1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
|
#include <gnumeric-config.h>
#include <gnumeric.h>
#include <mathfunc.h>
#include <sf-dpq.h>
#include <sf-trig.h>
#include <sf-gamma.h>
#include "extra.h"
/* ------------------------------------------------------------------------- */
/* The skew-normal distribution. */
gnm_float
dsnorm (gnm_float x, gnm_float shape, gnm_float location, gnm_float scale, gboolean give_log)
{
if (gnm_isnan (x) || gnm_isnan (shape) || gnm_isnan (location) || gnm_isnan (scale))
return gnm_nan;
if (shape == 0)
return dnorm (x, location, scale, give_log);
else if (give_log)
return M_LN2gnum + dnorm (x, location, scale, TRUE) + pnorm (shape * x, shape * location, scale, TRUE, TRUE);
else
return 2 * dnorm (x, location, scale, FALSE) * pnorm (shape * x, location/shape, scale, TRUE, FALSE);
}
gnm_float
psnorm (gnm_float x, gnm_float shape, gnm_float location, gnm_float scale, gboolean lower_tail, gboolean log_p)
{
gnm_float result, h;
if (gnm_isnan (x) || gnm_isnan (shape) ||
gnm_isnan (location) || gnm_isnan (scale))
return gnm_nan;
if (shape == 0)
return pnorm (x, location, scale, lower_tail, log_p);
/* Normalize */
h = (x - location) / scale;
/* Flip to a lower-tail problem. */
if (!lower_tail) {
h = -h;
shape = -shape;
lower_tail = !lower_tail;
}
if (gnm_abs (shape) < 10) {
gnm_float s = pnorm (h, 0, 1, lower_tail, FALSE);
gnm_float t = 2 * gnm_owent (h, shape);
result = s - t;
} else {
/*
* Make use of this result for Owen's T:
*
* T(h,a) = .5N(h) + .5N(ha) - N(h)N(ha) - T(ha,1/a)
*/
gnm_float s = pnorm (h * shape, 0, 1, TRUE, FALSE);
gnm_float u = gnm_erf (h / M_SQRT2gnum);
gnm_float t = 2 * gnm_owent (h * shape, 1 / shape);
result = s * u + t;
}
/*
* Negatives can occur due to rounding errors and hopefully for no
* other reason.
*/
result = CLAMP (result, 0, 1);
if (log_p)
return gnm_log (result);
else
return result;
}
static gnm_float
dsnorm1 (gnm_float x, const gnm_float params[], gboolean log_p)
{
return dsnorm (x, params[0], params[1], params[2], log_p);
}
static gnm_float
psnorm1 (gnm_float x, const gnm_float params[],
gboolean lower_tail, gboolean log_p)
{
return psnorm (x, params[0], params[1], params[2], lower_tail, log_p);
}
gnm_float
qsnorm (gnm_float p, gnm_float shape, gnm_float location, gnm_float scale,
gboolean lower_tail, gboolean log_p)
{
gnm_float x0;
gnm_float params[3];
if (gnm_isnan (p) || gnm_isnan (shape) || gnm_isnan (location) || gnm_isnan (scale))
return gnm_nan;
if (shape == 0)
return qnorm (p, location, scale, lower_tail, log_p);
if (!log_p && p > GNM_const(0.9)) {
/* We're far into the tail. Flip. */
p = 1 - p;
lower_tail = !lower_tail;
}
x0 = 0.0;
params[0] = shape;
params[1] = location;
params[2] = scale;
return pfuncinverter (p, params, lower_tail, log_p,
gnm_ninf, gnm_pinf, x0,
psnorm1, dsnorm1);
}
/* ------------------------------------------------------------------------- */
/* The skew-t distribution. */
gnm_float
dst (gnm_float x, gnm_float n, gnm_float shape, gboolean give_log)
{
if (n <= 0 || gnm_isnan (x) || gnm_isnan (n) || gnm_isnan (shape))
return gnm_nan;
if (shape == 0)
return dt (x, n, give_log);
else {
gnm_float pdf = dt (x, n, give_log);
gnm_float cdf = pt (shape * x * gnm_sqrt ((n + 1)/(x * x + n)),
n + 1, TRUE, give_log);
return give_log ? (M_LN2gnum + pdf + cdf) : (2 * pdf * cdf);
}
}
static gnm_float
gnm_atan_mpihalf (gnm_float x)
{
if (x > 0)
return gnm_acot (-x);
else
return gnm_atan (x) - (M_PIgnum / 2);
}
gnm_float
pst (gnm_float x, gnm_float n, gnm_float shape, gboolean lower_tail, gboolean log_p)
{
gnm_float p;
if (n <= 0 || gnm_isnan (x) || gnm_isnan (n) || gnm_isnan (shape))
return gnm_nan;
if (shape == 0)
return pt (x, n, lower_tail, log_p);
if (n > 100) {
/* Approximation */
return psnorm (x, shape, 0.0, 1.0, lower_tail, log_p);
}
/* Flip to a lower-tail problem. */
if (!lower_tail) {
x = -x;
shape = -shape;
lower_tail = !lower_tail;
}
/* Generic fallback. */
if (log_p)
gnm_log (pst (x, n, shape, TRUE, FALSE));
if (n != gnm_floor (n)) {
/* We would need numerical integration for this. */
return gnm_nan;
}
/*
* Use recurrence formula from "Recurrent relations for
* distributions of a skew-t and a linear combination of order
* statistics form a bivariate-t", Computational Statistics
* and Data Analysis volume 52, 2009 by Jamallizadeh,
* Khosravi, Balakrishnan.
*
* This brings us down to n==1 or n==2 for which explicit formulas
* are available.
*/
p = 0;
while (n > 2) {
gnm_float a, lb, c, d, pv, v = n - 1;
d = v == 2
? M_LN2gnum - gnm_log (M_PIgnum) + gnm_log (3) / 2
: (GNM_const(0.5) + M_LN2gnum / 2 - gnm_log (M_PIgnum) / 2 +
v / 2 * (gnm_log1p (-1 / (v - 1)) + gnm_log (v + 1)) -
GNM_const(0.5) * (gnm_log (v - 2) + gnm_log (v + 1)) +
stirlerr (v / 2 - 1) -
stirlerr ((v - 1) / 2));
a = v + 1 + x * x;
lb = (d - gnm_log (a) * v / 2);
c = pt (gnm_sqrt (v) * shape * x / gnm_sqrt (a), v, TRUE, FALSE);
pv = x * gnm_exp (lb) * c;
p += pv;
n -= 2;
x *= gnm_sqrt ((v - 1) / (v + 1));
}
g_return_val_if_fail (n == 1 || n == 2, gnm_nan);
if (n == 1) {
gnm_float p1;
p1 = (gnm_atan (x) + gnm_acos (shape / gnm_sqrt ((1 + shape * shape) * (1 + x * x)))) / M_PIgnum;
p += p1;
} else if (n == 2) {
gnm_float p2, f;
f = x / gnm_sqrt (2 + x * x);
p2 = (gnm_atan_mpihalf (shape) + f * gnm_atan_mpihalf (-shape * f)) / -M_PIgnum;
p += p2;
} else {
return gnm_nan;
}
/*
* Negatives can occur due to rounding errors and hopefully for no
* other reason.
*/
p = CLAMP (p, 0, 1);
return p;
}
static gnm_float
dst1 (gnm_float x, const gnm_float params[], gboolean log_p)
{
return dst (x, params[0], params[1], log_p);
}
static gnm_float
pst1 (gnm_float x, const gnm_float params[],
gboolean lower_tail, gboolean log_p)
{
return pst (x, params[0], params[1], lower_tail, log_p);
}
gnm_float
qst (gnm_float p, gnm_float n, gnm_float shape,
gboolean lower_tail, gboolean log_p)
{
gnm_float x0;
gnm_float params[2];
if (n <= 0 || gnm_isnan (p) || gnm_isnan (n) || gnm_isnan (shape))
return gnm_nan;
if (shape == 0)
return qt (p, n, lower_tail, log_p);
if (!log_p && p > GNM_const(0.9)) {
/* We're far into the tail. Flip. */
p = 1 - p;
lower_tail = !lower_tail;
}
x0 = 0.0;
params[0] = n;
params[1] = shape;
return pfuncinverter (p, params, lower_tail, log_p,
gnm_ninf, gnm_pinf, x0,
pst1, dst1);
}
/* ------------------------------------------------------------------------- */
gnm_float
dgumbel (gnm_float x, gnm_float mu, gnm_float beta, gboolean give_log)
{
gnm_float z, lp;
if (!(beta > 0) || gnm_isnan (mu) || gnm_isnan (beta) || gnm_isnan (x))
return gnm_nan;
z = (x - mu) / beta;
lp = -(z + gnm_exp (-z));
return give_log ? lp - gnm_log (beta) : gnm_exp (lp) / beta;
}
gnm_float
pgumbel (gnm_float x, gnm_float mu, gnm_float beta, gboolean lower_tail, gboolean log_p)
{
gnm_float z, lp;
if (!(beta > 0) || gnm_isnan (mu) || gnm_isnan (beta) || gnm_isnan (x))
return gnm_nan;
z = (x - mu) / beta;
lp = -gnm_exp (-z);
if (lower_tail)
return log_p ? lp : gnm_exp (lp);
else
return log_p ? swap_log_tail (lp) : 0 - gnm_expm1 (lp);
}
gnm_float
qgumbel (gnm_float p, gnm_float mu, gnm_float beta, gboolean lower_tail, gboolean log_p)
{
if (!(beta > 0) ||
gnm_isnan (mu) || gnm_isnan (beta) || gnm_isnan (p) ||
(log_p ? p > 0 : (p < 0 || p > 1)))
return gnm_nan;
if (log_p) {
if (!lower_tail)
p = swap_log_tail (p);
} else {
if (lower_tail)
p = gnm_log (p);
else
p = gnm_log1p (-p);
}
/* We're now in the log_p, lower_tail case. */
return mu - beta * gnm_log (-p);
}
|