1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
|
#include <gnumeric-config.h>
#include <gnumeric.h>
#include <tools/gnm-solver.h>
#include <cell.h>
#include <sheet.h>
#include <value.h>
#include <regression.h>
#include <rangefunc.h>
#include <workbook.h>
#include <mathfunc.h>
#include <gsf/gsf-impl-utils.h>
#include <glib/gi18n-lib.h>
#include <string.h>
/*
* This is based on the algorithm from "An Automatic Method for finding
* the Greatest or Least Value of a Function" by H. H. Rosenbrock
* published in _The Computer Journal_ (1960) 3(3): 175-184.
*
* It is thus 50+ years old. You would think that advances in computer
* science would have produced improvements that would run circles
* around this, but that is not obviously true.
*
* There are a couple of attrictive features of the Rosenbrock method:
* 1. It's monotonic. Unlike Newton-style methods it cannot suddenly
* warp far away.
* 2. We don't need the Hessian.
*
* Note, that in order to speed convergence we occasionally perform
* a tentative Newton iteration step. (It's tentative because we will
* discard it if it doesn't lead to an immediate improvement.)
*/
#define PRIVATE_KEY "::nlsolve::"
/*
* Note: the solver code assumes the problem is a minimization problem.
* When used for a maximization problem, we flip the objective function
* sign.
*/
typedef struct {
/* The solver object in two forms. */
GnmSolver *sol;
GnmIterSolver *isol;
/* Number of vars. */
int n;
/* Rosenbrock state */
gnm_float **xi;
int smallsteps;
int tentative;
gnm_float *tentative_xk, tentative_yk;
// Newton state
// (nothing right now)
/* Parameters: */
gboolean debug;
gnm_float min_factor;
} GnmNlsolve;
static gboolean
check_program (GnmSolver *sol, GError **err)
{
unsigned ui;
const GnmSolverParameters *params = sol->params;
GSList *l;
for (l = params->constraints; l; l = l->next) {
GnmSolverConstraint *c = l->data;
switch (c->type) {
case GNM_SOLVER_EQ:
/*
* This catches also equalities where the sides are not
* input variables.
*/
goto no_equal;
default:
break;
}
}
for (ui = 0; ui < sol->input_cells->len; ui++) {
if (sol->discrete[ui])
goto no_discrete;
/*
* This also catches using two inequality constraints used
* to emulate equality.
*/
if (sol->min[ui] == sol->max[ui])
goto no_equal;
}
return TRUE;
no_discrete:
g_set_error (err,
go_error_invalid (),
0,
_("This solver does not handle discrete variables."));
return FALSE;
no_equal:
g_set_error (err,
go_error_invalid (),
0,
_("This solver does not handle equality constraints."));
return FALSE;
}
static void
print_vector (const char *name, const gnm_float *v, int n)
{
int i;
if (name)
g_printerr ("%s:\n", name);
for (i = 0; i < n; i++)
g_printerr ("%15.8" GNM_FORMAT_f " ", v[i]);
g_printerr ("\n");
}
#if 0
static void
set_value (GnmNlsolve *nl, int i, gnm_float x)
{
gnm_solver_set_var (nl->sol, i, x);
}
#endif
static void
set_vector (GnmNlsolve *nl, const gnm_float *xs)
{
gnm_solver_set_vars (nl->sol, xs);
}
/* Get the target value as-if we were minimizing. */
static gnm_float
get_value (GnmNlsolve *nl)
{
/* nl->sol has been taught to flip sign if needed. */
return gnm_solver_get_target_value (nl->sol);
}
static void
free_matrix (gnm_float **m, int n)
{
int i;
for (i = 0; i < n; i++)
g_free (m[i]);
g_free (m);
}
static void
set_solution (GnmNlsolve *nl)
{
/* nl->isol has been taught to flip sign if needed. */
gnm_iter_solver_set_solution (nl->isol);
}
static gboolean
gnm_nlsolve_prepare (GnmSolver *sol, WorkbookControl *wbc, GError **err,
GnmNlsolve *nl)
{
gboolean ok;
g_return_val_if_fail (sol->status == GNM_SOLVER_STATUS_READY, FALSE);
gnm_solver_set_status (sol, GNM_SOLVER_STATUS_PREPARING);
ok = check_program (sol, err);
if (ok)
ok = gnm_iter_solver_get_initial_solution (nl->isol, err);
if (ok) {
gnm_solver_set_status (sol, GNM_SOLVER_STATUS_PREPARED);
} else {
gnm_solver_set_status (sol, GNM_SOLVER_STATUS_ERROR);
}
return ok;
}
static gnm_float *
compute_gradient (GnmNlsolve *nl, const gnm_float *xs)
{
return gnm_solver_compute_gradient (nl->sol, xs);
}
static gboolean
newton_improve (GnmNlsolve *nl, gnm_float *xs)
{
GnmSolver *sol = nl->sol;
GnmIterSolver *isol = nl->isol;
const int n = nl->n;
int i;
gnm_float *g, *d, *xs2;
GnmMatrix *H;
gboolean ok;
xs2 = g_new (gnm_float, n);
g = compute_gradient (nl, xs);
H = gnm_solver_compute_hessian (sol, xs);
d = g_new (gnm_float, n);
ok = (gnm_linear_solve_posdef (H, g, d) == GO_REG_ok);
if (ok) {
for (i = 0; i < n; i++)
d[i] = 0 - d[i];
}
if (nl->debug) {
int i;
g_printerr ("Hessian:\n");
for (i = 0; i < n; i++)
print_vector (NULL, H->data[i], n);
print_vector ("g", g, n);
if (ok)
print_vector ("d", d, n);
else
g_printerr ("Failed to solve Newton step.\n");
}
if (ok) {
gnm_float y2, f;
for (i = 0; i < n; i++)
xs2[i] = xs[i] + d[i];
set_vector (nl, xs2);
y2 = get_value (nl);
ok = FALSE;
if (y2 < isol->yk && gnm_solver_check_constraints (sol)) {
if (nl->debug)
g_printerr ("Accepting newton step\n");
memcpy (isol->xk, xs2, n * sizeof (gnm_float));
isol->yk = y2;
set_solution (nl);
ok = TRUE;
} else {
if (nl->debug)
g_printerr ("Full newton step would go to %" GNM_FORMAT_g "\n", y2);
f = gnm_solver_line_search
(sol, xs, d, FALSE, 0.75, 1, 0.01, &y2);
if (f > 0 && f < 1 && y2 < isol->yk) {
if (nl->debug)
g_printerr ("Accepting reduced newton step with f=%" GNM_FORMAT_g "\n", f);
for (i = 0; i < n; i++)
isol->xk[i] = xs[i] + f * d[i];
isol->yk = y2;
set_solution (nl);
ok = TRUE;
}
}
}
g_free (d);
g_free (g);
gnm_matrix_unref (H);
g_free (xs2);
return ok;
}
static void
nlsolve_init (GnmNlsolve *nl)
{
const int n = nl->n;
int i, j;
nl->xi = g_new (gnm_float *, n);
for (i = 0; i < n; i++) {
nl->xi[i] = g_new (gnm_float, n);
for (j = 0; j < n; j++)
nl->xi[i][j] = (i == j);
}
nl->smallsteps = 0;
nl->tentative = 0;
nl->tentative_xk = NULL;
}
static void
rosenbrock_tentative_end (GnmNlsolve *nl, gboolean accept)
{
const int n = nl->n;
GnmIterSolver *isol = nl->isol;
if (!accept && nl->tentative_xk) {
nl->isol->yk = nl->tentative_yk;
memcpy (isol->xk, nl->tentative_xk, n * sizeof (gnm_float));
}
nl->tentative = 0;
g_free (nl->tentative_xk);
nl->tentative_xk = NULL;
nl->smallsteps = 0;
}
static gboolean
rosenbrock_iter (GnmNlsolve *nl)
{
GnmSolver *sol = nl->sol;
GnmIterSolver *isol = nl->isol;
const int n = nl->n;
int i, j;
const gnm_float alpha = 3;
const gnm_float beta = 0.5;
gboolean any_at_all = FALSE;
gnm_float *d, **A, *x, *dx, *t;
char *state;
int dones = 0;
gnm_float ykm1 = isol->yk, *xkm1;
gnm_float eps = gnm_pow2 (-16);
int safety = 0;
// Give gcc a few hints.
g_assert (n >= 0 && n < (1<<20));
if (nl->tentative) {
nl->tentative--;
if (nl->tentative == 0) {
if (nl->debug)
g_printerr ("Tentative move rejected\n");
rosenbrock_tentative_end (nl, FALSE);
}
}
if ((isol->iterations < 20 || isol->iterations % 100 == 0) &&
gnm_solver_has_analytic_hessian (sol)) {
if (newton_improve (nl, isol->xk))
return TRUE;
}
if (isol->iterations % 20 == 0) {
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
nl->xi[i][j] = (i == j);
}
A = g_new (gnm_float *, n);
for (i = 0; i < n; i++)
A[i] = g_new (gnm_float, n);
dx = g_new (gnm_float, n);
for (i = 0; i < n; i++)
dx[i] = 0;
x = g_new (gnm_float, n);
t = g_new (gnm_float, n);
d = g_new (gnm_float, n);
for (i = 0; i < n; i++) {
d[i] = (isol->xk[i] == 0)
? eps
: gnm_abs (isol->xk[i]) * eps;
}
xkm1 = go_memdup_n (isol->xk, n, sizeof (gnm_float));
state = g_new0 (char, n);
while (dones < n) {
/*
* A safety that shouldn't get hit, but might if the function
* being optimized is non-deterministic.
*/
if (safety++ > n * GNM_MANT_DIG)
break;
for (i = 0; i < n; i++) {
gnm_float y;
if (state[i] == 2)
continue;
/* x = xk + (d[i] * xi[i]) */
for (j = 0; j < n; j++)
x[j] = isol->xk[j] + d[i] * nl->xi[i][j];
set_vector (nl, x);
y = get_value (nl);
if (y <= isol->yk && gnm_solver_check_constraints (sol)) {
if (y < isol->yk) {
isol->yk = y;
memcpy (isol->xk, x, n * sizeof (gnm_float));
dx[i] += d[i];
any_at_all = TRUE;
}
switch (state[i]) {
case 0:
state[i] = 1;
/* Fall through */
case 1:
d[i] *= alpha;
break;
default:
case 2:
break;
}
} else {
switch (state[i]) {
case 1:
state[i] = 2;
dones++;
/* Fall through */
case 0:
d[i] *= -beta;
break;
default:
case 2:
/* No sign change. */
d[i] *= GNM_const(0.5);
break;
}
}
}
}
if (any_at_all) {
gnm_float div, sum;
for (j = n - 1; j >= 0; j--)
for (i = 0; i < n; i++)
A[j][i] = (j == n - 1 ? 0 : A[j + 1][i]) + dx[j] * nl->xi[j][i];
sum = 0;
for (i = n - 1; i >= 0; i--) {
sum += dx[i] * dx[i];
t[i] = sum;
}
for (i = n - 1; i > 0; i--) {
div = gnm_sqrt (t[i - 1] * t[i]);
if (div != 0)
for (j = 0; j < n; j++) {
nl->xi[i][j] = (dx[i - 1] * A[i][j] -
nl->xi[i - 1][j] * t[i]) / div;
g_assert (gnm_finite (nl->xi[i][j]));
}
}
gnm_range_hypot (dx, n, &div);
if (div != 0) {
for (i = 0; i < n; i++) {
nl->xi[0][i] = A[0][i] / div;
if (!gnm_finite (nl->xi[0][i])) {
g_printerr ("%" GNM_FORMAT_g
" %" GNM_FORMAT_g
" %" GNM_FORMAT_g "\n",
div, A[0][i], nl->xi[0][i]);
g_assert (gnm_finite (nl->xi[0][i]));
}
}
}
/* ---------------------------------------- */
if (!nl->tentative) {
set_vector (nl, isol->xk);
set_solution (nl);
}
if (nl->tentative) {
if (isol->yk < nl->tentative_yk) {
if (nl->debug)
g_printerr ("Tentative move accepted!\n");
rosenbrock_tentative_end (nl, TRUE);
}
} else if (gnm_abs (isol->yk - ykm1) >
gnm_abs (ykm1) * GNM_const(0.01)) {
/* A big step. */
nl->smallsteps = 0;
} else {
nl->smallsteps++;
}
}
g_free (x);
g_free (xkm1);
g_free (dx);
g_free (t);
g_free (d);
free_matrix (A, n);
g_free (state);
return any_at_all;
}
static gboolean
gnm_nlsolve_iterate (GnmSolverIterator *iter, GnmNlsolve *nl)
{
GnmIterSolver *isol = nl->isol;
const int n = nl->n;
if (isol->iterations == 0)
nlsolve_init (nl);
if (nl->debug) {
g_printerr ("Iteration %ld at %.15" GNM_FORMAT_g "\n",
(long)(isol->iterations), isol->yk);
print_vector ("Current point", isol->xk, n);
}
return rosenbrock_iter (nl);
}
static void
gnm_nlsolve_final (GnmNlsolve *nl)
{
const int n = nl->n;
/* Accept, i.e., don't try to restore. */
rosenbrock_tentative_end (nl, TRUE);
if (nl->xi) {
free_matrix (nl->xi, n);
nl->xi = NULL;
}
g_free (nl);
}
/* ------------------------------------------------------------------------- */
/* Plug-in interface. */
gboolean nlsolve_solver_factory_functional (GnmSolverFactory *factory);
GnmSolver *nlsolve_solver_factory (GnmSolverFactory *factory, GnmSolverParameters *params);
gboolean
nlsolve_solver_factory_functional (GnmSolverFactory *factory)
{
return TRUE;
}
GnmSolver *
nlsolve_solver_factory (GnmSolverFactory *factory, GnmSolverParameters *params)
{
GnmIterSolver *isol = g_object_new
(GNM_ITER_SOLVER_TYPE,
"params", params,
"flip-sign", (params->problem_type == GNM_SOLVER_MAXIMIZE),
NULL);
GnmSolver *sol = GNM_SOLVER (isol);
GnmNlsolve *nl = g_new0 (GnmNlsolve, 1);
GnmSolverIteratorCompound *citer;
GnmSolverIterator *iter;
citer = g_object_new (GNM_SOLVER_ITERATOR_COMPOUND_TYPE, NULL);
iter = gnm_solver_iterator_new_func (G_CALLBACK (gnm_nlsolve_iterate), nl);
gnm_solver_iterator_compound_add (citer, iter, 1);
gnm_solver_iterator_compound_add (citer, gnm_solver_iterator_new_polish (isol), 0);
gnm_iter_solver_set_iterator (isol, GNM_SOLVER_ITERATOR (citer));
g_object_unref (citer);
nl->sol = sol;
nl->isol = isol;
nl->debug = gnm_solver_debug ();
nl->min_factor = 1e-10;
nl->n = nl->sol->input_cells->len;
g_signal_connect (isol, "prepare", G_CALLBACK (gnm_nlsolve_prepare), nl);
g_object_set_data_full (G_OBJECT (isol), PRIVATE_KEY, nl,
(GDestroyNotify)gnm_nlsolve_final);
return sol;
}
/* ------------------------------------------------------------------------- */
|