset 1 (for common stocks, the risk free rate less the dividend yield)
@{cost_of_carry2}: net cost of holding asset 2 (for common stocks, the risk free rate less the dividend yield)
@{volatility1}: annualized volatility in price of asset 1
@{volatility2}: annualized volatility in price of asset 2
@{rho}: correlation between the prices of the two assets
@DESCRIPTION=OPT_AMER_EXCHANGE models the theoretical price of an American option to exchange one asset with quantity @{qty2} and spot price @{spot2} for another with quantity @{qty1} and spot price @{spot1}.
@SEEALSO=OPT_EURO_EXCHANGE,OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA

@CATEGORY=Finance
@FUNCTION=OPT_BAW_AMER
@SHORTDESC=theoretical price of an option according to the Barone Adesie & Whaley approximation
@SYNTAX=OPT_BAW_AMER(call_put_flag,spot,strike,time,rate,cost_of_carry,volatility)
@ARGUMENTDESCRIPTION=@{call_put_flag}: 'c' for a call and 'p' for a put
@{spot}: spot price
@{strike}: strike price
@{time}: time to maturity in days
@{rate}: annualized risk-free interest rate
@{cost_of_carry}: net cost of holding the underlying asset
@{volatility}: annualized volatility of the asset
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA

@CATEGORY=Finance
@FUNCTION=OPT_BINOMIAL
@SHORTDESC=theoretical price of either an American or European style option using a binomial tree
@SYNTAX=OPT_BINOMIAL(amer_euro_flag,call_put_flag,num_time_steps,spot,strike,time,rate,volatility,cost_of_carry)
@ARGUMENTDESCRIPTION=@{amer_euro_flag}: 'a' for an American style option or 'e' for a European style option
@{call_put_flag}: 'c' for a call and 'p' for a put
@{num_time_steps}: number of time steps used in the valuation
@{spot}: spot price
@{strike}: strike price
@{time}: time to maturity in years
@{rate}: annualized risk-free interest rate
@{volatility}: annualized volatility of the asset
@{cost_of_carry}: net cost of holding the underlying asset
@NOTE=A larger @{num_time_steps} yields greater accuracy but  OPT_BINOMIAL is slower to calculate.
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA

@CATEGORY=Finance
@FUNCTION=OPT_BJER_STENS
@SHORTDESC=theoretical price of American options according to the Bjerksund & Stensland approximation technique
@SYNTAX=OPT_BJER_STENS(call_put_flag,spot,strike,time,rate,volatility,cost_of_carry)
@ARGUMENTDESCRIPTION=@{call_put_flag}: 'c' for a call and 'p' for a put
@{spot}: spot price
@{strike}: strike price
@{time}: time to maturity in days
@{rate}: annualized risk-free interest rate
@{volatility}: annualized volatility of the asset
@{cost_of_carry}: net cost of holding the underlying asset (for common stocks, the risk free rate less the dividend yield), defaults to 0
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA

@CATEGORY=Finance
@FUNCTION=OPT_BS
@SHORTDESC=price of a European option
@SYNTAX=OPT_BS(call_put_flag,spot,strike,time,rate,volatility,cost_of_carry)
@ARGUMENTDESCRIPTION=@{call_put_flag}: 'c' for a call and 'p' for a put
@{spot}: spot price
@{strike}: strike price
@{time}: time to maturity in years
@{rate}: risk-free interest rate to the exercise date in percent
@{volatility}: annualized volatility of the asset in percent for the period through to the exercise date
@{cost_of_carry}: net cost of holding the underlying asset (for common stocks, the risk free rate less the dividend yield), defaults to 0
@DESCRIPTION=OPT_BS uses the Black-Scholes model to calculate the price of a European option struck at @{strike} on an asset with spot price @{spot}.
@NOTE=The returned value will be expressed in the same units as @{strike} and @{spot}.
@SEEALSO=OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_VEGA,OPT_BS_GAMMA

@CATEGORY=Finance
@FUNCTION=OPT_BS_CARRYCOST
@SHORTDESC=elasticity of a European option
@SYNTAX=OPT_BS_CARRYCOST(call_put_flag,spot,strike,time,rate,volatility,cost_of_carry)
@ARGUMENTDESCRIPTION=@{call_put_flag}: 'c' for a call and 'p' for a put
@{spot}: spot price
@{strike}: strike price
@{time}: time to maturity in years
@{rate}: risk-free interest rate to the exercise date in percent
@{volatility}: annualized volatility of the asset in percent for the period through to the exercise date
@{cost_of_carry}: net cost of holding the underlying asset (for common stocks, the risk free rate less the dividend yield), defaults to 0
@DESCRIPTION=OPT_BS_CARRYCOST uses the Black-Scholes model to calculate the 'elasticity' of a European option struck at @{strike} on an asset with spot price @{spot}. The elasticity of an option is the rate of change of its price with respect to its @{cost_of_carry}.
@NOTE=Elasticity is expressed as the rate of change of the option value, per 100% volatility.
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA

@CATEGORY=Finance
@FUNCTION=OPT_BS_DELTA
@SHORTDESC=delta of a European option
@SYNTAX=OPT_BS_DELTA(call_put_flag,spot,strike,time,rate,volatility,cost_of_carry)
@ARGUMENTDESCRIPTION=@{call_put_flag}: 'c' for a call and 'p' for a put
@{spot}: spot price
@{strike}: strike price
@{time}: time to maturity in years
@{rate}: risk-free interest rate to the exercise date in percent
@{volatility}: annualized volatility of the asset in percent for the period through to the exercise date
@{cost_of_carry}: net cost of holding the underlying asset (for common stocks, the risk free rate less the dividend yield), defaults to 0
@DESCRIPTION=OPT_BS_DELTA uses the Black-Scholes model to calculate the 'delta' of a European option struck at @{strike} on an asset with spot price @{spot}.
@NOTE=The returned value will be expressed in the same units as @{strike} and @{spot}.
@SEEALSO=OPT_BS,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_VEGA,OPT_BS_GAMMA

@CATEGORY=Finance
@FUNCTION=OPT_BS_GAMMA
@SHORTDESC=gamma of a European option
@SYNTAX=OPT_BS_GAMMA(spot,strike,time,rate,volatility,cost_of_carry)
@ARGUMENTDESCRIPTION=@{spot}: spot price
@{strike}: strike price
@{time}: time to maturity in years
@{rate}: risk-free interest rate to the exercise date in percent
@{volatility}: annualized volatility of the asset in percent for the period through to the exercise date
@{cost_of_carry}: net cost of holding the underlying asset (for common stocks, the risk free rate less the dividend yield), defaults to 0
@DESCRIPTION=OPT_BS_GAMMA uses the Black-Scholes model to calculate the 'gamma' of a European option struck at @{strike} on an asset with spot price @{spot}. The gamma of an option is the second derivative of its price with respect to the price of the underlying asset.
@NOTE=Gamma is expressed as the rate of change of delta per unit change in @{spot}. Gamma is the same for calls and puts.
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_VEGA

@CATEGORY=Finance
@FUNCTION=OPT_BS_RHO
@SHORTDESC=rho of a European option
@SYNTAX=OPT_BS_RHO(call_put_flag,spot,strike,time,rate,volatility,cost_of_carry)
@ARGUMENTDESCRIPTION=@{call_put_flag}: 'c' for a call and 'p' for a put
@{spot}: spot price
@{strike}: strike price
@{time}: time to maturity in years
@{rate}: risk-free interest rate to the exercise date in percent
@{volatility}: annualized volatility of the asset in percent for the period through to the exercise date
@{cost_of_carry}: net cost of holding the underlying asset (for common stocks, the risk free rate less the dividend yield), defaults to 0
@DESCRIPTION=OPT_BS_RHO uses the Black-Scholes model to calculate the 'rho' of a European option struck at @{strike} on an asset with spot price @{spot}. The rho of an option is the rate of change of its price with respect to the risk free interest rate.
@NOTE=Rho is expressed as the rate of change of the option value, per 100% change in @{rate}.
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_THETA,OPT_BS_VEGA,OPT_BS_GAMMA

@CATEGORY=Finance
@FUNCTION=OPT_BS_THETA
@SHORTDESC=theta of a European option
@SYNTAX=OPT_BS_THETA(call_put_flag,spot,strike,time,rate,volatility,cost_of_carry)
@ARGUMENTDESCRIPTION=@{call_put_flag}: 'c' for a call and 'p' for a put
@{spot}: spot price
@{strike}: strike price
@{time}: time to maturity in years
@{rate}: risk-free interest rate to the exercise date in percent
@{volatility}: annualized volatility of the asset in percent for the period through to the exercise date
@{cost_of_carry}: net cost of holding the underlying asset (for common stocks, the risk free rate less the dividend yield), defaults to 0
@DESCRIPTION=OPT_BS_THETA uses the Black-Scholes model to calculate the 'theta' of a European option struck at @{strike} on an asset with spot price @{spot}. The theta of an option is the rate of change of its price with respect to time to expiry.
@NOTE=Theta is expressed as the negative of the rate of change of the option value, per 365.25 days.
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_VEGA,OPT_BS_GAMMA

@CATEGORY=Finance
@FUNCTION=OPT_BS_VEGA
@SHORTDESC=vega of a European option
@SYNTAX=OPT_BS_VEGA(spot,strike,time,rate,volatility,cost_of_carry)
@ARGUMENTDESCRIPTION=@{spot}: spot price
@{strike}: strike price
@{time}: time to maturity in years
@{rate}: risk-free interest rate to the exercise date in percent
@{volatility}: annualized volatility of the asset in percent for the period through to the exercise date
@{cost_of_carry}: net cost of holding the underlying asset (for common stocks, the risk free rate less the dividend yield), defaults to 0
@DESCRIPTION=OPT_BS_VEGA uses the Black-Scholes model to calculate the 'vega' of a European option struck at @{strike} on an asset with spot price @{spot}. The vega of an option is the rate of change of its price with respect to volatility.
@NOTE=Vega is the same for calls and puts. Vega is expressed as the rate of change of option value, per 100% volatility.
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA

@CATEGORY=Finance
@FUNCTION=OPT_COMPLEX_CHOOSER
@SHORTDESC=theoretical price of a complex chooser option
@SYNTAX=OPT_COMPLEX_CHOOSER(spot,strike_call,strike_put,time,time_call,time_put,rate,cost_of_carry,volatility)
@ARGUMENTDESCRIPTION=@{spot}: spot price
@{strike_call}: strike price, if exercised as a call option
@{strike_put}: strike price, if exercised as a put option
@{time}: time in years until the holder chooses a put or a call option
@{time_call}: time in years to maturity of the call option if chosen
@{time_put}: time in years  to maturity of the put option if chosen
@{rate}: annualized risk-free interest rate
@{cost_of_carry}: net cost of holding the underlying asset
@{volatility}: annualized volatility of the asset in percent for the period through to the exercise date
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA

@CATEGORY=Finance
@FUNCTION=OPT_EURO_EXCHANGE
@SHORTDESC=theoretical price of a European option to exchange assets
@SYNTAX=OPT_EURO_EXCHANGE(spot1,spot2,qty1,qty2,time,rate,cost_of_carry1,cost_of_carry2,volatility1,volatility2,rho)
@ARGUMENTDESCRIPTION=@{spot1}: spot price of asset 1
@{spot2}: spot price of asset 2
@{qty1}: quantity of asset 1
@{qty2}: quantity of asset 2
@{time}: time to maturity in years
@{rate}: annualized risk-free interest rate
@{cost_of_carry1}: net cost of holding asset 1 (for common stocks, the risk free rate less the dividend yield)
@{cost_of_carry2}: net cost of holding asset 2 (for common stocks, the risk free rate less the dividend yield)
@{volatility1}: annualized volatility in price of asset 1
@{volatility2}: annualized volatility in price of asset 2
@{rho}: correlation between the prices of the two assets
@DESCRIPTION=OPT_EURO_EXCHANGE models the theoretical price of a European option to exchange one asset with quantity @{qty2} and spot price @{spot2} for another with quantity @{qty1} and spot price @{spot1}.
@SEEALSO=OPT_AMER_EXCHANGE,OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA

@CATEGORY=Finance
@FUNCTION=OPT_EXEC
@SHORTDESC=theoretical price of executive stock options
@SYNTAX=OPT_EXEC(call_put_flag,spot,strike,time,rate,volatility,cost_of_carry,lambda)
@ARGUMENTDESCRIPTION=@{call_put_flag}: 'c' for a call and 'p' for a put
@{spot}: spot price
@{strike}: strike price
@{time}: time to maturity in days
@{rate}: annualized risk-free interest rate
@{volatility}: annualized volatility of the asset
@{cost_of_carry}: net cost of holding the underlying asset
@{lambda}: jump rate for executives
@NOTE=The model assumes executives forfeit their options if they leave the company.
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA

@CATEGORY=Finance
@FUNCTION=OPT_EXTENDIBLE_WRITER
@SHORTDESC=theoretical price of extendible writer options
@SYNTAX=OPT_EXTENDIBLE_WRITER(call_put_flag,spot,strike1,strike2,time1,time2,rate,cost_of_carry,volatility)
@ARGUMENTDESCRIPTION=@{call_put_flag}: 'c' for a call and 'p' for a put
@{spot}: spot price
@{strike1}: strike price at which the option is struck
@{strike2}: strike price at which the option is re-struck if out of the money at @{time1}
@{time1}: initial maturity of the option in years
@{time2}: extended maturity in years if chosen
@{rate}: annualized risk-free interest rate
@{cost_of_carry}: net cost of holding the underlying asset
@{volatility}: annualized volatility of the asset
@DESCRIPTION=OPT_EXTENDIBLE_WRITER models the theoretical price of extendible writer options. These are options that have their maturity extended to @{time2} if the option is out of the money at @{time1}.
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA

@CATEGORY=Finance
@FUNCTION=OPT_FIXED_STRK_LKBK
@SHORTDESC=theoretical price of a fixed-strike lookback option
@SYNTAX=OPT_FIXED_STRK_LKBK(call_put_flag,spot,spot_min,spot_max,strike,time,rate,cost_of_carry,volatility)
@ARGUMENTDESCRIPTION=@{call_put_flag}: 'c' for a call and 'p' for a put
@{spot}: spot price
@{spot_min}: minimum spot price of the underlying asset so far observed
@{spot_max}: maximum spot price of the underlying asset so far observed
@{strike}: strike price
@{time}: time to maturity in years
@{rate}: annualized risk-free interest rate
@{cost_of_carry}: net cost of holding the underlying asset
@{volatility}: annualized volatility of the asset
@DESCRIPTION=OPT_FIXED_STRK_LKBK determines the theoretical price of a fixed-strike lookback option where the holder of the option may exercise on expiry at the most favourable price observed during the options life of the underlying asset.
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA

@CATEGORY=Finance
@FUNCTION=OPT_FLOAT_STRK_LKBK
@SHORTDESC=theoretical price of floating-strike lookback option
@SYNTAX=OPT_FLOAT_STRK_LKBK(call_put_flag,spot,spot_min,spot_max,time,rate,cost_of_carry,volatility)
@ARGUMENTDESCRIPTION=@{call_put_flag}: 'c' for a call and 'p' for a put
@{spot}: spot price
@{spot_min}: minimum spot price of the underlying asset so far observed
@{spot_max}: maximum spot price of the underlying asset so far observed
@{time}: time to maturity in years
@{rate}: annualized risk-free interest rate
@{cost_of_carry}: net cost of holding the underlying asset
@{volatility}: annualized volatility of the asset
@DESCRIPTION=OPT_FLOAT_STRK_LKBK determines the theoretical price of a floating-strike lookback option where the holder of the option may exercise on expiry at the most favourable price observed during the options life of the underlying asset.
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA

@CATEGORY=Finance
@FUNCTION=OPT_FORWARD_START
@SHORTDESC=theoretical price of forward start options
@SYNTAX=OPT_FORWARD_START(call_put_flag,spot,alpha,time_start,time,rate,volatility,cost_of_carry)
@ARGUMENTDESCRIPTION=@{call_put_flag}: 'c' for a call and 'p' for a put
@{spot}: spot price
@{alpha}: fraction setting the strike price at the future date @{time_start}
@{time_start}: time until the option starts in days
@{time}: time to maturity in days
@{rate}: annualized risk-free interest rate
@{volatility}: annualized volatility of the asset
@{cost_of_carry}: net cost of holding the underlying asset
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA

@CATEGORY=Finance
@FUNCTION=OPT_FRENCH
@SHORTDESC=theoretical price of a European option adjusted for trading day volatility
@SYNTAX=OPT_FRENCH(call_put_flag,spot,strike,time,ttime,rate,volatility,cost_of_carry)
@ARGUMENTDESCRIPTION=@{call_put_flag}: 'c' for a call and 'p' for a put
@{spot}: spot price
@{strike}: strike price
@{time}: ratio of the number of calendar days to exercise and the number of calendar days in the year
@{ttime}: ratio of the number of trading days to exercise and the number of trading days in the year
@{rate}: risk-free interest rate to the exercise date in percent
@{volatility}: annualized volatility of the asset in percent for the period through to the exercise date
@{cost_of_carry}: net cost of holding the underlying asset (for common stocks, the risk free rate less the dividend yield), defaults to 0
@DESCRIPTION=OPT_FRENCH values the theoretical price of a European option adjusted for trading day volatility, struck at @{strike} on an asset with spot price @{spot}.
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA

@CATEGORY=Finance
@FUNCTION=OPT_GARMAN_KOHLHAGEN
@SHORTDESC=theoretical price of a European currency option
@SYNTAX=OPT_GARMAN_KOHLHAGEN(call_put_flag,spot,strike,time,domestic_rate,foreign_rate,volatility)
@ARGUMENTDESCRIPTION=@{call_put_flag}: 'c' for a call and 'p' for a put
@{spot}: spot price
@{strike}: strike price
@{time}: number of days to exercise
@{domestic_rate}: domestic risk-free interest rate to the exercise date in percent
@{foreign_rate}: foreign risk-free interest rate to the exercise date in percent
@{volatility}: annualized volatility of the asset in percent for the period through to the exercise date
@DESCRIPTION=OPT_GARMAN_KOHLHAGEN values the theoretical price of a European currency option struck at @{strike} on an asset with spot price @{spot}.
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA

@CATEGORY=Finance
@FUNCTION=OPT_JUMP_DIFF
@SHORTDESC=theoretical price of an option according to the Jump Diffusion process
@SYNTAX=OPT_JUMP_DIFF(call_put_flag,spot,strike,time,rate,volatility,lambda,gamma)
@ARGUMENTDESCRIPTION=@{call_put_flag}: 'c' for a call and 'p' for a put
@{spot}: spot price
@{strike}: strike price
@{time}: time to maturity in years
@{rate}: the annualized rate of interest
@{volatility}: annualized volatility of the asset in percent for the period through to the exercise date
@{lambda}: expected number of 'jumps' per year
@{gamma}: proportion of volatility explained by the 'jumps'
@DESCRIPTION=OPT_JUMP_DIFF models the theoretical price of an option according to the Jump Diffusion process (Merton).
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA

@CATEGORY=Finance
@FUNCTION=OPT_MILTERSEN_SCHWARTZ
@SHORTDESC=theoretical price of options on commodities futures according to Miltersen & Schwartz
@SYNTAX=OPT_MILTERSEN_SCHWARTZ(call_put_flag,p_t,f_t,strike,t1,t2,v_s,v_e,v_f,rho_se,rho_sf,rho_ef,kappa_e,kappa_f)
@ARGUMENTDESCRIPTION=@{call_put_flag}: 'c' for a call and 'p' for a put
@{p_t}: zero coupon bond with expiry at option maturity
@{f_t}: futures price
@{strike}: strike price
@{t1}: time to maturity of the option
@{t2}: time to maturity of the underlying commodity futures contract
@{v_s}: volatility of the spot commodity price
@{v_e}: volatility of the future convenience yield
@{v_f}: volatility of the forward rate of interest
@{rho_se}: correlation between the spot commodity price and the convenience yield
@{rho_sf}: correlation between the spot commodity price and the forward interest rate
@{rho_ef}: correlation between the forward interest rate and the convenience yield
@{kappa_e}: speed of mean reversion of the convenience yield
@{kappa_f}: speed of mean reversion of the forward interest rate
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA

@CATEGORY=Finance
@FUNCTION=OPT_ON_OPTIONS
@SHORTDESC=theoretical price of options on options
@SYNTAX=OPT_ON_OPTIONS(type_flag,spot,strike1,strike2,time1,time2,rate,cost_of_carry,volatility)
@ARGUMENTDESCRIPTION=@{type_flag}: 'cc' for calls on calls, 'cp' for calls on puts, and so on for 'pc', and 'pp'
@{spot}: spot price
@{strike1}: strike price at which the option being valued is struck
@{strike2}: strike price at which the underlying option is struck
@{time1}: time in years to maturity of the option
@{time2}: time in years to the maturity of the underlying option
@{rate}: annualized risk-free interest rate
@{cost_of_carry}: net cost of holding the underlying asset of the underlying option
@{volatility}: annualized volatility in price of the underlying asset of the underlying option
@NOTE=For common stocks, @{cost_of_carry} is the risk free rate less the dividend yield. @{time2} ≥ @{time1}
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA

@CATEGORY=Finance
@FUNCTION=OPT_RGW
@SHORTDESC=theoretical price of an American option according to the Roll-Geske-Whaley approximation
@SYNTAX=OPT_RGW(spot,strike,time_payout,time_exp,rate,d,volatility)
@ARGUMENTDESCRIPTION=@{spot}: spot price
@{strike}: strike price
@{time_payout}: time to dividend payout
@{time_exp}: time to expiration
@{rate}: annualized interest rate
@{d}: amount of the dividend to be paid expressed in currency
@{volatility}: annualized volatility of the asset in percent for the period through to the exercise date
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA

@CATEGORY=Finance
@FUNCTION=OPT_SIMPLE_CHOOSER
@SHORTDESC=theoretical price of a simple chooser option
@SYNTAX=OPT_SIMPLE_CHOOSER(call_put_flag,spot,strike,time1,time2,cost_of_carry,volatility)
@ARGUMENTDESCRIPTION=@{call_put_flag}: 'c' for a call and 'p' for a put
@{spot}: spot price
@{strike}: strike price
@{time1}: time in years until the holder chooses a put or a call option
@{time2}: time in years until the chosen option expires
@{cost_of_carry}: net cost of holding the underlying asset
@{volatility}: annualized volatility of the asset
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA

@CATEGORY=Finance
@FUNCTION=OPT_SPREAD_APPROX
@SHORTDESC=theoretical price of a European option on the spread between two futures contracts
@SYNTAX=OPT_SPREAD_APPROX(call_put_flag,fut_price1,fut_price2,strike,time,rate,volatility1,volatility2,rho)
@ARGUMENTDESCRIPTION=@{call_put_flag}: 'c' for a call and 'p' for a put
@{fut_price1}: price of the first futures contract
@{fut_price2}: price of the second futures contract
@{strike}: strike price
@{time}: time to maturity in years
@{rate}: annualized risk-free interest rate
@{volatility1}: annualized volatility in price of the first underlying futures contract
@{volatility2}: annualized volatility in price of the second underlying futures contract
@{rho}: correlation between the two futures contracts
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA

@CATEGORY=Finance
@FUNCTION=OPT_TIME_SWITCH
@SHORTDESC=theoretical price of time switch options
@SYNTAX=OPT_TIME_SWITCH(call_put_flag,spot,strike,a,time,m,dt,rate,cost_of_carry,volatility)
@ARGUMENTDESCRIPTION=@{call_put_flag}: 'c' for a call and 'p' for a put
@{spot}: spot price
@{strike}: strike price
@{a}: amount received for each time period
@{time}: time to maturity in years
@{m}: number of time units the option has already met the condition
@{dt}: agreed upon discrete time period expressed as a fraction of a year
@{rate}: annualized risk-free interest rate
@{cost_of_carry}: net cost of holding the underlying asset
@{volatility}: annualized volatility of the asset
@DESCRIPTION=OPT_TIME_SWITCH models the theoretical price of time switch options. (Pechtl 1995). The holder receives @{a} * @{dt} for each period that the asset price was greater than @{strike} (for a call) or below it (for a put).
@SEEALSO=OPT_BS,OPT_BS_DELTA,OPT_BS_RHO,OPT_BS_THETA,OPT_BS_GAMMA

@CATEGORY=Finance
@FUNCTION=PMT
@SHORTDESC=payment for annuity
@SYNTAX=PMT(rate,nper,pv,fv,type)
@ARGUMENTDESCRIPTION=@{rate}: effective annual interest rate
@{nper}: number of periods
@{pv}: present value
@{fv}: future value
@{type}: payment type
@DESCRIPTION=PMT calculates the payment amount for an annuity.
@NOTE=If @{type} is 0, the default, payment is at the end of each period.  If @{type} is 1, payment is at the beginning of each period.
@SEEALSO=PV,FV,RATE,ISPMT

@CATEGORY=Finance
@FUNCTION=PPMT
@SHORTDESC=interest payment for period
@SYNTAX=PPMT(rate,per,nper,pv,fv,type)
@ARGUMENTDESCRIPTION=@{rate}: effective annual interest rate
@{per}: period number
@{nper}: number of periods
@{pv}: present value
@{fv}: future value
@{type}: payment type
@DESCRIPTION=PPMT calculates the principal part of an annuity's payment for period number @{per}.
@NOTE=If @{type} is 0, the default, payment is at the end of each period.  If @{type} is 1, payment is at the beginning of each period.
@SEEALSO=IPMT

@CATEGORY=Finance
@FUNCTION=PRICE
@SHORTDESC=price of a security
@SYNTAX=PRICE(settlement,maturity,rate,yield,redemption,frequency,basis)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{rate}: nominal annual interest rate
@{yield}: annual yield of security
@{redemption}: amount received at maturity
@{frequency}: number of interest payments per year
@{basis}: calendar basis
@DESCRIPTION=PRICE calculates the price per $100 face value of a security that pays periodic interest.
@NOTE=@{frequency} may be 1 (annual), 2 (semi-annual), or 4 (quarterly). If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=YIELD,DURATION

@CATEGORY=Finance
@FUNCTION=PRICEDISC
@SHORTDESC=discounted price
@SYNTAX=PRICEDISC(settlement,maturity,discount,redemption,basis)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{discount}: annual rate at which to discount
@{redemption}: amount received at maturity
@{basis}: calendar basis
@DESCRIPTION=PRICEDISC calculates the price per $100 face value of a bond that does not pay interest at maturity.
@NOTE=If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=PRICEMAT

@CATEGORY=Finance
@FUNCTION=PRICEMAT
@SHORTDESC=price at maturity
@SYNTAX=PRICEMAT(settlement,maturity,issue,discount,yield,basis)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{issue}: date of issue
@{discount}: annual rate at which to discount
@{yield}: annual yield of security
@{basis}: calendar basis
@DESCRIPTION=PRICEMAT calculates the price per $100 face value of a bond that pays interest at maturity.
@NOTE=If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=PRICEDISC

@CATEGORY=Finance
@FUNCTION=PV
@SHORTDESC=present value
@SYNTAX=PV(rate,nper,pmt,fv,type)
@ARGUMENTDESCRIPTION=@{rate}: effective interest rate per period
@{nper}: number of periods
@{pmt}: payment at each period
@{fv}: future value
@{type}: payment type
@DESCRIPTION=PV calculates the present value of @{fv} which is @{nper} periods into the future, assuming a periodic payment of @{pmt} and an interest rate of @{rate} per period.
@NOTE=If @{type} is 0, the default, payment is at the end of each period.  If @{type} is 1, payment is at the beginning of each period.
@SEEALSO=FV

@CATEGORY=Finance
@FUNCTION=RATE
@SHORTDESC=rate of investment
@SYNTAX=RATE(nper,pmt,pv,fv,type,guess)
@ARGUMENTDESCRIPTION=@{nper}: number of periods
@{pmt}: payment at each period
@{pv}: present value
@{fv}: future value
@{type}: payment type
@{guess}: an estimate of what the result should be
@DESCRIPTION=RATE calculates the rate of return.
@NOTE=If @{type} is 0, the default, payment is at the end of each period.  If @{type} is 1, payment is at the beginning of each period. The optional @{guess} is needed because there can be more than one valid result.  It defaults to 10%.
@SEEALSO=PV,FV

@CATEGORY=Finance
@FUNCTION=RECEIVED
@SHORTDESC=amount to be received at maturity
@SYNTAX=RECEIVED(settlement,maturity,investment,rate,basis)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{investment}: amount paid on settlement
@{rate}: nominal annual interest rate
@{basis}: calendar basis
@DESCRIPTION=RECEIVED calculates the amount to be received when a security matures.
@NOTE=If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=INTRATE

@CATEGORY=Finance
@FUNCTION=RRI
@SHORTDESC=equivalent interest rate for an investment increasing in value
@SYNTAX=RRI(p,pv,fv)
@ARGUMENTDESCRIPTION=@{p}: number of periods
@{pv}: present value
@{fv}: future value
@DESCRIPTION=RRI determines an equivalent interest rate for an investment that increases in value. The interest is compounded after each complete period.
@NOTE=If @{type} is 0, the default, payment is at the end of each period.  If @{type} is 1, payment is at the beginning of each period. Note that @{p} need not be an integer but for fractional value the calculated rate is only approximate.
@ODF=This function is OpenFormula compatible.
@SEEALSO=PV,FV,RATE

@CATEGORY=Finance
@FUNCTION=SLN
@SHORTDESC=depreciation of an asset
@SYNTAX=SLN(cost,salvage,life)
@ARGUMENTDESCRIPTION=@{cost}: initial cost of asset
@{salvage}: value after depreciation
@{life}: number of periods
@DESCRIPTION=SLN calculates the depreciation of an asset using the straight-line method.
@SEEALSO=DB,DDB,SYD

@CATEGORY=Finance
@FUNCTION=SYD
@SHORTDESC=sum-of-years depreciation
@SYNTAX=SYD(cost,salvage,life,period)
@ARGUMENTDESCRIPTION=@{cost}: initial cost of asset
@{salvage}: value after depreciation
@{life}: number of periods
@{period}: subject period
@DESCRIPTION=SYD calculates the depreciation of an asset using the sum-of-years method.
@SEEALSO=DB,DDB,SLN

@CATEGORY=Finance
@FUNCTION=TBILLEQ
@SHORTDESC=bond-equivalent yield for a treasury bill
@SYNTAX=TBILLEQ(settlement,maturity,discount)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{discount}: annual rate at which to discount
@DESCRIPTION=TBILLEQ calculates the bond-equivalent yield for a treasury bill.
@SEEALSO=TBILLPRICE,TBILLYIELD

@CATEGORY=Finance
@FUNCTION=TBILLPRICE
@SHORTDESC=price of a treasury bill
@SYNTAX=TBILLPRICE(settlement,maturity,discount)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{discount}: annual rate at which to discount
@DESCRIPTION=TBILLPRICE calculates the price per $100 face value for a treasury bill.
@SEEALSO=TBILLEQ,TBILLYIELD

@CATEGORY=Finance
@FUNCTION=TBILLYIELD
@SHORTDESC=yield of a treasury bill
@SYNTAX=TBILLYIELD(settlement,maturity,price)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{price}: price
@DESCRIPTION=TBILLYIELD calculates the yield of a treasury bill.
@SEEALSO=TBILLEQ,TBILLPRICE

@CATEGORY=Finance
@FUNCTION=VDB
@SHORTDESC=depreciation of an asset
@SYNTAX=VDB(cost,salvage,life,start_period,end_period,factor,no_switch)
@ARGUMENTDESCRIPTION=@{cost}: initial cost of asset
@{salvage}: value after depreciation
@{life}: number of periods
@{start_period}: first period to accumulate for
@{end_period}: last period to accumulate for
@{factor}: factor at which the balance declines
@{no_switch}: do not switch to straight-line depreciation
@DESCRIPTION=VDB calculates the depreciation of an asset for a given period range using the variable-rate declining balance method.
@NOTE=If @{no_switch} is FALSE, the calculation switches to straight-line depreciation when depreciation is greater than the declining balance calculation.
@SEEALSO=DB,DDB

@CATEGORY=Finance
@FUNCTION=XIRR
@SHORTDESC=internal rate of return
@SYNTAX=XIRR(values,dates,guess)
@ARGUMENTDESCRIPTION=@{values}: cash flow
@{dates}: dates of cash flow
@{guess}: an estimate of what the result should be
@DESCRIPTION=XIRR calculates the annualized internal rate of return of a cash flow at arbitrary points in time.  @{values} lists the payments (negative values) and receipts (positive values) with one value for each entry in @{dates}.
@NOTE=The optional @{guess} is needed because there can be more than one valid result.  It defaults to 10%.
@SEEALSO=IRR

@CATEGORY=Finance
@FUNCTION=XNPV
@SHORTDESC=net present value
@SYNTAX=XNPV(rate,values,dates)
@ARGUMENTDESCRIPTION=@{rate}: effective annual interest rate
@{values}: cash flow
@{dates}: dates of cash flow
@DESCRIPTION=XNPV calculates the net present value of a cash flow at irregular times.
@NOTE=If @{type} is 0, the default, payment is at the end of each period.  If @{type} is 1, payment is at the beginning of each period.
@SEEALSO=NPV

@CATEGORY=Finance
@FUNCTION=YIELD
@SHORTDESC=yield of a security
@SYNTAX=YIELD(settlement,maturity,rate,price,redemption,frequency,basis)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{rate}: nominal annual interest rate
@{price}: price of security
@{redemption}: amount received at maturity
@{frequency}: number of interest payments per year
@{basis}: calendar basis
@DESCRIPTION=YIELD calculates the yield of a security that pays periodic interest.
@NOTE=@{frequency} may be 1 (annual), 2 (semi-annual), or 4 (quarterly). If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=PRICE,DURATION

@CATEGORY=Finance
@FUNCTION=YIELDDISC
@SHORTDESC=yield of a discounted security
@SYNTAX=YIELDDISC(settlement,maturity,price,redemption,basis)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{price}: price of security
@{redemption}: amount received at maturity
@{basis}: calendar basis
@DESCRIPTION=YIELDDISC calculates the yield of a discounted security.
@NOTE=If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=PRICE,DURATION

@CATEGORY=Finance
@FUNCTION=YIELDMAT
@SHORTDESC=yield of a security
@SYNTAX=YIELDMAT(settlement,maturity,issue,rate,price,basis)
@ARGUMENTDESCRIPTION=@{settlement}: settlement date
@{maturity}: maturity date
@{issue}: date of issue
@{rate}: nominal annual interest rate
@{price}: price of security
@{basis}: calendar basis
@DESCRIPTION=YIELDMAT calculates the yield of a security for which the interest is paid at maturity date.
@NOTE=If @{basis} is 0, then the US 30/360 method is used. If @{basis} is 1, then actual number of days is used. If @{basis} is 2, then actual number of days is used within a month, but years are considered only 360 days. If @{basis} is 3, then actual number of days is used within a month, but years are always considered 365 days. If @{basis} is 4, then the European 30/360 method is used.
@SEEALSO=YIELDDISC,YIELD

@CATEGORY=Gnumeric
@FUNCTION=GNUMERIC_VERSION
@SHORTDESC=the current version of Gnumeric
@SYNTAX=GNUMERIC_VERSION()
@DESCRIPTION=GNUMERIC_VERSION returns the version of gnumeric as a string.

@CATEGORY=Information
@FUNCTION=CELL
@SHORTDESC=information of @{type} about @{cell}
@SYNTAX=CELL(type,cell)
@ARGUMENTDESCRIPTION=@{type}: string specifying the type of information requested
@{cell}: cell reference
@DESCRIPTION=@{type} specifies the type of information you want to obtain:
  address        		Returns the given cell reference as text.
  col            		Returns the number of the column in @{cell}.
  color          		Returns 0.
  contents       		Returns the contents of the cell in @{cell}.
  column         		Returns the number of the column in @{cell}.
  columnwidth    	Returns the column width.
  coord          		Returns the absolute address of @{cell}.
  datatype       	same as type
  filename       		Returns the name of the file of @{cell}.
  format         		Returns the code of the format of the cell.
  formulatype    	same as type
  locked         		Returns 1 if @{cell} is locked.
  parentheses    	Returns 1 if @{cell} contains a negative value
                 		and its format displays it with parentheses.
  prefix         		Returns a character indicating the horizontal
                 		alignment of @{cell}.
  prefixcharacter  	same as prefix
  protect        		Returns 1 if @{cell} is locked.
  row            		Returns the number of the row in @{cell}.
  sheetname      	Returns the name of the sheet of @{cell}.
  type           		Returns "l" if @{cell} contains a string, 
                 		"v" if it contains some other value, and 
                 		"b" if @{cell} is blank.
  value          		Returns the contents of the cell in @{cell}.
  width          		Returns the column width.
@EXCEL=This function is Excel compatible.
@SEEALSO=INDIRECT

@CATEGORY=Information
@FUNCTION=COUNTBLANK
@SHORTDESC=the number of blank cells in @{range}
@SYNTAX=COUNTBLANK(range)
@ARGUMENTDESCRIPTION=@{range}: a cell range
@EXCEL=This function is Excel compatible.
@SEEALSO=COUNT

@CATEGORY=Information
@FUNCTION=ERROR
@SHORTDESC=the error with the given @{name}
@SYNTAX=ERROR(name)
@ARGUMENTDESCRIPTION=@{name}: string
@SEEALSO=ISERROR

@CATEGORY=Information
@FUNCTION=ERROR.TYPE
@SHORTDESC=the type of @{error}
@SYNTAX=ERROR.TYPE(error)
@ARGUMENTDESCRIPTION=@{error}: an error
@DESCRIPTION=ERROR.TYPE returns an error number corresponding to the given error value.  The error numbers for error values are:

	#DIV/0!  		2
	#VALUE!  	3
	#REF!    		4
	#NAME?   	5
	#NUM!    	6
	#N/A     		7
@EXCEL=This function is Excel compatible.
@SEEALSO=ISERROR

@CATEGORY=Information
@FUNCTION=EXPRESSION
@SHORTDESC=expression in @{cell} as a string
@SYNTAX=EXPRESSION(cell)
@ARGUMENTDESCRIPTION=@{cell}: a cell reference
@NOTE=If @{cell} contains no expression, EXPRESSION returns empty.
@SEEALSO=TEXT

@CATEGORY=Information
@FUNCTION=GET.FORMULA
@SHORTDESC=the formula in @{cell} as a string
@SYNTAX=GET.FORMULA(cell)
@ARGUMENTDESCRIPTION=@{cell}: the referenced cell
@ODF=GET.FORMULA is the OpenFormula function FORMULA.
@SEEALSO=EXPRESSION,ISFORMULA

@CATEGORY=Information
@FUNCTION=GET.LINK
@SHORTDESC=the target of the hyperlink attached to @{cell} as a string
@SYNTAX=GET.LINK(cell)
@ARGUMENTDESCRIPTION=@{cell}: the referenced cell
@NOTE=The value return is not updated automatically when the link attached to @{cell} changes but requires a recalculation.
@SEEALSO=HYPERLINK

@CATEGORY=Information
@FUNCTION=GETENV
@SHORTDESC=the value of execution environment variable @{name}
@SYNTAX=GETENV(name)
@ARGUMENTDESCRIPTION=@{name}: the name of the environment variable
@NOTE=If a variable called @{name} does not exist, #N/A will be returned. Variable names are case sensitive.

@CATEGORY=Information
@FUNCTION=INFO
@SHORTDESC=information about the current operating environment according to @{type}
@SYNTAX=INFO(type)
@ARGUMENTDESCRIPTION=@{type}: string giving the type of information requested
@DESCRIPTION=INFO returns information about the current operating environment according to @{type}:
  memavail     		Returns the amount of memory available, bytes.
  memused      	Returns the amount of memory used (bytes).
  numfile      		Returns the number of active worksheets.
  osversion    		Returns the operating system version.
  recalc       		Returns the recalculation mode (automatic).
  release      		Returns the version of Gnumeric as text.
  system       		Returns the name of the environment.
  totmem       		Returns the amount of total memory available.
@EXCEL=This function is Excel compatible.
@SEEALSO=CELL

@CATEGORY=Information
@FUNCTION=ISBLANK
@SHORTDESC=TRUE if @{value} is blank
@SYNTAX=ISBLANK(value)
@ARGUMENTDESCRIPTION=@{value}: a value
@DESCRIPTION=This function checks if a value is blank.  Empty cells are blank, but empty strings are not.
@EXCEL=This function is Excel compatible.

@CATEGORY=Information
@FUNCTION=ISERR
@SHORTDESC=TRUE if @{value} is any error value except #N/A
@SYNTAX=ISERR(value)
@ARGUMENTDESCRIPTION=@{value}: a value
@EXCEL=This function is Excel compatible.
@SEEALSO=ISERROR

@CATEGORY=Information
@FUNCTION=ISERROR
@SHORTDESC=TRUE if @{value} is any error value
@SYNTAX=ISERROR(value)
@ARGUMENTDESCRIPTION=@{value}: a value
@EXCEL=This function is Excel compatible.
@SEEALSO=ISERR,ISNA

@CATEGORY=Information
@FUNCTION=ISEVEN
@SHORTDESC=TRUE if @{n} is even
@SYNTAX=ISEVEN(n)
@ARGUMENTDESCRIPTION=@{n}: number
@EXCEL=This function is Excel compatible.
@SEEALSO=ISODD

@CATEGORY=Information
@FUNCTION=ISFORMULA
@SHORTDESC=TRUE if @{cell} contains a formula
@SYNTAX=ISFORMULA(cell)
@ARGUMENTDESCRIPTION=@{cell}: the referenced cell
@ODF=ISFORMULA is OpenFormula compatible.
@SEEALSO=GET.FORMULA

@CATEGORY=Information
@FUNCTION=ISLOGICAL
@SHORTDESC=TRUE if @{value} is a logical value
@SYNTAX=ISLOGICAL(value)
@ARGUMENTDESCRIPTION=@{value}: a value
@DESCRIPTION=This function checks if a value is either TRUE or FALSE.
@EXCEL=This function is Excel compatible.

@CATEGORY=Information
@FUNCTION=ISNA
@SHORTDESC=TRUE if @{value} is the #N/A error value
@SYNTAX=ISNA(value)
@ARGUMENTDESCRIPTION=@{value}: a value
@EXCEL=This function is Excel compatible.
@SEEALSO=NA

@CATEGORY=Information
@FUNCTION=ISNONTEXT
@SHORTDESC=TRUE if @{value} is not text
@SYNTAX=ISNONTEXT(value)
@ARGUMENTDESCRIPTION=@{value}: a value
@EXCEL=This function is Excel compatible.
@SEEALSO=ISTEXT

@CATEGORY=Information
@FUNCTION=ISNUMBER
@SHORTDESC=TRUE if @{value} is a number
@SYNTAX=ISNUMBER(value)
@ARGUMENTDESCRIPTION=@{value}: a value
@DESCRIPTION=This function checks if a value is a number.  Neither TRUE nor FALSE are numbers for this purpose.
@EXCEL=This function is Excel compatible.

@CATEGORY=Information
@FUNCTION=ISODD
@SHORTDESC=TRUE if @{n} is odd
@SYNTAX=ISODD(n)
@ARGUMENTDESCRIPTION=@{n}: number
@EXCEL=This function is Excel compatible.
@SEEALSO=ISEVEN

@CATEGORY=Information
@FUNCTION=ISREF
@SHORTDESC=TRUE if @{value} is a reference
@SYNTAX=ISREF(value,…)
@ARGUMENTDESCRIPTION=@{value}: a value
@DESCRIPTION=This function checks if a value is a cell reference.
@EXCEL=This function is Excel compatible.

@CATEGORY=Information
@FUNCTION=ISTEXT
@SHORTDESC=TRUE if @{value} is text
@SYNTAX=ISTEXT(value)
@ARGUMENTDESCRIPTION=@{value}: a value
@EXCEL=This function is Excel compatible.
@SEEALSO=ISNONTEXT

@CATEGORY=Information
@FUNCTION=N
@SHORTDESC=@{text} converted to a number
@SYNTAX=N(text)
@ARGUMENTDESCRIPTION=@{text}: string
@NOTE=If @{text} contains non-numerical text, 0 is returned.
@EXCEL=This function is Excel compatible.

@CATEGORY=Information
@FUNCTION=NA
@SHORTDESC=the error value #N/A
@SYNTAX=NA()
@EXCEL=This function is Excel compatible.
@SEEALSO=ISNA

@CATEGORY=Information
@FUNCTION=TYPE
@SHORTDESC=a number indicating the data type of @{value}
@SYNTAX=TYPE(value)
@ARGUMENTDESCRIPTION=@{value}: a value
@DESCRIPTION=TYPE returns a number indicating the data type of @{value}:
1  	= number
2  	= text
4  	= boolean
16 	= error
64 	= array
@EXCEL=This function is Excel compatible.

@CATEGORY=Logic
@FUNCTION=AND
@SHORTDESC=logical conjunction
@SYNTAX=AND(b0,b1,…)
@ARGUMENTDESCRIPTION=@{b0}: logical value
@{b1}: logical value
@DESCRIPTION=AND calculates the logical conjunction of its arguments @{b0},@{b1},...
@NOTE=If an argument is numerical, zero is considered FALSE and anything else TRUE. Strings and empty values are ignored. If no logical values are provided, then the error #VALUE! is returned. This function is strict: if any argument is an error, the result will be the first such error.
@EXCEL=This function is Excel compatible.
@SEEALSO=OR,NOT,IF

@CATEGORY=Logic
@FUNCTION=FALSE
@SHORTDESC=the value FALSE
@SYNTAX=FALSE()
@DESCRIPTION=FALSE returns the value FALSE.
@EXCEL=This function is Excel compatible.
@SEEALSO=TRUE,IF

@CATEGORY=Logic
@FUNCTION=IF
@SHORTDESC=conditional expression
@SYNTAX=IF(cond,trueval,falseval)
@ARGUMENTDESCRIPTION=@{cond}: condition
@{trueval}: value to use if condition is true
@{falseval}: value to use if condition is false
@DESCRIPTION=This function first evaluates the condition.  If the result is true, it will then evaluate and return the second argument.  Otherwise, it will evaluate and return the last argument.
@SEEALSO=AND,OR,XOR,NOT,IFERROR

@CATEGORY=Logic
@FUNCTION=IFERROR
@SHORTDESC=test for error
@SYNTAX=IFERROR(x,y)
@ARGUMENTDESCRIPTION=@{x}: value to test for error
@{y}: alternate value
@DESCRIPTION=This function returns the first value, unless that is an error, in which case it returns the second.
@SEEALSO=IF,ISERROR

@CATEGORY=Logic
@FUNCTION=IFNA
@SHORTDESC=test for #N/A error
@SYNTAX=IFNA(x,y)
@ARGUMENTDESCRIPTION=@{x}: value to test for #N/A error
@{y}: alternate value
@DESCRIPTION=This function returns the first value, unless that is #N/A, in which case it returns the second.
@SEEALSO=IF,ISERROR

@CATEGORY=Logic
@FUNCTION=IFS
@SHORTDESC=multi-branch conditional
@SYNTAX=IFS(cond1,value1,cond2,value2,…)
@ARGUMENTDESCRIPTION=@{cond1}: condition
@{value1}: value if @{condition1} is true
@{cond2}: condition
@{value2}: value if @{condition2} is true
@DESCRIPTION=This function returns the value after the first true conditional.  If no conditional is true, #VALUE! is returned.
@SEEALSO=IF

@CATEGORY=Logic
@FUNCTION=NOT
@SHORTDESC=logical negation
@SYNTAX=NOT(b)
@ARGUMENTDESCRIPTION=@{b}: logical value
@DESCRIPTION=NOT calculates the logical negation of its argument.
@NOTE=If the argument is numerical, zero is considered FALSE and anything else TRUE. Strings and empty values are ignored.
@EXCEL=This function is Excel compatible.
@SEEALSO=AND,OR,IF

@CATEGORY=Logic
@FUNCTION=OR
@SHORTDESC=logical disjunction
@SYNTAX=OR(b0,b1,…)
@ARGUMENTDESCRIPTION=@{b0}: logical value
@{b1}: logical value
@DESCRIPTION=OR calculates the logical disjunction of its arguments @{b0},@{b1},...
@NOTE=If an argument is numerical, zero is considered FALSE and anything else TRUE. Strings and empty values are ignored. If no logical values are provided, then the error #VALUE! is returned. This function is strict: if any argument is an error, the result will be the first such error.
@EXCEL=This function is Excel compatible.
@SEEALSO=AND,XOR,NOT,IF

@CATEGORY=Logic
@FUNCTION=SWITCH
@SHORTDESC=multi-branch selector
@SYNTAX=SWITCH(ref,choice1,value1,choice2,value2,…)
@ARGUMENTDESCRIPTION=@{ref}: value
@{choice1}: first choice value
@{value1}: first result value
@{choice2}: second choice value
@{value2}: second result value
@DESCRIPTION=This function compares the reference value, @{ref}, against the choice values, @{choice1} etc., and returns the corresponding result value when it finds a match.  The choices may be followed by a default value to use.  If there are no choices that match and no default value, #N/A is return.
@SEEALSO=IF,IFS

@CATEGORY=Logic
@FUNCTION=TRUE
@SHORTDESC=the value TRUE
@SYNTAX=TRUE()
@DESCRIPTION=TRUE returns the value TRUE.
@EXCEL=This function is Excel compatible.
@SEEALSO=FALSE,IF

@CATEGORY=Logic
@FUNCTION=XOR
@SHORTDESC=logical exclusive disjunction
@SYNTAX=XOR(b0,b1,…)
@ARGUMENTDESCRIPTION=@{b0}: logical value
@{b1}: logical value
@DESCRIPTION=XOR calculates the logical exclusive disjunction of its arguments @{b0},@{b1},...
@NOTE=If an argument is numerical, zero is considered FALSE and anything else TRUE. Strings and empty values are ignored. If no logical values are provided, then the error #VALUE! is returned. This function is strict: if any argument is an error, the result will be the first such error.
@SEEALSO=OR,AND,NOT,IF

@CATEGORY=Lookup
@FUNCTION=ADDRESS
@SHORTDESC=cell address as text
@SYNTAX=ADDRESS(row_num,col_num,abs_num,a1,text)
@ARGUMENTDESCRIPTION=@{row_num}: row number
@{col_num}: column number
@{abs_num}: 1 for an absolute, 2 for a row absolute and column relative, 3 for a row relative and column absolute, and 4 for a relative reference; defaults to 1
@{a1}: if TRUE, an A1-style reference is provided, otherwise an R1C1-style reference; defaults to TRUE
@{text}: name of the worksheet, defaults to no sheet
@NOTE=If @{row_num} or @{col_num} is less than one, ADDRESS returns #VALUE! If @{abs_num} is greater than 4 ADDRESS returns #VALUE!
@SEEALSO=COLUMNNUMBER

@CATEGORY=Lookup
@FUNCTION=AREAS
@SHORTDESC=number of areas in @{reference}
@SYNTAX=AREAS(reference,…)
@ARGUMENTDESCRIPTION=@{reference}: range
@SEEALSO=ADDRESS,INDEX,INDIRECT,OFFSET

@CATEGORY=Lookup
@FUNCTION=ARRAY
@SHORTDESC=vertical array of the arguments
@SYNTAX=ARRAY(v,…)
@ARGUMENTDESCRIPTION=@{v}: value
@SEEALSO=TRANSPOSE

@CATEGORY=Lookup
@FUNCTION=CHOOSE
@SHORTDESC=the (@{index}+1)th argument
@SYNTAX=CHOOSE(index,value1,value2,…)
@ARGUMENTDESCRIPTION=@{index}: positive number
@{value1}: first value
@{value2}: second value
@DESCRIPTION=CHOOSE returns its (@{index}+1)th argument.
@NOTE=@{index} is truncated to an integer. If @{index} < 1 or the truncated @{index} > number of values, CHOOSE returns #VALUE!
@SEEALSO=IF

@CATEGORY=Lookup
@FUNCTION=COLUMN
@SHORTDESC=vector of column numbers
@SYNTAX=COLUMN(x)
@ARGUMENTDESCRIPTION=@{x}: reference, defaults to the position of the current expression
@DESCRIPTION=COLUMN function returns a Nx1 array containing the sequence of integers from the first column to the last column of @{x}.
@NOTE=If @{x} is neither an array nor a reference nor a range, returns #VALUE!
@SEEALSO=COLUMNS,ROW,ROWS

@CATEGORY=Lookup
@FUNCTION=COLUMNNUMBER
@SHORTDESC=column number for the given column called @{name}
@SYNTAX=COLUMNNUMBER(name)
@ARGUMENTDESCRIPTION=@{name}: column name such as "IV"
@NOTE=If @{name} is invalid, COLUMNNUMBER returns #VALUE!
@SEEALSO=ADDRESS

@CATEGORY=Lookup
@FUNCTION=COLUMNS
@SHORTDESC=number of columns in @{reference}
@SYNTAX=COLUMNS(reference)
@ARGUMENTDESCRIPTION=@{reference}: array or area
@NOTE=If @{reference} is neither an array nor a reference nor a range, COLUMNS returns #VALUE!
@SEEALSO=COLUMN,ROW,ROWS

@CATEGORY=Lookup
@FUNCTION=FLIP
@SHORTDESC=@{matrix} flipped
@SYNTAX=FLIP(matrix,vertical)
@ARGUMENTDESCRIPTION=@{matrix}: range
@{vertical}: if true, @{matrix} is flipped vertically, otherwise horizontally; defaults to TRUE
@SEEALSO=TRANSPOSE

@CATEGORY=Lookup
@FUNCTION=HLOOKUP
@SHORTDESC=search the first row of @{range} for @{value}
@SYNTAX=HLOOKUP(value,range,row,approximate,as_index)
@ARGUMENTDESCRIPTION=@{value}: search value
@{range}: range to search
@{row}: 1-based row offset indicating the return values 
@{approximate}: if false, an exact match of @{value} must be found; defaults to TRUE
@{as_index}: if true, the 0-based column offset is returned; defaults to FALSE
@DESCRIPTION=HLOOKUP function finds the row in @{range} that has a first cell similar to @{value}.  If @{approximate} is not true it finds the column with an exact equality. If @{approximate} is true, it finds the last column with first value less than or equal to @{value}. If @{as_index} is true the 0-based column offset is returned.
@NOTE=If @{approximate} is true, then the values must be sorted in order of ascending value. HLOOKUP returns #REF! if @{row} falls outside @{range}.
@SEEALSO=VLOOKUP

@CATEGORY=Lookup
@FUNCTION=HYPERLINK
@SHORTDESC=second or first arguments
@SYNTAX=HYPERLINK(link_location,label)
@ARGUMENTDESCRIPTION=@{link_location}: string
@{label}: string, optional
@DESCRIPTION=HYPERLINK function currently returns its 2nd argument, or if that is omitted the 1st argument.

@CATEGORY=Lookup
@FUNCTION=INDEX
@SHORTDESC=reference to a cell in the given @{array}
@SYNTAX=INDEX(array,row,col,area,…)
@ARGUMENTDESCRIPTION=@{array}: cell or inline array
@{row}: desired row, defaults to 1
@{col}: desired column, defaults to 1
@{area}: from which area to select a cell, defaults to 1
@DESCRIPTION=INDEX gives a reference to a cell in the given @{array}. The cell is selected by @{row} and @{col}, which count the rows and columns in the array.
@NOTE=If the reference falls outside the range of @{array}, INDEX returns #REF!

@CATEGORY=Lookup
@FUNCTION=INDIRECT
@SHORTDESC=contents of the cell pointed to by the @{ref_text} string
@SYNTAX=INDIRECT(ref_text,format)
@ARGUMENTDESCRIPTION=@{ref_text}: textual reference
@{format}: if true, @{ref_text} is given in A1-style, otherwise it is given in R1C1 style; defaults to true
@NOTE=If @{ref_text} is not a valid reference in the style determined by @{format}, INDIRECT returns #REF!
@SEEALSO=AREAS,INDEX,CELL

@CATEGORY=Lookup
@FUNCTION=LOOKUP
@SHORTDESC=contents of @{vector2} at the corresponding location to @{value} in @{vector1}
@SYNTAX=LOOKUP(value,vector1,vector2)
@ARGUMENTDESCRIPTION=@{value}: value to look up
@{vector1}: range to search:
@{vector2}: range of return values
@DESCRIPTION=If  @{vector1} has more rows than columns, LOOKUP searches the first row of @{vector1}, otherwise the first column. If @{vector2} is omitted the return value is taken from the last row or column of @{vector1}.
@NOTE=If LOOKUP can't find @{value} it uses the largest value less than @{value}. The data must be sorted. If @{value} is smaller than the first value it returns #N/A. If the corresponding location does not exist in @{vector2}, it returns #N/A.
@SEEALSO=VLOOKUP,HLOOKUP

@CATEGORY=Lookup
@FUNCTION=MATCH
@SHORTDESC=the index of @{seek} in @{vector}
@SYNTAX=MATCH(seek,vector,type)
@ARGUMENTDESCRIPTION=@{seek}: value to find
@{vector}: n by 1 or 1 by n range to be searched
@{type}: +1 (the default) to find the largest value ≤ @{seek}, 0 to find the first value = @{seek}, or -1 to find the smallest value ≥ @{seek}
@DESCRIPTION=MATCH searches @{vector} for @{seek} and returns the 1-based index.
@NOTE=For @{type} = -1 the data must be sorted in descending order; for @{type} = +1 the data must be sorted in ascending order. If @{seek} could not be found, #N/A is returned. If @{vector} is neither n by 1 nor 1 by n, #N/A is returned.
@SEEALSO=LOOKUP

@CATEGORY=Lookup
@FUNCTION=OFFSET
@SHORTDESC=an offset cell range
@SYNTAX=OFFSET(range,row,col,height,width)
@ARGUMENTDESCRIPTION=@{range}: reference or range
@{row}: number of rows to offset @{range}
@{col}: number of columns to offset @{range}
@{height}: height of the offset range, defaults to height of @{range}
@{width}: width of the offset range, defaults to width of @{range}
@DESCRIPTION=OFFSET returns the cell range starting at offset (@{row},@{col}) from @{range} of height @{height} and width @{width}.
@NOTE=If @{range} is neither a reference nor a range, OFFSET returns #VALUE!
@SEEALSO=COLUMN,COLUMNS,ROWS,INDEX,INDIRECT,ADDRESS

@CATEGORY=Lookup
@FUNCTION=ROW
@SHORTDESC=vector of row numbers
@SYNTAX=ROW(x)
@ARGUMENTDESCRIPTION=@{x}: reference, defaults to the position of the current expression
@DESCRIPTION=ROW function returns a 1xN array containing the sequence of integers from the first row to the last row of @{x}.
@NOTE=If @{x} is neither an array nor a reference nor a range, returns #VALUE!
@SEEALSO=COLUMN,COLUMNS,ROWS

@CATEGORY=Lookup
@FUNCTION=ROWS
@SHORTDESC=number of rows in @{reference}
@SYNTAX=ROWS(reference)
@ARGUMENTDESCRIPTION=@{reference}: array, reference, or range
@NOTE=If @{reference} is neither an array nor a reference nor a range, ROWS returns #VALUE!
@SEEALSO=COLUMN,COLUMNS,ROW

@CATEGORY=Lookup
@FUNCTION=SHEET
@SHORTDESC=sheet number of @{reference}
@SYNTAX=SHEET(reference)
@ARGUMENTDESCRIPTION=@{reference}: reference or literal sheet name, defaults to the current sheet
@NOTE=If @{reference} is neither a reference nor a literal sheet name, SHEET returns #VALUE!
@SEEALSO=SHEETS,ROW,COLUMNNUMBER

@CATEGORY=Lookup
@FUNCTION=SHEETS
@SHORTDESC=number of sheets in @{reference}
@SYNTAX=SHEETS(reference)
@ARGUMENTDESCRIPTION=@{reference}: array, reference, or range, defaults to the maximum range
@NOTE=If @{reference} is neither an array nor a reference nor a range, SHEETS returns #VALUE!
@SEEALSO=COLUMNS,ROWS

@CATEGORY=Lookup
@FUNCTION=SORT
@SHORTDESC=sorted list of numbers as vertical array
@SYNTAX=SORT(ref,order)
@ARGUMENTDESCRIPTION=@{ref}: list of numbers
@{order}: 0 (descending order) or 1 (ascending order); defaults to 0
@NOTE=Strings, booleans, and empty cells are ignored.
@SEEALSO=ARRAY

@CATEGORY=Lookup
@FUNCTION=TRANSPOSE
@SHORTDESC=the transpose of @{matrix}
@SYNTAX=TRANSPOSE(matrix)
@ARGUMENTDESCRIPTION=@{matrix}: range
@SEEALSO=FLIP,MMULT

@CATEGORY=Lookup
@FUNCTION=VLOOKUP
@SHORTDESC=search the first column of @{range} for @{value}
@SYNTAX=VLOOKUP(value,range,column,approximate,as_index)
@ARGUMENTDESCRIPTION=@{value}: search value
@{range}: range to search
@{column}: 1-based column offset indicating the return values
@{approximate}: if false, an exact match of @{value} must be found; defaults to TRUE
@{as_index}: if true, the 0-based row offset is returned; defaults to FALSE
@DESCRIPTION=VLOOKUP function finds the row in @{range} that has a first cell similar to @{value}.  If @{approximate} is not true it finds the row with an exact equality. If @{approximate} is true, it finds the last row with first value less than or equal to @{value}. If @{as_index} is true the 0-based row offset is returned.
@NOTE=If @{approximate} is true, then the values must be sorted in order of ascending value. VLOOKUP returns #REF! if @{column} falls outside @{range}.
@SEEALSO=HLOOKUP

@CATEGORY=Mathematics
@FUNCTION=ABS
@SHORTDESC=absolute value
@SYNTAX=ABS(x)
@ARGUMENTDESCRIPTION=@{x}: number
@DESCRIPTION=ABS gives the absolute value of @{x}, i.e. the non-negative number of the same magnitude as @{x}.
@EXCEL=This function is Excel compatible.
@SEEALSO=CEIL,CEILING,FLOOR,INT,MOD

@CATEGORY=Mathematics
@FUNCTION=ACOS
@SHORTDESC=the arc cosine of @{x}
@SYNTAX=ACOS(x)
@ARGUMENTDESCRIPTION=@{x}: number
@EXCEL=This function is Excel compatible.
@SEEALSO=COS,SIN,DEGREES,RADIANS

@CATEGORY=Mathematics
@FUNCTION=ACOSH
@SHORTDESC=the hyperbolic arc cosine of @{x}
@SYNTAX=ACOSH(x)
@ARGUMENTDESCRIPTION=@{x}: number
@EXCEL=This function is Excel compatible.
@SEEALSO=ACOS,ASINH

@CATEGORY=Mathematics
@FUNCTION=ACOT
@SHORTDESC=inverse cotangent of @{x}
@SYNTAX=ACOT(x)
@ARGUMENTDESCRIPTION=@{x}: value
@SEEALSO=COT,TAN

@CATEGORY=Mathematics
@FUNCTION=ACOTH
@SHORTDESC=the inverse hyperbolic cotangent of @{x}
@SYNTAX=ACOTH(x)
@ARGUMENTDESCRIPTION=@{x}: number
@SEEALSO=COTH,TANH

@CATEGORY=Mathematics
@FUNCTION=AGM
@SHORTDESC=the arithmetic-geometric mean
@SYNTAX=AGM(a,b)
@ARGUMENTDESCRIPTION=@{a}: value
@{b}: value
@DESCRIPTION=AGM computes the arithmetic-geometric mean of the two values.
@SEEALSO=AVERAGE,GEOMEAN

@CATEGORY=Mathematics
@FUNCTION=ARABIC
@SHORTDESC=the Roman numeral @{roman} as number
@SYNTAX=ARABIC(roman)
@ARGUMENTDESCRIPTION=@{roman}: Roman numeral
@DESCRIPTION=Any Roman symbol to the left of a larger symbol (directly or indirectly) reduces the final value by the symbol amount, otherwise, it increases the final amount by the symbol's amount.
@ODF=This function is OpenFormula compatible.
@SEEALSO=ROMAN

@CATEGORY=Mathematics
@FUNCTION=ASIN
@SHORTDESC=the arc sine of @{x}
@SYNTAX=ASIN(x)
@ARGUMENTDESCRIPTION=@{x}: number
@DESCRIPTION=ASIN calculates the arc sine of @{x}; that is the value whose sine is @{x}.
@NOTE=If @{x} falls outside the range -1 to 1, ASIN returns #NUM!
@EXCEL=This function is Excel compatible.
@SEEALSO=SIN,COS,ASINH,DEGREES,RADIANS

@CATEGORY=Mathematics
@FUNCTION=ASINH
@SHORTDESC=the inverse hyperbolic sine of @{x}
@SYNTAX=ASINH(x)
@ARGUMENTDESCRIPTION=@{x}: number
@DESCRIPTION=ASINH calculates the inverse hyperbolic sine of @{x}; that is the value whose hyperbolic sine is @{x}.
@EXCEL=This function is Excel compatible.
@SEEALSO=ASIN,ACOSH,SIN,COS

@CATEGORY=Mathematics
@FUNCTION=ATAN
@SHORTDESC=the arc tangent of @{x}
@SYNTAX=ATAN(x)
@ARGUMENTDESCRIPTION=@{x}: number
@DESCRIPTION=ATAN calculates the arc tangent of @{x}; that is the value whose tangent is @{x}.
@NOTE=The result will be between −π/2 and +π/2.
@EXCEL=This function is Excel compatible.
@SEEALSO=TAN,COS,SIN,DEGREES,RADIANS

@CATEGORY=Mathematics
@FUNCTION=ATAN2
@SHORTDESC=the arc tangent of the ratio @{y}/@{x}
@SYNTAX=ATAN2(x,y)
@ARGUMENTDESCRIPTION=@{x}: x-coordinate
@{y}: y-coordinate
@DESCRIPTION=ATAN2 calculates the direction from the origin to the point (@{x},@{y}) as an angle from the x-axis in radians.
@NOTE=The result will be between −π and +π. The order of the arguments may be unexpected.
@EXCEL=This function is Excel compatible.
@ODF=This function is OpenFormula compatible.
@SEEALSO=ATAN,ATANH,COS,SIN

@CATEGORY=Mathematics
@FUNCTION=ATANH
@SHORTDESC=the inverse hyperbolic tangent of @{x}
@SYNTAX=ATANH(x)
@ARGUMENTDESCRIPTION=@{x}: number
@DESCRIPTION=ATANH calculates the inverse hyperbolic tangent of @{x}; that is the value whose hyperbolic tangent is @{x}.
@NOTE=If the absolute value of @{x} is greater than 1.0, ATANH returns #NUM!
@EXCEL=This function is Excel compatible.
@SEEALSO=ATAN,COS,SIN

@CATEGORY=Mathematics
@FUNCTION=AVERAGEIF
@SHORTDESC=average of the cells in @{actual range} for which the corresponding cells in the range meet the given @{criteria}
@SYNTAX=AVERAGEIF(range,criteria,actual_range)
@ARGUMENTDESCRIPTION=@{range}: cell area
@{criteria}: condition for a cell to be included
@{actual_range}: cell area, defaults to @{range}
@EXCEL=This function is Excel compatible.
@SEEALSO=SUMIF,COUNTIF

@CATEGORY=Mathematics
@FUNCTION=AVERAGEIFS
@SHORTDESC=average of the cells in @{actual_range} for which the corresponding cells in the range meet the given criteria
@SYNTAX=AVERAGEIFS(actual_range,range1,criteria1,…)
@ARGUMENTDESCRIPTION=@{actual_range}: cell area
@{range1}: cell area
@{criteria1}: condition for a cell to be included
@EXCEL=This function is Excel compatible.
@SEEALSO=AVERAGE,AVERAGEIF

@CATEGORY=Mathematics
@FUNCTION=BETA
@SHORTDESC=Euler beta function
@SYNTAX=BETA(x,y)
@ARGUMENTDESCRIPTION=@{x}: number
@{y}: number
@DESCRIPTION=BETA function returns the value of the Euler beta function extended to all real numbers except 0 and negative integers.
@NOTE=If @{x}, @{y}, or (@{x} + @{y}) are non-positive integers, BETA returns #NUM!
@SEEALSO=BETALN,GAMMALN

@CATEGORY=Mathematics
@FUNCTION=BETALN
@SHORTDESC=natural logarithm of the absolute value of the Euler beta function
@SYNTAX=BETALN(x,y)
@ARGUMENTDESCRIPTION=@{x}: number
@{y}: number
@DESCRIPTION=BETALN function returns the natural logarithm of the absolute value of the Euler beta function extended to all real numbers except 0 and negative integers.
@NOTE=If @{x}, @{y}, or (@{x} + @{y}) are non-positive integers, BETALN returns #NUM!
@SEEALSO=BETA,GAMMALN

@CATEGORY=Mathematics
@FUNCTION=CEIL
@SHORTDESC=smallest integer larger than or equal to @{x}
@SYNTAX=CEIL(x)
@ARGUMENTDESCRIPTION=@{x}: number
@DESCRIPTION=CEIL(@{x}) is the smallest integer that is at least as large as @{x}.
@ODF=This function is the OpenFormula function CEILING(@{x}).
@SEEALSO=CEILING,FLOOR,ABS,INT,MOD

@CATEGORY=Mathematics
@FUNCTION=CEILING
@SHORTDESC=nearest multiple of @{significance} whose absolute value is at least ABS(@{x})
@SYNTAX=CEILING(x,significance)
@ARGUMENTDESCRIPTION=@{x}: number
@{significance}: base multiple (defaults to 1 for @{x} > 0 and -1 for @{x} < 0)
@DESCRIPTION=CEILING(@{x},@{significance}) is the nearest multiple of @{significance} whose absolute value is at least ABS(@{x}).
@NOTE=If @{x} or @{significance} is non-numeric, CEILING returns a #VALUE! error. If @{x} and @{significance} have different signs, CEILING returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@ODF=CEILING(@{x}) is exported to ODF as CEILING(@{x},SIGN(@{x}),1). CEILING(@{x},@{significance}) is the OpenFormula function CEILING(@{x},@{significance},1).
@SEEALSO=CEIL,FLOOR,ABS,INT,MOD

@CATEGORY=Mathematics
@FUNCTION=CHOLESKY
@SHORTDESC=the Cholesky decomposition of the symmetric positive-definite @{matrix}
@SYNTAX=CHOLESKY(matrix)
@ARGUMENTDESCRIPTION=@{matrix}: a symmetric positive definite matrix
@NOTE=If the Cholesky-Banachiewicz algorithm applied to @{matrix} fails, Cholesky returns #NUM! If @{matrix} does not contain an equal number of columns and rows, CHOLESKY returns #VALUE!
@SEEALSO=MINVERSE,MMULT,MDETERM

@CATEGORY=Mathematics
@FUNCTION=COMBIN
@SHORTDESC=binomial coefficient
@SYNTAX=COMBIN(n,k)
@ARGUMENTDESCRIPTION=@{n}: non-negative integer
@{k}: non-negative integer
@DESCRIPTION=COMBIN returns the binomial coefficient "@{n} choose @{k}", the number of @{k}-combinations of an @{n}-element set without repetition.
@NOTE=If @{n} is less than @{k} COMBIN returns #NUM!
@EXCEL=This function is Excel compatible.
@ODF=This function is OpenFormula compatible.

@CATEGORY=Mathematics
@FUNCTION=COMBINA
@SHORTDESC=the number of @{k}-combinations of an @{n}-element set with repetition
@SYNTAX=COMBINA(n,k)
@ARGUMENTDESCRIPTION=@{n}: non-negative integer
@{k}: non-negative integer
@ODF=This function is OpenFormula compatible.
@SEEALSO=COMBIN

@CATEGORY=Mathematics
@FUNCTION=COS
@SHORTDESC=the cosine of @{x}
@SYNTAX=COS(x)
@ARGUMENTDESCRIPTION=@{x}: angle in radians
@DESCRIPTION=This function is Excel compatible.
@SEEALSO=SIN,TAN,SINH,COSH,TANH,RADIANS,DEGREES

@CATEGORY=Mathematics
@FUNCTION=COSH
@SHORTDESC=the hyperbolic cosine of @{x}
@SYNTAX=COSH(x)
@ARGUMENTDESCRIPTION=@{x}: number
@EXCEL=This function is Excel compatible.
@SEEALSO=SIN,TAN,SINH,COSH,TANH

@CATEGORY=Mathematics
@FUNCTION=COSPI
@SHORTDESC=the cosine of Pi*@{x}
@SYNTAX=COSPI(x)
@ARGUMENTDESCRIPTION=@{x}: number of half turns
@SEEALSO=COS

@CATEGORY=Mathematics
@FUNCTION=COT
@SHORTDESC=the cotangent of @{x}
@SYNTAX=COT(x)
@ARGUMENTDESCRIPTION=@{x}: number
@SEEALSO=TAN,ACOT

@CATEGORY=Mathematics
@FUNCTION=COTH
@SHORTDESC=the hyperbolic cotangent of @{x}
@SYNTAX=COTH(x)
@ARGUMENTDESCRIPTION=@{x}: number
@SEEALSO=TANH,ACOTH

@CATEGORY=Mathematics
@FUNCTION=COTPI
@SHORTDESC=the cotangent of Pi*@{x}
@SYNTAX=COTPI(x)
@ARGUMENTDESCRIPTION=@{x}: number of half turns
@SEEALSO=COT

@CATEGORY=Mathematics
@FUNCTION=COUNTIF
@SHORTDESC=count of the cells meeting the given @{criteria}
@SYNTAX=COUNTIF(range,criteria)
@ARGUMENTDESCRIPTION=@{range}: cell area
@{criteria}: condition for a cell to be counted
@EXCEL=This function is Excel compatible.
@SEEALSO=COUNT,SUMIF

@CATEGORY=Mathematics
@FUNCTION=COUNTIFS
@SHORTDESC=count of the cells meeting the given @{criteria}
@SYNTAX=COUNTIFS(range,criteria,…)
@ARGUMENTDESCRIPTION=@{range}: cell area
@{criteria}: condition for a cell to be counted
@EXCEL=This function is Excel compatible.
@SEEALSO=COUNT,SUMIF

@CATEGORY=Mathematics
@FUNCTION=CSC
@SHORTDESC=the cosecant of @{x}
@SYNTAX=CSC(x)
@ARGUMENTDESCRIPTION=@{x}: angle in radians
@EXCEL=This function is not Excel compatible.
@ODF=This function is OpenFormula compatible.
@SEEALSO=SIN,COS,TAN,SEC,SINH,COSH,TANH,RADIANS,DEGREES

@CATEGORY=Mathematics
@FUNCTION=CSCH
@SHORTDESC=the hyperbolic cosecant of @{x}
@SYNTAX=CSCH(x)
@ARGUMENTDESCRIPTION=@{x}: number
@EXCEL=This function is not Excel compatible.
@ODF=This function is OpenFormula compatible.
@SEEALSO=SIN,COS,TAN,CSC,SEC,SINH,COSH,TANH

@CATEGORY=Mathematics
@FUNCTION=DEGREES
@SHORTDESC=equivalent degrees to @{x} radians
@SYNTAX=DEGREES(x)
@ARGUMENTDESCRIPTION=@{x}: angle in radians
@EXCEL=This function is Excel compatible.
@SEEALSO=RADIANS,PI

@CATEGORY=Mathematics
@FUNCTION=EIGEN
@SHORTDESC=eigenvalues and eigenvectors of the symmetric @{matrix}
@SYNTAX=EIGEN(matrix)
@ARGUMENTDESCRIPTION=@{matrix}: a symmetric matrix
@NOTE=If @{matrix} is not symmetric, matching off-diagonal cells will be averaged on the assumption that the non-symmetry is caused by unimportant rounding errors. If @{matrix} does not contain an equal number of columns and rows, EIGEN returns #VALUE!

@CATEGORY=Mathematics
@FUNCTION=EVEN
@SHORTDESC=@{x} rounded away from 0 to the next even integer
@SYNTAX=EVEN(x)
@ARGUMENTDESCRIPTION=@{x}: number
@EXCEL=This function is Excel compatible.
@SEEALSO=ODD

@CATEGORY=Mathematics
@FUNCTION=EXP
@SHORTDESC=e raised to the power of @{x}
@SYNTAX=EXP(x)
@ARGUMENTDESCRIPTION=@{x}: number
@NOTE=e is the base of the natural logarithm.
@EXCEL=This function is Excel compatible.
@SEEALSO=LOG,LOG2,LOG10

@CATEGORY=Mathematics
@FUNCTION=EXPM1
@SHORTDESC=EXP(@{x})-1
@SYNTAX=EXPM1(x)
@ARGUMENTDESCRIPTION=@{x}: number
@NOTE=This function has a higher resulting precision than evaluating EXP(@{x})-1.
@SEEALSO=EXP,LN1P

@CATEGORY=Mathematics
@FUNCTION=FACT
@SHORTDESC=the factorial of @{x}, i.e. @{x}!
@SYNTAX=FACT(x)
@ARGUMENTDESCRIPTION=@{x}: number
@NOTE=The domain of this function has been extended using the GAMMA function.
@EXCEL=This function is Excel compatible.

@CATEGORY=Mathematics
@FUNCTION=FACTDOUBLE
@SHORTDESC=double factorial
@SYNTAX=FACTDOUBLE(x)
@ARGUMENTDESCRIPTION=@{x}: non-negative integer
@DESCRIPTION=FACTDOUBLE function returns the double factorial @{x}!!
@NOTE=If @{x} is not an integer, it is truncated. If @{x} is negative, FACTDOUBLE returns #NUM!
@EXCEL=This function is Excel compatible.
@SEEALSO=FACT

@CATEGORY=Mathematics
@FUNCTION=FIB
@SHORTDESC=Fibonacci numbers
@SYNTAX=FIB(n)
@ARGUMENTDESCRIPTION=@{n}: positive integer
@DESCRIPTION=FIB(@{n}) is the @{n}th Fibonacci number.
@NOTE=If @{n} is not an integer, it is truncated. If it is negative or zero FIB returns #NUM!

@CATEGORY=Mathematics
@FUNCTION=FLOOR
@SHORTDESC=nearest multiple of @{significance} whose absolute value is at most ABS(@{x})
@SYNTAX=FLOOR(x,significance)
@ARGUMENTDESCRIPTION=@{x}: number
@{significance}: base multiple (defaults to 1 for @{x} > 0 and -1 for @{x} < 0)
@DESCRIPTION=FLOOR(@{x},@{significance}) is the nearest multiple of @{significance} whose absolute value is at most ABS(@{x})
@EXCEL=This function is Excel compatible.
@ODF=FLOOR(@{x}) is exported to ODF as FLOOR(@{x},SIGN(@{x}),1). FLOOR(@{x},@{significance}) is the OpenFormula function FLOOR(@{x},@{significance},1).
@SEEALSO=CEIL,CEILING,ABS,INT,MOD

@CATEGORY=Mathematics
@FUNCTION=G_PRODUCT
@SHORTDESC=product of all the values and cells referenced
@SYNTAX=G_PRODUCT(x1,x2,…)
@ARGUMENTDESCRIPTION=@{x1}: number
@{x2}: number
@NOTE=Empty cells are ignored and the empty product is 1.
@SEEALSO=SUM,COUNT

@CATEGORY=Mathematics
@FUNCTION=GAMMA
@SHORTDESC=the Gamma function
@SYNTAX=GAMMA(x)
@ARGUMENTDESCRIPTION=@{x}: number
@SEEALSO=GAMMALN

@CATEGORY=Mathematics
@FUNCTION=GAMMALN
@SHORTDESC=natural logarithm of the Gamma function
@SYNTAX=GAMMALN(x)
@ARGUMENTDESCRIPTION=@{x}: number
@EXCEL=This function is Excel compatible.
@SEEALSO=GAMMA

@CATEGORY=Mathematics
@FUNCTION=GCD
@SHORTDESC=the greatest common divisor
@SYNTAX=GCD(n0,n1,…)
@ARGUMENTDESCRIPTION=@{n0}: positive integer
@{n1}: positive integer
@DESCRIPTION=GCD calculates the greatest common divisor of the given numbers @{n0},@{n1},..., the greatest integer that is a divisor of each argument.
@NOTE=If any of the arguments is not an integer, it is truncated.
@EXCEL=This function is Excel compatible.
@SEEALSO=LCM

@CATEGORY=Mathematics
@FUNCTION=GD
@SHORTDESC=Gudermannian function
@SYNTAX=GD(x)
@ARGUMENTDESCRIPTION=@{x}: value
@SEEALSO=TAN,TANH

@CATEGORY=Mathematics
@FUNCTION=HYPOT
@SHORTDESC=the square root of the sum of the squares of the arguments
@SYNTAX=HYPOT(n0,n1,…)
@ARGUMENTDESCRIPTION=@{n0}: number
@{n1}: number
@SEEALSO=MIN,MAX

@CATEGORY=Mathematics
@FUNCTION=IGAMMA
@SHORTDESC=the incomplete Gamma function
@SYNTAX=IGAMMA(a,x,lower,regularize,real)
@ARGUMENTDESCRIPTION=@{a}: number
@{x}: number
@{lower}: if true (the default), the lower incomplete gamma function, otherwise the upper incomplete gamma function
@{regularize}: if true (the default), the regularized version of the incomplete gamma function
@{real}: if true (the default), the real part of the result, otherwise the imaginary part
@NOTE=The regularized incomplete gamma function is the unregularized incomplete gamma function divided by GAMMA(@{a}) This is a real valued function as long as neither @{a} nor @{z} are negative.
@SEEALSO=GAMMA,IMIGAMMA

@CATEGORY=Mathematics
@FUNCTION=INT
@SHORTDESC=largest integer not larger than @{x}
@SYNTAX=INT(x)
@ARGUMENTDESCRIPTION=@{x}: number
@EXCEL=This function is Excel compatible.
@SEEALSO=CEIL,CEILING,FLOOR,ABS,MOD

@CATEGORY=Mathematics
@FUNCTION=LAMBERTW
@SHORTDESC=the Lambert W function
@SYNTAX=LAMBERTW(x,k)
@ARGUMENTDESCRIPTION=@{x}: number
@{k}: branch
@NOTE=@{k} defaults to 0, the principal branch. @{k} must be either 0 or -1.
@SEEALSO=EXP

@CATEGORY=Mathematics
@FUNCTION=LCM
@SHORTDESC=the least common multiple
@SYNTAX=LCM(n0,n1,…)
@ARGUMENTDESCRIPTION=@{n0}: positive integer
@{n1}: positive integer
@DESCRIPTION=LCM calculates the least common multiple of the given numbers @{n0},@{n1},..., the smallest integer that is a multiple of each argument.
@NOTE=If any of the arguments is not an integer, it is truncated.
@EXCEL=This function is Excel compatible.
@SEEALSO=GCD

@CATEGORY=Mathematics
@FUNCTION=LINSOLVE
@SHORTDESC=solve linear equation
@SYNTAX=LINSOLVE(A,B)
@ARGUMENTDESCRIPTION=@{A}: a matrix
@{B}: a matrix
@DESCRIPTION=Solves the equation @{A}*X=@{B} and returns X.
@NOTE=If the matrix @{A} is singular, #VALUE! is returned.
@SEEALSO=MINVERSE

@CATEGORY=Mathematics
@FUNCTION=LN
@SHORTDESC=the natural logarithm of @{x}
@SYNTAX=LN(x)
@ARGUMENTDESCRIPTION=@{x}: positive number
@NOTE=If @{x} ≤ 0, LN returns #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=EXP,LOG2,LOG10

@CATEGORY=Mathematics
@FUNCTION=LN1P
@SHORTDESC=LN(1+@{x})
@SYNTAX=LN1P(x)
@ARGUMENTDESCRIPTION=@{x}: positive number
@DESCRIPTION=LN1P calculates LN(1+@{x}) but yielding a higher precision than evaluating LN(1+@{x}).
@NOTE=If @{x} ≤ -1, LN returns #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=EXP,LN,EXPM1

@CATEGORY=Mathematics
@FUNCTION=LOG
@SHORTDESC=logarithm of @{x} with base @{base}
@SYNTAX=LOG(x,base)
@ARGUMENTDESCRIPTION=@{x}: positive number
@{base}: base of the logarithm, defaults to 10
@NOTE=@{base} must be positive and not equal to 1. If @{x} ≤ 0, LOG returns #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=LN,LOG2,LOG10

@CATEGORY=Mathematics
@FUNCTION=LOG10
@SHORTDESC=the base-10 logarithm of @{x}
@SYNTAX=LOG10(x)
@ARGUMENTDESCRIPTION=@{x}: positive number
@NOTE=If @{x} ≤ 0, LOG10 returns #NUM!
@SEEALSO=EXP,LOG2,LOG

@CATEGORY=Mathematics
@FUNCTION=LOG2
@SHORTDESC=the base-2 logarithm of @{x}
@SYNTAX=LOG2(x)
@ARGUMENTDESCRIPTION=@{x}: positive number
@NOTE=If @{x} ≤ 0, LOG2 returns #NUM!
@SEEALSO=EXP,LOG10,LOG

@CATEGORY=Mathematics
@FUNCTION=MAXIFS
@SHORTDESC=maximum of the cells in @{actual_range} for which the corresponding cells in the range meet the given criteria
@SYNTAX=MAXIFS(actual_range,range1,criteria1,…)
@ARGUMENTDESCRIPTION=@{actual_range}: cell area
@{range1}: cell area
@{criteria1}: condition for a cell to be included
@EXCEL=This function is Excel compatible.
@SEEALSO=MIN,MINIFS

@CATEGORY=Mathematics
@FUNCTION=MDETERM
@SHORTDESC=the determinant of the matrix @{matrix}
@SYNTAX=MDETERM(matrix)
@ARGUMENTDESCRIPTION=@{matrix}: a square matrix
@EXCEL=This function is Excel compatible.
@SEEALSO=MMULT,MINVERSE

@CATEGORY=Mathematics
@FUNCTION=MINIFS
@SHORTDESC=minimum of the cells in @{actual_range} for which the corresponding cells in the range meet the given criteria
@SYNTAX=MINIFS(actual_range,range1,criteria1,…)
@ARGUMENTDESCRIPTION=@{actual_range}: cell area
@{range1}: cell area
@{criteria1}: condition for a cell to be included
@EXCEL=This function is Excel compatible.
@SEEALSO=MIN,MAXIFS

@CATEGORY=Mathematics
@FUNCTION=MINVERSE
@SHORTDESC=the inverse matrix of @{matrix}
@SYNTAX=MINVERSE(matrix)
@ARGUMENTDESCRIPTION=@{matrix}: a square matrix
@NOTE=If @{matrix} is not invertible, MINVERSE returns #NUM! If @{matrix} does not contain an equal number of columns and rows, MINVERSE returns #VALUE!
@EXCEL=This function is Excel compatible.
@SEEALSO=MMULT,MDETERM,LINSOLVE

@CATEGORY=Mathematics
@FUNCTION=MMULT
@SHORTDESC=the matrix product of @{mat1} and @{mat2}
@SYNTAX=MMULT(mat1,mat2)
@ARGUMENTDESCRIPTION=@{mat1}: a matrix
@{mat2}: a matrix
@NOTE=The number of columns in @{mat1} must equal the number of rows in @{mat2}; otherwise #VALUE! is returned.  The result of MMULT is an array, in which the number of rows is the same as in @{mat1}), and the number of columns is the same as in (@{mat2}).
@EXCEL=This function is Excel compatible.
@SEEALSO=TRANSPOSE,MINVERSE

@CATEGORY=Mathematics
@FUNCTION=MOD
@SHORTDESC=the remainder of @{x} under division by @{n}
@SYNTAX=MOD(x,n)
@ARGUMENTDESCRIPTION=@{x}: integer
@{n}: integer
@DESCRIPTION=MOD function returns the remainder when @{x} is divided by @{n}.
@NOTE=If @{n} is 0, MOD returns #DIV/0!
@EXCEL=This function is Excel compatible.
@SEEALSO=CEIL,CEILING,FLOOR,ABS,INT,ABS

@CATEGORY=Mathematics
@FUNCTION=MPSEUDOINVERSE
@SHORTDESC=the pseudo-inverse matrix of @{matrix}
@SYNTAX=MPSEUDOINVERSE(matrix,threshold)
@ARGUMENTDESCRIPTION=@{matrix}: a matrix
@{threshold}: a relative size threshold for discarding eigenvalues
@SEEALSO=MINVERSE

@CATEGORY=Mathematics
@FUNCTION=MROUND
@SHORTDESC=@{x} rounded to a multiple of @{m}
@SYNTAX=MROUND(x,m)
@ARGUMENTDESCRIPTION=@{x}: number
@{m}: number
@NOTE=If @{x} and @{m} have different sign, MROUND returns #NUM!
@EXCEL=This function is Excel compatible.
@SEEALSO=ROUNDDOWN,ROUND,ROUNDUP

@CATEGORY=Mathematics
@FUNCTION=MULTINOMIAL
@SHORTDESC=multinomial coefficient (@{x1}+⋯+@{xn}) choose (@{x1},…,@{xn})
@SYNTAX=MULTINOMIAL(x1,x2,xn,…)
@ARGUMENTDESCRIPTION=@{x1}: first number
@{x2}: second number
@{xn}: nth number
@EXCEL=This function is Excel compatible.
@SEEALSO=COMBIN,SUM

@CATEGORY=Mathematics
@FUNCTION=MUNIT
@SHORTDESC=the @{n} by @{n} identity matrix
@SYNTAX=MUNIT(n)
@ARGUMENTDESCRIPTION=@{n}: size of the matrix
@ODF=This function is OpenFormula compatible.
@SEEALSO=MMULT,MDETERM,MINVERSE

@CATEGORY=Mathematics
@FUNCTION=ODD
@SHORTDESC=@{x} rounded away from 0 to the next odd integer
@SYNTAX=ODD(x)
@ARGUMENTDESCRIPTION=@{x}: number
@EXCEL=This function is Excel compatible.
@SEEALSO=EVEN

@CATEGORY=Mathematics
@FUNCTION=ODF.SUMPRODUCT
@SHORTDESC=multiplies components and adds the results
@SYNTAX=ODF.SUMPRODUCT(,…)
@DESCRIPTION=Multiplies corresponding data entries in the given arrays or ranges, and then returns the sum of those products.
@NOTE=If an entry is not numeric or logical, the value zero is used instead. If arrays or range arguments do not have the same dimensions, return #VALUE! error. This function differs from SUMPRODUCT by considering booleans.
@EXCEL=This function is not Excel compatible. Use SUMPRODUCT instead.
@ODF=This function is OpenFormula compatible.
@SEEALSO=SUMPRODUCT,SUM,PRODUCT,G_PRODUCT

@CATEGORY=Mathematics
@FUNCTION=PI
@SHORTDESC=the constant 𝜋
@SYNTAX=PI()
@EXCEL=This function is Excel compatible, but it returns 𝜋 with a better precision.
@SEEALSO=SQRTPI

@CATEGORY=Mathematics
@FUNCTION=POCHHAMMER
@SHORTDESC=the value of GAMMA(@{x}+@{n})/GAMMA(@{x})
@SYNTAX=POCHHAMMER(x,n)
@ARGUMENTDESCRIPTION=@{x}: number
@{n}: number
@SEEALSO=GAMMA

@CATEGORY=Mathematics
@FUNCTION=POWER
@SHORTDESC=the value of @{x} raised to the power @{y} raised to the power of 1/@{z}
@SYNTAX=POWER(x,y,z)
@ARGUMENTDESCRIPTION=@{x}: number
@{y}: number
@{z}: number
@NOTE=If both @{x} and @{y} equal 0, POWER returns #NUM! If @{x} = 0 and @{y} < 0, POWER returns #DIV/0! If @{x} < 0 and @{y} is not an integer, POWER returns #NUM! @{z} defaults to 1 If @{z} is not a positive integer, POWER returns #NUM! If @{x} < 0, @{y} is odd, and @{z} is even, POWER returns #NUM!
@SEEALSO=EXP

@CATEGORY=Mathematics
@FUNCTION=PRODUCT
@SHORTDESC=product of the given values
@SYNTAX=PRODUCT(values,…)
@ARGUMENTDESCRIPTION=@{values}: a list of values to multiply
@DESCRIPTION=PRODUCT computes the product of all the values and cells referenced in the argument list.
@NOTE=If all cells are empty, the result will be 0.
@EXCEL=This function is Excel compatible.
@ODF=This function is OpenFormula compatible.
@SEEALSO=SUM,COUNT,G_PRODUCT

@CATEGORY=Mathematics
@FUNCTION=QUOTIENT
@SHORTDESC=integer portion of a division
@SYNTAX=QUOTIENT(numerator,denominator)
@ARGUMENTDESCRIPTION=@{numerator}: integer
@{denominator}: non-zero integer
@DESCRIPTION=QUOTIENT yields the integer portion of the division @{numerator}/@{denominator}.
QUOTIENT (@{numerator},@{denominator})⨉@{denominator}+MOD(@{numerator},@{denominator})=@{numerator}
@EXCEL=This function is Excel compatible.
@SEEALSO=MOD

@CATEGORY=Mathematics
@FUNCTION=RADIANS
@SHORTDESC=the number of radians equivalent to @{x} degrees
@SYNTAX=RADIANS(x)
@ARGUMENTDESCRIPTION=@{x}: angle in degrees
@EXCEL=This function is Excel compatible.
@SEEALSO=PI,DEGREES

@CATEGORY=Mathematics
@FUNCTION=REDUCEPI
@SHORTDESC=reduce modulo Pi divided by a power of 2
@SYNTAX=REDUCEPI(x,e,q)
@ARGUMENTDESCRIPTION=@{x}: number
@{e}: scale
@{q}: get lower bits of quotient, defaults to FALSE
@NOTE=This function returns a value, xr, such that @{x}=xr+j*Pi/2^@{e} where j is an integer and the absolute value of xr does not exceed Pi/2^(@{e}+1).  If optional argument @{q} is TRUE, returns instead the @e+1 lower bits of j.  The reduction is performed as-if using an exact value of Pi. The lowest valid @{e} is -1 representing reduction modulo 2*Pi; the highest is 7 representing reduction modulo Pi/256.
@SEEALSO=PI

@CATEGORY=Mathematics
@FUNCTION=ROMAN
@SHORTDESC=@{n} as a roman numeral text
@SYNTAX=ROMAN(n,type)
@ARGUMENTDESCRIPTION=@{n}: non-negative integer
@{type}: 0,1,2,3,or 4, defaults to 0
@DESCRIPTION=ROMAN returns the arabic number @{n} as a roman numeral text.
If @{type} is 0 or it is omitted, ROMAN returns classic roman numbers.
Type 1 is more concise than classic type, type 2 is more concise than type 1, and type 3 is more concise than type 2. Type 4 is a simplified type.
@EXCEL=This function is Excel compatible.

@CATEGORY=Mathematics
@FUNCTION=ROUND
@SHORTDESC=rounded @{x}
@SYNTAX=ROUND(x,d)
@ARGUMENTDESCRIPTION=@{x}: number
@{d}: integer, defaults to 0
@DESCRIPTION=If @{d} is greater than zero, @{x} is rounded to the given number of digits.
If @{d} is zero, @{x} is rounded to the next integer.
If @{d} is less than zero, @{x} is rounded to the left of the decimal point
@EXCEL=This function is Excel compatible.
@SEEALSO=ROUNDDOWN,ROUNDUP

@CATEGORY=Mathematics
@FUNCTION=ROUNDDOWN
@SHORTDESC=@{x} rounded towards 0
@SYNTAX=ROUNDDOWN(x,d)
@ARGUMENTDESCRIPTION=@{x}: number
@{d}: integer, defaults to 0
@DESCRIPTION=If @{d} is greater than zero, @{x} is rounded toward 0 to the given number of digits.
If @{d} is zero, @{x} is rounded toward 0 to the next integer.
If @{d} is less than zero, @{x} is rounded toward 0 to the left of the decimal point
@EXCEL=This function is Excel compatible.
@SEEALSO=ROUND,ROUNDUP

@CATEGORY=Mathematics
@FUNCTION=ROUNDUP
@SHORTDESC=@{x} rounded away from 0
@SYNTAX=ROUNDUP(x,d)
@ARGUMENTDESCRIPTION=@{x}: number
@{d}: integer, defaults to 0
@DESCRIPTION=If @{d} is greater than zero, @{x} is rounded away from 0 to the given number of digits.
If @{d} is zero, @{x} is rounded away from 0 to the next integer.
If @{d} is less than zero, @{x} is rounded away from 0 to the left of the decimal point
@EXCEL=This function is Excel compatible.
@SEEALSO=ROUND,ROUNDDOWN,INT

@CATEGORY=Mathematics
@FUNCTION=SEC
@SHORTDESC=Secant
@SYNTAX=SEC(x)
@ARGUMENTDESCRIPTION=@{x}: angle in radians
@EXCEL=This function is not Excel compatible.
@ODF=SEC(@{x}) is exported to OpenFormula as 1/COS(@{x}).
@SEEALSO=SIN,COS,TAN,CSC,SINH,COSH,TANH,RADIANS,DEGREES

@CATEGORY=Mathematics
@FUNCTION=SECH
@SHORTDESC=the hyperbolic secant of @{x}
@SYNTAX=SECH(x)
@ARGUMENTDESCRIPTION=@{x}: number
@EXCEL=This function is not Excel compatible.
@ODF=SECH(@{x}) is exported to OpenFormula as 1/COSH(@{x}).
@SEEALSO=SIN,COS,TAN,CSC,SEC,SINH,COSH,TANH

@CATEGORY=Mathematics
@FUNCTION=SERIESSUM
@SHORTDESC=sum of a power series at @{x}
@SYNTAX=SERIESSUM(x,n,m,coeff)
@ARGUMENTDESCRIPTION=@{x}: number where to evaluate the power series
@{n}: non-negative integer, exponent of the lowest term of the series
@{m}: increment to each exponent
@{coeff}: coefficients of the power series
@EXCEL=This function is Excel compatible.
@SEEALSO=COUNT,SUM

@CATEGORY=Mathematics
@FUNCTION=SIGN
@SHORTDESC=sign of @{x}
@SYNTAX=SIGN(x)
@ARGUMENTDESCRIPTION=@{x}: number
@DESCRIPTION=SIGN returns 1 if the @{x} is positive and it returns -1 if @{x} is negative.
@EXCEL=This function is Excel compatible.
@SEEALSO=ABS

@CATEGORY=Mathematics
@FUNCTION=SIN
@SHORTDESC=the sine of @{x}
@SYNTAX=SIN(x)
@ARGUMENTDESCRIPTION=@{x}: angle in radians
@EXCEL=This function is Excel compatible.
@SEEALSO=COS,TAN,CSC,SEC,SINH,COSH,TANH,RADIANS,DEGREES

@CATEGORY=Mathematics
@FUNCTION=SINH
@SHORTDESC=the hyperbolic sine of @{x}
@SYNTAX=SINH(x)
@ARGUMENTDESCRIPTION=@{x}: number
@EXCEL=This function is Excel compatible.
@SEEALSO=SIN,COSH,ASINH

@CATEGORY=Mathematics
@FUNCTION=SINPI
@SHORTDESC=the sine of Pi*@{x}
@SYNTAX=SINPI(x)
@ARGUMENTDESCRIPTION=@{x}: number of half turns
@SEEALSO=SIN

@CATEGORY=Mathematics
@FUNCTION=SQRT
@SHORTDESC=square root of @{x}
@SYNTAX=SQRT(x)
@ARGUMENTDESCRIPTION=@{x}: non-negative number
@NOTE=If @{x} is negative, SQRT returns #NUM!
@EXCEL=This function is Excel compatible.
@SEEALSO=POWER

@CATEGORY=Mathematics
@FUNCTION=SQRTPI
@SHORTDESC=the square root of @{x} times 𝜋
@SYNTAX=SQRTPI(x)
@ARGUMENTDESCRIPTION=@{x}: non-negative number
@EXCEL=This function is Excel compatible.
@SEEALSO=PI

@CATEGORY=Mathematics
@FUNCTION=SUM
@SHORTDESC=sum of the given values
@SYNTAX=SUM(values,…)
@ARGUMENTDESCRIPTION=@{values}: a list of values to add
@DESCRIPTION=SUM computes the sum of all the values and cells referenced in the argument list.
@EXCEL=This function is Excel compatible.
@ODF=This function is OpenFormula compatible.
@SEEALSO=AVERAGE,COUNT

@CATEGORY=Mathematics
@FUNCTION=SUMA
@SHORTDESC=sum of all values and cells referenced
@SYNTAX=SUMA(area0,area1,…)
@ARGUMENTDESCRIPTION=@{area0}: first cell area
@{area1}: second cell area
@DESCRIPTION=Numbers, text and logical values are included in the calculation too. If the cell contains text or the argument evaluates to FALSE, it is counted as value zero (0). If the argument evaluates to TRUE, it is counted as one (1).
@SEEALSO=AVERAGE,SUM,COUNT

@CATEGORY=Mathematics
@FUNCTION=SUMIF
@SHORTDESC=sum of the cells in @{actual_range} for which the corresponding cells in the range meet the given @{criteria}
@SYNTAX=SUMIF(range,criteria,actual_range)
@ARGUMENTDESCRIPTION=@{range}: cell area
@{criteria}: condition for a cell to be summed
@{actual_range}: cell area, defaults to @{range}
@NOTE=If the @{actual_range} has a size that differs from the size of @{range}, @{actual_range} is resized (retaining the top-left corner) to match the size of @{range}.
@EXCEL=This function is Excel compatible.
@SEEALSO=SUM,SUMIFS,COUNTIF

@CATEGORY=Mathematics
@FUNCTION=SUMIFS
@SHORTDESC=sum of the cells in @{actual_range} for which the corresponding cells in the range meet the given criteria
@SYNTAX=SUMIFS(actual_range,range1,criteria1,…)
@ARGUMENTDESCRIPTION=@{actual_range}: cell area
@{range1}: cell area
@{criteria1}: condition for a cell to be included
@EXCEL=This function is Excel compatible.
@SEEALSO=SUM,SUMIF

@CATEGORY=Mathematics
@FUNCTION=SUMPRODUCT
@SHORTDESC=multiplies components and adds the results
@SYNTAX=SUMPRODUCT(,…)
@DESCRIPTION=Multiplies corresponding data entries in the given arrays or ranges, and then returns the sum of those products.
@NOTE=If an entry is not numeric, the value zero is used instead. If arrays or range arguments do not have the same dimensions, return #VALUE! error. This function ignores logicals, so using SUMPRODUCT(A1:A5>0) will not work.  Instead use SUMPRODUCT(--(A1:A5>0))
@EXCEL=This function is Excel compatible.
@ODF=This function is not OpenFormula compatible. Use ODF.SUMPRODUCT instead.
@SEEALSO=SUM,PRODUCT,G_PRODUCT,ODF.SUMPRODUCT

@CATEGORY=Mathematics
@FUNCTION=SUMSQ
@SHORTDESC=sum of the squares of all values and cells referenced
@SYNTAX=SUMSQ(area0,area1,…)
@ARGUMENTDESCRIPTION=@{area0}: first cell area
@{area1}: second cell area
@EXCEL=This function is Excel compatible.
@SEEALSO=SUM,COUNT

@CATEGORY=Mathematics
@FUNCTION=SUMX2MY2
@SHORTDESC=sum of the difference of squares
@SYNTAX=SUMX2MY2(array0,array1)
@ARGUMENTDESCRIPTION=@{array0}: first cell area
@{array1}: second cell area
@DESCRIPTION=SUMX2MY2 function returns the sum of the difference of squares of corresponding values in two arrays. The equation of SUMX2MY2 is SUM(x^2-y^2).
@EXCEL=This function is Excel compatible.
@SEEALSO=SUMSQ,SUMX2PY2

@CATEGORY=Mathematics
@FUNCTION=SUMX2PY2
@SHORTDESC=sum of the sum of squares
@SYNTAX=SUMX2PY2(array0,array1)
@ARGUMENTDESCRIPTION=@{array0}: first cell area
@{array1}: second cell area
@DESCRIPTION=SUMX2PY2 function returns the sum of the sum of squares of corresponding values in two arrays. The equation of SUMX2PY2 is SUM(x^2+y^2).
@NOTE=If @{array0} and @{array1} have different number of data points, SUMX2PY2 returns #N/A.
Strings and empty cells are simply ignored.
@EXCEL=This function is Excel compatible.
@SEEALSO=SUMSQ,SUMX2MY2

@CATEGORY=Mathematics
@FUNCTION=SUMXMY2
@SHORTDESC=sum of the squares of differences
@SYNTAX=SUMXMY2(array0,array1)
@ARGUMENTDESCRIPTION=@{array0}: first cell area
@{array1}: second cell area
@DESCRIPTION=SUMXMY2 function returns the sum of the squares of the differences of corresponding values in two arrays. The equation of SUMXMY2 is SUM((x-y)^2).
@NOTE=If @{array0} and @{array1} have different number of data points, SUMXMY2 returns #N/A.
Strings and empty cells are simply ignored.
@EXCEL=This function is Excel compatible.
@SEEALSO=SUMSQ,SUMX2MY2,SUMX2PY2

@CATEGORY=Mathematics
@FUNCTION=TAN
@SHORTDESC=the tangent of @{x}
@SYNTAX=TAN(x)
@ARGUMENTDESCRIPTION=@{x}: angle in radians
@EXCEL=This function is Excel compatible.
@SEEALSO=TANH,COS,COSH,SIN,SINH,DEGREES,RADIANS

@CATEGORY=Mathematics
@FUNCTION=TANH
@SHORTDESC=the hyperbolic tangent of @{x}
@SYNTAX=TANH(x)
@ARGUMENTDESCRIPTION=@{x}: number
@EXCEL=This function is Excel compatible.
@SEEALSO=TAN,SIN,SINH,COS,COSH

@CATEGORY=Mathematics
@FUNCTION=TANPI
@SHORTDESC=the tangent of Pi*@{x}
@SYNTAX=TANPI(x)
@ARGUMENTDESCRIPTION=@{x}: number of half turns
@SEEALSO=TAN

@CATEGORY=Mathematics
@FUNCTION=TRUNC
@SHORTDESC=@{x} truncated to @{d} digits
@SYNTAX=TRUNC(x,d)
@ARGUMENTDESCRIPTION=@{x}: number
@{d}: non-negative integer, defaults to 0
@NOTE=If @{d} is omitted or negative then it defaults to zero. If it is not an integer then it is truncated to an integer.
@EXCEL=This function is Excel compatible.
@SEEALSO=INT

@CATEGORY=Number Theory
@FUNCTION=ISPRIME
@SHORTDESC=whether @{n} is prime
@SYNTAX=ISPRIME(n)
@ARGUMENTDESCRIPTION=@{n}: positive integer
@DESCRIPTION=ISPRIME returns TRUE if @{n} is prime and FALSE otherwise.
@SEEALSO=NT_D, NT_SIGMA

@CATEGORY=Number Theory
@FUNCTION=ITHPRIME
@SHORTDESC=@{i}th prime
@SYNTAX=ITHPRIME(i)
@ARGUMENTDESCRIPTION=@{i}: positive integer
@DESCRIPTION=ITHPRIME finds the @{i}th prime.
@SEEALSO=NT_D,NT_SIGMA

@CATEGORY=Number Theory
@FUNCTION=NT_D
@SHORTDESC=number of divisors
@SYNTAX=NT_D(n)
@ARGUMENTDESCRIPTION=@{n}: positive integer
@DESCRIPTION=NT_D calculates the number of divisors of @{n}.
@SEEALSO=ITHPRIME,NT_PHI,NT_SIGMA

@CATEGORY=Number Theory
@FUNCTION=NT_MU
@SHORTDESC=Möbius mu function
@SYNTAX=NT_MU(n)
@ARGUMENTDESCRIPTION=@{n}: positive integer
@DESCRIPTION=NT_MU function (Möbius mu function) returns 0  if @{n} is divisible by the square of a prime. Otherwise, if @{n} has an odd  number of different prime factors, NT_MU returns -1, and if @{n} has an even number of different prime factors, it returns 1. If @{n} = 1, NT_MU returns 1.
@SEEALSO=ITHPRIME,NT_PHI,NT_SIGMA,NT_D

@CATEGORY=Number Theory
@FUNCTION=NT_OMEGA
@SHORTDESC=Number of distinct prime factors
@SYNTAX=NT_OMEGA(n)
@ARGUMENTDESCRIPTION=@{n}: positive integer
@NOTE=Returns the number of distinct prime factors without multiplicity.
@SEEALSO=NT_D,ITHPRIME,NT_SIGMA

@CATEGORY=Number Theory
@FUNCTION=NT_PHI
@SHORTDESC=Euler's totient function
@SYNTAX=NT_PHI(n)
@ARGUMENTDESCRIPTION=@{n}: positive integer
@NOTE=Euler's totient function gives the number of integers less than or equal to @{n} that are relatively prime (coprime) to @{n}.
@SEEALSO=NT_D,ITHPRIME,NT_SIGMA

@CATEGORY=Number Theory
@FUNCTION=NT_PI
@SHORTDESC=number of primes upto @{n}
@SYNTAX=NT_PI(n)
@ARGUMENTDESCRIPTION=@{n}: positive integer
@DESCRIPTION=NT_PI returns the number of primes less than or equal to @{n}.
@SEEALSO=ITHPRIME,NT_PHI,NT_D,NT_SIGMA

@CATEGORY=Number Theory
@FUNCTION=NT_RADICAL
@SHORTDESC=Radical function
@SYNTAX=NT_RADICAL(n)
@ARGUMENTDESCRIPTION=@{n}: positive integer
@NOTE=The function computes the product of its distinct prime factors
@SEEALSO=NT_D,ITHPRIME,NT_SIGMA

@CATEGORY=Number Theory
@FUNCTION=NT_SIGMA
@SHORTDESC=sigma function
@SYNTAX=NT_SIGMA(n)
@ARGUMENTDESCRIPTION=@{n}: positive integer
@DESCRIPTION=NT_SIGMA calculates the sum of the divisors of @{n}.
@SEEALSO=NT_D,ITHPRIME,NT_PHI

@CATEGORY=Number Theory
@FUNCTION=PFACTOR
@SHORTDESC=smallest prime factor
@SYNTAX=PFACTOR(n)
@ARGUMENTDESCRIPTION=@{n}: positive integer
@DESCRIPTION=PFACTOR finds the smallest prime factor of its argument.
@NOTE=The argument @{n} must be at least 2. Otherwise a #VALUE! error is returned.
@SEEALSO=ITHPRIME

@CATEGORY=Random Numbers
@FUNCTION=RAND
@SHORTDESC=a random number between zero and one
@SYNTAX=RAND()
@EXCEL=This function is Excel compatible.
@SEEALSO=RANDBETWEEN

@CATEGORY=Random Numbers
@FUNCTION=RANDBERNOULLI
@SHORTDESC=random variate from a Bernoulli distribution
@SYNTAX=RANDBERNOULLI(p)
@ARGUMENTDESCRIPTION=@{p}: probability of success
@NOTE=If @{p} < 0 or @{p} > 1 RANDBERNOULLI returns #NUM!
@SEEALSO=RAND,RANDBETWEEN

@CATEGORY=Random Numbers
@FUNCTION=RANDBETA
@SHORTDESC=random variate from a Beta distribution
@SYNTAX=RANDBETA(a,b)
@ARGUMENTDESCRIPTION=@{a}: parameter of the Beta distribution
@{b}: parameter of the Beta distribution
@SEEALSO=RAND,RANDGAMMA

@CATEGORY=Random Numbers
@FUNCTION=RANDBETWEEN
@SHORTDESC=a random integer number between and including @{bottom} and @{top}
@SYNTAX=RANDBETWEEN(bottom,top)
@ARGUMENTDESCRIPTION=@{bottom}: lower limit
@{top}: upper limit
@NOTE=If @{bottom} > @{top}, RANDBETWEEN returns #NUM!
@EXCEL=This function is Excel compatible.
@SEEALSO=RAND,RANDUNIFORM

@CATEGORY=Random Numbers
@FUNCTION=RANDBINOM
@SHORTDESC=random variate from a binomial distribution
@SYNTAX=RANDBINOM(p,n)
@ARGUMENTDESCRIPTION=@{p}: probability of success in a single trial
@{n}: number of trials
@NOTE=If @{p} < 0 or @{p} > 1 RANDBINOM returns #NUM! If @{n} < 0 RANDBINOM returns #NUM!
@SEEALSO=RAND,RANDBETWEEN

@CATEGORY=Random Numbers
@FUNCTION=RANDCAUCHY
@SHORTDESC=random variate from a Cauchy or Lorentz distribution
@SYNTAX=RANDCAUCHY(a)
@ARGUMENTDESCRIPTION=@{a}: scale parameter of the distribution
@NOTE=If @{a} < 0 RANDCAUCHY returns #NUM!
@SEEALSO=RAND

@CATEGORY=Random Numbers
@FUNCTION=RANDCHISQ
@SHORTDESC=random variate from a Chi-square distribution
@SYNTAX=RANDCHISQ(df)
@ARGUMENTDESCRIPTION=@{df}: degrees of freedom
@SEEALSO=RAND,RANDGAMMA

@CATEGORY=Random Numbers
@FUNCTION=RANDDISCRETE
@SHORTDESC=random variate from a finite discrete distribution
@SYNTAX=RANDDISCRETE(val_range,prob_range)
@ARGUMENTDESCRIPTION=@{val_range}: possible values of the random variable
@{prob_range}: probabilities of the corresponding values in @{val_range}, defaults to equal probabilities
@DESCRIPTION=RANDDISCRETE returns one of the values in the @{val_range}. The probabilities for each value are given in the @{prob_range}.
@NOTE=If the sum of all values in @{prob_range} is not one, RANDDISCRETE returns #NUM! If @{val_range} and @{prob_range} are not the same size, RANDDISCRETE returns #NUM! If @{val_range} or @{prob_range} is not a range, RANDDISCRETE returns #VALUE!
@SEEALSO=RANDBETWEEN,RAND

@CATEGORY=Random Numbers
@FUNCTION=RANDEXP
@SHORTDESC=random variate from an exponential distribution
@SYNTAX=RANDEXP(b)
@ARGUMENTDESCRIPTION=@{b}: parameter of the exponential distribution
@SEEALSO=RAND,RANDBETWEEN

@CATEGORY=Random Numbers
@FUNCTION=RANDEXPPOW
@SHORTDESC=random variate from an exponential power distribution
@SYNTAX=RANDEXPPOW(a,b)
@ARGUMENTDESCRIPTION=@{a}: scale parameter of the exponential power distribution
@{b}: exponent of the exponential power distribution
@DESCRIPTION=For @{b} = 1 the exponential power distribution reduces to the Laplace distribution.
For @{b} = 2 the exponential power distribution reduces to the normal distribution with σ = a/sqrt(2)
@SEEALSO=RAND

@CATEGORY=Random Numbers
@FUNCTION=RANDFDIST
@SHORTDESC=random variate from an F distribution
@SYNTAX=RANDFDIST(df1,df2)
@ARGUMENTDESCRIPTION=@{df1}: numerator degrees of freedom
@{df2}: denominator degrees of freedom
@SEEALSO=RAND,RANDGAMMA

@CATEGORY=Random Numbers
@FUNCTION=RANDGAMMA
@SHORTDESC=random variate from a Gamma distribution
@SYNTAX=RANDGAMMA(a,b)
@ARGUMENTDESCRIPTION=@{a}: shape parameter of the Gamma distribution
@{b}: scale parameter of the Gamma distribution
@NOTE=If @{a} ≤ 0, RANDGAMMA returns #NUM!
@SEEALSO=RAND

@CATEGORY=Random Numbers
@FUNCTION=RANDGEOM
@SHORTDESC=random variate from a geometric distribution
@SYNTAX=RANDGEOM(p)
@ARGUMENTDESCRIPTION=@{p}: probability of success in a single trial
@NOTE=If @{p} < 0 or @{p} > 1 RANDGEOM returns #NUM!
@SEEALSO=RAND

@CATEGORY=Random Numbers
@FUNCTION=RANDGUMBEL
@SHORTDESC=random variate from a Gumbel distribution
@SYNTAX=RANDGUMBEL(a,b,type)
@ARGUMENTDESCRIPTION=@{a}: parameter of the Gumbel distribution
@{b}: parameter of the Gumbel distribution
@{type}: type of the Gumbel distribution, defaults to 1
@NOTE=If @{type} is neither 1 nor 2, RANDGUMBEL returns #NUM!
@SEEALSO=RAND

@CATEGORY=Random Numbers
@FUNCTION=RANDHYPERG
@SHORTDESC=random variate from a hypergeometric distribution
@SYNTAX=RANDHYPERG(n1,n2,t)
@ARGUMENTDESCRIPTION=@{n1}: number of objects of type 1
@{n2}: number of objects of type 2
@{t}: total number of objects selected
@SEEALSO=RAND

@CATEGORY=Random Numbers
@FUNCTION=RANDLANDAU
@SHORTDESC=random variate from the Landau distribution
@SYNTAX=RANDLANDAU()
@SEEALSO=RAND

@CATEGORY=Random Numbers
@FUNCTION=RANDLAPLACE
@SHORTDESC=random variate from a Laplace distribution
@SYNTAX=RANDLAPLACE(a)
@ARGUMENTDESCRIPTION=@{a}: parameter of the Laplace distribution
@SEEALSO=RAND

@CATEGORY=Random Numbers
@FUNCTION=RANDLEVY
@SHORTDESC=random variate from a Lévy distribution
@SYNTAX=RANDLEVY(c,α,β)
@ARGUMENTDESCRIPTION=@{c}: parameter of the Lévy distribution
@{α}: parameter of the Lévy distribution
@{β}: parameter of the Lévy distribution, defaults to 0
@DESCRIPTION=For @{α} = 1, @{β}=0, the Lévy distribution reduces to the Cauchy (or Lorentzian) distribution.
For @{α} = 2, @{β}=0, the Lévy distribution reduces to the normal distribution.
@NOTE=If @{α} ≤ 0 or @{α} > 2, RANDLEVY returns #NUM! If @{β} < -1 or @{β} > 1, RANDLEVY returns #NUM!
@SEEALSO=RAND

@CATEGORY=Random Numbers
@FUNCTION=RANDLOG
@SHORTDESC=random variate from a logarithmic distribution
@SYNTAX=RANDLOG(p)
@ARGUMENTDESCRIPTION=@{p}: probability
@NOTE=If @{p} < 0 or @{p} > 1 RANDLOG returns #NUM!
@SEEALSO=RAND

@CATEGORY=Random Numbers
@FUNCTION=RANDLOGISTIC
@SHORTDESC=random variate from a logistic distribution
@SYNTAX=RANDLOGISTIC(a)
@ARGUMENTDESCRIPTION=@{a}: parameter of the logistic distribution
@SEEALSO=RAND

@CATEGORY=Random Numbers
@FUNCTION=RANDLOGNORM
@SHORTDESC=random variate from a lognormal distribution
@SYNTAX=RANDLOGNORM(ζ,σ)
@ARGUMENTDESCRIPTION=@{ζ}: parameter of the lognormal distribution
@{σ}: standard deviation of the distribution
@NOTE=If @{σ} < 0, RANDLOGNORM returns #NUM!
@SEEALSO=RAND

@CATEGORY=Random Numbers
@FUNCTION=RANDNEGBINOM
@SHORTDESC=random variate from a negative binomial distribution
@SYNTAX=RANDNEGBINOM(p,n)
@ARGUMENTDESCRIPTION=@{p}: probability of success in a single trial
@{n}: number of failures
@NOTE=If @{p} < 0 or @{p} > 1 RANDNEGBINOM returns #NUM! If @{n} < 1 RANDNEGBINOM returns #NUM!
@SEEALSO=RAND,RANDBETWEEN

@CATEGORY=Random Numbers
@FUNCTION=RANDNORM
@SHORTDESC=random variate from a normal distribution
@SYNTAX=RANDNORM(μ,σ)
@ARGUMENTDESCRIPTION=@{μ}: mean of the distribution
@{σ}: standard deviation of the distribution
@NOTE=If @{σ} < 0, RANDNORM returns #NUM!
@SEEALSO=RAND

@CATEGORY=Random Numbers
@FUNCTION=RANDNORMTAIL
@SHORTDESC=random variate from the upper tail of a normal distribution with mean 0
@SYNTAX=RANDNORMTAIL(a,σ)
@ARGUMENTDESCRIPTION=@{a}: lower limit of the tail
@{σ}: standard deviation of the normal distribution
@NOTE=The method is based on Marsaglia's famous rectangle-wedge-tail algorithm (Ann Math Stat 32, 894-899 (1961)), with this aspect explained in Knuth, v2, 3rd ed, p139, 586 (exercise 11).
@SEEALSO=RAND

@CATEGORY=Random Numbers
@FUNCTION=RANDPARETO
@SHORTDESC=random variate from a Pareto distribution
@SYNTAX=RANDPARETO(a,b)
@ARGUMENTDESCRIPTION=@{a}: parameter of the Pareto distribution
@{b}: parameter of the Pareto distribution
@SEEALSO=RAND

@CATEGORY=Random Numbers
@FUNCTION=RANDPOISSON
@SHORTDESC=random variate from a Poisson distribution
@SYNTAX=RANDPOISSON(λ)
@ARGUMENTDESCRIPTION=@{λ}: parameter of the Poisson distribution
@NOTE=If @{λ} < 0 RANDPOISSON returns #NUM!
@SEEALSO=RAND,RANDBETWEEN

@CATEGORY=Random Numbers
@FUNCTION=RANDRAYLEIGH
@SHORTDESC=random variate from a Rayleigh distribution
@SYNTAX=RANDRAYLEIGH(σ)
@ARGUMENTDESCRIPTION=@{σ}: scale parameter of the Rayleigh distribution
@SEEALSO=RAND

@CATEGORY=Random Numbers
@FUNCTION=RANDRAYLEIGHTAIL
@SHORTDESC=random variate from the tail of a Rayleigh distribution
@SYNTAX=RANDRAYLEIGHTAIL(a,σ)
@ARGUMENTDESCRIPTION=@{a}: lower limit of the tail
@{σ}: scale parameter of the Rayleigh distribution
@SEEALSO=RAND,RANDRAYLEIGH

@CATEGORY=Random Numbers
@FUNCTION=RANDSNORM
@SHORTDESC=random variate from a skew-normal distribution
@SYNTAX=RANDSNORM(𝛼,𝜉,𝜔)
@ARGUMENTDESCRIPTION=@{𝛼}: shape parameter of the skew-normal distribution, defaults to 0
@{𝜉}: location parameter of the skew-normal distribution, defaults to 0
@{𝜔}: scale parameter of the skew-normal distribution, defaults to 1
@DESCRIPTION=The random variates are drawn from a skew-normal distribution with shape parameter @{𝛼}. When @{𝛼}=0, the skewness vanishes, and we obtain the standard normal density; as 𝛼 increases (in absolute value), the skewness of the distribution increases; when @{𝛼} approaches infinity  the density converges to the so-called half-normal (or folded normal) density function; if the sign of @{𝛼} changes, the density is reflected on the opposite side of the vertical axis.
@NOTE=The mean of a skew-normal distribution with location parameter @{𝜉}=0 is not 0. The standard deviation of a skew-normal distribution with scale parameter @{𝜔}=1 is not 1. The skewness of a skew-normal distribution is in general not @{𝛼}. If @{𝜔} < 0, RANDSNORM returns #NUM!
@SEEALSO=RANDNORM,RANDSTDIST

@CATEGORY=Random Numbers
@FUNCTION=RANDSTDIST
@SHORTDESC=random variate from a skew-t distribution
@SYNTAX=RANDSTDIST(df,𝛼)
@ARGUMENTDESCRIPTION=@{df}: degrees of freedom
@{𝛼}: shape parameter of the skew-t distribution, defaults to 0
@NOTE=The mean of a skew-t distribution is not 0. The standard deviation of a skew-t distribution is not 1. The skewness of a skew-t distribution is in general not @{𝛼}.
@SEEALSO=RANDTDIST,RANDSNORM

@CATEGORY=Random Numbers
@FUNCTION=RANDTDIST
@SHORTDESC=random variate from a Student t distribution
@SYNTAX=RANDTDIST(df)
@ARGUMENTDESCRIPTION=@{df}: degrees of freedom
@SEEALSO=RAND

@CATEGORY=Random Numbers
@FUNCTION=RANDUNIFORM
@SHORTDESC=random variate from the uniform distribution from @{a} to @{b}
@SYNTAX=RANDUNIFORM(a,b)
@ARGUMENTDESCRIPTION=@{a}: lower limit of the uniform distribution
@{b}: upper limit of the uniform distribution
@NOTE=If @{a} > @{b} RANDUNIFORM returns #NUM!
@SEEALSO=RANDBETWEEN,RAND

@CATEGORY=Random Numbers
@FUNCTION=RANDWEIBULL
@SHORTDESC=random variate from a Weibull distribution
@SYNTAX=RANDWEIBULL(a,b)
@ARGUMENTDESCRIPTION=@{a}: scale parameter of the Weibull distribution
@{b}: shape parameter of the Weibull distribution
@SEEALSO=RAND

@CATEGORY=Random Numbers
@FUNCTION=SIMTABLE
@SHORTDESC=one of the values in the given argument list depending on the round number of the simulation tool
@SYNTAX=SIMTABLE(d1,d2,…)
@ARGUMENTDESCRIPTION=@{d1}: first value
@{d2}: second value
@DESCRIPTION=SIMTABLE returns one of the values in the given argument list depending on the round number of the simulation tool. When the simulation tool is not activated, SIMTABLE returns @{d1}.
With the simulation tool and the SIMTABLE function you can test given decision variables. Each SIMTABLE function contains the possible values of a simulation variable. In most valid simulation models you should have the same number of values @{dN} for all decision variables.  If the simulation is run more rounds than there are values defined, SIMTABLE returns #N/A error (e.g. if A1 contains `=SIMTABLE(1)' and A2 `=SIMTABLE(1,2)', A1 yields #N/A error on the second round).
The successive use of the simulation tool also requires that you give to the tool at least one input variable having RAND() or any other RAND<distribution name>() function in it. On each round, the simulation tool iterates for the given number of rounds over all the input variables to reevaluate them. On each iteration, the values of the output variables are stored, and when the round is completed, descriptive statistical information is created according to the values.

@CATEGORY=Statistics
@FUNCTION=ADTEST
@SHORTDESC=Anderson-Darling Test of Normality
@SYNTAX=ADTEST(x)
@ARGUMENTDESCRIPTION=@{x}: array of sample values
@DESCRIPTION=This function returns an array with the first row giving the p-value of the Anderson-Darling Test, the second row the test statistic of the test, and the third the number of observations in the sample.
@NOTE=If there are less than 8 sample values, ADTEST returns #VALUE!
@SEEALSO=CHITEST,CVMTEST,LKSTEST,SFTEST

@CATEGORY=Statistics
@FUNCTION=AVEDEV
@SHORTDESC=average of the absolute deviations of a data set
@SYNTAX=AVEDEV(number1,number2,…)
@ARGUMENTDESCRIPTION=@{number1}: first value
@{number2}: second value
@EXCEL=This function is Excel compatible.
@SEEALSO=STDEV

@CATEGORY=Statistics
@FUNCTION=AVERAGE
@SHORTDESC=average of all the numeric values and cells
@SYNTAX=AVERAGE(number1,number2,…)
@ARGUMENTDESCRIPTION=@{number1}: first value
@{number2}: second value
@EXCEL=This function is Excel compatible.
@SEEALSO=SUM, COUNT

@CATEGORY=Statistics
@FUNCTION=AVERAGEA
@SHORTDESC=average of all the values and cells
@SYNTAX=AVERAGEA(number1,number2,…)
@ARGUMENTDESCRIPTION=@{number1}: first value
@{number2}: second value
@DESCRIPTION=Numbers, text and logical values are included in the calculation too. If the cell contains text or the argument evaluates to FALSE, it is counted as value zero (0). If the argument evaluates to TRUE, it is counted as one (1). Note that empty cells are not counted.
@EXCEL=This function is Excel compatible.
@SEEALSO=AVERAGE

@CATEGORY=Statistics
@FUNCTION=BERNOULLI
@SHORTDESC=probability mass function of a Bernoulli distribution
@SYNTAX=BERNOULLI(k,p)
@ARGUMENTDESCRIPTION=@{k}: integer
@{p}: probability of success
@NOTE=If @{k} != 0 and @{k} != 1 this function returns a #NUM! error. If @{p} < 0 or @{p} > 1 this function returns a #NUM! error.
@SEEALSO=RANDBERNOULLI

@CATEGORY=Statistics
@FUNCTION=BETA.DIST
@SHORTDESC=cumulative distribution function of the beta distribution
@SYNTAX=BETA.DIST(x,alpha,beta,cumulative,a,b)
@ARGUMENTDESCRIPTION=@{x}: number
@{alpha}: scale parameter
@{beta}: scale parameter
@{cumulative}: whether to evaluate the density function or the cumulative distribution function
@{a}: optional lower bound, defaults to 0
@{b}: optional upper bound, defaults to 1
@NOTE=If @{x} < @{a} or @{x} > @{b} this function returns a #NUM! error. If @{alpha} <= 0 or @{beta} <= 0, this function returns a #NUM! error. If @{a} >= @{b} this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=BETAINV,BETADIST

@CATEGORY=Statistics
@FUNCTION=BETADIST
@SHORTDESC=cumulative distribution function of the beta distribution
@SYNTAX=BETADIST(x,alpha,beta,a,b)
@ARGUMENTDESCRIPTION=@{x}: number
@{alpha}: scale parameter
@{beta}: scale parameter
@{a}: optional lower bound, defaults to 0
@{b}: optional upper bound, defaults to 1
@NOTE=If @{x} < @{a} or @{x} > @{b} this function returns a #NUM! error. If @{alpha} <= 0 or @{beta} <= 0, this function returns a #NUM! error. If @{a} >= @{b} this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=BETAINV, BETA.DIST

@CATEGORY=Statistics
@FUNCTION=BETAINV
@SHORTDESC=inverse of the cumulative distribution function of the beta distribution
@SYNTAX=BETAINV(p,alpha,beta,a,b)
@ARGUMENTDESCRIPTION=@{p}: probability
@{alpha}: scale parameter
@{beta}: scale parameter
@{a}: optional lower bound, defaults to 0
@{b}: optional upper bound, defaults to 1
@NOTE=If @{p} < 0 or @{p} > 1 this function returns a #NUM! error. If @{alpha} <= 0 or @{beta} <= 0, this function returns a #NUM! error. If @{a} >= @{b} this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=BETADIST,BETA.DIST

@CATEGORY=Statistics
@FUNCTION=BINOM.DIST.RANGE
@SHORTDESC=probability of the binomial distribution over an interval
@SYNTAX=BINOM.DIST.RANGE(trials,p,start,end)
@ARGUMENTDESCRIPTION=@{trials}: number of trials
@{p}: probability of success in each trial
@{start}: start of the interval
@{end}: end of the interval, defaults to @{start}
@NOTE=If @{start}, @{end} or @{trials} are non-integer they are truncated. If @{trials} < 0 this function returns a #NUM! error. If @{p} < 0 or @{p} > 1 this function returns a #NUM! error. If @{start} > @{end} this function returns 0.
@ODF=This function is OpenFormula compatible.
@SEEALSO=BINOMDIST,R.PBINOM

@CATEGORY=Statistics
@FUNCTION=BINOMDIST
@SHORTDESC=probability mass or cumulative distribution function of the binomial distribution
@SYNTAX=BINOMDIST(n,trials,p,cumulative)
@ARGUMENTDESCRIPTION=@{n}: number of successes
@{trials}: number of trials
@{p}: probability of success in each trial
@{cumulative}: whether to evaluate the mass function or the cumulative distribution function
@NOTE=If @{n} or @{trials} are non-integer they are truncated. If @{n} < 0 or @{trials} < 0 this function returns a #NUM! error. If @{n} > @{trials} this function returns a #NUM! error. If @{p} < 0 or @{p} > 1 this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=POISSON

@CATEGORY=Statistics
@FUNCTION=CAUCHY
@SHORTDESC=probability density or cumulative distribution function of the Cauchy, Lorentz or Breit-Wigner distribution
@SYNTAX=CAUCHY(x,a,cumulative)
@ARGUMENTDESCRIPTION=@{x}: number
@{a}: scale parameter
@{cumulative}: whether to evaluate the density function or the cumulative distribution function
@NOTE=If @{a} < 0 this function returns a #NUM! error. If @{cumulative} is neither TRUE nor FALSE this function returns a #VALUE! error.
@SEEALSO=RANDCAUCHY

@CATEGORY=Statistics
@FUNCTION=CHIDIST
@SHORTDESC=survival function of the chi-squared distribution
@SYNTAX=CHIDIST(x,dof)
@ARGUMENTDESCRIPTION=@{x}: number
@{dof}: number of degrees of freedom
@DESCRIPTION=The survival function is 1 minus the cumulative distribution function.
@NOTE=If @{dof} is non-integer it is truncated. If @{dof} < 1 this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@ODF=CHIDIST(@{x},@{dof}) is the OpenFormula function LEGACY.CHIDIST(@{x},@{dof}).
@SEEALSO=CHIINV,CHITEST

@CATEGORY=Statistics
@FUNCTION=CHIINV
@SHORTDESC=inverse of the survival function of the chi-squared distribution
@SYNTAX=CHIINV(p,dof)
@ARGUMENTDESCRIPTION=@{p}: probability
@{dof}: number of degrees of freedom
@DESCRIPTION=The survival function is 1 minus the cumulative distribution function.
@NOTE=If @{p} < 0 or @{p} > 1 or @{dof} < 1 this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@ODF=CHIINV(@{p},@{dof}) is the OpenFormula function LEGACY.CHIDIST(@{p},@{dof}).
@SEEALSO=CHIDIST,CHITEST

@CATEGORY=Statistics
@FUNCTION=CHITEST
@SHORTDESC=p value of the Goodness of Fit Test
@SYNTAX=CHITEST(actual_range,theoretical_range)
@ARGUMENTDESCRIPTION=@{actual_range}: observed data
@{theoretical_range}: expected values
@NOTE=If the actual range is not an n by 1 or 1 by n range, but an n by m range, then CHITEST uses (n-1) times (m-1) as degrees of freedom. This is useful if the expected values were calculated from the observed value in a test of independence or test of homogeneity.
@EXCEL=This function is Excel compatible.
@ODF=CHITEST is the OpenFormula function LEGACY.CHITEST.
@SEEALSO=CHIDIST,CHIINV

@CATEGORY=Statistics
@FUNCTION=CONFIDENCE
@SHORTDESC=margin of error of a confidence interval for the population mean
@SYNTAX=CONFIDENCE(alpha,stddev,size)
@ARGUMENTDESCRIPTION=@{alpha}: significance level
@{stddev}: population standard deviation
@{size}: sample size
@NOTE=This function requires the usually unknown population standard deviation. If @{size} is non-integer it is truncated. If @{size} < 0 this function returns a #NUM! error. If @{size} is 0 this function returns a #DIV/0! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=AVERAGE,CONFIDENCE.T

@CATEGORY=Statistics
@FUNCTION=CONFIDENCE.T
@SHORTDESC=margin of error of a confidence interval for the population mean using the Student's t-distribution
@SYNTAX=CONFIDENCE.T(alpha,stddev,size)
@ARGUMENTDESCRIPTION=@{alpha}: significance level
@{stddev}: sample standard deviation
@{size}: sample size
@NOTE=If @{stddev} < 0 or = 0 this function returns a #NUM! error. If @{size} is non-integer it is truncated. If @{size} < 1 this function returns a #NUM! error. If @{size} is 1 this function returns a #DIV/0! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=AVERAGE,CONFIDENCE

@CATEGORY=Statistics
@FUNCTION=CORREL
@SHORTDESC=Pearson correlation coefficient of two data sets
@SYNTAX=CORREL(array1,array2)
@ARGUMENTDESCRIPTION=@{array1}: first data set
@{array2}: second data set
@DESCRIPTION=Strings and empty cells are simply ignored.
@EXCEL=This function is Excel compatible.
@SEEALSO=COVAR,FISHER,FISHERINV

@CATEGORY=Statistics
@FUNCTION=COUNT
@SHORTDESC=total number of integer or floating point arguments passed
@SYNTAX=COUNT(number1,number2,…)
@ARGUMENTDESCRIPTION=@{number1}: first value
@{number2}: second value
@EXCEL=This function is Excel compatible.
@SEEALSO=AVERAGE

@CATEGORY=Statistics
@FUNCTION=COUNTA
@SHORTDESC=number of arguments passed not including empty cells
@SYNTAX=COUNTA(number1,number2,…)
@ARGUMENTDESCRIPTION=@{number1}: first value
@{number2}: second value
@EXCEL=This function is Excel compatible.
@SEEALSO=AVERAGE,COUNT,DCOUNT,DCOUNTA,PRODUCT,SUM

@CATEGORY=Statistics
@FUNCTION=COVAR
@SHORTDESC=covariance of two data sets
@SYNTAX=COVAR(array1,array2)
@ARGUMENTDESCRIPTION=@{array1}: first data set
@{array2}: set data set
@DESCRIPTION=Strings and empty cells are simply ignored.
@EXCEL=This function is Excel compatible.
@SEEALSO=CORREL,FISHER,FISHERINV

@CATEGORY=Statistics
@FUNCTION=COVARIANCE.S
@SHORTDESC=sample covariance of two data sets
@SYNTAX=COVARIANCE.S(array1,array2)
@ARGUMENTDESCRIPTION=@{array1}: first data set
@{array2}: set data set
@DESCRIPTION=Strings and empty cells are simply ignored.
@EXCEL=This function is Excel compatible.
@SEEALSO=COVAR,CORREL

@CATEGORY=Statistics
@FUNCTION=CRITBINOM
@SHORTDESC=right-tailed critical value of the binomial distribution
@SYNTAX=CRITBINOM(trials,p,alpha)
@ARGUMENTDESCRIPTION=@{trials}: number of trials
@{p}: probability of success in each trial
@{alpha}: significance level (area of the tail)
@NOTE=If @{trials} is a non-integer it is truncated. If @{trials} < 0 this function returns a #NUM! error. If @{p} < 0 or @{p} > 1 this function returns a #NUM! error. If @{alpha} < 0 or @{alpha} > 1 this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=BINOMDIST

@CATEGORY=Statistics
@FUNCTION=CRONBACH
@SHORTDESC=Cronbach's alpha
@SYNTAX=CRONBACH(ref1,ref2,…)
@ARGUMENTDESCRIPTION=@{ref1}: first data set
@{ref2}: second data set
@SEEALSO=VAR

@CATEGORY=Statistics
@FUNCTION=CVMTEST
@SHORTDESC=Cramér-von Mises Test of Normality
@SYNTAX=CVMTEST(x)
@ARGUMENTDESCRIPTION=@{x}: array of sample values
@DESCRIPTION=This function returns an array with the first row giving the p-value of the Cramér-von Mises Test, the second row the test statistic of the test, and the third the number of observations in the sample.
@NOTE=If there are less than 8 sample values, CVMTEST returns #VALUE!
@SEEALSO=CHITEST,ADTEST,LKSTEST,SFTEST

@CATEGORY=Statistics
@FUNCTION=DEVSQ
@SHORTDESC=sum of squares of deviations of a data set
@SYNTAX=DEVSQ(number1,number2,…)
@ARGUMENTDESCRIPTION=@{number1}: first value
@{number2}: second value
@DESCRIPTION=Strings and empty cells are simply ignored.
@EXCEL=This function is Excel compatible.
@SEEALSO=STDEV

@CATEGORY=Statistics
@FUNCTION=EXPONDIST
@SHORTDESC=probability density or cumulative distribution function of the exponential distribution
@SYNTAX=EXPONDIST(x,y,cumulative)
@ARGUMENTDESCRIPTION=@{x}: number
@{y}: scale parameter
@{cumulative}: whether to evaluate the density function or the cumulative distribution function
@DESCRIPTION=If @{cumulative} is false it will return:	@{y} * exp (-@{y}*@{x}), otherwise it will return	1 - exp (-@{y}*@{x}).
@NOTE=If @{x} < 0 or @{y} <= 0 this will return an error.
@EXCEL=This function is Excel compatible.
@SEEALSO=POISSON

@CATEGORY=Statistics
@FUNCTION=EXPPOWDIST
@SHORTDESC=the probability density function of the Exponential Power distribution
@SYNTAX=EXPPOWDIST(x,a,b)
@ARGUMENTDESCRIPTION=@{x}: number
@{a}: scale parameter
@{b}: scale parameter
@DESCRIPTION=This distribution has been recommended for lifetime analysis when a U-shaped hazard function is desired. This corresponds to rapid failure once the product starts to wear out after a period of steady or even improving reliability.
@SEEALSO=RANDEXPPOW

@CATEGORY=Statistics
@FUNCTION=FDIST
@SHORTDESC=survival function of the F distribution
@SYNTAX=FDIST(x,dof_of_num,dof_of_denom)
@ARGUMENTDESCRIPTION=@{x}: number
@{dof_of_num}: numerator degrees of freedom
@{dof_of_denom}: denominator degrees of freedom
@DESCRIPTION=The survival function is 1 minus the cumulative distribution function.
@NOTE=If @{x} < 0 this function returns a #NUM! error. If @{dof_of_num} < 1 or @{dof_of_denom} < 1, this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@ODF=FDIST is the OpenFormula function LEGACY.FDIST.
@SEEALSO=FINV

@CATEGORY=Statistics
@FUNCTION=FINV
@SHORTDESC=inverse of the survival function of the F distribution
@SYNTAX=FINV(p,dof_of_num,dof_of_denom)
@ARGUMENTDESCRIPTION=@{p}: probability
@{dof_of_num}: numerator degrees of freedom
@{dof_of_denom}: denominator degrees of freedom
@DESCRIPTION=The survival function is 1 minus the cumulative distribution function.
@NOTE=If @{p} < 0 or @{p} > 1 this function returns a #NUM! error. If @{dof_of_num} < 1 or @{dof_of_denom} < 1 this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@ODF=FINV is the OpenFormula function LEGACY.FINV.
@SEEALSO=FDIST

@CATEGORY=Statistics
@FUNCTION=FISHER
@SHORTDESC=Fisher transformation
@SYNTAX=FISHER(x)
@ARGUMENTDESCRIPTION=@{x}: number
@NOTE=If @{x} is not a number, this function returns a #VALUE! error. If @{x} <= -1 or @{x} >= 1, this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=FISHERINV,ATANH

@CATEGORY=Statistics
@FUNCTION=FISHERINV
@SHORTDESC=inverse of the Fisher transformation
@SYNTAX=FISHERINV(x)
@ARGUMENTDESCRIPTION=@{x}: number
@NOTE=If @{x} is a non-number this function returns a #VALUE! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=FISHER,TANH

@CATEGORY=Statistics
@FUNCTION=FORECAST
@SHORTDESC=estimates a future value according to existing values using simple linear regression
@SYNTAX=FORECAST(x,known_ys,known_xs)
@ARGUMENTDESCRIPTION=@{x}: x-value whose matching y-value should be forecast
@{known_ys}: known y-values
@{known_xs}: known x-values
@DESCRIPTION=This function estimates a future value according to existing values using simple linear regression.
@NOTE=If @{known_xs} or @{known_ys} contains no data entries or different number of data entries, this function returns a #N/A error. If the variance of the @{known_xs} is zero, this function returns a #DIV/0 error.
@EXCEL=This function is Excel compatible.
@SEEALSO=INTERCEPT,TREND

@CATEGORY=Statistics
@FUNCTION=FREQUENCY
@SHORTDESC=frequency table
@SYNTAX=FREQUENCY(data_array,bins_array)
@ARGUMENTDESCRIPTION=@{data_array}: data values
@{bins_array}: array of cutoff values
@DESCRIPTION=The results are given as an array.
If the @{bins_array} is empty, this function returns the number of data points in @{data_array}.
@EXCEL=This function is Excel compatible.

@CATEGORY=Statistics
@FUNCTION=FTEST
@SHORTDESC=p-value for the two-tailed hypothesis test comparing the variances of two populations
@SYNTAX=FTEST(array1,array2)
@ARGUMENTDESCRIPTION=@{array1}: sample from the first population
@{array2}: sample from the second population
@EXCEL=This function is Excel compatible.
@SEEALSO=FDIST,FINV

@CATEGORY=Statistics
@FUNCTION=GAMMADIST
@SHORTDESC=probability density or cumulative distribution function of the gamma distribution
@SYNTAX=GAMMADIST(x,alpha,beta,cumulative)
@ARGUMENTDESCRIPTION=@{x}: number
@{alpha}: scale parameter
@{beta}: scale parameter
@{cumulative}: whether to evaluate the density function or the cumulative distribution function
@NOTE=If @{x} < 0 this function returns a #NUM! error. If @{alpha} <= 0 or @{beta} <= 0, this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=GAMMAINV

@CATEGORY=Statistics
@FUNCTION=GAMMAINV
@SHORTDESC=inverse of the cumulative gamma distribution
@SYNTAX=GAMMAINV(p,alpha,beta)
@ARGUMENTDESCRIPTION=@{p}: probability
@{alpha}: scale parameter
@{beta}: scale parameter
@NOTE=If @{p} < 0 or @{p} > 1 this function returns a #NUM! error. If @{alpha} <= 0 or @{beta} <= 0 this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=GAMMADIST

@CATEGORY=Statistics
@FUNCTION=GEOMDIST
@SHORTDESC=probability mass or cumulative distribution function of the geometric distribution
@SYNTAX=GEOMDIST(k,p,cumulative)
@ARGUMENTDESCRIPTION=@{k}: number of trials
@{p}: probability of success in any trial
@{cumulative}: whether to evaluate the mass function or the cumulative distribution function
@NOTE=If @{k} < 0 this function returns a #NUM! error. If @{p} < 0 or @{p} > 1 this function returns a #NUM! error. If @{cumulative} is neither TRUE nor FALSE this function returns a #VALUE! error.
@SEEALSO=RANDGEOM

@CATEGORY=Statistics
@FUNCTION=GEOMEAN
@SHORTDESC=geometric mean
@SYNTAX=GEOMEAN(number1,number2,…)
@ARGUMENTDESCRIPTION=@{number1}: first value
@{number2}: second value
@DESCRIPTION=The geometric mean is equal to the Nth root of the product of the N values.
@EXCEL=This function is Excel compatible.
@SEEALSO=AVERAGE,HARMEAN,MEDIAN,MODE,TRIMMEAN

@CATEGORY=Statistics
@FUNCTION=GROWTH
@SHORTDESC=exponential growth prediction
@SYNTAX=GROWTH(known_ys,known_xs,new_xs,affine)
@ARGUMENTDESCRIPTION=@{known_ys}: known y-values
@{known_xs}: known x-values; defaults to the array {1, 2, 3, …}
@{new_xs}: x-values for which to estimate the y-values; defaults to @{known_xs}
@{affine}: if true, the model contains a constant term, defaults to true
@DESCRIPTION=GROWTH function applies the “least squares” method to fit an exponential curve to your data and predicts the exponential growth by using this curve.
GROWTH returns an array having one column and a row for each data point in @{new_xs}.
@NOTE=If @{known_ys} and @{known_xs} have unequal number of data points, this function returns a #NUM! error.
@SEEALSO=LOGEST,GROWTH,TREND

@CATEGORY=Statistics
@FUNCTION=HARMEAN
@SHORTDESC=harmonic mean
@SYNTAX=HARMEAN(number1,number2,…)
@ARGUMENTDESCRIPTION=@{number1}: first value
@{number2}: second value
@DESCRIPTION=The harmonic mean of N data points is N divided by the sum of the reciprocals of the data points).
@EXCEL=This function is Excel compatible.
@SEEALSO=AVERAGE,GEOMEAN,MEDIAN,MODE,TRIMMEAN

@CATEGORY=Statistics
@FUNCTION=HYPGEOMDIST
@SHORTDESC=probability mass or cumulative distribution function of the hypergeometric distribution
@SYNTAX=HYPGEOMDIST(x,n,M,N,cumulative)
@ARGUMENTDESCRIPTION=@{x}: number of successes
@{n}: sample size
@{M}: number of possible successes in the population
@{N}: population size
@{cumulative}: whether to evaluate the mass function or the cumulative distribution function
@NOTE=If @{x},@{n},@{M} or @{N} is a non-integer it is truncated. If @{x},@{n},@{M} or @{N} < 0 this function returns a #NUM! error. If @{x} > @{M} or @{n} > @{N} this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=BINOMDIST,POISSON

@CATEGORY=Statistics
@FUNCTION=INTERCEPT
@SHORTDESC=the intercept of a linear regression line
@SYNTAX=INTERCEPT(known_ys,known_xs)
@ARGUMENTDESCRIPTION=@{known_ys}: known y-values
@{known_xs}: known x-values
@NOTE=If @{known_xs} or @{known_ys} contains no data entries or different number of data entries, this function returns a #N/A error. If the variance of the @{known_xs} is zero, this function returns #DIV/0 error.
@EXCEL=This function is Excel compatible.
@SEEALSO=FORECAST,TREND

@CATEGORY=Statistics
@FUNCTION=KURT
@SHORTDESC=unbiased estimate of the kurtosis of a data set
@SYNTAX=KURT(number1,number2,…)
@ARGUMENTDESCRIPTION=@{number1}: first value
@{number2}: second value
@DESCRIPTION=Strings and empty cells are simply ignored.
@NOTE=This is only meaningful if the underlying distribution really has a fourth moment.  The kurtosis is offset by three such that a normal distribution will have zero kurtosis. If fewer than four numbers are given or all of them are equal this function returns a #DIV/0! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=AVERAGE,VAR,SKEW,KURTP

@CATEGORY=Statistics
@FUNCTION=KURTP
@SHORTDESC=population kurtosis of a data set
@SYNTAX=KURTP(number1,number2,…)
@ARGUMENTDESCRIPTION=@{number1}: first value
@{number2}: second value
@DESCRIPTION=Strings and empty cells are simply ignored.
@NOTE=If fewer than two numbers are given or all of them are equal this function returns a #DIV/0! error.
@SEEALSO=AVERAGE,VARP,SKEWP,KURT

@CATEGORY=Statistics
@FUNCTION=LANDAU
@SHORTDESC=approximate probability density function of the Landau distribution
@SYNTAX=LANDAU(x)
@ARGUMENTDESCRIPTION=@{x}: number
@SEEALSO=RANDLANDAU

@CATEGORY=Statistics
@FUNCTION=LAPLACE
@SHORTDESC=probability density function of the Laplace distribution
@SYNTAX=LAPLACE(x,a)
@ARGUMENTDESCRIPTION=@{x}: number
@{a}: mean
@SEEALSO=RANDLAPLACE

@CATEGORY=Statistics
@FUNCTION=LARGE
@SHORTDESC=@{k}-th largest value in a data set
@SYNTAX=LARGE(data,k)
@ARGUMENTDESCRIPTION=@{data}: data set
@{k}: which value to find
@NOTE=If data set is empty this function returns a #NUM! error. If @{k} <= 0 or @{k} is greater than the number of data items given this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=PERCENTILE,PERCENTRANK,QUARTILE,SMALL

@CATEGORY=Statistics
@FUNCTION=LEVERAGE
@SHORTDESC=calculate regression leverage
@SYNTAX=LEVERAGE(A)
@ARGUMENTDESCRIPTION=@{A}: a matrix
@DESCRIPTION=Returns the diagonal of @{A} (@{A}^T @{A})^-1 @{A}^T as a column vector.
@NOTE=If the matrix is singular, #VALUE! is returned.

@CATEGORY=Statistics
@FUNCTION=LINEST
@SHORTDESC=multiple linear regression coefficients and statistics
@SYNTAX=LINEST(known_ys,known_xs,affine,stats)
@ARGUMENTDESCRIPTION=@{known_ys}: vector of values of dependent variable
@{known_xs}: array of values of independent variables, defaults to a single vector {1,…,n}
@{affine}: if true, the model contains a constant term, defaults to true
@{stats}: if true, some additional statistics are provided, defaults to false
@DESCRIPTION=This function returns an array with the first row giving the regression coefficients for the independent variables x_m, x_(m-1),…,x_2, x_1 followed by the y-intercept if @{affine} is true.
If @{stats} is true, the second row contains the corresponding standard errors of the regression coefficients. In this case, the third row contains the R^2 value and the standard error for the predicted value. The fourth row contains the observed F value and its degrees of freedom. Finally, the fifth row contains the regression sum of squares and the residual sum of squares.
If @{affine} is false, R^2 is the uncentered version of the coefficient of determination; that is the proportion of the sum of squares explained by the model.
@NOTE=If the length of @{known_ys} does not match the corresponding length of @{known_xs}, this function returns a #NUM! error.
@SEEALSO=LOGEST,TREND

@CATEGORY=Statistics
@FUNCTION=LKSTEST
@SHORTDESC=Lilliefors (Kolmogorov-Smirnov) Test of Normality
@SYNTAX=LKSTEST(x)
@ARGUMENTDESCRIPTION=@{x}: array of sample values
@DESCRIPTION=This function returns an array with the first row giving the p-value of the Lilliefors (Kolmogorov-Smirnov) Test, the second row the test statistic of the test, and the third the number of observations in the sample.
@NOTE=If there are less than 5 sample values, LKSTEST returns #VALUE!
@SEEALSO=CHITEST,ADTEST,SFTEST,CVMTEST

@CATEGORY=Statistics
@FUNCTION=LOGEST
@SHORTDESC=exponential least square fit
@SYNTAX=LOGEST(known_ys,known_xs,affine,stat)
@ARGUMENTDESCRIPTION=@{known_ys}: known y-values
@{known_xs}: known x-values; default to an array {1, 2, 3, …}
@{affine}: if true, the model contains a constant term, defaults to true
@{stat}: if true, extra statistical information will be returned; defaults to FALSE
@DESCRIPTION=LOGEST function applies the “least squares” method to fit an exponential curve of the form	y = b * m{1}^x{1} * m{2}^x{2}... to your data.
LOGEST returns an array { m{n},m{n-1}, ...,m{1},b }.
@NOTE=Extra statistical information is written below the regression line coefficients in the result array.  Extra statistical information consists of four rows of data.  In the first row the standard error values for the coefficients m1, (m2, ...), b are represented.  The second row contains the square of R and the standard error for the y estimate.  The third row contains the F-observed value and the degrees of freedom.  The last row contains the regression sum of squares and the residual sum of squares. If @{known_ys} and @{known_xs} have unequal number of data points, this function returns a #NUM! error.
@SEEALSO=GROWTH,TREND

@CATEGORY=Statistics
@FUNCTION=LOGFIT
@SHORTDESC=logarithmic least square fit (using a trial and error method)
@SYNTAX=LOGFIT(known_ys,known_xs)
@ARGUMENTDESCRIPTION=@{known_ys}: known y-values
@{known_xs}: known x-values
@DESCRIPTION=LOGFIT function applies the “least squares” method to fit the logarithmic equation y = a + b * ln(sign * (x - c)) ,   sign = +1 or -1 to your data. The graph of the equation is a logarithmic curve moved horizontally by c and possibly mirrored across the y-axis (if sign = -1).
LOGFIT returns an array having five columns and one row. `Sign' is given in the first column, `a', `b', and `c' are given in columns 2 to 4. Column 5 holds the sum of squared residuals.
@NOTE=An error is returned when there are less than 3 different x's or y's, or when the shape of the point cloud is too different from a ``logarithmic'' one. You can use the above formula = a + b * ln(sign * (x - c)) or rearrange it to = (exp((y - a) / b)) / sign + c to compute unknown y's or x's, respectively. This is non-linear fitting by trial-and-error. The accuracy of `c' is: width of x-range -> rounded to the next smaller (10^integer), times 0.000001. There might be cases in which the returned fit is not the best possible.
@SEEALSO=LOGREG,LINEST,LOGEST

@CATEGORY=Statistics
@FUNCTION=LOGINV
@SHORTDESC=inverse of the cumulative distribution function of the lognormal distribution
@SYNTAX=LOGINV(p,mean,stddev)
@ARGUMENTDESCRIPTION=@{p}: probability
@{mean}: mean
@{stddev}: standard deviation
@NOTE=If @{p} < 0 or @{p} > 1 or @{stddev} <= 0 this function returns #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=EXP,LN,LOG,LOG10,LOGNORMDIST

@CATEGORY=Statistics
@FUNCTION=LOGISTIC
@SHORTDESC=probability density function of the logistic distribution
@SYNTAX=LOGISTIC(x,a)
@ARGUMENTDESCRIPTION=@{x}: number
@{a}: scale parameter
@SEEALSO=RANDLOGISTIC

@CATEGORY=Statistics
@FUNCTION=LOGNORMDIST
@SHORTDESC=cumulative distribution function of the lognormal distribution
@SYNTAX=LOGNORMDIST(x,mean,stddev)
@ARGUMENTDESCRIPTION=@{x}: number
@{mean}: mean
@{stddev}: standard deviation
@NOTE=If @{stddev} = 0 LOGNORMDIST returns a #DIV/0! error. If @{x} <= 0, @{mean} < 0 or @{stddev} <= 0 this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=NORMDIST

@CATEGORY=Statistics
@FUNCTION=LOGREG
@SHORTDESC=the logarithmic regression
@SYNTAX=LOGREG(known_ys,known_xs,affine,stat)
@ARGUMENTDESCRIPTION=@{known_ys}: known y-values
@{known_xs}: known x-values; defaults to the array {1, 2, 3, …}
@{affine}: if true, the model contains a constant term, defaults to true
@{stat}: if true, extra statistical information will be returned; defaults to FALSE
@DESCRIPTION=LOGREG function transforms your x's to z=ln(x) and applies the “least squares” method to fit the linear equation y = m * z + b to your y's and z's --- equivalent to fitting the equation y = m * ln(x) + b to y's and x's. LOGREG returns an array having two columns and one row. m is given in the first column and b in the second.
Any extra statistical information is written below m and b in the result array.  This extra statistical information consists of four rows of data:  In the first row the standard error values for the coefficients m, b are given.  The second row contains the square of R and the standard error for the y estimate. The third row contains the F-observed value and the degrees of freedom.  The last row contains the regression sum of squares and the residual sum of squares. The default of @{stat} is FALSE.
@NOTE=If @{known_ys} and @{known_xs} have unequal number of data points, this function returns a #NUM! error.
@SEEALSO=LOGFIT,LINEST,LOGEST

@CATEGORY=Statistics
@FUNCTION=MAX
@SHORTDESC=largest value, with negative numbers considered smaller than positive numbers
@SYNTAX=MAX(number1,number2,…)
@ARGUMENTDESCRIPTION=@{number1}: first value
@{number2}: second value
@EXCEL=This function is Excel compatible.
@SEEALSO=MIN,ABS

@CATEGORY=Statistics
@FUNCTION=MAXA
@SHORTDESC=largest value, with negative numbers considered smaller than positive numbers
@SYNTAX=MAXA(number1,number2,…)
@ARGUMENTDESCRIPTION=@{number1}: first value
@{number2}: second value
@DESCRIPTION=Numbers, text and logical values are included in the calculation too. If the cell contains text or the argument evaluates to FALSE, it is counted as value zero (0). If the argument evaluates to TRUE, it is counted as one (1). Note that empty cells are not counted.
@EXCEL=This function is Excel compatible.
@SEEALSO=MAX,MINA

@CATEGORY=Statistics
@FUNCTION=MEDIAN
@SHORTDESC=median of a data set
@SYNTAX=MEDIAN(number1,number2,…)
@ARGUMENTDESCRIPTION=@{number1}: first value
@{number2}: second value
@DESCRIPTION=Strings and empty cells are simply ignored.
@NOTE=If even numbers are given MEDIAN returns the average of the two numbers in the center.
@EXCEL=This function is Excel compatible.
@SEEALSO=AVERAGE,COUNT,COUNTA,DAVERAGE,MODE,SSMEDIAN,SUM

@CATEGORY=Statistics
@FUNCTION=MIN
@SHORTDESC=smallest value, with negative numbers considered smaller than positive numbers
@SYNTAX=MIN(number1,number2,…)
@ARGUMENTDESCRIPTION=@{number1}: first value
@{number2}: second value
@EXCEL=This function is Excel compatible.
@SEEALSO=MAX,ABS

@CATEGORY=Statistics
@FUNCTION=MINA
@SHORTDESC=smallest value, with negative numbers considered smaller than positive numbers
@SYNTAX=MINA(number1,number2,…)
@ARGUMENTDESCRIPTION=@{number1}: first value
@{number2}: second value
@DESCRIPTION=Numbers, text and logical values are included in the calculation too. If the cell contains text or the argument evaluates to FALSE, it is counted as value zero (0). If the argument evaluates to TRUE, it is counted as one (1). Note that empty cells are not counted.
@EXCEL=This function is Excel compatible.
@SEEALSO=MIN,MAXA

@CATEGORY=Statistics
@FUNCTION=MODE
@SHORTDESC=first most common number in the dataset
@SYNTAX=MODE(number1,number2,…)
@ARGUMENTDESCRIPTION=@{number1}: first value
@{number2}: second value
@DESCRIPTION=Strings and empty cells are simply ignored.
If the data set does not contain any duplicates this function returns a #N/A error.
@EXCEL=This function is Excel compatible.
@SEEALSO=AVERAGE,MEDIAN,MODE.MULT

@CATEGORY=Statistics
@FUNCTION=MODE.MULT
@SHORTDESC=most common numbers in the dataset
@SYNTAX=MODE.MULT(number1,number2,…)
@ARGUMENTDESCRIPTION=@{number1}: first value
@{number2}: second value
@DESCRIPTION=Strings and empty cells are simply ignored.
If the data set does not contain any duplicates this function returns a #N/A error.
@EXCEL=This function is Excel compatible.
@SEEALSO=AVERAGE,MEDIAN,MODE

@CATEGORY=Statistics
@FUNCTION=NEGBINOMDIST
@SHORTDESC=probability mass function of the negative binomial distribution
@SYNTAX=NEGBINOMDIST(f,t,p)
@ARGUMENTDESCRIPTION=@{f}: number of failures
@{t}: threshold number of successes
@{p}: probability of a success
@NOTE=If @{f} or @{t} is a non-integer it is truncated. If (@{f} + @{t} -1) <= 0 this function returns a #NUM! error. If @{p} < 0 or @{p} > 1 this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=BINOMDIST,COMBIN,FACT,HYPGEOMDIST,PERMUT

@CATEGORY=Statistics
@FUNCTION=NORMDIST
@SHORTDESC=probability density or cumulative distribution function of a normal distribution
@SYNTAX=NORMDIST(x,mean,stddev,cumulative)
@ARGUMENTDESCRIPTION=@{x}: number
@{mean}: mean of the distribution
@{stddev}: standard deviation of the distribution
@{cumulative}: whether to evaluate the density function or the cumulative distribution function
@NOTE=If @{stddev} is 0 this function returns a #DIV/0! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=POISSON

@CATEGORY=Statistics
@FUNCTION=NORMINV
@SHORTDESC=inverse of the cumulative distribution function of a normal distribution
@SYNTAX=NORMINV(p,mean,stddev)
@ARGUMENTDESCRIPTION=@{p}: probability
@{mean}: mean of the distribution
@{stddev}: standard deviation of the distribution
@NOTE=If @{p} < 0 or @{p} > 1 or @{stddev} <= 0 this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=NORMDIST,NORMSDIST,NORMSINV,STANDARDIZE,ZTEST

@CATEGORY=Statistics
@FUNCTION=NORMSDIST
@SHORTDESC=cumulative distribution function of the standard normal distribution
@SYNTAX=NORMSDIST(x)
@ARGUMENTDESCRIPTION=@{x}: number
@EXCEL=This function is Excel compatible.
@ODF=NORMSDIST is the OpenFormula function LEGACY.NORMSDIST.
@SEEALSO=NORMDIST

@CATEGORY=Statistics
@FUNCTION=NORMSINV
@SHORTDESC=inverse of the cumulative distribution function of the standard normal distribution
@SYNTAX=NORMSINV(p)
@ARGUMENTDESCRIPTION=@{p}: given probability
@NOTE=If @{p} < 0 or @{p} > 1 this function returns #NUM! error.
@EXCEL=This function is Excel compatible.
@ODF=NORMSINV is the OpenFormula function LEGACY.NORMSINV.
@SEEALSO=NORMDIST,NORMINV,NORMSDIST,STANDARDIZE,ZTEST

@CATEGORY=Statistics
@FUNCTION=OWENT
@SHORTDESC=Owen's T function
@SYNTAX=OWENT(h,a)
@ARGUMENTDESCRIPTION=@{h}: number
@{a}: number
@SEEALSO=R.PSNORM,R.PST

@CATEGORY=Statistics
@FUNCTION=PARETO
@SHORTDESC=probability density function of the Pareto distribution
@SYNTAX=PARETO(x,a,b)
@ARGUMENTDESCRIPTION=@{x}: number
@{a}: exponent
@{b}: scale parameter
@SEEALSO=RANDPARETO

@CATEGORY=Statistics
@FUNCTION=PEARSON
@SHORTDESC=Pearson correlation coefficient of the paired set of data
@SYNTAX=PEARSON(array1,array2)
@ARGUMENTDESCRIPTION=@{array1}: first component values
@{array2}: second component values
@DESCRIPTION=Strings and empty cells are simply ignored.
@EXCEL=This function is Excel compatible.
@SEEALSO=INTERCEPT,LINEST,RSQ,SLOPE,STEYX

@CATEGORY=Statistics
@FUNCTION=PERCENTILE
@SHORTDESC=determines the 100*@{k}-th percentile of the given data points (Hyndman-Fan method 7: N-1 basis)
@SYNTAX=PERCENTILE(array,k)
@ARGUMENTDESCRIPTION=@{array}: data points
@{k}: which percentile to calculate
@NOTE=If @{array} is empty, this function returns a #NUM! error. If @{k} < 0 or @{k} > 1, this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=QUARTILE

@CATEGORY=Statistics
@FUNCTION=PERCENTILE.EXC
@SHORTDESC=determines the 100*@{k}-th percentile of the given data points (Hyndman-Fan method 6: N+1 basis)
@SYNTAX=PERCENTILE.EXC(array,k)
@ARGUMENTDESCRIPTION=@{array}: data points
@{k}: which percentile to calculate
@NOTE=If @{array} is empty, this function returns a #NUM! error. If @{k} < 0 or @{k} > 1, this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=PERCENTILE,QUARTILE,QUARTILE.EXC

@CATEGORY=Statistics
@FUNCTION=PERCENTRANK
@SHORTDESC=rank of a data point in a data set (Hyndman-Fan method 7: N-1 basis)
@SYNTAX=PERCENTRANK(array,x,significance)
@ARGUMENTDESCRIPTION=@{array}: range of numeric values
@{x}: data point to be ranked
@{significance}: number of significant digits, defaults to 3
@NOTE=If @{array} contains no data points, this function returns a #NUM! error. If @{significance} is less than one, this function returns a #NUM! error. If @{x} exceeds the largest value or is less than the smallest value in @{array}, this function returns an #N/A error. If @{x} does not match any of the values in @{array} or @{x} matches more than once, this function interpolates the returned value.
@SEEALSO=LARGE,MAX,MEDIAN,MIN,PERCENTILE,QUARTILE,SMALL

@CATEGORY=Statistics
@FUNCTION=PERCENTRANK.EXC
@SHORTDESC=rank of a data point in a data set (Hyndman-Fan method 6: N+1 basis)
@SYNTAX=PERCENTRANK.EXC(array,x,significance)
@ARGUMENTDESCRIPTION=@{array}: range of numeric values
@{x}: data point to be ranked
@{significance}: number of significant digits, defaults to 3
@NOTE=If @{array} contains no data points, this function returns a #NUM! error. If @{significance} is less than one, this function returns a #NUM! error. If @{x} exceeds the largest value or is less than the smallest value in @{array}, this function returns an #N/A error. If @{x} does not match any of the values in @{array} or @{x} matches more than once, this function interpolates the returned value.
@SEEALSO=LARGE,MAX,MEDIAN,MIN,PERCENTILE,PERCENTILE.EXC,QUARTILE,QUARTILE.EXC,SMALL

@CATEGORY=Statistics
@FUNCTION=PERMUT
@SHORTDESC=number of @{k}-permutations of a @{n}-set
@SYNTAX=PERMUT(n,k)
@ARGUMENTDESCRIPTION=@{n}: size of the base set
@{k}: number of elements in each permutation
@NOTE=If @{n} = 0 this function returns a #NUM! error. If @{n} < @{k} this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=COMBIN

@CATEGORY=Statistics
@FUNCTION=PERMUTATIONA
@SHORTDESC=the number of permutations of @{y} objects chosen from @{x} objects with repetition allowed
@SYNTAX=PERMUTATIONA(x,y)
@ARGUMENTDESCRIPTION=@{x}: total number of objects
@{y}: number of selected objects
@NOTE=If both @{x} and @{y} equal 0, PERMUTATIONA returns 1. If @{x} < 0 or @{y} < 0, PERMUTATIONA returns #NUM! If @{x} or @{y} are not integers, they are truncated.
@ODF=This function is OpenFormula compatible.
@SEEALSO=POWER

@CATEGORY=Statistics
@FUNCTION=POISSON
@SHORTDESC=probability mass or cumulative distribution function of the Poisson distribution
@SYNTAX=POISSON(x,mean,cumulative)
@ARGUMENTDESCRIPTION=@{x}: number of events
@{mean}: mean of the distribution
@{cumulative}: whether to evaluate the mass function or the cumulative distribution function
@NOTE=If @{x} is a non-integer it is truncated. If @{x} < 0 this function returns a #NUM! error. If @{mean} <= 0 POISSON returns the #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=NORMDIST,WEIBULL

@CATEGORY=Statistics
@FUNCTION=PROB
@SHORTDESC=probability of an interval for a discrete (and finite) probability distribution
@SYNTAX=PROB(x_range,prob_range,lower_limit,upper_limit)
@ARGUMENTDESCRIPTION=@{x_range}: possible values
@{prob_range}: probabilities of the corresponding values
@{lower_limit}: lower interval limit
@{upper_limit}: upper interval limit, defaults to @{lower_limit}
@NOTE=If the sum of the probabilities in @{prob_range} is not equal to 1 this function returns a #NUM! error. If any value in @{prob_range} is <=0 or > 1, this function returns a #NUM! error. If @{x_range} and @{prob_range} contain a different number of data entries, this function returns a #N/A error.
@EXCEL=This function is Excel compatible.
@SEEALSO=BINOMDIST,CRITBINOM

@CATEGORY=Statistics
@FUNCTION=QUARTILE
@SHORTDESC=the @{k}-th quartile of the data points (Hyndman-Fan method 7: N-1 basis)
@SYNTAX=QUARTILE(array,quart)
@ARGUMENTDESCRIPTION=@{array}: data points
@{quart}: a number from 0 to 4, indicating which quartile to calculate
@NOTE=If @{array} is empty, this function returns a #NUM! error. If @{quart} < 0 or @{quart} > 4, this function returns a #NUM! error. If @{quart} = 0, the smallest value of @{array} to be returned. If @{quart} is not an integer, it is truncated.
@EXCEL=This function is Excel compatible.
@SEEALSO=LARGE,MAX,MEDIAN,MIN,PERCENTILE,QUARTILE.EXC,SMALL

@CATEGORY=Statistics
@FUNCTION=QUARTILE.EXC
@SHORTDESC=the @{k}-th quartile of the data points (Hyndman-Fan method 6: N+1 basis)
@SYNTAX=QUARTILE.EXC(array,quart)
@ARGUMENTDESCRIPTION=@{array}: data points
@{quart}: a number from 1 to 3, indicating which quartile to calculate
@NOTE=If @{array} is empty, this function returns a #NUM! error. If @{quart} < 0 or @{quart} > 4, this function returns a #NUM! error. If @{quart} = 0, the smallest value of @{array} to be returned. If @{quart} is not an integer, it is truncated.
@EXCEL=This function is Excel compatible.
@SEEALSO=LARGE,MAX,MEDIAN,MIN,PERCENTILE,PERCENTILE.EXC,QUARTILE,SMALL

@CATEGORY=Statistics
@FUNCTION=R.DBETA
@SHORTDESC=probability density function of the beta distribution
@SYNTAX=R.DBETA(x,a,b,give_log)
@ARGUMENTDESCRIPTION=@{x}: observation
@{a}: the first shape parameter of the distribution
@{b}: the second scale parameter of the distribution
@{give_log}: if true, log of the result will be returned instead
@DESCRIPTION=This function returns the probability density function of the beta distribution.
@SEEALSO=R.PBETA,R.QBETA

@CATEGORY=Statistics
@FUNCTION=R.DBINOM
@SHORTDESC=probability density function of the binomial distribution
@SYNTAX=R.DBINOM(x,n,psuc,give_log)
@ARGUMENTDESCRIPTION=@{x}: observation
@{n}: the number of trials
@{psuc}: the probability of success in each trial
@{give_log}: if true, log of the result will be returned instead
@DESCRIPTION=This function returns the probability density function of the binomial distribution.
@SEEALSO=R.PBINOM,R.QBINOM

@CATEGORY=Statistics
@FUNCTION=R.DCAUCHY
@SHORTDESC=probability density function of the Cauchy distribution
@SYNTAX=R.DCAUCHY(x,location,scale,give_log)
@ARGUMENTDESCRIPTION=@{x}: observation
@{location}: the center of the distribution
@{scale}: the scale parameter of the distribution
@{give_log}: if true, log of the result will be returned instead
@DESCRIPTION=This function returns the probability density function of the Cauchy distribution.
@SEEALSO=R.PCAUCHY,R.QCAUCHY

@CATEGORY=Statistics
@FUNCTION=R.DCHISQ
@SHORTDESC=probability density function of the chi-square distribution
@SYNTAX=R.DCHISQ(x,df,give_log)
@ARGUMENTDESCRIPTION=@{x}: observation
@{df}: the number of degrees of freedom of the distribution
@{give_log}: if true, log of the result will be returned instead
@DESCRIPTION=This function returns the probability density function of the chi-square distribution.
@ODF=A two argument invocation R.DCHISQ(@{x},@{df}) is exported to OpenFormula as CHISQDIST(@{x},@{df},FALSE()).
@SEEALSO=R.PCHISQ,R.QCHISQ

@CATEGORY=Statistics
@FUNCTION=R.DEXP
@SHORTDESC=probability density function of the exponential distribution
@SYNTAX=R.DEXP(x,scale,give_log)
@ARGUMENTDESCRIPTION=@{x}: observation
@{scale}: the scale parameter of the distribution
@{give_log}: if true, log of the result will be returned instead
@DESCRIPTION=This function returns the probability density function of the exponential distribution.
@SEEALSO=R.PEXP,R.QEXP

@CATEGORY=Statistics
@FUNCTION=R.DF
@SHORTDESC=probability density function of the F distribution
@SYNTAX=R.DF(x,n1,n2,give_log)
@ARGUMENTDESCRIPTION=@{x}: observation
@{n1}: the first number of degrees of freedom of the distribution
@{n2}: the second number of degrees of freedom of the distribution
@{give_log}: if true, log of the result will be returned instead
@DESCRIPTION=This function returns the probability density function of the F distribution.
@SEEALSO=R.PF,R.QF

@CATEGORY=Statistics
@FUNCTION=R.DGAMMA
@SHORTDESC=probability density function of the gamma distribution
@SYNTAX=R.DGAMMA(x,shape,scale,give_log)
@ARGUMENTDESCRIPTION=@{x}: observation
@{shape}: the shape parameter of the distribution
@{scale}: the scale parameter of the distribution
@{give_log}: if true, log of the result will be returned instead
@DESCRIPTION=This function returns the probability density function of the gamma distribution.
@SEEALSO=R.PGAMMA,R.QGAMMA

@CATEGORY=Statistics
@FUNCTION=R.DGEOM
@SHORTDESC=probability density function of the geometric distribution
@SYNTAX=R.DGEOM(x,psuc,give_log)
@ARGUMENTDESCRIPTION=@{x}: observation
@{psuc}: the probability of success in each trial
@{give_log}: if true, log of the result will be returned instead
@DESCRIPTION=This function returns the probability density function of the geometric distribution.
@SEEALSO=R.PGEOM,R.QGEOM

@CATEGORY=Statistics
@FUNCTION=R.DGUMBEL
@SHORTDESC=probability density function of the Gumbel distribution
@SYNTAX=R.DGUMBEL(x,mu,beta,give_log)
@ARGUMENTDESCRIPTION=@{x}: observation
@{mu}: the location parameter of freedom of the distribution
@{beta}: the scale parameter of freedom of the distribution
@{give_log}: if true, log of the result will be returned instead
@DESCRIPTION=This function returns the probability density function of the Gumbel distribution.
@SEEALSO=R.PGUMBEL,R.QGUMBEL

@CATEGORY=Statistics
@FUNCTION=R.DHYPER
@SHORTDESC=probability density function of the hypergeometric distribution
@SYNTAX=R.DHYPER(x,r,b,n,give_log)
@ARGUMENTDESCRIPTION=@{x}: observation
@{r}: the number of red balls
@{b}: the number of black balls
@{n}: the number of balls drawn
@{give_log}: if true, log of the result will be returned instead
@DESCRIPTION=This function returns the probability density function of the hypergeometric distribution.
@SEEALSO=R.PHYPER,R.QHYPER

@CATEGORY=Statistics
@FUNCTION=R.DLNORM
@SHORTDESC=probability density function of the log-normal distribution
@SYNTAX=R.DLNORM(x,logmean,logsd,give_log)
@ARGUMENTDESCRIPTION=@{x}: observation
@{logmean}: mean of the underlying normal distribution
@{logsd}: standard deviation of the underlying normal distribution
@{give_log}: if true, log of the result will be returned instead
@DESCRIPTION=This function returns the probability density function of the log-normal distribution.
@SEEALSO=R.PLNORM,R.QLNORM

@CATEGORY=Statistics
@FUNCTION=R.DNBINOM
@SHORTDESC=probability density function of the negative binomial distribution
@SYNTAX=R.DNBINOM(x,n,psuc,give_log)
@ARGUMENTDESCRIPTION=@{x}: observation (number of failures)
@{n}: required number of successes
@{psuc}: the probability of success in each trial
@{give_log}: if true, log of the result will be returned instead
@DESCRIPTION=This function returns the probability density function of the negative binomial distribution.
@SEEALSO=R.PNBINOM,R.QNBINOM

@CATEGORY=Statistics
@FUNCTION=R.DNORM
@SHORTDESC=probability density function of the normal distribution
@SYNTAX=R.DNORM(x,mu,sigma,give_log)
@ARGUMENTDESCRIPTION=@{x}: observation
@{mu}: mean of the distribution
@{sigma}: standard deviation of the distribution
@{give_log}: if true, log of the result will be returned instead
@DESCRIPTION=This function returns the probability density function of the normal distribution.
@SEEALSO=R.PNORM,R.QNORM

@CATEGORY=Statistics
@FUNCTION=R.DPOIS
@SHORTDESC=probability density function of the Poisson distribution
@SYNTAX=R.DPOIS(x,lambda,give_log)
@ARGUMENTDESCRIPTION=@{x}: observation
@{lambda}: the mean of the distribution
@{give_log}: if true, log of the result will be returned instead
@DESCRIPTION=This function returns the probability density function of the Poisson distribution.
@SEEALSO=R.PPOIS,R.QPOIS

@CATEGORY=Statistics
@FUNCTION=R.DRAYLEIGH
@SHORTDESC=probability density function of the Rayleigh distribution
@SYNTAX=R.DRAYLEIGH(x,scale,give_log)
@ARGUMENTDESCRIPTION=@{x}: observation
@{scale}: the scale parameter of the distribution
@{give_log}: if true, log of the result will be returned instead
@DESCRIPTION=This function returns the probability density function of the Rayleigh distribution.
@SEEALSO=R.PRAYLEIGH,R.QRAYLEIGH

@CATEGORY=Statistics
@FUNCTION=R.DSNORM
@SHORTDESC=probability density function of the skew-normal distribution
@SYNTAX=R.DSNORM(x,shape,location,scale,give_log)
@ARGUMENTDESCRIPTION=@{x}: observation
@{shape}: the shape parameter of the distribution
@{location}: the location parameter of the distribution
@{scale}: the scale parameter of the distribution
@{give_log}: if true, log of the result will be returned instead
@DESCRIPTION=This function returns the probability density function of the skew-normal distribution.
@SEEALSO=R.PSNORM,R.QSNORM

@CATEGORY=Statistics
@FUNCTION=R.DST
@SHORTDESC=probability density function of the skew-t distribution
@SYNTAX=R.DST(x,n,shape,give_log)
@ARGUMENTDESCRIPTION=@{x}: observation
@{n}: the number of degrees of freedom of the distribution
@{shape}: the shape parameter of the distribution
@{give_log}: if true, log of the result will be returned instead
@DESCRIPTION=This function returns the probability density function of the skew-t distribution.
@SEEALSO=R.PST,R.QST

@CATEGORY=Statistics
@FUNCTION=R.DT
@SHORTDESC=probability density function of the Student t distribution
@SYNTAX=R.DT(x,n,give_log)
@ARGUMENTDESCRIPTION=@{x}: observation
@{n}: the number of degrees of freedom of the distribution
@{give_log}: if true, log of the result will be returned instead
@DESCRIPTION=This function returns the probability density function of the Student t distribution.
@SEEALSO=R.PT,R.QT

@CATEGORY=Statistics
@FUNCTION=R.DWEIBULL
@SHORTDESC=probability density function of the Weibull distribution
@SYNTAX=R.DWEIBULL(x,shape,scale,give_log)
@ARGUMENTDESCRIPTION=@{x}: observation
@{shape}: the shape parameter of the distribution
@{scale}: the scale parameter of the distribution
@{give_log}: if true, log of the result will be returned instead
@DESCRIPTION=This function returns the probability density function of the Weibull distribution.
@SEEALSO=R.PWEIBULL,R.QWEIBULL

@CATEGORY=Statistics
@FUNCTION=R.PBETA
@SHORTDESC=cumulative distribution function of the beta distribution
@SYNTAX=R.PBETA(x,a,b,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{x}: observation
@{a}: the first shape parameter of the distribution
@{b}: the second scale parameter of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the cumulative distribution function of the beta distribution.
@SEEALSO=R.DBETA,R.QBETA

@CATEGORY=Statistics
@FUNCTION=R.PBINOM
@SHORTDESC=cumulative distribution function of the binomial distribution
@SYNTAX=R.PBINOM(x,n,psuc,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{x}: observation
@{n}: the number of trials
@{psuc}: the probability of success in each trial
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the cumulative distribution function of the binomial distribution.
@SEEALSO=R.DBINOM,R.QBINOM

@CATEGORY=Statistics
@FUNCTION=R.PCAUCHY
@SHORTDESC=cumulative distribution function of the Cauchy distribution
@SYNTAX=R.PCAUCHY(x,location,scale,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{x}: observation
@{location}: the center of the distribution
@{scale}: the scale parameter of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the cumulative distribution function of the Cauchy distribution.
@SEEALSO=R.DCAUCHY,R.QCAUCHY

@CATEGORY=Statistics
@FUNCTION=R.PCHISQ
@SHORTDESC=cumulative distribution function of the chi-square distribution
@SYNTAX=R.PCHISQ(x,df,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{x}: observation
@{df}: the number of degrees of freedom of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the cumulative distribution function of the chi-square distribution.
@ODF=A two argument invocation R.PCHISQ(@{x},@{df}) is exported to OpenFormula as CHISQDIST(@{x},@{df}).
@SEEALSO=R.DCHISQ,R.QCHISQ

@CATEGORY=Statistics
@FUNCTION=R.PEXP
@SHORTDESC=cumulative distribution function of the exponential distribution
@SYNTAX=R.PEXP(x,scale,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{x}: observation
@{scale}: the scale parameter of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the cumulative distribution function of the exponential distribution.
@SEEALSO=R.DEXP,R.QEXP

@CATEGORY=Statistics
@FUNCTION=R.PF
@SHORTDESC=cumulative distribution function of the F distribution
@SYNTAX=R.PF(x,n1,n2,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{x}: observation
@{n1}: the first number of degrees of freedom of the distribution
@{n2}: the second number of degrees of freedom of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the cumulative distribution function of the F distribution.
@SEEALSO=R.DF,R.QF

@CATEGORY=Statistics
@FUNCTION=R.PGAMMA
@SHORTDESC=cumulative distribution function of the gamma distribution
@SYNTAX=R.PGAMMA(x,shape,scale,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{x}: observation
@{shape}: the shape parameter of the distribution
@{scale}: the scale parameter of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the cumulative distribution function of the gamma distribution.
@SEEALSO=R.DGAMMA,R.QGAMMA

@CATEGORY=Statistics
@FUNCTION=R.PGEOM
@SHORTDESC=cumulative distribution function of the geometric distribution
@SYNTAX=R.PGEOM(x,psuc,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{x}: observation
@{psuc}: the probability of success in each trial
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the cumulative distribution function of the geometric distribution.
@SEEALSO=R.DGEOM,R.QGEOM

@CATEGORY=Statistics
@FUNCTION=R.PGUMBEL
@SHORTDESC=cumulative distribution function of the Gumbel distribution
@SYNTAX=R.PGUMBEL(x,mu,beta,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{x}: observation
@{mu}: the location parameter of freedom of the distribution
@{beta}: the scale parameter of freedom of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the cumulative distribution function of the Gumbel distribution.
@SEEALSO=R.DGUMBEL,R.QGUMBEL

@CATEGORY=Statistics
@FUNCTION=R.PHYPER
@SHORTDESC=cumulative distribution function of the hypergeometric distribution
@SYNTAX=R.PHYPER(x,r,b,n,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{x}: observation
@{r}: the number of red balls
@{b}: the number of black balls
@{n}: the number of balls drawn
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the cumulative distribution function of the hypergeometric distribution.
@SEEALSO=R.DHYPER,R.QHYPER

@CATEGORY=Statistics
@FUNCTION=R.PLNORM
@SHORTDESC=cumulative distribution function of the log-normal distribution
@SYNTAX=R.PLNORM(x,logmean,logsd,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{x}: observation
@{logmean}: mean of the underlying normal distribution
@{logsd}: standard deviation of the underlying normal distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the cumulative distribution function of the log-normal distribution.
@SEEALSO=R.DLNORM,R.QLNORM

@CATEGORY=Statistics
@FUNCTION=R.PNBINOM
@SHORTDESC=cumulative distribution function of the negative binomial distribution
@SYNTAX=R.PNBINOM(x,n,psuc,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{x}: observation (number of failures)
@{n}: required number of successes
@{psuc}: the probability of success in each trial
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the cumulative distribution function of the negative binomial distribution.
@SEEALSO=R.DNBINOM,R.QNBINOM

@CATEGORY=Statistics
@FUNCTION=R.PNORM
@SHORTDESC=cumulative distribution function of the normal distribution
@SYNTAX=R.PNORM(x,mu,sigma,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{x}: observation
@{mu}: mean of the distribution
@{sigma}: standard deviation of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the cumulative distribution function of the normal distribution.
@SEEALSO=R.DNORM,R.QNORM

@CATEGORY=Statistics
@FUNCTION=R.PPOIS
@SHORTDESC=cumulative distribution function of the Poisson distribution
@SYNTAX=R.PPOIS(x,lambda,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{x}: observation
@{lambda}: the mean of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the cumulative distribution function of the Poisson distribution.
@SEEALSO=R.DPOIS,R.QPOIS

@CATEGORY=Statistics
@FUNCTION=R.PRAYLEIGH
@SHORTDESC=cumulative distribution function of the Rayleigh distribution
@SYNTAX=R.PRAYLEIGH(x,scale,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{x}: observation
@{scale}: the scale parameter of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the cumulative distribution function of the Rayleigh distribution.
@SEEALSO=R.DRAYLEIGH,R.QRAYLEIGH

@CATEGORY=Statistics
@FUNCTION=R.PSNORM
@SHORTDESC=cumulative distribution function of the skew-normal distribution
@SYNTAX=R.PSNORM(x,shape,location,scale,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{x}: observation
@{shape}: the shape parameter of the distribution
@{location}: the location parameter of the distribution
@{scale}: the scale parameter of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the cumulative distribution function of the skew-normal distribution.
@SEEALSO=R.DSNORM,R.QSNORM

@CATEGORY=Statistics
@FUNCTION=R.PST
@SHORTDESC=cumulative distribution function of the skew-t distribution
@SYNTAX=R.PST(x,n,shape,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{x}: observation
@{n}: the number of degrees of freedom of the distribution
@{shape}: the shape parameter of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the cumulative distribution function of the skew-t distribution.
@SEEALSO=R.DST,R.QST

@CATEGORY=Statistics
@FUNCTION=R.PT
@SHORTDESC=cumulative distribution function of the Student t distribution
@SYNTAX=R.PT(x,n,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{x}: observation
@{n}: the number of degrees of freedom of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the cumulative distribution function of the Student t distribution.
@SEEALSO=R.DT,R.QT

@CATEGORY=Statistics
@FUNCTION=R.PTUKEY
@SHORTDESC=cumulative distribution function of the Studentized range distribution
@SYNTAX=R.PTUKEY(x,nmeans,df,nranges,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{x}: observation
@{nmeans}: the number of means
@{df}: the number of degrees of freedom of the distribution
@{nranges}: the number of ranges; default is 1
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the cumulative distribution function of the Studentized range distribution.
@SEEALSO=R.QTUKEY

@CATEGORY=Statistics
@FUNCTION=R.PWEIBULL
@SHORTDESC=cumulative distribution function of the Weibull distribution
@SYNTAX=R.PWEIBULL(x,shape,scale,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{x}: observation
@{shape}: the shape parameter of the distribution
@{scale}: the scale parameter of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the cumulative distribution function of the Weibull distribution.
@SEEALSO=R.DWEIBULL,R.QWEIBULL

@CATEGORY=Statistics
@FUNCTION=R.QBETA
@SHORTDESC=probability quantile function of the beta distribution
@SYNTAX=R.QBETA(p,a,b,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{p}: probability or natural logarithm of the probability
@{a}: the first shape parameter of the distribution
@{b}: the second scale parameter of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the probability quantile function, i.e., the inverse of the cumulative distribution function, of the beta distribution.
@SEEALSO=R.DBETA,R.PBETA

@CATEGORY=Statistics
@FUNCTION=R.QBINOM
@SHORTDESC=probability quantile function of the binomial distribution
@SYNTAX=R.QBINOM(p,n,psuc,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{p}: probability or natural logarithm of the probability
@{n}: the number of trials
@{psuc}: the probability of success in each trial
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the probability quantile function, i.e., the inverse of the cumulative distribution function, of the binomial distribution.
@SEEALSO=R.DBINOM,R.PBINOM

@CATEGORY=Statistics
@FUNCTION=R.QCAUCHY
@SHORTDESC=probability quantile function of the Cauchy distribution
@SYNTAX=R.QCAUCHY(p,location,scale,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{p}: probability or natural logarithm of the probability
@{location}: the center of the distribution
@{scale}: the scale parameter of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the probability quantile function, i.e., the inverse of the cumulative distribution function, of the Cauchy distribution.
@SEEALSO=R.DCAUCHY,R.PCAUCHY

@CATEGORY=Statistics
@FUNCTION=R.QCHISQ
@SHORTDESC=probability quantile function of the chi-square distribution
@SYNTAX=R.QCHISQ(p,df,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{p}: probability or natural logarithm of the probability
@{df}: the number of degrees of freedom of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the probability quantile function, i.e., the inverse of the cumulative distribution function, of the chi-square distribution.
@ODF=A two argument invocation R.QCHISQ(@{p},@{df}) is exported to OpenFormula as CHISQINV(@{p},@{df}).
@SEEALSO=R.DCHISQ,R.PCHISQ

@CATEGORY=Statistics
@FUNCTION=R.QEXP
@SHORTDESC=probability quantile function of the exponential distribution
@SYNTAX=R.QEXP(p,scale,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{p}: probability or natural logarithm of the probability
@{scale}: the scale parameter of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the probability quantile function, i.e., the inverse of the cumulative distribution function, of the exponential distribution.
@SEEALSO=R.DEXP,R.PEXP

@CATEGORY=Statistics
@FUNCTION=R.QF
@SHORTDESC=probability quantile function of the F distribution
@SYNTAX=R.QF(p,n1,n2,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{p}: probability or natural logarithm of the probability
@{n1}: the first number of degrees of freedom of the distribution
@{n2}: the second number of degrees of freedom of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the probability quantile function, i.e., the inverse of the cumulative distribution function, of the F distribution.
@SEEALSO=R.DF,R.PF

@CATEGORY=Statistics
@FUNCTION=R.QGAMMA
@SHORTDESC=probability quantile function of the gamma distribution
@SYNTAX=R.QGAMMA(p,shape,scale,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{p}: probability or natural logarithm of the probability
@{shape}: the shape parameter of the distribution
@{scale}: the scale parameter of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the probability quantile function, i.e., the inverse of the cumulative distribution function, of the gamma distribution.
@SEEALSO=R.DGAMMA,R.PGAMMA

@CATEGORY=Statistics
@FUNCTION=R.QGEOM
@SHORTDESC=probability quantile function of the geometric distribution
@SYNTAX=R.QGEOM(p,psuc,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{p}: probability or natural logarithm of the probability
@{psuc}: the probability of success in each trial
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the probability quantile function, i.e., the inverse of the cumulative distribution function, of the geometric distribution.
@SEEALSO=R.DGEOM,R.PGEOM

@CATEGORY=Statistics
@FUNCTION=R.QGUMBEL
@SHORTDESC=probability quantile function of the Gumbel distribution
@SYNTAX=R.QGUMBEL(p,mu,beta,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{p}: probability or natural logarithm of the probability
@{mu}: the location parameter of freedom of the distribution
@{beta}: the scale parameter of freedom of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the probability quantile function, i.e., the inverse of the cumulative distribution function, of the Gumbel distribution.
@SEEALSO=R.DGUMBEL,R.PGUMBEL

@CATEGORY=Statistics
@FUNCTION=R.QHYPER
@SHORTDESC=probability quantile function of the hypergeometric distribution
@SYNTAX=R.QHYPER(p,r,b,n,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{p}: probability or natural logarithm of the probability
@{r}: the number of red balls
@{b}: the number of black balls
@{n}: the number of balls drawn
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the probability quantile function, i.e., the inverse of the cumulative distribution function, of the hypergeometric distribution.
@SEEALSO=R.DHYPER,R.PHYPER

@CATEGORY=Statistics
@FUNCTION=R.QLNORM
@SHORTDESC=probability quantile function of the log-normal distribution
@SYNTAX=R.QLNORM(p,logmean,logsd,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{p}: probability or natural logarithm of the probability
@{logmean}: mean of the underlying normal distribution
@{logsd}: standard deviation of the underlying normal distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the probability quantile function, i.e., the inverse of the cumulative distribution function, of the log-normal distribution.
@SEEALSO=R.DLNORM,R.PLNORM

@CATEGORY=Statistics
@FUNCTION=R.QNBINOM
@SHORTDESC=probability quantile function of the negative binomial distribution
@SYNTAX=R.QNBINOM(p,n,psuc,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{p}: probability or natural logarithm of the probability
@{n}: required number of successes
@{psuc}: the probability of success in each trial
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the probability quantile function, i.e., the inverse of the cumulative distribution function, of the negative binomial distribution.
@SEEALSO=R.DNBINOM,R.PNBINOM

@CATEGORY=Statistics
@FUNCTION=R.QNORM
@SHORTDESC=probability quantile function of the normal distribution
@SYNTAX=R.QNORM(p,mu,sigma,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{p}: probability or natural logarithm of the probability
@{mu}: mean of the distribution
@{sigma}: standard deviation of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the probability quantile function, i.e., the inverse of the cumulative distribution function, of the normal distribution.
@SEEALSO=R.DNORM,R.PNORM

@CATEGORY=Statistics
@FUNCTION=R.QPOIS
@SHORTDESC=probability quantile function of the Poisson distribution
@SYNTAX=R.QPOIS(p,lambda,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{p}: probability or natural logarithm of the probability
@{lambda}: the mean of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the probability quantile function, i.e., the inverse of the cumulative distribution function, of the Poisson distribution.
@SEEALSO=R.DPOIS,R.PPOIS

@CATEGORY=Statistics
@FUNCTION=R.QRAYLEIGH
@SHORTDESC=probability quantile function of the Rayleigh distribution
@SYNTAX=R.QRAYLEIGH(p,scale,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{p}: probability or natural logarithm of the probability
@{scale}: the scale parameter of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the probability quantile function, i.e., the inverse of the cumulative distribution function, of the Rayleigh distribution.
@SEEALSO=R.DRAYLEIGH,R.PRAYLEIGH

@CATEGORY=Statistics
@FUNCTION=R.QSNORM
@SHORTDESC=probability quantile function of the skew-normal distribution
@SYNTAX=R.QSNORM(p,shape,location,scale,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{p}: probability or natural logarithm of the probability
@{shape}: the shape parameter of the distribution
@{location}: the location parameter of the distribution
@{scale}: the scale parameter of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the probability quantile function, i.e., the inverse of the cumulative distribution function, of the skew-normal distribution.
@SEEALSO=R.DSNORM,R.PSNORM

@CATEGORY=Statistics
@FUNCTION=R.QST
@SHORTDESC=probability quantile function of the skew-t distribution
@SYNTAX=R.QST(p,n,shape,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{p}: probability or natural logarithm of the probability
@{n}: the number of degrees of freedom of the distribution
@{shape}: the shape parameter of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the probability quantile function, i.e., the inverse of the cumulative distribution function, of the skew-t distribution.
@SEEALSO=R.DST,R.PST

@CATEGORY=Statistics
@FUNCTION=R.QT
@SHORTDESC=probability quantile function of the Student t distribution
@SYNTAX=R.QT(p,n,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{p}: probability or natural logarithm of the probability
@{n}: the number of degrees of freedom of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the probability quantile function, i.e., the inverse of the cumulative distribution function, of the Student t distribution.
@SEEALSO=R.DT,R.PT

@CATEGORY=Statistics
@FUNCTION=R.QTUKEY
@SHORTDESC=probability quantile function of the Studentized range distribution
@SYNTAX=R.QTUKEY(p,nmeans,df,nranges,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{p}: probability or natural logarithm of the probability
@{nmeans}: the number of means
@{df}: the number of degrees of freedom of the distribution
@{nranges}: the number of ranges; default is 1
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the probability quantile function, i.e., the inverse of the cumulative distribution function, of the Studentized range distribution.
@SEEALSO=R.PTUKEY

@CATEGORY=Statistics
@FUNCTION=R.QWEIBULL
@SHORTDESC=probability quantile function of the Weibull distribution
@SYNTAX=R.QWEIBULL(p,shape,scale,lower_tail,log_p)
@ARGUMENTDESCRIPTION=@{p}: probability or natural logarithm of the probability
@{shape}: the shape parameter of the distribution
@{scale}: the scale parameter of the distribution
@{lower_tail}: if true (the default), the lower tail of the distribution is considered
@{log_p}: if true, the natural logarithm of the probability is given or returned; defaults to false
@DESCRIPTION=This function returns the probability quantile function, i.e., the inverse of the cumulative distribution function, of the Weibull distribution.
@SEEALSO=R.DWEIBULL,R.PWEIBULL

@CATEGORY=Statistics
@FUNCTION=RANK
@SHORTDESC=rank of a number in a list of numbers
@SYNTAX=RANK(x,ref,order)
@ARGUMENTDESCRIPTION=@{x}: number whose rank you want to find
@{ref}: list of numbers
@{order}: 0 (descending order) or non-zero (ascending order); defaults to 0
@NOTE=In case of a tie, RANK returns the largest possible rank.
@EXCEL=This function is Excel compatible.
@SEEALSO=PERCENTRANK,RANK.AVG

@CATEGORY=Statistics
@FUNCTION=RANK.AVG
@SHORTDESC=rank of a number in a list of numbers
@SYNTAX=RANK.AVG(x,ref,order)
@ARGUMENTDESCRIPTION=@{x}: number whose rank you want to find
@{ref}: list of numbers
@{order}: 0 (descending order) or non-zero (ascending order); defaults to 0
@NOTE=In case of a tie, RANK.AVG returns the average rank.
@EXCEL=This function is Excel 2010 compatible.
@SEEALSO=PERCENTRANK,RANK

@CATEGORY=Statistics
@FUNCTION=RAYLEIGH
@SHORTDESC=probability density function of the Rayleigh distribution
@SYNTAX=RAYLEIGH(x,sigma)
@ARGUMENTDESCRIPTION=@{x}: number
@{sigma}: scale parameter
@SEEALSO=RANDRAYLEIGH

@CATEGORY=Statistics
@FUNCTION=RAYLEIGHTAIL
@SHORTDESC=probability density function of the Rayleigh tail distribution
@SYNTAX=RAYLEIGHTAIL(x,a,sigma)
@ARGUMENTDESCRIPTION=@{x}: number
@{a}: lower limit
@{sigma}: scale parameter
@SEEALSO=RANDRAYLEIGHTAIL

@CATEGORY=Statistics
@FUNCTION=RSQ
@SHORTDESC=square of the Pearson correlation coefficient of the paired set of data
@SYNTAX=RSQ(array1,array2)
@ARGUMENTDESCRIPTION=@{array1}: first component values
@{array2}: second component values
@DESCRIPTION=Strings and empty cells are simply ignored.
@EXCEL=This function is Excel compatible.
@SEEALSO=CORREL,COVAR,INTERCEPT,LINEST,LOGEST,PEARSON,SLOPE,STEYX,TREND

@CATEGORY=Statistics
@FUNCTION=SFTEST
@SHORTDESC=Shapiro-Francia Test of Normality
@SYNTAX=SFTEST(x)
@ARGUMENTDESCRIPTION=@{x}: array of sample values
@DESCRIPTION=This function returns an array with the first row giving the p-value of the Shapiro-Francia Test, the second row the test statistic of the test, and the third the number of observations in the sample.
@NOTE=If there are less than 5 or more than 5000 sample values, SFTEST returns #VALUE!
@SEEALSO=CHITEST,ADTEST,LKSTEST,CVMTEST

@CATEGORY=Statistics
@FUNCTION=SKEW
@SHORTDESC=unbiased estimate for skewness of a distribution
@SYNTAX=SKEW(number1,number2,…)
@ARGUMENTDESCRIPTION=@{number1}: first value
@{number2}: second value
@DESCRIPTION=Strings and empty cells are simply ignored.
@NOTE=This is only meaningful if the underlying distribution really has a third moment.  The skewness of a symmetric (e.g., normal) distribution is zero. If less than three numbers are given, this function returns a #DIV/0! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=AVERAGE,VAR,SKEWP,KURT

@CATEGORY=Statistics
@FUNCTION=SKEWP
@SHORTDESC=population skewness of a data set
@SYNTAX=SKEWP(number1,number2,…)
@ARGUMENTDESCRIPTION=@{number1}: first value
@{number2}: second value
@DESCRIPTION=Strings and empty cells are simply ignored.
@NOTE=If less than two numbers are given, SKEWP returns a #DIV/0! error.
@SEEALSO=AVERAGE,VARP,SKEW,KURTP

@CATEGORY=Statistics
@FUNCTION=SLOPE
@SHORTDESC=the slope of a linear regression line
@SYNTAX=SLOPE(known_ys,known_xs)
@ARGUMENTDESCRIPTION=@{known_ys}: known y-values
@{known_xs}: known x-values
@NOTE=If @{known_xs} or @{known_ys} contains no data entries or different number of data entries, this function returns a #N/A error. If the variance of the @{known_xs} is zero, this function returns #DIV/0 error.
@EXCEL=This function is Excel compatible.
@SEEALSO=STDEV,STDEVPA

@CATEGORY=Statistics
@FUNCTION=SMALL
@SHORTDESC=@{k}-th smallest value in a data set
@SYNTAX=SMALL(data,k)
@ARGUMENTDESCRIPTION=@{data}: data set
@{k}: which value to find
@NOTE=If data set is empty this function returns a #NUM! error. If @{k} <= 0 or @{k} is greater than the number of data items given this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=PERCENTILE,PERCENTRANK,QUARTILE,LARGE

@CATEGORY=Statistics
@FUNCTION=SNORM.DIST.RANGE
@SHORTDESC=probability of the standard normal distribution over an interval
@SYNTAX=SNORM.DIST.RANGE(x1,x2)
@ARGUMENTDESCRIPTION=@{x1}: start of the interval
@{x2}: end of the interval
@DESCRIPTION=This function returns the cumulative probability over a range of the standard normal distribution; that is the integral over the probability density function from @{x1} to @{x2}.
@NOTE=If @{x1}>@{x2}, this function returns a negative value.
@SEEALSO=NORMSDIST,R.PNORM,R.QNORM,R.DNORM

@CATEGORY=Statistics
@FUNCTION=SSMEDIAN
@SHORTDESC=median for grouped data
@SYNTAX=SSMEDIAN(array,interval)
@ARGUMENTDESCRIPTION=@{array}: data set
@{interval}: length of each grouping interval, defaults to 1
@DESCRIPTION=The data are assumed to be grouped into intervals of width @{interval}. Each data point in @{array} is the midpoint of the interval containing the true value. The median is calculated by interpolation within the median interval (the interval containing the median value), assuming that the true values within that interval are distributed uniformly:
median = L + @{interval}*(N/2 - CF)/F
where:
L = the lower limit of the median interval
N = the total number of data points
CF = the number of data points below the median interval
F = the number of data points in the median interval
@NOTE=If @{array} is empty, this function returns a #NUM! error. If @{interval} <= 0, this function returns a #NUM! error. SSMEDIAN does not check whether the data points are at least @{interval} apart.
@SEEALSO=MEDIAN

@CATEGORY=Statistics
@FUNCTION=STANDARDIZE
@SHORTDESC=z-score of a value
@SYNTAX=STANDARDIZE(x,mean,stddev)
@ARGUMENTDESCRIPTION=@{x}: value
@{mean}: mean of the original distribution
@{stddev}: standard deviation of the original distribution
@NOTE=If @{stddev} is 0 this function returns a #DIV/0! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=AVERAGE

@CATEGORY=Statistics
@FUNCTION=STDEV
@SHORTDESC=sample standard deviation of the given sample
@SYNTAX=STDEV(area1,area2,…)
@ARGUMENTDESCRIPTION=@{area1}: first cell area
@{area2}: second cell area
@DESCRIPTION=STDEV is also known as the N-1-standard deviation.
To obtain the population standard deviation of a whole population use STDEVP.
@EXCEL=This function is Excel compatible.
@SEEALSO=AVERAGE,DSTDEV,DSTDEVP,STDEVA,STDEVPA,VAR

@CATEGORY=Statistics
@FUNCTION=STDEVA
@SHORTDESC=sample standard deviation of the given sample
@SYNTAX=STDEVA(area1,area2,…)
@ARGUMENTDESCRIPTION=@{area1}: first cell area
@{area2}: second cell area
@DESCRIPTION=STDEVA is also known as the N-1-standard deviation.
To obtain the population standard deviation of a whole population use STDEVPA.
Numbers, text and logical values are included in the calculation too. If the cell contains text or the argument evaluates to FALSE, it is counted as value zero (0). If the argument evaluates to TRUE, it is counted as one (1). Note that empty cells are not counted.
@EXCEL=This function is Excel compatible.
@SEEALSO=STDEV,STDEVPA

@CATEGORY=Statistics
@FUNCTION=STDEVP
@SHORTDESC=population standard deviation of the given population
@SYNTAX=STDEVP(area1,area2,…)
@ARGUMENTDESCRIPTION=@{area1}: first cell area
@{area2}: second cell area
@DESCRIPTION=This is also known as the N-standard deviation
@EXCEL=This function is Excel compatible.
@SEEALSO=STDEV,STDEVA,STDEVPA

@CATEGORY=Statistics
@FUNCTION=STDEVPA
@SHORTDESC=population standard deviation of an entire population
@SYNTAX=STDEVPA(area1,area2,…)
@ARGUMENTDESCRIPTION=@{area1}: first cell area
@{area2}: second cell area
@DESCRIPTION=This is also known as the N-standard deviation
Numbers, text and logical values are included in the calculation too. If the cell contains text or the argument evaluates to FALSE, it is counted as value zero (0). If the argument evaluates to TRUE, it is counted as one (1). Note that empty cells are not counted.
@EXCEL=This function is Excel compatible.
@SEEALSO=STDEVA,STDEVP

@CATEGORY=Statistics
@FUNCTION=STEYX
@SHORTDESC=standard error of the predicted y-value in the regression
@SYNTAX=STEYX(known_ys,known_xs)
@ARGUMENTDESCRIPTION=@{known_ys}: known y-values
@{known_xs}: known x-values
@NOTE=If @{known_ys} and @{known_xs} are empty or have a different number of arguments then this function returns a #N/A error.
@EXCEL=This function is Excel compatible.
@SEEALSO=PEARSON,RSQ,SLOPE

@CATEGORY=Statistics
@FUNCTION=SUBTOTAL
@SHORTDESC=the subtotal of the given list of arguments
@SYNTAX=SUBTOTAL(function_nbr,ref1,ref2,…)
@ARGUMENTDESCRIPTION=@{function_nbr}: determines which function to use according to the following table:
	1   AVERAGE
	2   COUNT
	3   COUNTA
	4   MAX
	5   MIN
	6   PRODUCT
	7   STDEV
	8   STDEVP
	9   SUM
	10   VAR
	11   VARP
@{ref1}: first value
@{ref2}: second value
@EXCEL=This function is Excel compatible.
@SEEALSO=COUNT,SUM

@CATEGORY=Statistics
@FUNCTION=TDIST
@SHORTDESC=survival function of the Student t-distribution
@SYNTAX=TDIST(x,dof,tails)
@ARGUMENTDESCRIPTION=@{x}: number
@{dof}: number of degrees of freedom
@{tails}: 1 or 2
@DESCRIPTION=The survival function is 1 minus the cumulative distribution function.
This function is Excel compatible for non-negative @{x}.
@NOTE=If @{dof} < 1 this function returns a #NUM! error. If @{tails} is neither 1 or 2 this function returns a #NUM! error. The parameterization of this function is different from what is used for, e.g., NORMSDIST.  This is a common source of mistakes, but necessary for compatibility.
@SEEALSO=TINV,TTEST

@CATEGORY=Statistics
@FUNCTION=TINV
@SHORTDESC=two tailed inverse of the Student t-distribution
@SYNTAX=TINV(p,dof)
@ARGUMENTDESCRIPTION=@{p}: probability in both tails
@{dof}: number of degrees of freedom
@DESCRIPTION=This function returns the non-negative value x such that the area under the Student t density with @{dof} degrees of freedom to the right of x is @{p}/2.
@NOTE=If @{p} < 0 or @{p} > 1 or @{dof} < 1 this function returns a #NUM! error. The parameterization of this function is different from what is used for, e.g., NORMSINV.  This is a common source of mistakes, but necessary for compatibility.
@EXCEL=This function is Excel compatible.
@SEEALSO=TDIST,TTEST

@CATEGORY=Statistics
@FUNCTION=TREND
@SHORTDESC=estimates future values of a given data set using a least squares approximation
@SYNTAX=TREND(known_ys,known_xs,new_xs,affine)
@ARGUMENTDESCRIPTION=@{known_ys}: vector of values of dependent variable
@{known_xs}: array of values of independent variables, defaults to a single vector {1,…,n}
@{new_xs}: array of x-values for which to estimate the y-values; defaults to @{known_xs}
@{affine}: if true, the model contains a constant term, defaults to true
@NOTE=If the length of @{known_ys} does not match the corresponding length of @{known_xs}, this function returns a #NUM! error.
@SEEALSO=LINEST

@CATEGORY=Statistics
@FUNCTION=TRIMMEAN
@SHORTDESC=mean of the interior of a data set
@SYNTAX=TRIMMEAN(ref,fraction)
@ARGUMENTDESCRIPTION=@{ref}: list of numbers whose mean you want to calculate
@{fraction}: fraction of the data set excluded from the mean
@DESCRIPTION=If @{fraction}=0.2 and the data set contains 40 numbers, 8 numbers are trimmed from the data set (40 x 0.2): the 4 largest and the 4 smallest. To avoid a bias, the number of points to be excluded is always rounded down to the nearest even number.
@EXCEL=This function is Excel compatible.
@SEEALSO=AVERAGE,GEOMEAN,HARMEAN,MEDIAN,MODE

@CATEGORY=Statistics
@FUNCTION=TTEST
@SHORTDESC=p-value for a hypothesis test comparing the means of two populations using the Student t-distribution
@SYNTAX=TTEST(array1,array2,tails,type)
@ARGUMENTDESCRIPTION=@{array1}: sample from the first population
@{array2}: sample from the second population
@{tails}: number of tails to consider
@{type}: Type of test to perform. 1 indicates a test for paired variables, 2 a test of unpaired variables with equal variances, and 3 a test of unpaired variables with unequal variances
@NOTE=If the data sets contain a different number of data points and the test is paired (@{type} one), TTEST returns the #N/A error. @{tails} and @{type} are truncated to integers. If @{tails} is not one or two, this function returns a #NUM! error. If @{type} is any other than one, two, or three, this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=FDIST,FINV

@CATEGORY=Statistics
@FUNCTION=VAR
@SHORTDESC=sample variance of the given sample
@SYNTAX=VAR(area1,area2,…)
@ARGUMENTDESCRIPTION=@{area1}: first cell area
@{area2}: second cell area
@DESCRIPTION=VAR is also known as the N-1-variance.
@NOTE=Since the N-1-variance includes Bessel's correction, whereas the N-variance calculated by VARPA or VARP does not, under reasonable conditions the N-1-variance is an unbiased estimator of the variance of the population from which the sample is drawn.
@EXCEL=This function is Excel compatible.
@SEEALSO=VARP,STDEV,VARA

@CATEGORY=Statistics
@FUNCTION=VARA
@SHORTDESC=sample variance of the given sample
@SYNTAX=VARA(area1,area2,…)
@ARGUMENTDESCRIPTION=@{area1}: first cell area
@{area2}: second cell area
@DESCRIPTION=VARA is also known as the N-1-variance.
To get the true variance of a complete population use VARPA.
Numbers, text and logical values are included in the calculation too. If the cell contains text or the argument evaluates to FALSE, it is counted as value zero (0). If the argument evaluates to TRUE, it is counted as one (1). Note that empty cells are not counted.
@NOTE=Since the N-1-variance includes Bessel's correction, whereas the N-variance calculated by VARPA or VARP does not, under reasonable conditions the N-1-variance is an unbiased estimator of the variance of the population from which the sample is drawn.
@EXCEL=This function is Excel compatible.
@SEEALSO=VAR,VARPA

@CATEGORY=Statistics
@FUNCTION=VARP
@SHORTDESC=variance of an entire population
@SYNTAX=VARP(area1,area2,…)
@ARGUMENTDESCRIPTION=@{area1}: first cell area
@{area2}: second cell area
@DESCRIPTION=VARP is also known as the N-variance.
@SEEALSO=AVERAGE,DVAR,DVARP,STDEV,VAR

@CATEGORY=Statistics
@FUNCTION=VARPA
@SHORTDESC=variance of an entire population
@SYNTAX=VARPA(area1,area2,…)
@ARGUMENTDESCRIPTION=@{area1}: first cell area
@{area2}: second cell area
@DESCRIPTION=VARPA is also known as the N-variance.
Numbers, text and logical values are included in the calculation too. If the cell contains text or the argument evaluates to FALSE, it is counted as value zero (0). If the argument evaluates to TRUE, it is counted as one (1). Note that empty cells are not counted.
@EXCEL=This function is Excel compatible.
@SEEALSO=VARA,VARP

@CATEGORY=Statistics
@FUNCTION=WEIBULL
@SHORTDESC=probability density or cumulative distribution function of the Weibull distribution
@SYNTAX=WEIBULL(x,alpha,beta,cumulative)
@ARGUMENTDESCRIPTION=@{x}: number
@{alpha}: scale parameter
@{beta}: scale parameter
@{cumulative}: whether to evaluate the density function or the cumulative distribution function
@DESCRIPTION=If the @{cumulative} boolean is true it will return: 1 - exp (-(@{x}/@{beta})^@{alpha}), otherwise it will return (@{alpha}/@{beta}^@{alpha}) * @{x}^(@{alpha}-1) * exp(-(@{x}/@{beta}^@{alpha})).
@NOTE=If @{x} < 0 this function returns a #NUM! error. If @{alpha} <= 0 or @{beta} <= 0 this function returns a #NUM! error.
@EXCEL=This function is Excel compatible.
@SEEALSO=POISSON

@CATEGORY=Statistics
@FUNCTION=ZTEST
@SHORTDESC=the probability of observing a sample mean as large as or larger than the mean of the given sample
@SYNTAX=ZTEST(ref,x,stddev)
@ARGUMENTDESCRIPTION=@{ref}: data set (sample)
@{x}: population mean
@{stddev}: population standard deviation, defaults to the sample standard deviation
@DESCRIPTION=ZTEST calculates the probability of observing a sample mean as large as or larger than the mean of the given sample for samples drawn from a normal distribution with mean @{x} and standard deviation @{stddev}.
@NOTE=If @{ref} contains less than two data items ZTEST returns #DIV/0! error.
@EXCEL=This function is Excel compatible.
@ODF=This function is OpenFormula compatible.
@SEEALSO=CONFIDENCE,NORMDIST,NORMINV,NORMSDIST,NORMSINV,STANDARDIZE

@CATEGORY=String
@FUNCTION=ASC
@SHORTDESC=text with full-width katakana and ASCII characters converted to half-width
@SYNTAX=ASC(text)
@ARGUMENTDESCRIPTION=@{text}: string
@DESCRIPTION=ASC converts full-width katakana and ASCII characters to half-width equivalent characters, copying all others.
The distinction between half-width and full-width characters is described in http://www.unicode.org/reports/tr11/.
@NOTE=While in obsolete encodings ASC used to translate between 2-byte and 1-byte characters, this is not the case in UTF-8.
@EXCEL=For most strings, this function has the same effect as in Excel.
@ODF=This function is OpenFormula compatible.
@SEEALSO=JIS

@CATEGORY=String
@FUNCTION=CHAR
@SHORTDESC=the CP1252 (Windows-1252) character for the code point @{x}
@SYNTAX=CHAR(x)
@ARGUMENTDESCRIPTION=@{x}: code point
@DESCRIPTION=CHAR(@{x}) returns the CP1252 (Windows-1252) character with code @{x}.
@{x} must be in the range 1 to 255.
CP1252 (Windows-1252) is also known as the "ANSI code page", but it is not an ANSI standard.
CP1252 (Windows-1252) is based on an early draft of ISO-8859-1, and contains all of its printable characters. It also contains all of ISO-8859-15's printable characters (but partially at different positions.)
This function is Excel compatible.
@NOTE=In CP1252 (Windows-1252), 129, 141, 143, 144, and 157 do not have matching characters. For @{x} from 1 to 255 except 129, 141, 143, 144, and 157 we have CODE(CHAR(@{x}))=@{x}.
@SEEALSO=CODE

@CATEGORY=String
@FUNCTION=CLEAN
@SHORTDESC=@{text} with any non-printable characters removed
@SYNTAX=CLEAN(text)
@ARGUMENTDESCRIPTION=@{text}: string
@DESCRIPTION=CLEAN removes non-printable characters from its argument leaving only regular characters and white-space.
@EXCEL=This function is Excel compatible.

@CATEGORY=String
@FUNCTION=CODE
@SHORTDESC=the CP1252 (Windows-1252) code point for the character @{c}
@SYNTAX=CODE(c)
@ARGUMENTDESCRIPTION=@{c}: character
@DESCRIPTION=@{c} must be a valid CP1252 (Windows-1252) character.
CP1252 (Windows-1252) is also known as the "ANSI code page", but it is not an ANSI standard.
CP1252 (Windows-1252) is based on an early draft of ISO-8859-1, and contains all of its printable characters (but partially at different positions.)
This function is Excel compatible.
@NOTE=In CP1252 (Windows-1252), 129, 141, 143, 144, and 157 do not have matching characters. For @{x} from 1 to 255 except 129, 141, 143, 144, and 157 we have CODE(CHAR(@{x}))=@{x}.
@SEEALSO=CHAR

@CATEGORY=String
@FUNCTION=CONCAT
@SHORTDESC=the concatenation of the strings @{s1}, @{s2},…
@SYNTAX=CONCAT(s1,s2,…)
@ARGUMENTDESCRIPTION=@{s1}: first string
@{s2}: second string
@NOTE=This function is identical to CONCATENATE
@EXCEL=This function is Excel compatible.
@SEEALSO=LEFT,MID,RIGHT

@CATEGORY=String
@FUNCTION=CONCATENATE
@SHORTDESC=the concatenation of the strings @{s1}, @{s2},…
@SYNTAX=CONCATENATE(s1,s2,…)
@ARGUMENTDESCRIPTION=@{s1}: first string
@{s2}: second string
@EXCEL=This function is Excel compatible.
@SEEALSO=LEFT,MID,RIGHT

@CATEGORY=String
@FUNCTION=DOLLAR
@SHORTDESC=@{num} formatted as currency
@SYNTAX=DOLLAR(num,decimals)
@ARGUMENTDESCRIPTION=@{num}: number
@{decimals}: decimals
@EXCEL=This function is Excel compatible.
@SEEALSO=FIXED,TEXT,VALUE

@CATEGORY=String
@FUNCTION=EXACT
@SHORTDESC=TRUE if @{string1} is exactly equal to @{string2}
@SYNTAX=EXACT(string1,string2)
@ARGUMENTDESCRIPTION=@{string1}: first string
@{string2}: second string
@EXCEL=This function is Excel compatible.
@SEEALSO=LEN,SEARCH,DELTA

@CATEGORY=String
@FUNCTION=FIND
@SHORTDESC=first position of @{string1} in @{string2} following position @{start}
@SYNTAX=FIND(string1,string2,start)
@ARGUMENTDESCRIPTION=@{string1}: search string
@{string2}: search field
@{start}: starting position, defaults to 1
@NOTE=This search is case-sensitive.
@EXCEL=This function is Excel compatible.
@SEEALSO=EXACT,LEN,MID,SEARCH

@CATEGORY=String
@FUNCTION=FINDB
@SHORTDESC=first byte position of @{string1} in @{string2} following byte position @{start}
@SYNTAX=FINDB(string1,string2,start)
@ARGUMENTDESCRIPTION=@{string1}: search string
@{string2}: search field
@{start}: starting byte position, defaults to 1
@NOTE=This search is case-sensitive.
@EXCEL=While this function is syntactically Excel compatible, the differences in the underlying text encoding will usually yield different results.
@ODF=While this function is OpenFormula compatible, most of its behavior is, at this time, implementation specific.
@SEEALSO=FIND,LEFTB,RIGHTB,LENB,LEFT,MID,RIGHT,LEN

@CATEGORY=String
@FUNCTION=FIXED
@SHORTDESC=formatted string representation of @{num}
@SYNTAX=FIXED(num,decimals,no_commas)
@ARGUMENTDESCRIPTION=@{num}: number
@{decimals}: number of decimals
@{no_commas}: TRUE if no thousand separators should be used, defaults to FALSE
@EXCEL=This function is Excel compatible.
@SEEALSO=TEXT,VALUE,DOLLAR

@CATEGORY=String
@FUNCTION=JIS
@SHORTDESC=text with half-width katakana and ASCII characters converted to full-width
@SYNTAX=JIS(text)
@ARGUMENTDESCRIPTION=@{text}: original text
@DESCRIPTION=JIS converts half-width katakana and ASCII characters to full-width equivalent characters, copying all others.
The distinction between half-width and full-width characters is described in http://www.unicode.org/reports/tr11/.
@NOTE=While in obsolete encodings JIS used to translate between 1-byte and 2-byte characters, this is not the case in UTF-8.
@EXCEL=For most strings, this function has the same effect as in Excel.
@ODF=This function is OpenFormula compatible.
@SEEALSO=ASC

@CATEGORY=String
@FUNCTION=LEFT
@SHORTDESC=the first @{num_chars} characters of the string @{s}
@SYNTAX=LEFT(s,num_chars)
@ARGUMENTDESCRIPTION=@{s}: the string
@{num_chars}: the number of characters to return (defaults to 1)
@NOTE=If the string @{s} is in a right-to-left script, the returned first characters are from the right of the string.
@EXCEL=This function is Excel compatible.
@ODF=This function is OpenFormula compatible.
@SEEALSO=MID,RIGHT,LEN,MIDB,RIGHTB,LENB

@CATEGORY=String
@FUNCTION=LEFTB
@SHORTDESC=the first characters of the string @{s} comprising at most @{num_bytes} bytes
@SYNTAX=LEFTB(s,num_bytes)
@ARGUMENTDESCRIPTION=@{s}: the string
@{num_bytes}: the maximum number of bytes to return (defaults to 1)
@NOTE=The semantics of this function is subject to change as various applications implement it. If the string is in a right-to-left script, the returned first characters are from the right of the string.
@EXCEL=While this function is syntactically Excel compatible, the differences in the underlying text encoding will usually yield different results.
@ODF=While this function is OpenFormula compatible, most of its behavior is, at this time, implementation specific.
@SEEALSO=MIDB,RIGHTB,LENB,LEFT,MID,RIGHT,LEN

@CATEGORY=String
@FUNCTION=LEN
@SHORTDESC=the number of characters of the string @{s}
@SYNTAX=LEN(s)
@ARGUMENTDESCRIPTION=@{s}: the string
@EXCEL=This function is Excel compatible.
@SEEALSO=CHAR,CODE,LENB

@CATEGORY=String
@FUNCTION=LENB
@SHORTDESC=the number of bytes in the string @{s}
@SYNTAX=LENB(s)
@ARGUMENTDESCRIPTION=@{s}: the string
@EXCEL=This function is Excel compatible.
@SEEALSO=CHAR, CODE, LEN

@CATEGORY=String
@FUNCTION=LOWER
@SHORTDESC=a lower-case version of the string @{text}
@SYNTAX=LOWER(text)
@ARGUMENTDESCRIPTION=@{text}: string
@EXCEL=This function is Excel compatible.
@SEEALSO=UPPER

@CATEGORY=String
@FUNCTION=MID
@SHORTDESC=the substring of the string @{s} starting at position @{position} consisting of @{length} characters
@SYNTAX=MID(s,position,length)
@ARGUMENTDESCRIPTION=@{s}: the string
@{position}: the starting position
@{length}: the number of characters to return
@EXCEL=This function is Excel compatible.
@ODF=This function is OpenFormula compatible.
@SEEALSO=LEFT,RIGHT,LEN,LEFTB,MIDB,RIGHTB,LENB

@CATEGORY=String
@FUNCTION=MIDB
@SHORTDESC=the characters following the first @{start_pos} bytes comprising at most @{num_bytes} bytes
@SYNTAX=MIDB(s,start_pos,num_bytes)
@ARGUMENTDESCRIPTION=@{s}: the string
@{start_pos}: the number of the byte with which to start (defaults to 1)
@{num_bytes}: the maximum number of bytes to return (defaults to 1)
@NOTE=The semantics of this function is subject to change as various applications implement it.
@EXCEL=While this function is syntactically Excel compatible, the differences in the underlying text encoding will usually yield different results.
@ODF=While this function is OpenFormula compatible, most of its behavior is, at this time, implementation specific.
@SEEALSO=LEFTB,RIGHTB,LENB,LEFT,MID,RIGHT,LEN

@CATEGORY=String
@FUNCTION=NUMBERVALUE
@SHORTDESC=numeric value of @{text}
@SYNTAX=NUMBERVALUE(text,separator)
@ARGUMENTDESCRIPTION=@{text}: string
@{separator}: decimal separator
@NOTE=If @{text} does not look like a decimal number, NUMBERVALUE returns the value VALUE would return (ignoring the given @{separator}).
@ODF=This function is OpenFormula compatible.
@SEEALSO=VALUE

@CATEGORY=String
@FUNCTION=PROPER
@SHORTDESC=@{text} with initial of each word capitalised
@SYNTAX=PROPER(text)
@ARGUMENTDESCRIPTION=@{text}: string
@EXCEL=This function is Excel compatible.
@SEEALSO=LOWER,UPPER

@CATEGORY=String
@FUNCTION=REPLACE
@SHORTDESC=string @{old} with @{num} characters starting at @{start} replaced by @{new}
@SYNTAX=REPLACE(old,start,num,new)
@ARGUMENTDESCRIPTION=@{old}: original text
@{start}: starting position
@{num}: number of characters to be replaced
@{new}: replacement string
@EXCEL=This function is Excel compatible.
@SEEALSO=MID,SEARCH,SUBSTITUTE,TRIM

@CATEGORY=String
@FUNCTION=REPLACEB
@SHORTDESC=string @{old} with up to @{num} bytes starting at @{start} replaced by @{new}
@SYNTAX=REPLACEB(old,start,num,new)
@ARGUMENTDESCRIPTION=@{old}: original text
@{start}: starting byte position
@{num}: number of bytes to be replaced
@{new}: replacement string
@DESCRIPTION=REPLACEB replaces the string of valid unicode characters starting at the byte @{start} and ending at @{start}+@{num}-1 with the string @{new}.
@NOTE=The semantics of this function is subject to change as various applications implement it.
@EXCEL=While this function is syntactically Excel compatible, the differences in the underlying text encoding will usually yield different results.
@ODF=While this function is OpenFormula compatible, most of its behavior is, at this time, implementation specific.
@SEEALSO=MID,SEARCH,SUBSTITUTE,TRIM

@CATEGORY=String
@FUNCTION=REPT
@SHORTDESC=@{num} repetitions of string @{text}
@SYNTAX=REPT(text,num)
@ARGUMENTDESCRIPTION=@{text}: string
@{num}: non-negative integer
@EXCEL=This function is Excel compatible.
@SEEALSO=CONCATENATE

@CATEGORY=String
@FUNCTION=RIGHT
@SHORTDESC=the last @{num_chars} characters of the string @{s}
@SYNTAX=RIGHT(s,num_chars)
@ARGUMENTDESCRIPTION=@{s}: the string
@{num_chars}: the number of characters to return (defaults to 1)
@NOTE=If the string @{s} is in a right-to-left script, the returned last characters are from the left of the string.
@EXCEL=This function is Excel compatible.
@ODF=This function is OpenFormula compatible.
@SEEALSO=LEFT,MID,LEN,LEFTB,MIDB,RIGHTB,LENB

@CATEGORY=String
@FUNCTION=RIGHTB
@SHORTDESC=the last characters of the string @{s} comprising at most @{num_bytes} bytes
@SYNTAX=RIGHTB(s,num_bytes)
@ARGUMENTDESCRIPTION=@{s}: the string
@{num_bytes}: the maximum number of bytes to return (defaults to 1)
@NOTE=The semantics of this function is subject to change as various applications implement it. If the string @{s} is in a right-to-left script, the returned last characters are from the left of the string.
@EXCEL=While this function is syntactically Excel compatible, the differences in the underlying text encoding will usually yield different results.
@ODF=While this function is OpenFormula compatible, most of its behavior is, at this time, implementation specific.
@SEEALSO=LEFTB,MIDB,LENB,LEFT,MID,RIGHT,LEN

@CATEGORY=String
@FUNCTION=SEARCH
@SHORTDESC=the location of the @{search} string within @{text} after position @{start}
@SYNTAX=SEARCH(search,text,start)
@ARGUMENTDESCRIPTION=@{search}: search string
@{text}: search field
@{start}: starting position, defaults to 1
@DESCRIPTION=@{search} may contain wildcard characters (*) and question marks (?). A question mark matches any single character, and a wildcard matches any string including the empty string. To search for * or ?, precede the symbol with ~.
@NOTE=This search is not case sensitive. If @{search} is not found, SEARCH returns #VALUE! If @{start} is less than one or it is greater than the length of @{text}, SEARCH returns #VALUE!
@EXCEL=This function is Excel compatible.
@SEEALSO=FIND,SEARCHB

@CATEGORY=String
@FUNCTION=SEARCHB
@SHORTDESC=the location of the @{search} string within @{text} after byte position @{start}
@SYNTAX=SEARCHB(search,text,start)
@ARGUMENTDESCRIPTION=@{search}: search string
@{text}: search field
@{start}: starting byte position, defaults to 1
@DESCRIPTION=@{search} may contain wildcard characters (*) and question marks (?). A question mark matches any single character, and a wildcard matches any string including the empty string. To search for * or ?, precede the symbol with ~.
@NOTE=This search is not case sensitive. If @{search} is not found, SEARCHB returns #VALUE! If @{start} is less than one or it is greater than the byte length of @{text}, SEARCHB returns #VALUE! The semantics of this function is subject to change as various applications implement it.
@EXCEL=While this function is syntactically Excel compatible, the differences in the underlying text encoding will usually yield different results.
@ODF=While this function is OpenFormula compatible, most of its behavior is, at this time, implementation specific.
@SEEALSO=FINDB,SEARCH

@CATEGORY=String
@FUNCTION=SUBSTITUTE
@SHORTDESC=@{text} with all occurrences of @{old} replaced by @{new}
@SYNTAX=SUBSTITUTE(text,old,new,num)
@ARGUMENTDESCRIPTION=@{text}: original text
@{old}: string to be replaced
@{new}: replacement string
@{num}: if @{num} is specified and a number only the @{num}th occurrence of @{old} is replaced
@EXCEL=This function is Excel compatible.
@SEEALSO=REPLACE,TRIM

@CATEGORY=String
@FUNCTION=T
@SHORTDESC=@{value} if and only if @{value} is text, otherwise empty
@SYNTAX=T(value)
@ARGUMENTDESCRIPTION=@{value}: original value
@EXCEL=This function is Excel compatible.
@SEEALSO=CELL,N,VALUE

@CATEGORY=String
@FUNCTION=TEXT
@SHORTDESC=@{value} as a string formatted as @{format}
@SYNTAX=TEXT(value,format)
@ARGUMENTDESCRIPTION=@{value}: value to be formatted
@{format}: desired format
@EXCEL=This function is Excel compatible.
@SEEALSO=DOLLAR,FIXED,VALUE

@CATEGORY=String
@FUNCTION=TEXTJOIN
@SHORTDESC=the concatenation of the strings @{s1}, @{s2},… delimited by @{del}
@SYNTAX=TEXTJOIN(del,blank,s1,s2,…)
@ARGUMENTDESCRIPTION=@{del}: delimiter
@{blank}: ignore blanks
@{s1}: first string
@{s2}: second string
@EXCEL=This function is Excel compatible.
@SEEALSO=CONCATENATE

@CATEGORY=String
@FUNCTION=TRIM
@SHORTDESC=@{text} with only single spaces between words
@SYNTAX=TRIM(text)
@ARGUMENTDESCRIPTION=@{text}: string
@EXCEL=This function is Excel compatible.
@SEEALSO=CLEAN,MID,REPLACE,SUBSTITUTE

@CATEGORY=String
@FUNCTION=UNICHAR
@SHORTDESC=the Unicode character represented by the Unicode code point @{x}
@SYNTAX=UNICHAR(x)
@ARGUMENTDESCRIPTION=@{x}: Unicode code point
@SEEALSO=CHAR,UNICODE,CODE

@CATEGORY=String
@FUNCTION=UNICODE
@SHORTDESC=the Unicode code point for the character @{c}
@SYNTAX=UNICODE(c)
@ARGUMENTDESCRIPTION=@{c}: character
@SEEALSO=UNICHAR,CODE,CHAR

@CATEGORY=String
@FUNCTION=UPPER
@SHORTDESC=an upper-case version of the string @{text}
@SYNTAX=UPPER(text)
@ARGUMENTDESCRIPTION=@{text}: string
@EXCEL=This function is Excel compatible.
@SEEALSO=LOWER

@CATEGORY=String
@FUNCTION=VALUE
@SHORTDESC=numeric value of @{text}
@SYNTAX=VALUE(text)
@ARGUMENTDESCRIPTION=@{text}: string
@EXCEL=This function is Excel compatible.
@SEEALSO=DOLLAR,FIXED,TEXT

@CATEGORY=Time Series Analysis
@FUNCTION=FOURIER
@SHORTDESC=Fourier or inverse Fourier transform
@SYNTAX=FOURIER(Sequence,Inverse,Separate)
@ARGUMENTDESCRIPTION=@{Sequence}: the data sequence to be transformed
@{Inverse}: if true, the inverse Fourier transform is calculated, defaults to false
@{Separate}: if true, the real and imaginary parts are given separately, defaults to false
@DESCRIPTION=This array function returns the Fourier or inverse Fourier transform of the given data sequence.
The output consists of one column of complex numbers if @{Separate} is false and of two columns of real numbers if @{Separate} is true.
If @{Separate} is true the first output column contains the real parts and the second column the imaginary parts.
@NOTE=If @{Sequence} is neither an n by 1 nor 1 by n array, this function returns #VALUE!

@CATEGORY=Time Series Analysis
@FUNCTION=HPFILTER
@SHORTDESC=Hodrick Prescott Filter
@SYNTAX=HPFILTER(Sequence,λ)
@ARGUMENTDESCRIPTION=@{Sequence}: the data sequence to be transformed
@{λ}: filter parameter λ, defaults to 1600
@DESCRIPTION=This array function returns the trend and cyclical components obtained by applying the Hodrick Prescott Filter with parameter @{λ} to the given data sequence.
The output consists of two columns of numbers, the first containing the trend component, the second the cyclical component.
@NOTE=If @{Sequence} is neither an n by 1 nor 1 by n array, this function returns #VALUE! If @{Sequence} contains less than 6 numerical values, this function returns #VALUE!

@CATEGORY=Time Series Analysis
@FUNCTION=INTERPOLATION
@SHORTDESC=interpolated values corresponding to the given abscissa targets
@SYNTAX=INTERPOLATION(abscissae,ordinates,targets,interpolation)
@ARGUMENTDESCRIPTION=@{abscissae}: abscissae of the given data points
@{ordinates}: ordinates of the given data points
@{targets}: abscissae of the interpolated data
@{interpolation}: method of interpolation, defaults to 0 ('linear')
@DESCRIPTION=The output consists always of one column of numbers.
Possible interpolation methods are:
0: linear;
1: linear with averaging;
2: staircase;
3: staircase with averaging;
4: natural cubic spline;
5: natural cubic spline with averaging.
@NOTE=The @{abscissae} should be given in increasing order. If the @{abscissae} is not in increasing order the INTERPOLATION function is significantly slower. If any two @{abscissae} values are equal an error is returned. If any of interpolation methods 1 ('linear with averaging'), 3 ('staircase with averaging'), and 5 ('natural cubic spline with averaging') is used, the number of returned values is one less than the number of targets and the target values must be given in increasing order. The values returned are the average heights of the interpolation function on the intervals determined by consecutive target values. Strings and empty cells in @{abscissae} and @{ordinates} are ignored. If several target data are provided they must be in the same column in consecutive cells.
@SEEALSO=PERIODOGRAM

@CATEGORY=Time Series Analysis
@FUNCTION=PERIODOGRAM
@SHORTDESC=periodogram of the given data
@SYNTAX=PERIODOGRAM(ordinates,filter,abscissae,interpolation,number)
@ARGUMENTDESCRIPTION=@{ordinates}: ordinates of the given data
@{filter}: windowing function to be used, defaults to no filter
@{abscissae}: abscissae of the given data, defaults to regularly spaced abscissae
@{interpolation}: method of interpolation, defaults to none
@{number}: number of interpolated data points
@DESCRIPTION=If an interpolation method is used, the number of returned values is one less than the number of targets and the targets values must be given in increasing order.
The output consists always of one column of numbers.
Possible interpolation methods are:
0: linear;
1: linear with averaging;
2: staircase;
3: staircase with averaging;
4: natural cubic spline;
5: natural cubic spline with averaging.
Possible window functions are:
0: no filter (rectangular window)
1: Bartlett (triangular window)
2: Hahn (cosine window)
3: Welch (parabolic window)
@NOTE=Strings and empty cells in @{abscissae} and @{ordinates} are ignored. If several target data are provided they must be in the same column in consecutive cells.
@SEEALSO=INTERPOLATION