File: extra.c

package info (click to toggle)
gnumeric 1.12.57-1.1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 111,496 kB
  • sloc: ansic: 296,601; xml: 56,363; perl: 6,615; sh: 5,288; makefile: 2,981; yacc: 1,341; python: 389
file content (331 lines) | stat: -rw-r--r-- 7,828 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
#include <gnumeric-config.h>
#include <gnumeric.h>
#include <mathfunc.h>
#include <sf-dpq.h>
#include <sf-trig.h>
#include <sf-gamma.h>
#include "extra.h"

/* ------------------------------------------------------------------------- */

/* The skew-normal distribution.  */

gnm_float
dsnorm (gnm_float x, gnm_float shape, gnm_float location, gnm_float scale, gboolean give_log)
{
	if (gnm_isnan (x) || gnm_isnan (shape) || gnm_isnan (location) || gnm_isnan (scale))
		return gnm_nan;

	if (shape == 0)
		return dnorm (x, location, scale, give_log);
	else if (give_log)
		return M_LN2gnum + dnorm (x, location, scale, TRUE) + pnorm (shape * x, shape * location, scale, TRUE, TRUE);
	else
		return 2 * dnorm (x, location, scale, FALSE) * pnorm (shape * x, location/shape, scale, TRUE, FALSE);
}

gnm_float
psnorm (gnm_float x, gnm_float shape, gnm_float location, gnm_float scale, gboolean lower_tail, gboolean log_p)
{
	gnm_float result, h;

	if (gnm_isnan (x) || gnm_isnan (shape) ||
	    gnm_isnan (location) || gnm_isnan (scale))
		return gnm_nan;

	if (shape == 0)
		return pnorm (x, location, scale, lower_tail, log_p);

	/* Normalize */
	h = (x - location) / scale;

	/* Flip to a lower-tail problem.  */
	if (!lower_tail) {
		h = -h;
		shape = -shape;
		lower_tail = !lower_tail;
	}

	if (gnm_abs (shape) < 10) {
		gnm_float s = pnorm (h, 0, 1, lower_tail, FALSE);
		gnm_float t = 2 * gnm_owent (h, shape);
		result = s - t;
	} else {
		/*
		 * Make use of this result for Owen's T:
		 *
		 * T(h,a) = .5N(h) + .5N(ha) - N(h)N(ha) - T(ha,1/a)
		 */
		gnm_float s = pnorm (h * shape, 0, 1, TRUE, FALSE);
		gnm_float u = gnm_erf (h / M_SQRT2gnum);
		gnm_float t = 2 * gnm_owent (h * shape, 1 / shape);
		result = s * u + t;
	}

	/*
	 * Negatives can occur due to rounding errors and hopefully for no
	 * other reason.
	 */
	result = CLAMP (result, 0, 1);

	if (log_p)
		return gnm_log (result);
	else
		return result;
}

static gnm_float
dsnorm1 (gnm_float x, const gnm_float params[], gboolean log_p)
{
	return dsnorm (x, params[0], params[1], params[2], log_p);
}

static gnm_float
psnorm1 (gnm_float x, const gnm_float params[],
	 gboolean lower_tail, gboolean log_p)
{
	return psnorm (x, params[0], params[1], params[2], lower_tail, log_p);
}

gnm_float
qsnorm (gnm_float p, gnm_float shape, gnm_float location, gnm_float scale,
	gboolean lower_tail, gboolean log_p)
{
	gnm_float x0;
	gnm_float params[3];

	if (gnm_isnan (p) || gnm_isnan (shape) || gnm_isnan (location) || gnm_isnan (scale))
		return gnm_nan;

	if (shape == 0)
		return qnorm (p, location, scale, lower_tail, log_p);

	if (!log_p && p > GNM_const(0.9)) {
		/* We're far into the tail.  Flip.  */
		p = 1 - p;
		lower_tail = !lower_tail;
	}

	x0 = 0.0;
	params[0] = shape;
	params[1] = location;
	params[2] = scale;
	return pfuncinverter (p, params, lower_tail, log_p,
			      gnm_ninf, gnm_pinf, x0,
			      psnorm1, dsnorm1);
}

/* ------------------------------------------------------------------------- */

/* The skew-t distribution.  */

gnm_float
dst (gnm_float x, gnm_float n, gnm_float shape, gboolean give_log)
{
	if (n <= 0 || gnm_isnan (x) || gnm_isnan (n) || gnm_isnan (shape))
		return gnm_nan;

	if (shape == 0)
		return dt (x, n, give_log);
	else {
		gnm_float pdf = dt (x, n, give_log);
		gnm_float cdf = pt (shape * x * gnm_sqrt ((n + 1)/(x * x + n)),
				    n + 1, TRUE, give_log);
		return give_log ? (M_LN2gnum + pdf + cdf) : (2 * pdf * cdf);
	}
}

static gnm_float
gnm_atan_mpihalf (gnm_float x)
{
	if (x > 0)
		return gnm_acot (-x);
	else
		return gnm_atan (x) - (M_PIgnum / 2);
}

gnm_float
pst (gnm_float x, gnm_float n, gnm_float shape, gboolean lower_tail, gboolean log_p)
{
	gnm_float p;

	if (n <= 0 || gnm_isnan (x) || gnm_isnan (n) || gnm_isnan (shape))
		return gnm_nan;

	if (shape == 0)
		return pt (x, n, lower_tail, log_p);

	if (n > 100) {
		/* Approximation */
		return psnorm (x, shape, 0.0, 1.0, lower_tail, log_p);
	}

	/* Flip to a lower-tail problem.  */
	if (!lower_tail) {
		x = -x;
		shape = -shape;
		lower_tail = !lower_tail;
	}

	/* Generic fallback.  */
	if (log_p)
		gnm_log (pst (x, n, shape, TRUE, FALSE));

	if (n != gnm_floor (n)) {
		/* We would need numerical integration for this.  */
		return gnm_nan;
	}

	/*
	 * Use recurrence formula from "Recurrent relations for
	 * distributions of a skew-t and a linear combination of order
	 * statistics form a bivariate-t", Computational Statistics
	 * and Data Analysis volume 52, 2009 by Jamallizadeh,
	 * Khosravi, Balakrishnan.
	 *
	 * This brings us down to n==1 or n==2 for which explicit formulas
	 * are available.
	 */

	p = 0;
	while (n > 2) {
		gnm_float a, lb, c, d, pv, v = n - 1;

		d = v == 2
			? M_LN2gnum - gnm_log (M_PIgnum) + gnm_log (3) / 2
			: (GNM_const(0.5) + M_LN2gnum / 2 - gnm_log (M_PIgnum) / 2 +
			   v / 2 * (gnm_log1p (-1 / (v - 1)) + gnm_log (v + 1)) -
			   GNM_const(0.5) * (gnm_log (v - 2) + gnm_log (v + 1)) +
			   stirlerr (v / 2 - 1) -
			   stirlerr ((v - 1) / 2));

		a = v + 1 + x * x;
		lb = (d - gnm_log (a) * v / 2);
		c = pt (gnm_sqrt (v) * shape * x / gnm_sqrt (a), v, TRUE, FALSE);
		pv = x * gnm_exp (lb) * c;
		p += pv;

		n -= 2;
		x *= gnm_sqrt ((v - 1) / (v + 1));
	}

	g_return_val_if_fail (n == 1 || n == 2, gnm_nan);
	if (n == 1) {
		gnm_float p1;

		p1 = (gnm_atan (x) + gnm_acos (shape / gnm_sqrt ((1 + shape * shape) * (1 + x * x)))) / M_PIgnum;
		p += p1;
	} else if (n == 2) {
		gnm_float p2, f;

		f = x / gnm_sqrt (2 + x * x);

		p2 = (gnm_atan_mpihalf (shape) + f * gnm_atan_mpihalf (-shape * f)) / -M_PIgnum;

		p += p2;
	} else {
		return gnm_nan;
	}

	/*
	 * Negatives can occur due to rounding errors and hopefully for no
	 * other reason.
	 */
	p = CLAMP (p, 0, 1);

	return p;
}


static gnm_float
dst1 (gnm_float x, const gnm_float params[], gboolean log_p)
{
	return dst (x, params[0], params[1], log_p);
}

static gnm_float
pst1 (gnm_float x, const gnm_float params[],
      gboolean lower_tail, gboolean log_p)
{
	return pst (x, params[0], params[1], lower_tail, log_p);
}

gnm_float
qst (gnm_float p, gnm_float n, gnm_float shape,
     gboolean lower_tail, gboolean log_p)
{
	gnm_float x0;
	gnm_float params[2];

	if (n <= 0 || gnm_isnan (p) || gnm_isnan (n) || gnm_isnan (shape))
		return gnm_nan;

	if (shape == 0)
		return qt (p, n, lower_tail, log_p);

	if (!log_p && p > GNM_const(0.9)) {
		/* We're far into the tail.  Flip.  */
		p = 1 - p;
		lower_tail = !lower_tail;
	}

	x0 = 0.0;
	params[0] = n;
	params[1] = shape;
	return pfuncinverter (p, params, lower_tail, log_p,
			      gnm_ninf, gnm_pinf, x0,
			      pst1, dst1);
}

/* ------------------------------------------------------------------------- */

gnm_float
dgumbel (gnm_float x, gnm_float mu, gnm_float beta, gboolean give_log)
{
	gnm_float z, lp;

	if (!(beta > 0) || gnm_isnan (mu) || gnm_isnan (beta) || gnm_isnan (x))
		return gnm_nan;

	z = (x - mu) / beta;
	lp = -(z + gnm_exp (-z));
	return give_log ? lp - gnm_log (beta) : gnm_exp (lp) / beta;
}

gnm_float
pgumbel (gnm_float x, gnm_float mu, gnm_float beta, gboolean lower_tail, gboolean log_p)
{
	gnm_float z, lp;

	if (!(beta > 0) || gnm_isnan (mu) || gnm_isnan (beta) || gnm_isnan (x))
		return gnm_nan;

	z = (x - mu) / beta;
	lp = -gnm_exp (-z);
	if (lower_tail)
		return log_p ? lp : gnm_exp (lp);
	else
		return log_p ? swap_log_tail (lp) : 0 - gnm_expm1 (lp);
}

gnm_float
qgumbel (gnm_float p, gnm_float mu, gnm_float beta, gboolean lower_tail, gboolean log_p)
{
	if (!(beta > 0) ||
	    gnm_isnan (mu) || gnm_isnan (beta) || gnm_isnan (p) ||
	    (log_p ? p > 0 : (p < 0 || p > 1)))
		return gnm_nan;

	if (log_p) {
		if (!lower_tail)
			p = swap_log_tail (p);
	} else {
		if (lower_tail)
			p = gnm_log (p);
		else
			p = gnm_log1p (-p);
	}

	/* We're now in the log_p, lower_tail case.  */
	return mu - beta * gnm_log (-p);
}