1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122
|
@CATEGORY=Bitwise Operations
@FUNCTION=BITAND
@SYNTAX=BITAND(a,b)
@DESCRIPTION=BITAND function returns bitwise and-ing of its arguments.
@EXAMPLES=
@SEEALSO=BITOR,BITXOR
@CATEGORY=Bitwise Operations
@FUNCTION=BITLSHIFT
@SYNTAX=BITLSHIFT(x,n)
@DESCRIPTION=BITLSHIFT function returns @x bit-shifted left by @n bits.
* If @n is negative, a right shift will in effect be performed.
@EXAMPLES=
@SEEALSO=BITRSHIFT
@CATEGORY=Bitwise Operations
@FUNCTION=BITOR
@SYNTAX=BITOR(a,b)
@DESCRIPTION=BITOR function returns bitwise or-ing of its arguments.
@EXAMPLES=
@SEEALSO=BITXOR,BITAND
@CATEGORY=Bitwise Operations
@FUNCTION=BITRSHIFT
@SYNTAX=BITRSHIFT(x,n)
@DESCRIPTION=BITRSHIFT function returns @x bit-shifted right by @n bits.
* If @n is negative, a left shift will in effect be performed.
@EXAMPLES=
@SEEALSO=BITLSHIFT
@CATEGORY=Bitwise Operations
@FUNCTION=BITXOR
@SYNTAX=BITXOR(a,b)
@DESCRIPTION=BITXOR function returns bitwise exclusive or-ing of its arguments.
@EXAMPLES=
@SEEALSO=BITOR,BITAND
@CATEGORY=Complex
@FUNCTION=COMPLEX
@SYNTAX=COMPLEX(real,im[,suffix])
@DESCRIPTION=COMPLEX returns a complex number of the form x + yi.
@real is the real and @im is the imaginary part of the complex number. @suffix is the suffix for the imaginary part. If it is omitted, COMPLEX uses 'i' by default.
* If @suffix is neither 'i' nor 'j', COMPLEX returns #VALUE! error.
* This function is Excel compatible.
@EXAMPLES=
COMPLEX(1,-1) equals 1-i.
@SEEALSO=
@CATEGORY=Complex
@FUNCTION=IMABS
@SYNTAX=IMABS(inumber)
@DESCRIPTION=IMABS returns the absolute value of a complex number.
* If @inumber is not a valid complex number, IMABS returns #VALUE! error.
* This function is Excel compatible.
@EXAMPLES=
IMABS("2-j") equals 2.23606798.
@SEEALSO=IMAGINARY,IMREAL
@CATEGORY=Complex
@FUNCTION=IMAGINARY
@SYNTAX=IMAGINARY(inumber)
@DESCRIPTION=IMAGINARY returns the imaginary part of a complex number.
* If @inumber is not a valid complex number, IMAGINARY returns #VALUE! error.
* This function is Excel compatible.
@EXAMPLES=
IMAGINARY("132-j") equals -1.
@SEEALSO=IMREAL
@CATEGORY=Complex
@FUNCTION=IMARCCOS
@SYNTAX=IMARCCOS(inumber)
@DESCRIPTION=IMARCCOS returns the complex arccosine of the complex number @inumber. The branch cuts are on the real axis, less than -1 and greater than 1.
* If @inumber is not a valid complex number, IMARCCOS returns #VALUE! error.
@EXAMPLES=
IMARCCOS("1+j") equals 0.9045569-1.061275j.
@SEEALSO=IMARCSIN,IMARCTAN
@CATEGORY=Complex
@FUNCTION=IMARCCOSH
@SYNTAX=IMARCCOSH(inumber)
@DESCRIPTION=IMARCCOSH returns the complex hyperbolic arccosine of the complex number @inumber. The branch cut is on the real axis, less than 1.
* If @inumber is not a valid complex number, IMARCCOSH returns #VALUE! error.
@EXAMPLES=
IMARCCOSH("1+j") equals 1.06127506+0.904557j.
@SEEALSO=IMARCSINH,IMARCTANH
@CATEGORY=Complex
@FUNCTION=IMARCCOT
@SYNTAX=IMARCCOT(inumber)
@DESCRIPTION=IMARCCOT returns the complex arccotangent of the complex number z (@inumber), where
arccot(z) = arctan(1/z).
* If @inumber is not a valid complex number, IMARCCOT returns #VALUE! error.
@EXAMPLES=
IMARCCOT("1+j") equals 0.553574+0.4023595j.
@SEEALSO=IMARCSEC,IMARCCSC
@CATEGORY=Complex
@FUNCTION=IMARCCOTH
@SYNTAX=IMARCCOTH(inumber)
@DESCRIPTION=IMARCCOTH returns the complex hyperbolic arccotangent of the complex number z (@inumber), where
arccoth(z) = arctanh(1/z).
* If @inumber is not a valid complex number, IMARCCOTH returns #VALUE! error.
@EXAMPLES=
IMARCCOTH("1+j") equals 0.40235948-0.5535744j.
@SEEALSO=IMARCSECH,IMARCCSCH
@CATEGORY=Complex
@FUNCTION=IMARCCSC
@SYNTAX=IMARCCSC(inumber)
@DESCRIPTION=IMARCCSC returns the complex arccosecant of the complex number z (@inumber), where
arccsc(z) = arcsin(1/z).
* If @inumber is not a valid complex number, IMARCCSC returns #VALUE! error.
@EXAMPLES=
IMARCCSC("1+j") equals 0.45227845-0.5306375j.
@SEEALSO=IMARCSEC,IMARCCOT
@CATEGORY=Complex
@FUNCTION=IMARCCSCH
@SYNTAX=IMARCCSCH(inumber)
@DESCRIPTION=IMARCCSCH returns the complex hyperbolic arccosecant of the complex number z (@inumber), where
arccsch(z) = arcsinh(1/z).
* If @inumber is not a valid complex number, IMARCCSCH returns #VALUE! error.
@EXAMPLES=
IMARCCSCH("1+j") equals 0.5306375-0.452278j.
@SEEALSO=IMARCSECH,IMARCCOTH
@CATEGORY=Complex
@FUNCTION=IMARCSEC
@SYNTAX=IMARCSEC(inumber)
@DESCRIPTION=IMARCSEC returns the complex arcsecant of the complex number z (@inumber), where
arcsec(z) = arccos(1/z).
* If @inumber is not a valid complex number, IMARCSEC returns #VALUE! error.
@EXAMPLES=
IMARCSEC("1+j") equals 1.1185179+0.5306375j.
@SEEALSO=IMARCCSC,IMARCCOT
@CATEGORY=Complex
@FUNCTION=IMARCSECH
@SYNTAX=IMARCSECH(inumber)
@DESCRIPTION=IMARCSECH returns the complex hyperbolic arcsecant of the complex number z (@inumber), where
arcsech(z) = arccosh(1/z).
* If @inumber is not a valid complex number, IMARCSECH returns #VALUE! error.
@EXAMPLES=
IMARCSECH("1+j") equals 0.5306375-1.118518j.
@SEEALSO=IMARCCSCH,IMARCCOTH
@CATEGORY=Complex
@FUNCTION=IMARCSIN
@SYNTAX=IMARCSIN(inumber)
@DESCRIPTION=IMARCSIN returns the complex arcsine of the complex number @inumber. The branch cuts are on the real axis, less than -1 and greater than 1.
* If @inumber is not a valid complex number, IMARCSIN returns #VALUE! error.
@EXAMPLES=
IMARCSIN("1+j") equals 0.6662394+1.061275j.
@SEEALSO=IMARCCOS,IMARCTAN
@CATEGORY=Complex
@FUNCTION=IMARCSINH
@SYNTAX=IMARCSINH(inumber)
@DESCRIPTION=IMARCSINH returns the complex hyperbolic arcsine of the complex number @inumber. The branch cuts are on the imaginary axis, below -i and above i.
* If @inumber is not a valid complex number, IMARCSINH returns #VALUE! error.
@EXAMPLES=
IMARCSINH("1+j") equals 1.061275+0.6662394j.
@SEEALSO=IMARCCOSH,IMARCTANH
@CATEGORY=Complex
@FUNCTION=IMARCTAN
@SYNTAX=IMARCTAN(inumber)
@DESCRIPTION=IMARCTAN returns the complex arctangent of the complex number @inumber. The branch cuts are on the imaginary axis, below -i and above i.
* If @inumber is not a valid complex number, IMARCTAN returns #VALUE! error.
@EXAMPLES=
IMARCTAN("1+j") equals 1.0172220+0.4023595j.
@SEEALSO=IMARCSIN,IMARCCOS
@CATEGORY=Complex
@FUNCTION=IMARCTANH
@SYNTAX=IMARCTANH(inumber)
@DESCRIPTION=IMARCTANH returns the complex hyperbolic arctangent of the complex number @inumber. The branch cuts are on the real axis, less than -1 and greater than 1.
* If @inumber is not a valid complex number, IMARCTANH returns #VALUE! error.
@EXAMPLES=
IMARCTANH("1+j") equals 0.4023595+1.0172220j.
@SEEALSO=IMARCSINH,IMARCCOSH
@CATEGORY=Complex
@FUNCTION=IMARGUMENT
@SYNTAX=IMARGUMENT(inumber)
@DESCRIPTION=IMARGUMENT returns the argument theta of a complex number, i.e. the angle in radians from the real axis to the representation of the number in polar coordinates.
* If @inumber is not a valid complex number, IMARGUMENT returns #VALUE! error.
* This function is Excel compatible.
@EXAMPLES=
IMARGUMENT("2-j") equals -0.463647609.
@SEEALSO=
@CATEGORY=Complex
@FUNCTION=IMCONJUGATE
@SYNTAX=IMCONJUGATE(inumber)
@DESCRIPTION=IMCONJUGATE returns the complex conjugate of a complex number.
* If @inumber is not a valid complex number, IMCONJUGATE returns #VALUE! error.
* This function is Excel compatible.
@EXAMPLES=
IMCONJUGATE("1-j") equals 1+j.
@SEEALSO=IMAGINARY,IMREAL
@CATEGORY=Complex
@FUNCTION=IMCOS
@SYNTAX=IMCOS(inumber)
@DESCRIPTION=IMCOS returns the cosine of a complex number.
* If @inumber is not a valid complex number, IMCOS returns #VALUE! error.
* This function is Excel compatible.
@EXAMPLES=
IMCOS("1+j") equals 0.833730-0.988898j.
@SEEALSO=IMSIN,IMTAN
@CATEGORY=Complex
@FUNCTION=IMCOSH
@SYNTAX=IMCOSH(inumber)
@DESCRIPTION=IMCOSH returns the complex hyperbolic cosine of the complex number z (@inumber), where
cosh(z) = (exp(z) + exp(-z))/2.
* If @inumber is not a valid complex number, IMCOSH returns #VALUE! error.
@EXAMPLES=
IMCOSH("1+j") equals 0.83373+0.988898j.
@SEEALSO=IMSINH,IMTANH
@CATEGORY=Complex
@FUNCTION=IMCOT
@SYNTAX=IMCOT(inumber)
@DESCRIPTION=IMCOT returns the complex cotangent of the complex number z (@inumber), where
cot(z) = 1/tan(z).
* If @inumber is not a valid complex number, IMCOT returns #VALUE! error.
@EXAMPLES=
IMCOT("2-j") equals -0.171384+0.821330j.
@SEEALSO=IMSEC,IMCSC
@CATEGORY=Complex
@FUNCTION=IMCOTH
@SYNTAX=IMCOTH(inumber)
@DESCRIPTION=IMCOTH returns the complex hyperbolic cotangent of the complex number z (@inumber) where,
coth(z) = 1/tanh(z).
* If @inumber is not a valid complex number, IMCOTH returns #VALUE! error.
@EXAMPLES=
IMCOTH("1+j") equals 0.868014-0.217622j.
@SEEALSO=IMSECH,IMCSCH
@CATEGORY=Complex
@FUNCTION=IMCSC
@SYNTAX=IMCSC(inumber)
@DESCRIPTION=IMCSC returns the complex cosecant of the complex number z (@inumber), where
csc(z) = 1/sin(z).
* If @inumber is not a valid complex number, IMCSC returns #VALUE! error.
@EXAMPLES=
IMCSC("2-j") equals 0.635494-0.221501j.
@SEEALSO=IMSEC,IMCOT
@CATEGORY=Complex
@FUNCTION=IMCSCH
@SYNTAX=IMCSCH(inumber)
@DESCRIPTION=IMCSCH returns the complex hyperbolic cosecant of the complex number z (@inumber), where
csch(z) = 1/sinh(z).
* If @inumber is not a valid complex number, IMCSCH returns #VALUE! error.
@EXAMPLES=
IMCSCH("1+j") equals 0.303931-0.621518j.
@SEEALSO=IMSECH,IMCOTH
@CATEGORY=Complex
@FUNCTION=IMDIV
@SYNTAX=IMDIV(inumber1,inumber2)
@DESCRIPTION=IMDIV returns the quotient of two complex numbers.
* If @inumber1 or @inumber2 are not valid complex numbers, IMDIV returns #VALUE! error.
* This function is Excel compatible.
@EXAMPLES=
IMDIV("2-j","2+j") equals 0.6-0.8j.
@SEEALSO=IMPRODUCT
@CATEGORY=Complex
@FUNCTION=IMEXP
@SYNTAX=IMEXP(inumber)
@DESCRIPTION=IMEXP returns the exponential of a complex number.
* If @inumber is not a valid complex number, IMEXP returns #VALUE! error.
* This function is Excel compatible.
@EXAMPLES=
IMEXP("2-j") equals 3.992324-6.217676j.
@SEEALSO=IMLN
@CATEGORY=Complex
@FUNCTION=IMINV
@SYNTAX=IMINV(inumber)
@DESCRIPTION=IMINV returns the the inverse, or reciprocal, of the complex number z (@inumber), where
1/z = (x - i y)/(x^2 + y^2).
* If @inumber is not a valid complex number, IMINV returns #VALUE! error.
@EXAMPLES=
IMINV("1-j") equals 0.5+0.5j.
@SEEALSO=
@CATEGORY=Complex
@FUNCTION=IMLN
@SYNTAX=IMLN(inumber)
@DESCRIPTION=IMLN returns the natural logarithm of a complex number.
The result will have an imaginary part between -pi and +pi. The natural logarithm is not uniquely defined on complex numbers. You may need to add or subtract an even multiple of pi to the imaginary part.
* If @inumber is not a valid complex number, IMLN returns #VALUE! error.
* This function is Excel compatible.
@EXAMPLES=
IMLN("3-j") equals 1.15129-0.32175j.
@SEEALSO=IMEXP,IMLOG2,IMLOG10
@CATEGORY=Complex
@FUNCTION=IMLOG10
@SYNTAX=IMLOG10(inumber)
@DESCRIPTION=IMLOG10 returns the logarithm of a complex number in base 10.
* If @inumber is not a valid complex number, IMLOG10 returns #VALUE! error.
* This function is Excel compatible.
@EXAMPLES=
IMLOG10("3-j") equals 0.5-0.13973j.
@SEEALSO=IMLN,IMLOG2
@CATEGORY=Complex
@FUNCTION=IMLOG2
@SYNTAX=IMLOG2(inumber)
@DESCRIPTION=IMLOG2 returns the logarithm of a complex number in base 2.
* If @inumber is not a valid complex number, IMLOG2 returns #VALUE! error.
* This function is Excel compatible.
@EXAMPLES=
IMLOG2("3-j") equals 1.66096-0.46419j.
@SEEALSO=IMLN,IMLOG10
@CATEGORY=Complex
@FUNCTION=IMNEG
@SYNTAX=IMNEG(inumber)
@DESCRIPTION=IMNEG returns the negative of the complex number z (@inumber), where
-z = (-x) + i(-y).
* If @inumber is not a valid complex number, IMNEG returns #VALUE! error.
@EXAMPLES=
IMNEG("1-j") equals -1+j.
@SEEALSO=
@CATEGORY=Complex
@FUNCTION=IMPOWER
@SYNTAX=IMPOWER(inumber1,inumber2)
@DESCRIPTION=IMPOWER returns a complex number raised to a power. @inumber1 is the complex number to be raised to a power and @inumber2 is the power to which you want to raise it.
* If @inumber1 or @inumber2 are not valid complex numbers, IMPOWER returns #VALUE! error.
* This function is Excel compatible.
@EXAMPLES=
IMPOWER("4-j",2) equals 15-8j.
@SEEALSO=IMSQRT
@CATEGORY=Complex
@FUNCTION=IMPRODUCT
@SYNTAX=IMPRODUCT(inumber1[,inumber2,...])
@DESCRIPTION=IMPRODUCT returns the product of given complex numbers.
* If any of the @inumbers are not valid complex numbers, IMPRODUCT returns #VALUE! error.
* This function is Excel compatible.
@EXAMPLES=
IMPRODUCT("2-j","4-2j") equals 6-8j.
@SEEALSO=IMDIV
@CATEGORY=Complex
@FUNCTION=IMREAL
@SYNTAX=IMREAL(inumber)
@DESCRIPTION=IMREAL returns the real part of a complex number.
* If @inumber is not a valid complex number, IMREAL returns #VALUE! error.
* This function is Excel compatible.
@EXAMPLES=
imreal("132-j") equals 132.
@SEEALSO=IMAGINARY
@CATEGORY=Complex
@FUNCTION=IMSEC
@SYNTAX=IMSEC(inumber)
@DESCRIPTION=IMSEC returns the complex secant of the complex number z (@inumber), where
sec(z) = 1/cos(z).
* If @inumber is not a valid complex number, IMSEC returns #VALUE! error.
@EXAMPLES=
IMSEC("2-j") equals -0.413149-0.687527j.
@SEEALSO=IMCSC,IMCOT
@CATEGORY=Complex
@FUNCTION=IMSECH
@SYNTAX=IMSECH(inumber)
@DESCRIPTION=IMSECH returns the complex hyperbolic secant of the complex number z (@inumber), where
sech(z) = 1/cosh(z).
* If @inumber is not a valid complex number, IMSECH returns #VALUE! error.
@EXAMPLES=
IMSECH("1+j") equals 0.498337-0.5910838j.
@SEEALSO=IMCSCH,IMCOTH
@CATEGORY=Complex
@FUNCTION=IMSIN
@SYNTAX=IMSIN(inumber)
@DESCRIPTION=IMSIN returns the sine of a complex number.
* If @inumber is not a valid complex number, IMSIN returns #VALUE! error.
* This function is Excel compatible.
@EXAMPLES=
IMSIN("1+j") equals 1.29846+0.63496j.
@SEEALSO=IMCOS,IMTAN
@CATEGORY=Complex
@FUNCTION=IMSINH
@SYNTAX=IMSINH(inumber)
@DESCRIPTION=IMSINH returns the complex hyperbolic sine of the complex number z (@inumber), where
sinh(z) = (exp(z) - exp(-z))/2.
* If @inumber is not a valid complex number, IMSINH returns #VALUE! error.
@EXAMPLES=
IMSINH("1+j") equals 0.63496+1.29846j.
@SEEALSO=IMCOSH,IMTANH
@CATEGORY=Complex
@FUNCTION=IMSQRT
@SYNTAX=IMSQRT(inumber)
@DESCRIPTION=IMSQRT returns the square root of a complex number.
* If @inumber is not a valid complex number, IMSQRT returns #VALUE! error.
* This function is Excel compatible.
@EXAMPLES=
IMSQRT("1+j") equals 1.09868+0.4550899j.
@SEEALSO=IMPOWER
@CATEGORY=Complex
@FUNCTION=IMSUB
@SYNTAX=IMSUB(inumber1,inumber2)
@DESCRIPTION=IMSUB returns the difference of two complex numbers.
* If @inumber1 or @inumber2 are not valid complex numbers, IMSUB returns #VALUE! error.
* This function is Excel compatible.
@EXAMPLES=
IMSUB("3-j","2+j") equals 1-2j.
@SEEALSO=IMSUM
@CATEGORY=Complex
@FUNCTION=IMSUM
@SYNTAX=IMSUM(inumber1,inumber2)
@DESCRIPTION=IMSUM returns the sum of two complex numbers.
* If @inumber1 or @inumber2 are not valid complex numbers, IMSUM returns #VALUE! error.
* This function is Excel compatible.
@EXAMPLES=
IMSUM("2-4j","9-j") equals 11-5j.
@SEEALSO=IMSUB
@CATEGORY=Complex
@FUNCTION=IMTAN
@SYNTAX=IMTAN(inumber)
@DESCRIPTION=IMTAN returns the tangent of a complex number.
* If @inumber is not a valid complex number, IMTAN returns #VALUE! error.
* This function is Excel compatible.
@EXAMPLES=
IMTAN("2-j") equals -0.2434582-1.1667363j.
@SEEALSO=IMSIN,IMCOS
@CATEGORY=Complex
@FUNCTION=IMTANH
@SYNTAX=IMTANH(inumber)
@DESCRIPTION=IMTANH returns the complex hyperbolic tangent of the complex number z (@inumber), where
tanh(z) = sinh(z)/cosh(z).
* If @inumber is not a valid complex number, IMTANH returns #VALUE! error.
@EXAMPLES=
IMTANH("1+j") equals 1.083923+0.2717526j.
@SEEALSO=IMSINH,IMCOSH
@CATEGORY=Database
@FUNCTION=DAVERAGE
@SYNTAX=DAVERAGE(database,field,criteria)
@DESCRIPTION=DAVERAGE function returns the average of the values in a list or database that match conditions specified.
@database is a range of cells in which rows of related information are records and columns of data are fields. The first row of a database contains labels for each column.
@field specifies which column is used in the function. If @field is an integer, for example 2, the second column is used. Field can also be the label of a column. For example, ``Age'' refers to the column with the label ``Age'' in @database range.
@criteria is the range of cells which contains the specified conditions. The first row of a @criteria should contain the labels of the fields for which the criteria are for. Cells below the labels specify conditions, for example, ``>3'' or ``<9''. Equality condition can be given simply by specifying a value, e.g. ``3'' or ``John''.
Each row in @criteria specifies a separate condition. If a row in @database matches a row in @criteria, then that row is counted. Technically speaking, this a boolean OR operation between the rows in @criteria.
If @criteria specifies more than one column, then each of the conditions in the specified columns must be true for the row in @database to match. Technically speaking, this is a boolean AND operation between the columns in @criteria.
@EXAMPLES=
Let us assume that the range A1:C7 contain the following values:
Name Age Salary
John 34 54342
Bill 35 22343
Clark 29 34323
Bob 43 47242
Susan 37 42932
Jill 45 45324
In addition, the cells A9:B11 contain the following values:
Age Salary
<30
>40 >46000
DAVERAGE(A1:C7, "Salary", A9:A11) equals 42296.3333.
DAVERAGE(A1:C7, "Age", A9:A11) equals 39.
DAVERAGE(A1:C7, "Salary", A9:B11) equals 40782.5.
DAVERAGE(A1:C7, "Age", A9:B11) equals 36.
@SEEALSO=DCOUNT
@CATEGORY=Database
@FUNCTION=DCOUNT
@SYNTAX=DCOUNT(database,field,criteria)
@DESCRIPTION=DCOUNT function counts the cells that contain numbers in a database that match conditions specified.
@database is a range of cells in which rows of related information are records and columns of data are fields. The first row of a database contains labels for each column.
@field specifies which column is used in the function. If @field is an integer, for example 2, the second column is used. Field can also be the label of a column. For example, ``Age'' refers to the column with the label ``Age'' in @database range.
@criteria is the range of cells which contains the specified conditions. The first row of a @criteria should contain the labels of the fields for which the criteria are for. Cells below the labels specify conditions, for example, ``>3'' or ``<9''. Equality condition can be given simply by specifying a value, e.g. ``3'' or ``John''.
Each row in @criteria specifies a separate condition. If a row in @database matches a row in @criteria, then that row is counted. Technically speaking, this a boolean OR operation between the rows in @criteria.
If @criteria specifies more than one column, then each of the conditions in the specified columns must be true for the row in @database to match. Technically speaking, this is a boolean AND operation between the columns in @criteria.
@EXAMPLES=
Let us assume that the range A1:C7 contain the following values:
Name Age Salary
John 34 54342
Bill 35 22343
Clark 29 34323
Bob 43 47242
Susan 37 42932
Jill 45 45324
In addition, the cells A9:B11 contain the following values:
Age Salary
<30
>40 >46000
DCOUNT(A1:C7, "Salary", A9:A11) equals 3.
DCOUNT(A1:C7, "Salary", A9:B11) equals 2.
DCOUNT(A1:C7, "Name", A9:B11) equals 0.
@SEEALSO=DAVERAGE
@CATEGORY=Database
@FUNCTION=DCOUNTA
@SYNTAX=DCOUNTA(database,field,criteria)
@DESCRIPTION=DCOUNTA function counts the cells that contain data in a database that match conditions specified.
@database is a range of cells in which rows of related information are records and columns of data are fields. The first row of a database contains labels for each column.
@field specifies which column is used in the function. If @field is an integer, for example 2, the second column is used. Field can also be the label of a column. For example, ``Age'' refers to the column with the label ``Age'' in @database range.
@criteria is the range of cells which contains the specified conditions. The first row of a @criteria should contain the labels of the fields for which the criteria are for. Cells below the labels specify conditions, for example, ``>3'' or ``<9''. Equality condition can be given simply by specifying a value, e.g. ``3'' or ``John''.
Each row in @criteria specifies a separate condition. If a row in @database matches a row in @criteria, then that row is counted. Technically speaking, this a boolean OR operation between the rows in @criteria.
If @criteria specifies more than one column, then each of the conditions in the specified columns must be true for the row in @database to match. Technically speaking, this is a boolean AND operation between the columns in @criteria.
@EXAMPLES=
Let us assume that the range A1:C7 contain the following values:
Name Age Salary
John 34 54342
Bill 35 22343
Clark 29 34323
Bob 43 47242
Susan 37 42932
Jill 45 45324
In addition, the cells A9:B11 contain the following values:
Age Salary
<30
>40 >46000
DCOUNTA(A1:C7, "Salary", A9:A11) equals 3.
DCOUNTA(A1:C7, "Salary", A9:B11) equals 2.
DCOUNTA(A1:C7, "Name", A9:B11) equals 2.
@SEEALSO=DCOUNT
@CATEGORY=Database
@FUNCTION=DGET
@SYNTAX=DGET(database,field,criteria)
@DESCRIPTION=DGET function returns a single value from a column that match conditions specified.
@database is a range of cells in which rows of related information are records and columns of data are fields. The first row of a database contains labels for each column.
@field specifies which column is used in the function. If @field is an integer, for example 2, the second column is used. Field can also be the label of a column. For example, ``Age'' refers to the column with the label ``Age'' in @database range.
@criteria is the range of cells which contains the specified conditions. The first row of a @criteria should contain the labels of the fields for which the criteria are for. Cells below the labels specify conditions, for example, ``>3'' or ``<9''. Equality condition can be given simply by specifying a value, e.g. ``3'' or ``John''.
Each row in @criteria specifies a separate condition. If a row in @database matches a row in @criteria, then that row is counted. Technically speaking, this a boolean OR operation between the rows in @criteria.
If @criteria specifies more than one column, then each of the conditions in the specified columns must be true for the row in @database to match. Technically speaking, this is a boolean AND operation between the columns in @criteria.
@EXAMPLES=
Let us assume that the range A1:C7 contain the following values:
Name Age Salary
John 34 54342
Bill 35 22343
Clark 29 34323
Bob 43 47242
Susan 37 42932
Jill 45 45324
In addition, the cells A9:B11 contain the following values:
Age Salary
<30
>40 >46000
* If none of the items match the conditions, DGET returns #VALUE! error.
* If more than one items match the conditions, DGET returns #NUM! error.
DGET(A1:C7, "Salary", A9:A10) equals 34323.
DGET(A1:C7, "Name", A9:A10) equals "Clark".
@SEEALSO=DCOUNT
@CATEGORY=Database
@FUNCTION=DMAX
@SYNTAX=DMAX(database,field,criteria)
@DESCRIPTION=DMAX function returns the largest number in a column that match conditions specified.
@database is a range of cells in which rows of related information are records and columns of data are fields. The first row of a database contains labels for each column.
@field specifies which column is used in the function. If @field is an integer, for example 2, the second column is used. Field can also be the label of a column. For example, ``Age'' refers to the column with the label ``Age'' in @database range.
@criteria is the range of cells which contains the specified conditions. The first row of a @criteria should contain the labels of the fields for which the criteria are for. Cells below the labels specify conditions, for example, ``>3'' or ``<9''. Equality condition can be given simply by specifying a value, e.g. ``3'' or ``John''.
Each row in @criteria specifies a separate condition. If a row in @database matches a row in @criteria, then that row is counted. Technically speaking, this a boolean OR operation between the rows in @criteria.
If @criteria specifies more than one column, then each of the conditions in the specified columns must be true for the row in @database to match. Technically speaking, this is a boolean AND operation between the columns in @criteria.
@EXAMPLES=
Let us assume that the range A1:C7 contain the following values:
Name Age Salary
John 34 54342
Bill 35 22343
Clark 29 34323
Bob 43 47242
Susan 37 42932
Jill 45 45324
In addition, the cells A9:B11 contain the following values:
Age Salary
<30
>40 >46000
DMAX(A1:C7, "Salary", A9:A11) equals 47242.
DMAX(A1:C7, "Age", A9:A11) equals 45.
DMAX(A1:C7, "Age", A9:B11) equals 43.
@SEEALSO=DMIN
@CATEGORY=Database
@FUNCTION=DMIN
@SYNTAX=DMIN(database,field,criteria)
@DESCRIPTION=DMIN function returns the smallest number in a column that match conditions specified.
@database is a range of cells in which rows of related information are records and columns of data are fields. The first row of a database contains labels for each column.
@field specifies which column is used in the function. If @field is an integer, for example 2, the second column is used. Field can also be the label of a column. For example, ``Age'' refers to the column with the label ``Age'' in @database range.
@criteria is the range of cells which contains the specified conditions. The first row of a @criteria should contain the labels of the fields for which the criteria are for. Cells below the labels specify conditions, for example, ``>3'' or ``<9''. Equality condition can be given simply by specifying a value, e.g. ``3'' or ``John''.
Each row in @criteria specifies a separate condition. If a row in @database matches a row in @criteria, then that row is counted. Technically speaking, this a boolean OR operation between the rows in @criteria.
If @criteria specifies more than one column, then each of the conditions in the specified columns must be true for the row in @database to match. Technically speaking, this is a boolean AND operation between the columns in @criteria.
@EXAMPLES=
Let us assume that the range A1:C7 contain the following values:
Name Age Salary
John 34 54342
Bill 35 22343
Clark 29 34323
Bob 43 47242
Susan 37 42932
Jill 45 45324
In addition, the cells A9:B11 contain the following values:
Age Salary
<30
>40 >46000
DMIN(A1:C7, "Salary", A9:B11) equals 34323.
DMIN(A1:C7, "Age", A9:B11) equals 29.
@SEEALSO=DMAX
@CATEGORY=Database
@FUNCTION=DPRODUCT
@SYNTAX=DPRODUCT(database,field,criteria)
@DESCRIPTION=DPRODUCT function returns the product of numbers in a column that match conditions specified.
@database is a range of cells in which rows of related information are records and columns of data are fields. The first row of a database contains labels for each column.
@field specifies which column is used in the function. If @field is an integer, for example 2, the second column is used. Field can also be the label of a column. For example, ``Age'' refers to the column with the label ``Age'' in @database range.
@criteria is the range of cells which contains the specified conditions. The first row of a @criteria should contain the labels of the fields for which the criteria are for. Cells below the labels specify conditions, for example, ``>3'' or ``<9''. Equality condition can be given simply by specifying a value, e.g. ``3'' or ``John''.
Each row in @criteria specifies a separate condition. If a row in @database matches a row in @criteria, then that row is counted. Technically speaking, this a boolean OR operation between the rows in @criteria.
If @criteria specifies more than one column, then each of the conditions in the specified columns must be true for the row in @database to match. Technically speaking, this is a boolean AND operation between the columns in @criteria.
@EXAMPLES=
Let us assume that the range A1:C7 contain the following values:
Name Age Salary
John 34 54342
Bill 35 22343
Clark 29 34323
Bob 43 47242
Susan 37 42932
Jill 45 45324
In addition, the cells A9:B11 contain the following values:
Age Salary
<30
>40 >46000
DPRODUCT(A1:C7, "Age", A9:B11) equals 1247.
@SEEALSO=DSUM
@CATEGORY=Database
@FUNCTION=DSTDEV
@SYNTAX=DSTDEV(database,field,criteria)
@DESCRIPTION=DSTDEV function returns the estimate of the standard deviation of a population based on a sample. The populations consists of numbers that match conditions specified.
@database is a range of cells in which rows of related information are records and columns of data are fields. The first row of a database contains labels for each column.
@field specifies which column is used in the function. If @field is an integer, for example 2, the second column is used. Field can also be the label of a column. For example, ``Age'' refers to the column with the label ``Age'' in @database range.
@criteria is the range of cells which contains the specified conditions. The first row of a @criteria should contain the labels of the fields for which the criteria are for. Cells below the labels specify conditions, for example, ``>3'' or ``<9''. Equality condition can be given simply by specifying a value, e.g. ``3'' or ``John''.
Each row in @criteria specifies a separate condition. If a row in @database matches a row in @criteria, then that row is counted. Technically speaking, this a boolean OR operation between the rows in @criteria.
If @criteria specifies more than one column, then each of the conditions in the specified columns must be true for the row in @database to match. Technically speaking, this is a boolean AND operation between the columns in @criteria.
@EXAMPLES=
Let us assume that the range A1:C7 contain the following values:
Name Age Salary
John 34 54342
Bill 35 22343
Clark 29 34323
Bob 43 47242
Susan 37 42932
Jill 45 45324
In addition, the cells A9:B11 contain the following values:
Age Salary
<30
>40 >46000
DSTDEV(A1:C7, "Age", A9:B11) equals 9.89949.
DSTDEV(A1:C7, "Salary", A9:B11) equals 9135.112506.
@SEEALSO=DSTDEVP
@CATEGORY=Database
@FUNCTION=DSTDEVP
@SYNTAX=DSTDEVP(database,field,criteria)
@DESCRIPTION=DSTDEVP function returns the standard deviation of a population based on the entire populations. The populations consists of numbers that match conditions specified.
@database is a range of cells in which rows of related information are records and columns of data are fields. The first row of a database contains labels for each column.
@field specifies which column is used in the function. If @field is an integer, for example 2, the second column is used. Field can also be the label of a column. For example, ``Age'' refers to the column with the label ``Age'' in @database range.
@criteria is the range of cells which contains the specified conditions. The first row of a @criteria should contain the labels of the fields for which the criteria are for. Cells below the labels specify conditions, for example, ``>3'' or ``<9''. Equality condition can be given simply by specifying a value, e.g. ``3'' or ``John''.
Each row in @criteria specifies a separate condition. If a row in @database matches a row in @criteria, then that row is counted. Technically speaking, this a boolean OR operation between the rows in @criteria.
If @criteria specifies more than one column, then each of the conditions in the specified columns must be true for the row in @database to match. Technically speaking, this is a boolean AND operation between the columns in @criteria.
@EXAMPLES=
Let us assume that the range A1:C7 contain the following values:
Name Age Salary
John 34 54342
Bill 35 22343
Clark 29 34323
Bob 43 47242
Susan 37 42932
Jill 45 45324
In addition, the cells A9:B11 contain the following values:
Age Salary
<30
>40 >46000
DSTDEVP(A1:C7, "Age", A9:B11) equals 7.
DSTDEVP(A1:C7, "Salary", A9:B11) equals 6459.5.
@SEEALSO=DSTDEV
@CATEGORY=Database
@FUNCTION=DSUM
@SYNTAX=DSUM(database,field,criteria)
@DESCRIPTION=DSUM function returns the sum of numbers in a column that match conditions specified.
@database is a range of cells in which rows of related information are records and columns of data are fields. The first row of a database contains labels for each column.
@field specifies which column is used in the function. If @field is an integer, for example 2, the second column is used. Field can also be the label of a column. For example, ``Age'' refers to the column with the label ``Age'' in @database range.
@criteria is the range of cells which contains the specified conditions. The first row of a @criteria should contain the labels of the fields for which the criteria are for. Cells below the labels specify conditions, for example, ``>3'' or ``<9''. Equality condition can be given simply by specifying a value, e.g. ``3'' or ``John''.
Each row in @criteria specifies a separate condition. If a row in @database matches a row in @criteria, then that row is counted. Technically speaking, this a boolean OR operation between the rows in @criteria.
If @criteria specifies more than one column, then each of the conditions in the specified columns must be true for the row in @database to match. Technically speaking, this is a boolean AND operation between the columns in @criteria.
@EXAMPLES=
Let us assume that the range A1:C7 contain the following values:
Name Age Salary
John 34 54342
Bill 35 22343
Clark 29 34323
Bob 43 47242
Susan 37 42932
Jill 45 45324
In addition, the cells A9:B11 contain the following values:
Age Salary
<30
>40 >46000
DSUM(A1:C7, "Age", A9:B11) equals 72.
DSUM(A1:C7, "Salary", A9:B11) equals 81565.
@SEEALSO=DPRODUCT
@CATEGORY=Database
@FUNCTION=DVAR
@SYNTAX=DVAR(database,field,criteria)
@DESCRIPTION=DVAR function returns the estimate of variance of a population based on a sample. The populations consists of numbers that match conditions specified.
@database is a range of cells in which rows of related information are records and columns of data are fields. The first row of a database contains labels for each column.
@field specifies which column is used in the function. If @field is an integer, for example 2, the second column is used. Field can also be the label of a column. For example, ``Age'' refers to the column with the label ``Age'' in @database range.
@criteria is the range of cells which contains the specified conditions. The first row of a @criteria should contain the labels of the fields for which the criteria are for. Cells below the labels specify conditions, for example, ``>3'' or ``<9''. Equality condition can be given simply by specifying a value, e.g. ``3'' or ``John''.
Each row in @criteria specifies a separate condition. If a row in @database matches a row in @criteria, then that row is counted. Technically speaking, this a boolean OR operation between the rows in @criteria.
If @criteria specifies more than one column, then each of the conditions in the specified columns must be true for the row in @database to match. Technically speaking, this is a boolean AND operation between the columns in @criteria.
@EXAMPLES=
Let us assume that the range A1:C7 contain the following values:
Name Age Salary
John 34 54342
Bill 35 22343
Clark 29 34323
Bob 43 47242
Susan 37 42932
Jill 45 45324
In addition, the cells A9:B11 contain the following values:
Age Salary
<30
>40 >46000
DVAR(A1:C7, "Age", A9:B11) equals 98.
DVAR(A1:C7, "Salary", A9:B11) equals 83450280.5.
@SEEALSO=DVARP
@CATEGORY=Database
@FUNCTION=DVARP
@SYNTAX=DVARP(database,field,criteria)
@DESCRIPTION=DVARP function returns the variance of a population based on the entire populations. The populations consists of numbers that match conditions specified.
@database is a range of cells in which rows of related information are records and columns of data are fields. The first row of a database contains labels for each column.
@field specifies which column is used in the function. If @field is an integer, for example 2, the second column is used. Field can also be the label of a column. For example, ``Age'' refers to the column with the label ``Age'' in @database range.
@criteria is the range of cells which contains the specified conditions. The first row of a @criteria should contain the labels of the fields for which the criteria are for. Cells below the labels specify conditions, for example, ``>3'' or ``<9''. Equality condition can be given simply by specifying a value, e.g. ``3'' or ``John''.
Each row in @criteria specifies a separate condition. If a row in @database matches a row in @criteria, then that row is counted. Technically speaking, this a boolean OR operation between the rows in @criteria.
If @criteria specifies more than one column, then each of the conditions in the specified columns must be true for the row in @database to match. Technically speaking, this is a boolean AND operation between the columns in @criteria.
@EXAMPLES=
Let us assume that the range A1:C7 contain the following values:
Name Age Salary
John 34 54342
Bill 35 22343
Clark 29 34323
Bob 43 47242
Susan 37 42932
Jill 45 45324
In addition, the cells A9:B11 contain the following values:
Age Salary
<30
>40 >46000
DVARP(A1:C7, "Age", A9:B11) equals 49.
DVARP(A1:C7, "Salary", A9:B11) equals 41725140.25.
@SEEALSO=DVAR
@CATEGORY=Database
@FUNCTION=EXECSQL
@SYNTAX=EXECSQL(dsn,username,password,sql)
@DESCRIPTION=The EXECSQL function lets you execute a command in a database server, and show the results returned in current sheet. It uses libgda as the means for accessing the databases.
For using it, you need first to set up a libgda data source.
@EXAMPLES=
To get all the data from the table "Customers" present in the "mydatasource" GDA data source, you would use:
EXECSQL("mydatasource","username","password","SELECT * FROM customers")
@SEEALSO=READDBTABLE
@CATEGORY=Database
@FUNCTION=GETPIVOTDATA
@SYNTAX=GETPIVOTDATA(pivot_table,field_name)
@DESCRIPTION=GETPIVOTDATA function fetches summary data from a pivot table. @pivot_table is a cell range containing the pivot table. @field_name is the name of the field of which you want the summary data.
* If the summary data is unavailable, GETPIVOTDATA returns #REF! error.
@EXAMPLES=
@SEEALSO=
@CATEGORY=Database
@FUNCTION=READDBTABLE
@SYNTAX=READDBTABLE(dsn,username,password,table)
@DESCRIPTION=The READDBTABLE function lets you get the contents of a table, as stored in a database.For using it, you need first to set up a libgda data source.
Note that this function returns all the rows in the given table. If you want to get data from more than one table or want a more precise selection (conditions), use the EXECSQL function.
@EXAMPLES=
To get all the data from the table "Customers" present in the "mydatasource" GDA data source, you would use:
READDBTABLE("mydatasource","username","password","customers")
@SEEALSO=EXECSQL
@CATEGORY=Date/Time
@FUNCTION=DATE
@SYNTAX=DATE (year,month,day)
@DESCRIPTION=DATE returns the number of days since the 1st of January of 1900(the date serial number) for the given year, month and day.
* If @month < 1 or @month > 12, the year will be corrected. A similar correction takes place for days.
* The @years should be at least 1900. If @years < 1900, it is assumed to be 1900 + @years.
* If the given date is not valid, DATE returns #NUM! error.
* This function is Excel compatible.
@EXAMPLES=
DATE(2001, 3, 30) returns 'Mar 30, 2001'.
@SEEALSO=TODAY, NOW
@CATEGORY=Date/Time
@FUNCTION=DATE2UNIX
@SYNTAX=DATE2UNIX(serial)
@DESCRIPTION=DATE2UNIX converts a spreadsheet date and time serial number into a unix time.
A unix time is the number of seconds since midnight January 1, 1970.
@EXAMPLES=
DATE2UNIX("01/01/2000") equals 946656000.
@SEEALSO=NOW, DATE, UNIX2DATE
@CATEGORY=Date/Time
@FUNCTION=DATEDIF
@SYNTAX=DATEDIF(date1,date2,interval)
@DESCRIPTION=DATEDIF returns the difference between two dates. @interval is one of six possible values: "y", "m", "d", "ym", "md", and "yd".
The first three options will return the number of complete years, months, or days, respectively, between the two dates specified.
"ym" will return the number of full months between the two dates, not including the difference in years.
"md" will return the number of full days between the two dates, not including the difference in months.
"yd" will return the number of full days between the two dates, not including the difference in years.
* This function is Excel compatible.
@EXAMPLES=
DATEDIF(DATE(2000,4,30),DATE(2003,8,4),"d") equals 1191.
DATEDIF(DATE(2000,4,30),DATE(2003,8,4),"y") equals 3.
@SEEALSO=DATE
@CATEGORY=Date/Time
@FUNCTION=DATEVALUE
@SYNTAX=DATEVALUE(date_str)
@DESCRIPTION=DATEVALUE returns the serial number of the date. @date_str is the string that contains the date. The value depends on the date convention. The MS Excel 1900 convention dates things from Jan 1 1900 while the 1904 convention uses Jan 1 1904.
* This function is Excel compatible.
@EXAMPLES=
DATEVALUE("1/1/1999") equals 36161 (in the 1900 convention).
@SEEALSO=DATE
@CATEGORY=Date/Time
@FUNCTION=DAY
@SYNTAX=DAY (date)
@DESCRIPTION=DAY converts a serial number to a day of month.
* Note that Gnumeric will perform regular string to serial number conversion for you, so you can enter a date as a string.
* This function is Excel compatible.
@EXAMPLES=
DAY("10/24/1968") equals 24.
@SEEALSO=MONTH, TIME, NOW, YEAR
@CATEGORY=Date/Time
@FUNCTION=DAYS360
@SYNTAX=DAYS360 (date1,date2,method)
@DESCRIPTION=DAYS360 returns the number of days from @date1 to @date2 following a 360-day calendar in which all months are assumed to have 30 days.
* If @method is 1, the European method will be used. In this case, if the day of the month is 31 it will be considered as 30.
* If @method is 0 or omitted, the XL US method will be used. This is a somewhat complicated industry standard method where the last day of February is considered to be the 30th day of the month, but only for the first date.
* If @method is 2, a saner version of the US method is used in which both dates get the same February treatment.
* Note that Gnumeric will perform regular string to serial number conversion for you, so you can enter a date as a string.
* This function is mostly Excel compatible.
@EXAMPLES=
DAYS360(DATE(2003, 2, 3), DATE(2007, 4, 2)) equals 1499.
@SEEALSO=MONTH, TIME, NOW, YEAR
@CATEGORY=Date/Time
@FUNCTION=EDATE
@SYNTAX=EDATE(date,months)
@DESCRIPTION=EDATE returns the serial number of the date that is the specified number of months before or after a given date. @date is the serial number of the initial date and @months is the number of months before (negative number) or after (positive number) the initial date.
* If @months is not an integer, it is truncated.
* This function is Excel compatible.
@EXAMPLES=
EDATE(DATE(2001,12,30),2) returns 'Feb 28, 2002'.
@SEEALSO=DATE
@CATEGORY=Date/Time
@FUNCTION=EOMONTH
@SYNTAX=EOMONTH (start_date,months)
@DESCRIPTION=EOMONTH returns the last day of the month which is @months from the @start_date.
* EOMONTH returns #NUM! if @start_date or @months are invalid.
* This function is Excel compatible.
@EXAMPLES=
If A1 contains 12/21/00 then EOMONTH(A1,0)=12/31/00, EOMONTH(A1,5)=5/31/01, and EOMONTH(A1,2)=2/28/01
@SEEALSO=MONTH
@CATEGORY=Date/Time
@FUNCTION=HOUR
@SYNTAX=HOUR (date)
@DESCRIPTION=HOUR converts a serial number to an hour. The hour is returned as an integer in the range 0 (12:00 A.M.) to 23 (11:00 P.M.).
* Note that Gnumeric will perform regular string to serial number conversion for you, so you can enter a date as a string.
* This function is Excel compatible.
@EXAMPLES=
HOUR(0.128472) equals 3.
@SEEALSO=MINUTE, NOW, TIME, SECOND
@CATEGORY=Date/Time
@FUNCTION=ISOWEEKNUM
@SYNTAX=ISOWEEKNUM (date)
@DESCRIPTION=ISOWEEKNUM returns the ISO 8601 week number of @date.
An ISO 8601 week starts on Monday. Weeks are numbered from 1. A week including days from two different years is assigned to the year which includes the most days. This means that Dec 31 could be in week 1 of the following year, and Jan 1 could be in week 52 or 53 of the previous year. ISOWEEKNUM returns the week number.
* ISOWEEKNUM returns #NUM! if date is invalid.
@EXAMPLES=
If A1 contains 12/21/00 then ISOWEEKNUM(A1)=51
@SEEALSO=WEEKNUM, ISOYEAR
@CATEGORY=Date/Time
@FUNCTION=ISOYEAR
@SYNTAX=ISOYEAR (date)
@DESCRIPTION=ISOYEAR returns the year of the ISO 8601 week number of @date.
An ISO 8601 week starts on Monday. Weeks are numbered from 1. A week including days from two different years is assigned to the year which includes the most days. This means that Dec 31 could be in week 1 of the following year, and Jan 1 could be in week 52 or 53 of the previous year. ISOYEAR returns the year the week is assigned to.
* ISOYEAR returns #NUM! if date is invalid.
@EXAMPLES=
If A1 contains 12/31/2001 then ISOYEAR(A1)=2002
@SEEALSO=ISOWEEKNUM
@CATEGORY=Date/Time
@FUNCTION=MINUTE
@SYNTAX=MINUTE (date)
@DESCRIPTION=MINUTE converts a serial number to a minute. The minute is returned as an integer in the range 0 to 59.
* Note that Gnumeric will perform regular string to serial number conversion for you, so you can enter a date as a string.
* This function is Excel compatible.
@EXAMPLES=
MINUTE(0.128472) equals 5.
@SEEALSO=HOUR, NOW, TIME, SECOND
@CATEGORY=Date/Time
@FUNCTION=MONTH
@SYNTAX=MONTH (date)
@DESCRIPTION=MONTH converts a serial number to a month.
* Note that Gnumeric will perform regular string to serial number conversion for you, so you can enter a date as a string.
* This function is Excel compatible.
@EXAMPLES=
MONTH(DATE(2003, 4, 30)) equals 4.
@SEEALSO=DAY, TIME, NOW, YEAR
@CATEGORY=Date/Time
@FUNCTION=NETWORKDAYS
@SYNTAX=NETWORKDAYS (start_date,end_date[,holidays])
@DESCRIPTION=NETWORKDAYS returns the number of non-weekend non-holidays between @start_date and @end_date including these dates. Holidays are optionally supplied in @holidays.
* NETWORKDAYS returns #NUM! if @start_date or @end_date are invalid.
* This function is Excel compatible.
@EXAMPLES=
NETWORKDAYS(DATE(2001,1,2),DATE(2001,2,15)) equals 33.
@SEEALSO=WORKDAY
@CATEGORY=Date/Time
@FUNCTION=NOW
@SYNTAX=NOW ()
@DESCRIPTION=NOW returns the serial number for the date and time at the time it is evaluated.
Serial Numbers in Gnumeric are represented as follows:The integral part is the number of days since the 1st of January of 1900. The decimal part represent the fraction of the day and is mapped into hour, minutes and seconds.
For example: .0 represents the beginning of the day, and 0.5 represents noon.
* This function is Excel compatible.
@EXAMPLES=
NOW().
@SEEALSO=TODAY
@CATEGORY=Date/Time
@FUNCTION=SECOND
@SYNTAX=SECOND (date)
@DESCRIPTION=SECOND converts a serial number to a second. The second is returned as an integer in the range 0 to 59.
* Note that Gnumeric will perform regular string to serial number conversion for you, so you can enter a date as a string.
* This function is Excel compatible.
@EXAMPLES=
SECOND(0.600613) equals 53.
@SEEALSO=HOUR, MINUTE, NOW, TIME
@CATEGORY=Date/Time
@FUNCTION=TIME
@SYNTAX=TIME (hours,minutes,seconds)
@DESCRIPTION=TIME returns a fraction representing the time of day.
* This function is Excel compatible.
@EXAMPLES=
TIME(3, 5, 23) equals 3:05AM.
@SEEALSO=HOUR
@CATEGORY=Date/Time
@FUNCTION=TIMEVALUE
@SYNTAX=TIMEVALUE (timetext)
@DESCRIPTION=TIMEVALUE returns a fraction representing the time of day, a number between 0 and 1.
* This function is Excel compatible.
@EXAMPLES=
TIMEVALUE("3:05") equals 0.128472.
TIMEVALUE("2:24:53 PM") equals 0.600613.
@SEEALSO=HOUR,MINUTE
@CATEGORY=Date/Time
@FUNCTION=TODAY
@SYNTAX=TODAY()
@DESCRIPTION=TODAY returns the serial number for today (the number of days elapsed since the 1st of January of 1900).
* This function is Excel compatible.
@EXAMPLES=
TODAY() returns 'Nov 6, 2001' on that particular day.
@SEEALSO=NOW
@CATEGORY=Date/Time
@FUNCTION=UNIX2DATE
@SYNTAX=UNIX2DATE(unixtime)
@DESCRIPTION=UNIX2DATE converts a unix time into a spreadsheet date and time.
A unix time is the number of seconds since midnight January 1, 1970.
@EXAMPLES=
@SEEALSO=NOW, DATE, DATE2UNIX
@CATEGORY=Date/Time
@FUNCTION=WEEKDAY
@SYNTAX=WEEKDAY (date[, method])
@DESCRIPTION=WEEKDAY converts a serial number to a weekday.
This function returns an integer indicating the day of week.
@METHOD indicates the numbering system. It defaults to 1.
For @METHOD=1: Sunday is 1, Monday is 2, etc.
For @METHOD=2: Monday is 1, Tuesday is 2, etc.
For @METHOD=3: Monday is 0, Tuesday is 1, etc.
* Note that Gnumeric will perform regular string to serial number conversion for you, so you can enter a date as a string.
* This function is Excel compatible.
@EXAMPLES=
WEEKDAY("10/24/1968") equals 5 (Thursday).
@SEEALSO=DAY, MONTH, TIME, NOW, YEAR
@CATEGORY=Date/Time
@FUNCTION=WEEKNUM
@SYNTAX=WEEKNUM (date[,method])
@DESCRIPTION=WEEKNUM returns the week number of @date according to the given @method.
@method defaults to 1.
For @method=1, week starts on Sunday, and days before first Sunday are in week 0.
For @method=2, week starts on Monday, and days before first Monday are in week 0.
For @method=150, the ISO 8601 week number is returned.
* WEEKNUM returns #NUM! if @date or @method is invalid.
* This function is Excel compatible, except that Excel does not support ISO 8601 week numbers.
@EXAMPLES=
If A1 contains 12/21/00 then WEEKNUM(A1,2)=51
@SEEALSO=ISOWEEKNUM
@CATEGORY=Date/Time
@FUNCTION=WORKDAY
@SYNTAX=WORKDAY (start_date,days[,holidays])
@DESCRIPTION=WORKDAY returns the date which is @days working days from the @start_date. Weekends and holidays optionally supplied in @holidays are respected.
* WORKDAY returns #NUM! if @start_date or @days are invalid.
* This function is Excel compatible.
@EXAMPLES=
DAY(WORKDAY(DATE(2001,1,5),30)) equals 16 and
MONTH(WORKDAY(DATE(2001,1,5),30)) equals 2.
@SEEALSO=NETWORKDAYS
@CATEGORY=Date/Time
@FUNCTION=YEAR
@SYNTAX=YEAR (date)
@DESCRIPTION=YEAR converts a serial number to a year.
* Note that Gnumeric will perform regular string to serial number conversion for you, so you can enter a date as a string.
* This function is Excel compatible.
@EXAMPLES=
YEAR(DATE(2003, 4, 30)) equals 2003.
@SEEALSO=DAY, MONTH, TIME, NOW
@CATEGORY=Date/Time
@FUNCTION=YEARFRAC
@SYNTAX=YEARFRAC (start_date, end_date [,basis])
@DESCRIPTION=YEARFRAC returns the number of full days between @start_date and @end_date according to the @basis.
@EXAMPLES=
@SEEALSO=DATEDIF
@CATEGORY=Engineering
@FUNCTION=BASE
@SYNTAX=BASE(number,base[,length])
@DESCRIPTION=BASE function converts a number to a string representing that number in base @base.
* @base must be an integer between 2 and 36.
* This function is OpenOffice.Org compatible.
* Optional argument @length specifies the minimum result length. Leading zeroes will be added to reach this length.
@EXAMPLES=
BASE(255,16,4) equals "00FF".
@SEEALSO=DECIMAL
@CATEGORY=Engineering
@FUNCTION=BESSELI
@SYNTAX=BESSELI(x,y)
@DESCRIPTION=BESSELI function returns the Neumann, Weber or Bessel function.
@x is where the function is evaluated. @y is the order of the Bessel function, if non-integer it is truncated.
* If @x or @y are not numeric a #VALUE! error is returned.
* If @y < 0 a #NUM! error is returned.
* This function is Excel compatible.
@EXAMPLES=
BESSELI(0.7,3) equals 0.007367374.
@SEEALSO=BESSELJ,BESSELK,BESSELY
@CATEGORY=Engineering
@FUNCTION=BESSELJ
@SYNTAX=BESSELJ(x,y)
@DESCRIPTION=BESSELJ function returns the Bessel function with @x is where the function is evaluated. @y is the order of the Bessel function, if non-integer it is truncated.
* If @x or @y are not numeric a #VALUE! error is returned.
* If @y < 0 a #NUM! error is returned.
* This function is Excel compatible.
@EXAMPLES=
BESSELJ(0.89,3) equals 0.013974004.
@SEEALSO=BESSELI,BESSELK,BESSELY
@CATEGORY=Engineering
@FUNCTION=BESSELK
@SYNTAX=BESSELK(x,y)
@DESCRIPTION=BESSELK function returns the Neumann, Weber or Bessel function. @x is where the function is evaluated. @y is the order of the Bessel function, if non-integer it is truncated.
* If @x or @y are not numeric a #VALUE! error is returned.
* If @y < 0 a #NUM! error is returned.
* This function is Excel compatible.
@EXAMPLES=
BESSELK(3,9) equals 397.95880.
@SEEALSO=BESSELI,BESSELJ,BESSELY
@CATEGORY=Engineering
@FUNCTION=BESSELY
@SYNTAX=BESSELY(x,y)
@DESCRIPTION=BESSELY function returns the Neumann, Weber or Bessel function.
@x is where the function is evaluated. @y is the order of the Bessel function, if non-integer it is truncated.
* If @x or @y are not numeric a #VALUE! error is returned.
* If @y < 0 a #NUM! error is returned.
* This function is Excel compatible.
@EXAMPLES=
BESSELY(4,2) equals 0.215903595.
@SEEALSO=BESSELI,BESSELJ,BESSELK
@CATEGORY=Engineering
@FUNCTION=BIN2DEC
@SYNTAX=BIN2DEC(x)
@DESCRIPTION=BIN2DEC function converts a binary number in string or number to its decimal equivalent.
* This function is Excel compatible.
@EXAMPLES=
BIN2DEC(101) equals 5.
@SEEALSO=DEC2BIN, BIN2OCT, BIN2HEX
@CATEGORY=Engineering
@FUNCTION=BIN2HEX
@SYNTAX=BIN2HEX(number[,places])
@DESCRIPTION=BIN2HEX function converts a binary number to a hexadecimal number. @places is an optional field, specifying to zero pad to that number of spaces.
* If @places is too small or negative #NUM! error is returned.
* This function is Excel compatible.
@EXAMPLES=
BIN2HEX(100111) equals 27.
@SEEALSO=HEX2BIN, BIN2OCT, BIN2DEC
@CATEGORY=Engineering
@FUNCTION=BIN2OCT
@SYNTAX=BIN2OCT(number[,places])
@DESCRIPTION=BIN2OCT function converts a binary number to an octal number. @places is an optional field, specifying to zero pad to that number of spaces.
* If @places is too small or negative #NUM! error is returned.
* This function is Excel compatible.
@EXAMPLES=
BIN2OCT(110111) equals 67.
@SEEALSO=OCT2BIN, BIN2DEC, BIN2HEX
@CATEGORY=Engineering
@FUNCTION=CONVERT
@SYNTAX=CONVERT(number,from_unit,to_unit)
@DESCRIPTION=CONVERT returns a conversion from one measurement system to another. For example, you can convert a weight in pounds to a weight in grams. @number is the value you want to convert, @from_unit specifies the unit of the @number, and @to_unit is the unit for the result.
@from_unit and @to_unit can be any of the following:
Weight and mass:
'g' Gram
'sg' Slug
'lbm' Pound
'u' U (atomic mass)
'ozm' Ounce
Distance:
'm' Meter
'mi' Statute mile
'Nmi' Nautical mile
'in' Inch
'ft' Foot
'yd' Yard
'ang' Angstrom
'Pica' Pica
Time:
'yr' Year
'day' Day
'hr' Hour
'mn' Minute
'sec' Second
Pressure:
'Pa' Pascal
'atm' Atmosphere
'mmHg' mm of Mercury
Force:
'N' Newton
'dyn' Dyne
'lbf' Pound force
Energy:
'J' Joule
'e' Erg
'c' Thermodynamic calorie
'cal' IT calorie
'eV' Electron volt
'HPh' Horsepower-hour
'Wh' Watt-hour
'flb' Foot-pound
'BTU' BTU
Power:
'HP' Horsepower
'W' Watt
Magnetism:
'T' Tesla
'ga' Gauss
Temperature:
'C' Degree Celsius
'F' Degree Fahrenheit
'K' Degree Kelvin
Liquid measure:
'tsp' Teaspoon
'tbs' Tablespoon
'oz' Fluid ounce
'cup' Cup
'pt' Pint
'qt' Quart
'gal' Gallon
'l' Liter
For metric units any of the following prefixes can be used:
'Y' yotta 1E+24
'Z' zetta 1E+21
'E' exa 1E+18
'P' peta 1E+15
'T' tera 1E+12
'G' giga 1E+09
'M' mega 1E+06
'k' kilo 1E+03
'h' hecto 1E+02
'e' deka 1E+01
'd' deci 1E-01
'c' centi 1E-02
'm' milli 1E-03
'u' micro 1E-06
'n' nano 1E-09
'p' pico 1E-12
'f' femto 1E-15
'a' atto 1E-18
'z' zepto 1E-21
'y' yocto 1E-24
* If @from_unit and @to_unit are different types, CONVERT returns #NUM! error.
* This function is Excel compatible.
@EXAMPLES=
CONVERT(3,"lbm","g") equals 1360.7769.
CONVERT(5.8,"m","in") equals 228.3465.
CONVERT(7.9,"cal","J") equals 33.07567.
@SEEALSO=
@CATEGORY=Engineering
@FUNCTION=DEC2BIN
@SYNTAX=DEC2BIN(number[,places])
@DESCRIPTION=DEC2BIN function converts a decimal number to a binary number. @places is an optional field, specifying to zero pad to that number of spaces.
* If @places is too small or negative #NUM! error is returned.
* This function is Excel compatible.
@EXAMPLES=
DEC2BIN(42) equals 101010.
@SEEALSO=BIN2DEC, DEC2OCT, DEC2HEX
@CATEGORY=Engineering
@FUNCTION=DEC2HEX
@SYNTAX=DEC2HEX(number[,places])
@DESCRIPTION=DEC2HEX function converts a decimal number to a hexadecimal number. @places is an optional field, specifying to zero pad to that number of spaces.
* If @places is too small or negative #NUM! error is returned.
* This function is Excel compatible.
@EXAMPLES=
DEC2HEX(42) equals 2A.
@SEEALSO=HEX2DEC, DEC2BIN, DEC2OCT
@CATEGORY=Engineering
@FUNCTION=DEC2OCT
@SYNTAX=DEC2OCT(number[,places])
@DESCRIPTION=DEC2OCT function converts a decimal number to an octal number. @places is an optional field, specifying to zero pad to that number of spaces.
* If @places is too small or negative #NUM! error is returned.
* This function is Excel compatible.
@EXAMPLES=
DEC2OCT(42) equals 52.
@SEEALSO=OCT2DEC, DEC2BIN, DEC2HEX
@CATEGORY=Engineering
@FUNCTION=DECIMAL
@SYNTAX=DECIMAL(text,base)
@DESCRIPTION=DECIMAL function converts a number in base @base to decimal.
* @base must be an integer between 2 and 36.
* This function is OpenOffice.Org compatible.
@EXAMPLES=
DECIMAL("A1",16) equals 161.
@SEEALSO=BASE
@CATEGORY=Engineering
@FUNCTION=DELTA
@SYNTAX=DELTA(x[,y])
@DESCRIPTION=DELTA function tests for numerical equivalence of two arguments, returning 1 in case of equality.
* @y is optional, and defaults to 0.
* If either argument is non-numeric returns a #VALUE! error.
* This function is Excel compatible.
@EXAMPLES=
DELTA(42.99,43) equals 0.
@SEEALSO=EXACT,GESTEP
@CATEGORY=Engineering
@FUNCTION=ERF
@SYNTAX=ERF([lower limit,]upper_limit)
@DESCRIPTION=ERF returns the error function. With a single argument ERF returns the error function, defined as
erf(x) = 2/sqrt(pi)* integral from 0 to x of exp(-t*t) dt.
If two arguments are supplied, they are the lower and upper limits of the integral.
* If either @lower_limit or @upper_limit is not numeric a #VALUE! error is returned.
* This function is upward-compatible with that in Excel. (If two arguments are supplied, Excel will not allow either to be negative.)
@EXAMPLES=
ERF(0.4) equals 0.428392355.
ERF(1.6448536269515/SQRT(2)) equals 0.90.
The second example shows that a random variable with a normal distribution has a 90 percent chance of falling within approximately 1.645 standard deviations of the mean.
@SEEALSO=ERFC
@CATEGORY=Engineering
@FUNCTION=ERFC
@SYNTAX=ERFC(x)
@DESCRIPTION=ERFC function returns the complementary error function, defined as
1 - erf(x).
erfc(x) is calculated more accurately than 1 - erf(x) for arguments larger than about 0.5.
* If @x is not numeric a #VALUE! error is returned.
@EXAMPLES=
ERFC(6) equals 2.15197367e-17.
@SEEALSO=ERF
@CATEGORY=Engineering
@FUNCTION=GESTEP
@SYNTAX=GESTEP(x[,y])
@DESCRIPTION=GESTEP function test for if @x is >= @y, returning 1 if it is so, and 0 otherwise. @y is optional, and defaults to 0.
* If either argument is non-numeric returns a #VALUE! error.
* This function is Excel compatible.
@EXAMPLES=
GESTEP(5,4) equals 1.
@SEEALSO=DELTA
@CATEGORY=Engineering
@FUNCTION=HEX2BIN
@SYNTAX=HEX2BIN(number[,places])
@DESCRIPTION=HEX2BIN function converts a hexadecimal number to a binary number. @places is an optional field, specifying to zero pad to that number of spaces.
* If @places is too small or negative #NUM! error is returned.
* This function is Excel compatible.
@EXAMPLES=
HEX2BIN("2A") equals 101010.
@SEEALSO=BIN2HEX, HEX2OCT, HEX2DEC
@CATEGORY=Engineering
@FUNCTION=HEX2DEC
@SYNTAX=HEX2DEC(x)
@DESCRIPTION=HEX2DEC function converts a hexadecimal number to its decimal equivalent.
* This function is Excel compatible.
@EXAMPLES=
HEX2DEC("2A") equals 42.
@SEEALSO=DEC2HEX, HEX2BIN, HEX2OCT
@CATEGORY=Engineering
@FUNCTION=HEX2OCT
@SYNTAX=HEX2OCT(number[,places])
@DESCRIPTION=HEX2OCT function converts a hexadecimal number to an octal number. @places is an optional field, specifying to zero pad to that number of spaces.
* If @places is too small or negative #NUM! error is returned.
* This function is Excel compatible.
@EXAMPLES=
HEX2OCT("2A") equals 52.
@SEEALSO=OCT2HEX, HEX2BIN, HEX2DEC
@CATEGORY=Engineering
@FUNCTION=INVSUMINV
@SYNTAX=INVSUMINV(x1,x2,...)
@DESCRIPTION=INVSUMINV sum calculates the inverse of the sum of inverses.
The primary use of this is for calculating equivalent resistance for parallel resistors or equivalent capacitance of a series of capacitors.
* All arguments must be non-negative, or else a #VALUE! result is returned.
* If any argument is zero, the result is zero.
@EXAMPLES=
INVSUMINV(2000,2000) equals 1000.
@SEEALSO=HARMEAN
@CATEGORY=Engineering
@FUNCTION=OCT2BIN
@SYNTAX=OCT2BIN(number[,places])
@DESCRIPTION=OCT2BIN function converts an octal number to a binary number. @places is an optional field, specifying to zero pad to that number of spaces.
* If @places is too small or negative #NUM! error is returned.
* This function is Excel compatible.
@EXAMPLES=
OCT2BIN("213") equals 10001011.
@SEEALSO=BIN2OCT, OCT2DEC, OCT2HEX
@CATEGORY=Engineering
@FUNCTION=OCT2DEC
@SYNTAX=OCT2DEC(x)
@DESCRIPTION=OCT2DEC function converts an octal number in a string or number to its decimal equivalent.
* This function is Excel compatible.
@EXAMPLES=
OCT2DEC("124") equals 84.
@SEEALSO=DEC2OCT, OCT2BIN, OCT2HEX
@CATEGORY=Engineering
@FUNCTION=OCT2HEX
@SYNTAX=OCT2HEX(number[,places])
@DESCRIPTION=OCT2HEX function converts an octal number to a hexadecimal number. @places is an optional field, specifying to zero pad to that number of spaces.
* If @places is too small or negative #NUM! error is returned.
* This function is Excel compatible.
@EXAMPLES=
OCT2HEX(132) equals 5A.
@SEEALSO=HEX2OCT, OCT2BIN, OCT2DEC
@CATEGORY=Erlang
@FUNCTION=DIMCIRC
@SYNTAX=DIMCIRC(traffic,gos)
@DESCRIPTION=DIMCIRC returns a number of circuits required from a number of @traffic loads with @gos grade of service.
@EXAMPLES=
DIMCIRC(24,1%) returns 35.
@SEEALSO=OFFCAP, OFFTRAF, PROBBLOCK
@CATEGORY=Erlang
@FUNCTION=OFFCAP
@SYNTAX=OFFCAP(circuits,gos)
@DESCRIPTION=OFFCAP returns a number of traffic capacity given by a number of @circuits with @gos grade of service.
@EXAMPLES=
OFFCAP(30,1%) returns 20.337.
@SEEALSO=DIMCIRC, OFFTRAF, PROBBLOCK
@CATEGORY=Erlang
@FUNCTION=OFFTRAF
@SYNTAX=OFFTRAF(traffic,circuits)
@DESCRIPTION=OFFTRAF returns a predicted number of offered traffic from a number of carried @traffic (taken from measurements) on a number of @circuits.
* @traffic cannot exceed @circuits
@EXAMPLES=
OFFTRAF(24,30) returns 25.527.
@SEEALSO=PROBBLOCK, DIMCIRC, OFFCAP
@CATEGORY=Erlang
@FUNCTION=PROBBLOCK
@SYNTAX=PROBBLOCK(traffic,circuits)
@DESCRIPTION=PROBBLOCK returns probability of blocking when a number of @traffic loads into a number of @circuits (servers).
* @traffic cannot exceed @circuits
@EXAMPLES=
PROBBLOCK(24,30) returns 0.4012.
@SEEALSO=OFFTRAF, DIMCIRC, OFFCAP
@CATEGORY=Finance
@FUNCTION=ACCRINT
@SYNTAX=ACCRINT(issue,first_interest,settlement,rate,par,frequency[,basis])
@DESCRIPTION=ACCRINT calculates the accrued interest for a security that pays periodic interest.
@issue is the issue date of the security. @first_interest is the first interest date of the security. @settlement is the settlement date of the security. The settlement date is always after the issue date (the date when the security is bought). @rate is the annual rate of the security and @par is the par value of the security. @frequency is the number of coupon payments per year.
Allowed frequencies are:
1 = annual,
2 = semi,
4 = quarterly.
@basis is the type of day counting system you want to use:
0 US 30/360
1 actual days/actual days
2 actual days/360
3 actual days/365
4 European 30/360
* If @issue date, @first_interest date, or @settlement date is not valid, ACCRINT returns #NUM! error.
* The dates must be @issue < @first_interest < @settlement, or ACCRINT returns #NUM! error.
* If @rate <= 0 or @par <= 0 , ACCRINT returns #NUM! error.
* If @basis is omitted, US 30/360 is applied.
* If @basis < 0 or @basis > 4, ACCRINT returns #NUM! error.
* If @issue date is after @settlement date or they are the same, ACCRINT returns #NUM! error.
@EXAMPLES=
@SEEALSO=ACCRINTM
@CATEGORY=Finance
@FUNCTION=ACCRINTM
@SYNTAX=ACCRINTM(issue,maturity,rate[,par,basis])
@DESCRIPTION=ACCRINTM calculates and returns the accrued interest for a security from @issue to @maturity date.
@issue is the issue date of the security. @maturity is the maturity date of the security. @rate is the annual rate of the security and @par is the par value of the security. If you omit @par, ACCRINTM applies $1,000 instead. @basis is the type of day counting system you want to use:
0 US 30/360
1 actual days/actual days
2 actual days/360
3 actual days/365
4 European 30/360
* If @issue date or @maturity date is not valid, ACCRINTM returns #NUM! error.
* If @rate <= 0 or @par <= 0, ACCRINTM returns #NUM! error.
* If @basis is omitted, US 30/360 is applied.
* If @basis < 0 or @basis > 4, ACCRINTM returns #NUM! error.
* If @issue date is after @maturity date or they are the same, ACCRINTM returns #NUM! error.
@EXAMPLES=
@SEEALSO=ACCRINT
@CATEGORY=Finance
@FUNCTION=AMORDEGRC
@SYNTAX=AMORDEGRC(cost,purchase_date,first_period,salvage,period,rate[,basis])
@DESCRIPTION=AMORDEGRC: Calculates depreciation for each accounting period using French accounting conventions. Assets purchased in the middle of a period take prorated depreciation into account. This is similar to AMORLINC, except that a depreciation coefficient is applied in the calculation depending on the life of the assets.
Named for AMORtissement DEGRessif Comptabilite
@cost The value of the asset.
@purchase_date The date the asset was purchased.
@first_period The end of the first period.
@salvage Asset value at maturity.
@period The length of accounting periods.
@rate rate of depreciation as a percentage.
@basis is the type of day counting system you want to use:
0 US 30/360
1 actual days/actual days
2 actual days/360
3 actual days/365
4 European 30/360
* If @basis is omitted, US 30/360 is applied.
* If @basis is not in between 0 and 4, #NUM! error is returned.
@EXAMPLES=
AMORDEGRC(2400,DATE(1998,8,19),DATE(1998,12,30),300,1,0.14,1) = 733
@SEEALSO=AMORLINC
@CATEGORY=Finance
@FUNCTION=AMORLINC
@SYNTAX=AMORLINC(cost,purchase_date,first_period,salvage,period,rate[,basis])
@DESCRIPTION=AMORLINC: Calculates depreciation for each accounting period using French accounting conventions. Assets purchased in the middle of a period take prorated depreciation into account.
Named for AMORtissement LINeaire Comptabilite.
@cost The value of the asset.
@purchase_date The date the asset was purchased.
@first_period The end of the first period.
@salvage Asset value at maturity.
@period The length of accounting periods.
@rate rate of depreciation as a percentage.
@basis is the type of day counting system you want to use:
0 US 30/360
1 actual days/actual days
2 actual days/360
3 actual days/365
4 European 30/360
* If @basis is omitted, US 30/360 is applied.
* If @basis is not in between 0 and 4, #NUM! error is returned.
@EXAMPLES=
AMORLINC(2400,DATE(1998,8,19),DATE(1998,12,31),300,1,0.15,1) = 360
@SEEALSO=AMORDEGRC
@CATEGORY=Finance
@FUNCTION=COUPDAYBS
@SYNTAX=COUPDAYBS(settlement,maturity,frequency[,basis,eom])
@DESCRIPTION=COUPDAYBS returns the number of days from the beginning of the coupon period to the settlement date.
@settlement is the settlement date of the security.
@maturity is the maturity date of the security.
@frequency is the number of coupon payments per year.
@eom = TRUE handles end of month maturity dates special.
Allowed frequencies are: 1 = annual, 2 = semi, 4 = quarterly, 6 = bimonthly, 12 = monthly.
@basis is the type of day counting system you want to use:
0 MSRB 30/360 (MSRB Rule G33 (e))
1 actual days/actual days
2 actual days/360
3 actual days/365
4 European 30/360
5 European+ 30/360
(See the gnumeric manual for a detailed description of these bases).
* If @frequency is invalid, COUPDAYBS returns #NUM! error.
* If @basis is omitted, MSRB 30/360 is applied.
* If @basis is invalid, #NUM! error is returned.
@EXAMPLES=
COUPDAYBS (DATE(2002,11,29),DATE(2004,2,29),4,0) = 89
COUPDAYBS (DATE(2002,11,29),DATE(2004,2,29),4,0,FALSE) = 0
@SEEALSO=
@CATEGORY=Finance
@FUNCTION=COUPDAYS
@SYNTAX=COUPDAYS(settlement,maturity,frequency[,basis,eom])
@DESCRIPTION=COUPDAYS returns the number of days in the coupon period of the settlement date.
@settlement is the settlement date of the security.
@maturity is the maturity date of the security.
@frequency is the number of coupon payments per year.
@eom = TRUE handles end of month maturity dates special.
Allowed frequencies are: 1 = annual, 2 = semi, 4 = quarterly, 6 = bimonthly, 12 = monthly.
@basis is the type of day counting system you want to use:
0 MSRB 30/360 (MSRB Rule G33 (e))
1 actual days/actual days
2 actual days/360
3 actual days/365
4 European 30/360
5 European+ 30/360
(See the gnumeric manual for a detailed description of these bases).
* If @frequency is invalid, COUPDAYS returns #NUM! error.
* If @basis is omitted, MSRB 30/360 is applied.
* If @basis is invalid, #NUM! error is returned.
@EXAMPLES=
COUPDAYS (DATE(2002,11,29),DATE(2004,2,29),4,0) = 90
COUPDAYS (DATE(2002,11,29),DATE(2004,2,29),4,0,FALSE) = 90
COUPDAYS (DATE(2002,11,29),DATE(2004,2,29),4,1,FALSE) = 91
@SEEALSO=
@CATEGORY=Finance
@FUNCTION=COUPDAYSNC
@SYNTAX=COUPDAYSNC(settlement,maturity,frequency[,basis,eom])
@DESCRIPTION=COUPDAYSNC returns the number of days from the settlement date to the next coupon date.
@settlement is the settlement date of the security.
@maturity is the maturity date of the security.
@frequency is the number of coupon payments per year.
@eom = TRUE handles end of month maturity dates special.
Allowed frequencies are: 1 = annual, 2 = semi, 4 = quarterly, 6 = bimonthly, 12 = monthly.
@basis is the type of day counting system you want to use:
0 MSRB 30/360 (MSRB Rule G33 (e))
1 actual days/actual days
2 actual days/360
3 actual days/365
4 European 30/360
5 European+ 30/360
(See the gnumeric manual for a detailed description of these bases).
* If @frequency is invalid, COUPDAYSNC returns #NUM! error.
* If @basis is omitted, MSRB 30/360 is applied.
* If @basis is invalid, #NUM! error is returned.
@EXAMPLES=
COUPDAYSNC (DATE(2002,11,29),DATE(2004,2,29),4,0) = 1
COUPDAYSNC (DATE(2002,11,29),DATE(2004,2,29),4,0,FALSE) = 89
@SEEALSO=
@CATEGORY=Finance
@FUNCTION=COUPNCD
@SYNTAX=COUPNCD(settlement,maturity,frequency[,basis,eom])
@DESCRIPTION=COUPNCD returns the coupon date following settlement.
@settlement is the settlement date of the security.
@maturity is the maturity date of the security.
@frequency is the number of coupon payments per year.
@eom = TRUE handles end of month maturity dates special.
Allowed frequencies are: 1 = annual, 2 = semi, 4 = quarterly, 6 = bimonthly, 12 = monthly.
@basis is the type of day counting system you want to use:
0 MSRB 30/360 (MSRB Rule G33 (e))
1 actual days/actual days
2 actual days/360
3 actual days/365
4 European 30/360
5 European+ 30/360
(See the gnumeric manual for a detailed description of these bases).
* If @frequency is invalid, COUPNCD returns #NUM! error.
* If @basis is omitted, MSRB 30/360 is applied.
* If @basis is invalid, #NUM! error is returned.
@EXAMPLES=
COUPNCD (DATE(2002,11,29),DATE(2004,2,29),4,0) = 30-Nov-2002
COUPNCD (DATE(2002,11,29),DATE(2004,2,29),4,0,FALSE) = 28-Feb-2003
@SEEALSO=
@CATEGORY=Finance
@FUNCTION=COUPNUM
@SYNTAX=COUPNUM(settlement,maturity,frequency[,basis,eom])
@DESCRIPTION=COUPNUM returns the numbers of coupons to be paid between the settlement and maturity dates, rounded up.
@settlement is the settlement date of the security.
@maturity is the maturity date of the security.
@frequency is the number of coupon payments per year.
@eom = TRUE handles end of month maturity dates special.
Allowed frequencies are: 1 = annual, 2 = semi, 4 = quarterly. 6 = bimonthly, 12 = monthly.
@basis is the type of day counting system you want to use:
0 MSRB 30/360 (MSRB Rule G33 (e))
1 actual days/actual days
2 actual days/360
3 actual days/365
4 European 30/360
5 European+ 30/360
* If @frequency is other than 1, 2, 4, 6 or 12, COUPNUM returns #NUM! error.
* If @basis is omitted, MSRB 30/360 is applied.
* If @basis is not in between 0 and 5, #NUM! error is returned.
@EXAMPLES=
COUPNUM (DATE(2002,11,29),DATE(2004,2,29),4,0) = 6
COUPNUM (DATE(2002,11,29),DATE(2004,2,29),4,0,FALSE) = 5
@SEEALSO=
@CATEGORY=Finance
@FUNCTION=COUPPCD
@SYNTAX=COUPPCD(settlement,maturity,frequency[,basis,eom])
@DESCRIPTION=COUPPCD returns the coupon date preceding settlement.
@settlement is the settlement date of the security.
@maturity is the maturity date of the security.
@frequency is the number of coupon payments per year.
@eom = TRUE handles end of month maturity dates special.
Allowed frequencies are: 1 = annual, 2 = semi, 4 = quarterly, 6 = bimonthly, 12 = monthly.
@basis is the type of day counting system you want to use:
0 MSRB 30/360 (MSRB Rule G33 (e))
1 actual days/actual days
2 actual days/360
3 actual days/365
4 European 30/360
5 European+ 30/360
(See the gnumeric manual for a detailed description of these bases).
* If @frequency is invalid, COUPPCD returns #NUM! error.
* If @basis is omitted, MSRB 30/360 is applied.
* If @basis is invalid, #NUM! error is returned.
@EXAMPLES=
COUPPCD (DATE(2002,11,29),DATE(2004,2,29),4,0) = 31-Aug-2002
COUPPCD (DATE(2002,11,29),DATE(2004,2,29),4,0,FALSE) = 29-Nov-2002
@SEEALSO=
@CATEGORY=Finance
@FUNCTION=CUM_BIV_NORM_DIST
@SYNTAX=CUM_BIV_NORM_DIST(a,b,rho)
@DESCRIPTION=CUM_BIV_NORM_DIST calculates the cumulative bivariate normal distribution from parameters a, b & rho.
The return value is the probability that two random variables with correlation @rho are respectively each less than @a and @b.
@EXAMPLES=
@SEEALSO=NORMDIST,NORMSDIST,NORMSINV
@CATEGORY=Finance
@FUNCTION=CUMIPMT
@SYNTAX=CUMIPMT(rate,nper,pv,start_period,end_period,type)
@DESCRIPTION=CUMIPMT returns the cumulative interest paid on a loan between @start_period and @end_period.
* If @rate <= 0, CUMIPMT returns #NUM! error.
* If @nper <= 0, CUMIPMT returns #NUM! error.
* If @pv <= 0, CUMIPMT returns #NUM! error.
* If @start_period < 1, CUMIPMT returns #NUM! error.
* If @end_period < @start_period, CUMIPMT returns #NUM! error.
* If @end_period > @nper, CUMIPMT returns #NUM! error.
* If @type <> 0 and @type <> 1, CUMIPMT returns #NUM! error.
@EXAMPLES=
@SEEALSO=
@CATEGORY=Finance
@FUNCTION=CUMPRINC
@SYNTAX=CUMPRINC(rate,nper,pv,start_period,end_period,type)
@DESCRIPTION=CUMPRINC returns the cumulative principal paid on a loan between @start_period and @end_period.
* If @rate <= 0, CUMPRINC returns #NUM! error.
* If @nper <= 0, CUMPRINC returns #NUM! error.
* If @pv <= 0, CUMPRINC returns #NUM! error.
* If @start_period < 1, CUMPRINC returns #NUM! error.
* If @end_period < @start_period, CUMPRINC returns #NUM! error.
* If @end_period > @nper, CUMPRINC returns #NUM! error.
* If @type <> 0 and @type <> 1, CUMPRINC returns #NUM! error.
@EXAMPLES=
@SEEALSO=
@CATEGORY=Finance
@FUNCTION=DB
@SYNTAX=DB(cost,salvage,life,period[,month])
@DESCRIPTION=DB calculates the depreciation of an asset for a given period using the fixed-declining balance method. @cost is the initial value of the asset. @salvage is the value after the depreciation.
@life is the number of periods overall. @period is the period for which you want the depreciation to be calculated. @month is the number of months in the first year of depreciation.
* If @month is omitted, it is assumed to be 12.
* If @cost = 0, DB returns #NUM! error.
* If @life <= 0, DB returns #NUM! error.
* If @salvage / @cost < 0, DB returns #NUM! error.
@EXAMPLES=
@SEEALSO=DDB,SLN,SYD
@CATEGORY=Finance
@FUNCTION=DDB
@SYNTAX=DDB(cost,salvage,life,period[,factor])
@DESCRIPTION=DDB returns the depreciation of an asset for a given period using the double-declining balance method or some other similar method you specify.
@cost is the initial value of the asset, @salvage is the value after the last period, @life is the number of periods, @period is the period for which you want the depreciation to be calculated, and @factor is the factor at which the balance declines.
* If @factor is omitted, it is assumed to be two (double-declining balance method).
* If @life <= 0, DDB returns #NUM! error.
@EXAMPLES=
@SEEALSO=SLN,SYD
@CATEGORY=Finance
@FUNCTION=DISC
@SYNTAX=DISC(settlement,maturity,par,redemption[,basis])
@DESCRIPTION=DISC calculates and returns the discount rate for a security. @settlement is the settlement date of the security.
@maturity is the maturity date of the security. @par is the price per $100 face value of the security. @redemption is the redemption value per $100 face value of the security.
@basis is the type of day counting system you want to use:
0 US 30/360
1 actual days/actual days
2 actual days/360
3 actual days/365
4 European 30/360
* If @settlement date or @maturity date is not valid, DISC returns #NUM! error.
* If @basis is omitted, US 30/360 is applied.
* If @basis < 0 or @basis > 4, DISC returns #NUM! error.
* If @settlement date is after @maturity date or they are the same, DISC returns #NUM! error.
@EXAMPLES=
@SEEALSO=
@CATEGORY=Finance
@FUNCTION=DOLLARDE
@SYNTAX=DOLLARDE(fractional_dollar,fraction)
@DESCRIPTION=DOLLARDE converts a dollar price expressed as a fraction into a dollar price expressed as a decimal number.
@fractional_dollar is the fractional number to be converted. @fraction is the denominator of the fraction.
* If @fraction is non-integer it is truncated.
* If @fraction <= 0, DOLLARDE returns #NUM! error.
@EXAMPLES=
@SEEALSO=DOLLARFR
@CATEGORY=Finance
@FUNCTION=DOLLARFR
@SYNTAX=DOLLARFR(decimal_dollar,fraction)
@DESCRIPTION=DOLLARFR converts a decimal dollar price into a dollar price expressed as a fraction.
* If @fraction is non-integer it is truncated.
* If @fraction <= 0, DOLLARFR returns #NUM! error.
@EXAMPLES=
@SEEALSO=DOLLARDE
@CATEGORY=Finance
@FUNCTION=DURATION
@SYNTAX=DURATION(settlement,maturity,coup,yield,frequency[,basis])
@DESCRIPTION=DURATION calculates the duration of a security.
@settlement is the settlement date of the security.
@maturity is the maturity date of the security.
@coup The annual coupon rate as a percentage.
@yield The annualized yield of the security as a percentage.
@frequency is the number of coupon payments per year. Allowed frequencies are: 1 = annual, 2 = semi, 4 = quarterly. @basis is the type of day counting system you want to use:
0 US 30/360
1 actual days/actual days
2 actual days/360
3 actual days/365
4 European 30/360
* If @frequency is other than 1, 2, or 4, DURATION returns #NUM! error.
* If @basis is omitted, US 30/360 is applied.
* If @basis is not in between 0 and 4, #NUM! error is returned.
@EXAMPLES=
@SEEALSO=G_DURATION,MDURATION
@CATEGORY=Finance
@FUNCTION=EFFECT
@SYNTAX=EFFECT(r,nper)
@DESCRIPTION=EFFECT calculates the effective interest rate from a given nominal rate.
Effective interest rate is calculated using this formula:
(1 + @r / @nper) ^ @nper - 1
where:
@r = nominal interest rate (stated in yearly terms)
@nper = number of periods used for compounding
* If @rate < 0, EFFECT returns #NUM! error.
* If @nper <= 0, EFFECT returns #NUM! error.
@EXAMPLES=
For example credit cards will list an APR (annual percentage rate) which is a nominal interest rate.
For example if you wanted to find out how much you are actually paying interest on your credit card that states an APR of 19% that is compounded monthly you would type in:
=EFFECT(.19,12) and you would get .2075 or 20.75%. That is the effective percentage you will pay on your loan.
@SEEALSO=NOMINAL
@CATEGORY=Finance
@FUNCTION=EURO
@SYNTAX=EURO(currency)
@DESCRIPTION=EURO converts one Euro to a given national currency in the European monetary union.
@currency is one of the following:
ATS (Austria)
BEF (Belgium)
DEM (Germany)
ESP (Spain)
EUR (Euro)
FIM (Finland)
FRF (France)
GRD (Greek)
IEP (Ireland)
ITL (Italy)
LUF (Luxembourg)
NLG (Netherlands)
PTE (Portugal)
* If the given @currency is other than one of the above, EURO returns #NUM! error.
@EXAMPLES=
EURO("DEM") returns 1.95583.
@SEEALSO=
@CATEGORY=Finance
@FUNCTION=EUROCONVERT
@SYNTAX=EUROCONVERT(n,source,target)
@DESCRIPTION=EUROCONVERT converts the currency value @n of @source currency to a target currency @target. Both currencies are given as three-letter strings using the ISO code system names. The following currencies are available:
ATS (Austria)
BEF (Belgium)
DEM (Germany)
ESP (Spain)
EUR (Euro)
FIM (Finland)
FRF (France)
GRD (Greek)
IEP (Ireland)
ITL (Italy)
LUF (Luxembourg)
NLG (Netherlands)
PTE (Portugal)
* If the given @source or @target is other than one of the above, EUROCONVERT returns #VALUE! error.
@EXAMPLES=
EUROCONVERT(2.1,"DEM","EUR") returns 1.07.
@SEEALSO=EURO
@CATEGORY=Finance
@FUNCTION=FV
@SYNTAX=FV(rate,nper,pmt[,pv,type])
@DESCRIPTION=FV computes the future value of an investment. This is based on periodic, constant payments and a constant interest rate. The interest rate per period is @rate, @nper is the number of periods in an annuity, @pmt is the payment made each period, @pv is the present value and @type is when the payment is made.
* If @type = 1 then the payment is made at the beginning of the period.
* If @type = 0 it is made at the end of each period.
@EXAMPLES=
@SEEALSO=PV,PMT,PPMT
@CATEGORY=Finance
@FUNCTION=FVSCHEDULE
@SYNTAX=FVSCHEDULE(principal,schedule)
@DESCRIPTION=FVSCHEDULE returns the future value of given initial value after applying a series of compound periodic interest rates. The argument @principal is the present value; @schedule is an array of interest rates to apply. The @schedule argument must be a range of cells.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain interest rates 0.11, 0.13, 0.09, 0.17, and 0.03. Then
FVSCHEDULE(3000,A1:A5) equals 4942.7911611.
@SEEALSO=PV,FV
@CATEGORY=Finance
@FUNCTION=G_DURATION
@SYNTAX=G_DURATION(rate,pv,fv)
@DESCRIPTION=G_DURATION calculates number of periods needed for an investment to attain a desired value. This function is similar to FV and PV with a difference that we do not need give the direction of cash flows e.g. -100 for a cash outflow and +100 for a cash inflow.
* If @rate <= 0, G_DURATION returns #DIV0 error.
* If @fv = 0 or @pv = 0, G_DURATION returns #DIV0 error.
* If @fv / @pv < 0, G_DURATION returns #VALUE error.
@EXAMPLES=
@SEEALSO=PPMT,PV,FV,DURATION,MDURATION
@CATEGORY=Finance
@FUNCTION=INTRATE
@SYNTAX=INTRATE(settlement,maturity,investment,redemption[,basis])
@DESCRIPTION=INTRATE calculates and returns the interest rate of a fully vested security.
@settlement is the settlement date of the security. @maturity is the maturity date of the security. @investment is the prize of the security paid at @settlement date and @redemption is the amount to be received at @maturity date.
@basis is the type of day counting system you want to use:
0 US 30/360
1 actual days/actual days
2 actual days/360
3 actual days/365
4 European 30/360
* If @settlement date or @maturity date is not valid, INTRATE returns #NUM! error.
* If @basis is omitted, US 30/360 is applied.
* If @basis < 0 or @basis > 4, INTRATE returns #NUM! error.
* If @settlement date is after @maturity date or they are the same, INTRATE returns #NUM! error.
@EXAMPLES=
If you had a bond with a settlement date of April 15, 2000, maturity date September 30, 2000, investment of $100,000, redemption value $103,525, using the actual/actual basis, the bond discount rate is:
=INTRATE(36631, 36799, 100000, 103525, 1) which equals 0.0648 or 6.48%
@SEEALSO=RECEIVED, DATE
@CATEGORY=Finance
@FUNCTION=IPMT
@SYNTAX=IPMT(rate,per,nper,pv[,fv,type])
@DESCRIPTION=IPMT calculates the amount of a payment of an annuity going towards interest.
Formula for IPMT is:
IPMT(PER) = -PRINCIPAL(PER-1) * INTEREST_RATE
where:
PRINCIPAL(PER-1) = amount of the remaining principal from last period
* If @fv is omitted, it is assumed to be 0.
* If @type is omitted, it is assumed to be 0.
@EXAMPLES=
@SEEALSO=PPMT,PV,FV
@CATEGORY=Finance
@FUNCTION=IRR
@SYNTAX=IRR(values[,guess])
@DESCRIPTION=IRR calculates and returns the internal rate of return of an investment. This function is closely related to the net present value function (NPV). The IRR is the interest rate for a series of cash flows where the net preset value is zero.
@values contains the series of cash flows generated by the investment. The payments should occur at regular intervals. The optional @guess is the initial value used in calculating the IRR. You do not have to use that, it is only provided for the Excel compatibility.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1:A8 contain the numbers -32432, 5324, 7432, 9332, 12324, 4334, 1235, -3422. Then
IRR(A1:A8) returns 0.04375.
@SEEALSO=FV,NPV,PV
@CATEGORY=Finance
@FUNCTION=ISPMT
@SYNTAX=ISPMT(rate,per,nper,pv)
@DESCRIPTION=ISPMT function returns the interest paid on a given period.
* If @per < 1 or @per > @nper, ISPMT returns #NUM! error.
@EXAMPLES=
@SEEALSO=PV
@CATEGORY=Finance
@FUNCTION=MDURATION
@SYNTAX=MDURATION(settlement,maturity,coupon,yield,frequency[,basis])
@DESCRIPTION=MDURATION returns the Macauley duration for a security with par value 100.
@basis is the type of day counting system you want to use:
0 MSRB 30/360 (MSRB Rule G33 (e))
1 actual days/actual days
2 actual days/360
3 actual days/365
4 European 30/360
5 European+ 30/360
* If @settlement or @maturity are not valid dates, MDURATION returns #NUM! error.
* If @frequency is other than 1, 2, or 4, MDURATION returns #NUM! error.
* If @basis is omitted, MSRB 30/360 is applied.
* If @basis is invalid, #NUM! error is returned.
@EXAMPLES=
@SEEALSO=DURATION,G_DURATION
@CATEGORY=Finance
@FUNCTION=MIRR
@SYNTAX=MIRR(values,finance_rate,reinvest_rate)
@DESCRIPTION=MIRR function returns the modified internal rate of return for a given periodic cash flow.
@EXAMPLES=
@SEEALSO=NPV
@CATEGORY=Finance
@FUNCTION=NOMINAL
@SYNTAX=NOMINAL(r,nper)
@DESCRIPTION=NOMINAL calculates the nominal interest rate from a given effective rate.
Nominal interest rate is given by a formula:
@nper * (( 1 + @r ) ^ (1 / @nper) - 1 )
where:
@r = effective interest rate
@nper = number of periods used for compounding
* If @rate < 0, NOMINAL returns #NUM! error.
* If @nper <= 0, NOMINAL returns #NUM! error.
@EXAMPLES=
@SEEALSO=EFFECT
@CATEGORY=Finance
@FUNCTION=NPER
@SYNTAX=NPER(rate,pmt,pv[,fv,type])
@DESCRIPTION=NPER calculates number of periods of an investment based on periodic constant payments and a constant interest rate.
The interest rate per period is @rate, @pmt is the payment made each period, @pv is the present value, @fv is the future value and @type is when the payments are due. If @type = 1, payments are due at the beginning of the period, if @type = 0, payments are due at the end of the period.
* If @rate <= 0, NPER returns #DIV0 error.
@EXAMPLES=
For example, if you deposit $10,000 in a savings account that earns an interest rate of 6%. To calculate home many years it will take to double your investment use NPER as follows:
=NPER(0.06, 0, -10000, 20000,0)returns 11.895661046 which indicates that you can double your money just before the end of the 12th year.
@SEEALSO=PPMT,PV,FV
@CATEGORY=Finance
@FUNCTION=NPV
@SYNTAX=NPV(rate,v1,v2,...)
@DESCRIPTION=NPV calculates the net present value of an investment generating periodic payments. @rate is the periodic interest rate and @v1, @v2, ... are the periodic payments. If the schedule of the cash flows are not periodic use the XNPV function.
@EXAMPLES=
NPV(0.17,-10000,3340,2941,2493,3233,1732,2932) equals 186.30673.
@SEEALSO=PV,XNPV
@CATEGORY=Finance
@FUNCTION=ODDFPRICE
@SYNTAX=ODDFPRICE(settlement,maturity,issue,first_coupon,rate,yld,redemption,frequency[,basis])
@DESCRIPTION=ODDFPRICE returns the price per $100 face value of a security. The security should have an odd short or long first period.
@settlement is the settlement date of the security. @maturity is the maturity date of the security. @issue is the issue date of the security. @frequency is the number of coupon payments per year. Allowed frequencies are: 1 = annual, 2 = semi, 4 = quarterly. @basis is the type of day counting system you want to use:
0 US 30/360
1 actual days/actual days
2 actual days/360
3 actual days/365
4 European 30/360
* If @frequency is other than 1, 2, or 4, ODDFPRICE returns #NUM! error.
* If @basis is omitted, US 30/360 is applied.
* If @basis is not in between 0 and 4, #NUM! error is returned.
@EXAMPLES=
@SEEALSO=
@CATEGORY=Finance
@FUNCTION=ODDFYIELD
@SYNTAX=ODDFYIELD(settlement,maturity,issue,first_coupon,rate,pr,redemption,frequency[,basis])
@DESCRIPTION=ODDFYIELD calculates the yield of a security having an odd first period.
@settlement is the settlement date of the security. @maturity is the maturity date of the security. @frequency is the number of coupon payments per year. Allowed frequencies are: 1 = annual, 2 = semi, 4 = quarterly. @basis is the type of day counting system you want to use:
0 US 30/360
1 actual days/actual days
2 actual days/360
3 actual days/365
4 European 30/360
* If @frequency is other than 1, 2, or 4, ODDFYIELD returns #NUM! error.
* If @basis is omitted, US 30/360 is applied.
* If @basis is not in between 0 and 4, #NUM! error is returned.
@EXAMPLES=
@SEEALSO=
@CATEGORY=Finance
@FUNCTION=ODDLPRICE
@SYNTAX=ODDLPRICE(settlement,maturity,last_interest,rate,yld,redemption,frequency[,basis])
@DESCRIPTION=ODDLPRICE calculates the price per $100 face value of a security that has an odd last coupon period.
@settlement is the settlement date of the security. @maturity is the maturity date of the security. @frequency is the number of coupon payments per year. Allowed frequencies are: 1 = annual, 2 = semi, 4 = quarterly. @basis is the type of day counting system you want to use:
0 US 30/360
1 actual days/actual days
2 actual days/360
3 actual days/365
4 European 30/360
* If @frequency is other than 1, 2, or 4, ODDLPRICE returns #NUM! error.
* If @basis is omitted, US 30/360 is applied.
* If @basis is not in between 0 and 4, #NUM! error is returned.
@EXAMPLES=
@SEEALSO=
@CATEGORY=Finance
@FUNCTION=ODDLYIELD
@SYNTAX=ODDLYIELD(settlement,maturity,last_interest,rate,pr,redemption,frequency[,basis])
@DESCRIPTION=ODDLYIELD calculates the yield of a security having an odd last period.
@settlement is the settlement date of the security. @maturity is the maturity date of the security. @frequency is the number of coupon payments per year. Allowed frequencies are: 1 = annual, 2 = semi, 4 = quarterly. @basis is the type of day counting system you want to use:
0 US 30/360
1 actual days/actual days
2 actual days/360
3 actual days/365
4 European 30/360
* If @frequency is other than 1, 2, or 4, ODDLYIELD returns #NUM! error.
* If @basis is omitted, US 30/360 is applied.
* If @basis is not in between 0 and 4, #NUM! error is returned.
@EXAMPLES=
@SEEALSO=
@CATEGORY=Finance
@FUNCTION=OPT_2_ASSET_CORRELATION
@SYNTAX=OPT_2_ASSSET_CORRELATION(call_put_flag,spot1,spot2,strike1,strike2,time,cost_of_carry1,cost_of_carry2,rate,volatility1,volatility2,rho)
@DESCRIPTION=OPT_2_ASSET_CORRELATION models the theoretical price of options on 2 assets with correlation @rho.
The payoff for a call is max(@spot2 - @strike2,0) if @spot1 > @strike1 or 0 otherwise.
The payoff for a put is max (@strike2 - @spot2, 0) if @spot1 < @strike1 or 0 otherwise.
@call_put_flag is 'c' or 'p' to indicate whether the option is a call or a put.
@spot1 & @spot2 are the spot prices of the underlying assets.
@strike1 & @strike2 are the strike prices at which the option is struck.
@time is the initial maturity of the option in years.
@rate is the risk annualized free rate of interest.
@cost_of_carry1 & @cost_of_carry2 are the leakage in value of the underlying assets, for common stocks, this would be the dividend yield.
@volatility1 & @volatility2 are the annualized volatility in price of the underlying assets.
@EXAMPLES=
@SEEALSO=OPT_BS, OPT_BS_DELTA, OPT_BS_RHO, OPT_BS_THETA, OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_AMER_EXCHANGE
@SYNTAX=OPT_AMER_EXCHANGE(spot1,spot2,qty1,qty2,time,rate,cost_of_carry1,cost_of_carry2,volatility1, volatility2, rho)
@DESCRIPTION=OPT_AMER_EXCHANGE models the theoretical price of an American option to exchange one asset with quantity @qty2 and spot price @spot2 for another, with quantity @qty1 and spot price @spot1.
@time is the initial maturity of the option in years.
@rate is the risk annualized free rate of interest.
@cost_of_carry1 & @cost_of_carry2 are the leakage in value of the underlying assets, for common stocks, this would be the dividend yield.
@volatility1 & @volatility2 are the annualized volatility in price of the underlying assets.
@rho is the correlation between the two assets.
@EXAMPLES=
@SEEALSO=OPT_EURO_EXCHANGE, OPT_BS, OPT_BS_DELTA, OPT_BS_RHO, OPT_BS_THETA, OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_BAW_AMER
@SYNTAX=OPT_BAW_AMER(call_put_flag,spot,strike,time,rate,cost_of_carry,volatility)
@DESCRIPTION=OPT_BAW_AMER models the theoretical price of an option according to the Barone Adesie & Whaley approximation.
@call_put_flag is 'c' or 'p' to indicate whether the option is a call or a put.
@spot is the spot price of the underlying asset.
@strike is the strike price at which the option is struck.
@time is the number of days to maturity of the option.
@rate is the risk annualized free rate of interest.
@cost_of_carry is the leakage in value of the underlying asset, for common stocks, this would be the dividend yield.
@volatility is the annualized volatility in price of the underlying asset.
@EXAMPLES=
@SEEALSO=OPT_BS, OPT_BS_DELTA, OPT_BS_RHO, OPT_BS_THETA, OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_BINOMIAL
@SYNTAX=OPT_BINOMIAL(amer_euro_flag,call_put_flag,num_time_steps, spot, strike, time, rate, volatility, cost_of_carry)
@DESCRIPTION=OPT_ models the theoretical price of either an American or European style option using a binomial tree.
@amer_euro_flag is either 'a' or 'e' to indicate whether the option being valued is an American or European style option respectively.
@call_put_flag is 'c' or 'p' to indicate whether the option is a call or a put.
@num_time_steps is the number of time steps used in the valuation, a greater number of time steps yields greater accuracy however is slower to calculate.
@spot is the spot price of the underlying asset.
@strike is the strike price at which the option is struck.
@time is the initial maturity of the option in years.
@rate is the risk annualized free rate of interest.
@volatility is the annualized volatility in price of the underlying asset.
@cost_of_carry is the leakage in value of the underlying asset.
@EXAMPLES=
@SEEALSO=OPT_BS, OPT_BS_DELTA, OPT_BS_RHO, OPT_BS_THETA, OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_BJERSTENS
@SYNTAX=OPT_BJERSTENS(call_put_flag,spot,strike,time,rate,volatility[,cost_of_carry])
@DESCRIPTION=OPT_BJERSTENS models the theoretical price of american options according to the Bjerksund & Stensland approximation technique.
@call_put_flag is 'c' or 'p' to indicate whether the option is a call or a put.
@spot is the spot price of the underlying asset.
@strike is the strike price at which the option is struck.
@time is the number of days to maturity of the option.
@rate is the risk annualized free rate of interest.
@volatility is the annualized volatility in price of the underlying asset.
@cost_of_carry is the leakage in value of the underlying asset, for common stocks, this would be the dividend yield.
@EXAMPLES=
@SEEALSO=OPT_BS, OPT_BS_DELTA, OPT_BS_RHO, OPT_BS_THETA, OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_BS
@SYNTAX=OPT_BS(call_put_flag,spot,strike,time,rate,volatility [,cost_of_carry])
@DESCRIPTION=OPT_BS uses the Black-Scholes model to calculate the price of a European option using call_put_flag, @call_put_flag, 'c' or 'p' struck at @strike on an asset with spot price @spot.
@time is the time to maturity of the option expressed in years.
@rate is the risk-free interest rate.
@volatility is the annualized volatility, in percent, of the asset for the period through to the exercise date.
@cost_of_carry is the leakage in value of the underlying asset, for common stocks, this would be the dividend yield.
* The returned value will be expressed in the same units as @strike and @spot.
@EXAMPLES=
@SEEALSO=OPT_BS_DELTA, OPT_BS_RHO, OPT_BS_THETA, OPT_BS_VEGA, OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_BS_CARRYCOST
@SYNTAX=OPT_BS_CARRYCOST(call_put_flag,spot,strike,time,rate,volatility[,cost_of_carry])
@DESCRIPTION=OPT_BS_CARRYCOST uses the Black-Scholes model to calculate the 'elasticity' of a European option struck at @strike on an asset with spot price @spot.
@call_put_flag is 'c' or 'p' to indicate whether the option is a call or a put.
(The elasticity of an option is the rate of change of its price with respect to its cost of carry.)
@volatility is the annualized volatility, in percent, of the asset for the period through to the exercise date. @time is the time to maturity of the option expressed in years.
@rate is the risk-free interest rate to the exercise date, in percent.
@cost_of_carry is the leakage in value of the underlying asset, for common stocks, this would be the dividend yield.
* The returned value will be expressed as the rate of change of option value, per 100% volatility.
@EXAMPLES=
@SEEALSO=OPT_BS, OPT_BS_DELTA, OPT_BS_RHO, OPT_BS_THETA, OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_BS_DELTA
@SYNTAX=OPT_BS_DELTA(call_put_flag,spot,strike,time,rate,volatility[,cost_of_carry])
@DESCRIPTION=OPT_BS_DELTA uses the Black-Scholes model to calculate the 'delta' of a European option with call_put_flag, @call_put_flag, 'c' or 'p' struck at @strike on an asset with spot price @spot.
Where @time is the time to maturity of the option expressed in years.
@rate is the risk-free interest rate.
@volatility is the annualized volatility, in percent, of the asset for the period through to the exercise date.
@cost_of_carry is the leakage in value of the underlying asset, for common stocks, this would be the dividend yield.
* The returned value will be expressed in the same units as @strike and @spot.
@EXAMPLES=
@SEEALSO=OPT_BS, OPT_BS_RHO, OPT_BS_THETA, OPT_BS_VEGA, OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_BS_GAMMA
@SYNTAX=OPT_BS_GAMMA(spot,strike,time,rate,volatility[,cost_of_carry])
@DESCRIPTION=OPT_BS_GAMMA uses the Black-Scholes model to calculate the 'gamma' of a European option struck at @strike on an asset with spot price @spot.
(The gamma of an option is the second derivative of its price with respect to the price of the underlying asset, and is the same for calls and puts.)
@time is the time to maturity of the option expressed in years.
@rate is the risk-free interest rate to the exercise date, in percent.
@volatility is the annualized volatility, in percent, of the asset for the period through to the exercise date.
@cost_of_carry is the leakage in value of the underlying asset, for common stocks, this would be the dividend yield.
* The returned value will be expressed as the rate of change of delta per unit change in @spot.
@EXAMPLES=
@SEEALSO=OPT_BS, OPT_BS_DELTA, OPT_BS_RHO, OPT_BS_THETA, OPT_BS_VEGA
@CATEGORY=Finance
@FUNCTION=OPT_BS_RHO
@SYNTAX=OPT_BS_RHO(call_put_flag,spot,strike,time,rate,volatility[,cost_of_carry])
@DESCRIPTION=OPT_BS_RHO uses the Black-Scholes model to calculate the 'rho' of a European option with call_put_flag, @call_put_flag struck at @strike on an asset with spot price @spot.
@call_put_flag is 'c' or 'p' to indicate whether the option is a call or a put.
(The rho of an option is the rate of change of its price with respect to the risk free interest rate.)
@time is the time to maturity of the option expressed in years.
@rate is the risk-free interest rate to the exercise date, in percent.
@cost_of_carry is the leakage in value of the underlying asset, for common stocks, this would be the dividend yield.
* The returned value will be expressed as the rate of change of option value, per 100% change in @rate.
@EXAMPLES=
@SEEALSO=OPT_BS, OPT_BS_DELTA, OPT_BS_THETA, OPT_BS_VEGA, OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_BS_THETA
@SYNTAX=OPT_BS_THETA(call_put_flag,spot,strike,time,rate,volatility[,cost_of_carry])
@DESCRIPTION=OPT_BS_THETA uses the Black-Scholes model to calculate the 'theta' of a European option with call_put_flag, @call_put_flag struck at @strike on an asset with spot price @spot.
(The theta of an option is the rate of change of its price with respect to time to expiry.)
@time is the time to maturity of the option expressed in years
and @rate is the risk-free interest rate to the exercise date, in percent.
@volatility is the annualized volatility, in percent, of the asset for the period through to the exercise date.
@cost_of_carry is the leakage in value of the underlying asset, for common stocks, this would be the dividend yield.
* The returned value will be expressed as minus the rate of change of option value, per 365.25 days.
@EXAMPLES=
@SEEALSO=OPT_BS, OPT_BS_DELTA, OPT_BS_RHO, OPT_BS_VEGA, OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_BS_VEGA
@SYNTAX=OPT_BS_VEGA(spot,strike,time,rate,volatility[,cost_of_carry])
@DESCRIPTION=OPT_BS_VEGA uses the Black-Scholes model to calculate the 'vega' of a European option struck at @strike on an asset with spot price @spot.
(The vega of an option is the rate of change of its price with respect to volatility, and is the same for calls and puts.)
@volatility is the annualized volatility, in percent, of the asset for the period through to the exercise date.
@time is the time to maturity of the option expressed in years.
@rate is the risk-free interest rate to the exercise date, in percent.
@cost_of_carry is the leakage in value of the underlying asset, for common stocks, this would be the dividend yield.
* The returned value will be expressed as the rate of change of option value, per 100% volatility.
@EXAMPLES=
@SEEALSO=OPT_BS, OPT_BS_DELTA, OPT_BS_RHO, OPT_BS_THETA, OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_COMPLEX_CHOOSER
@SYNTAX=OPT_COMPLEX_CHOOSER(call_put_flag,spot,strike_call,strike_put,time,time_call,time_put,rate,cost_of_carry,volatility)
@DESCRIPTION=OPT_COMPLEX_CHOOSER models the theoretical price of complex chooser options.
@call_put_flag is 'c' or 'p' to indicate whether the option is a call or a put.
@spot is the spot price of the underlying asset.
@strike_call is the strike price at which the option is struck, applicable if exercised as a call option.
@strike_put is the strike price at which the option is struck, applicable if exercised as a put option.
@time is the time in years until the holder chooses a put or a call option.
@time_call is the time in years to maturity of the call option if chosen.
@time_put is the time in years to maturity of the put option if chosen.
@rate is the risk annualized free rate of interest.
@cost_of_carry is the leakage in value of the underlying asset, for common stocks, this would be the dividend yield.
@volatility is the annualized volatility in price of the underlying asset.
@EXAMPLES=
@SEEALSO=OPT_BS, OPT_BS_DELTA, OPT_BS_RHO, OPT_BS_THETA, OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_EURO_EXCHANGE
@SYNTAX=OPT_EURO_EXCHANGE(spot1,spot2,qty1,qty2,time,rate,cost_of_carry1,cost_of_carry2,volatility1,volatility2,rho)
@DESCRIPTION=OPT_EURO_EXCHANGE models the theoretical price of a European option to exchange one asset with quantity @qty2 and spot price @spot2 for another, with quantity @qty1 and spot price @spot1.
@time is the initial maturity of the option in years.
@rate is the risk annualized free rate of interest.
@cost_of_carry1 & @cost_of_carry2 are the leakage in value of the underlying assets, for common stocks, this would be the dividend yield.
@volatility1 & @volatility2 are the annualized volatility in price of the underlying assets.
@rho is the correlation between the two assets.
@EXAMPLES=
@SEEALSO=OPT_AMER_EXCHANGE, OPT_BS, OPT_BS_DELTA, OPT_BS_RHO, OPT_BS_THETA, OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_EXEC
@SYNTAX=OPT_EXEC(call_put_flag,spot,strike,time,rate,volatility,cost_of_carry,lambda)
@DESCRIPTION=OPT_EXEC models the theoretical price of executive stock options @call_put_flag is 'c' or 'p' to indicate whether the option is a call or a put.
One would expect this to always be a call option.
@spot is the spot price of the underlying asset.
@strike is the strike price at which the option is struck.
@time is the number of days to maturity of the option.
@rate is the risk annualized free rate of interest.
@volatility is the annualized volatility in price of the underlying asset.
@cost_of_carry is the leakage in value of the underlying asset, for common stocks, this would be the dividend yield.
@lambda is the jump rate for executives. The model assumes executives forfeit their options if they leave the company.
@EXAMPLES=
@SEEALSO=OPT_BS, OPT_BS_DELTA, OPT_BS_RHO, OPT_BS_THETA, OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_EXTENDIBLE_WRITER
@SYNTAX=OPT_EXTENDIBLE_WRITER(call_put_flag,spot,strike1,strike2,time1,time2,rate,cost_of_carry,volatility)
@DESCRIPTION=OPT_EXTENDIBLE_WRITER models the theoretical price of extendible writer options. These are options that can be exercised at an initial period, @time1, or their maturity extended to @time2 if the option is out of the money at @time1.
@call_put_flag is 'c' or 'p' to indicate whether the option is a call or a put.
@spot is the spot price of the underlying asset.
@strike1 is the strike price at which the option is struck.
@strike2 is the strike price at which the option is re-struck if out of the money at @time1.
@time1 is the initial maturity of the option in years.
@time2 is the is the extended maturity in years if chosen.
@rate is the risk annualized free rate of interest.
@cost_of_carry is the leakage in value of the underlying asset, for common stocks, this would be the dividend yield.
@volatility is the annualized volatility in price of the underlying asset.
@EXAMPLES=
@SEEALSO=OPT_BS, OPT_BS_DELTA, OPT_BS_RHO, OPT_BS_THETA, OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_FIXED_STRK_LKBK
@SYNTAX=OPT_FIXED_STRK_LKBK(call_put_flag,spot,spot_min,spot_max,strike,time,rate,cost_of_carry,volatility)
@DESCRIPTION=OPT_FIXED_STRK_LKBK models the theoretical price of an option where the holder of the option may exercise on expiry at the most favourable price observed during the options life of the underlying asset.
@call_put_flag is 'c' or 'p' to indicate whether the option is a call or a put.
@spot is the spot price of the underlying asset.
@spot_min is the minimum spot price of the underlying asset so far observed.
@spot_max is the maximum spot price of the underlying asset so far observed.
@strike is the strike prices at which the option is struck.
@time is the initial maturity of the option in years.
@rate is the risk annualized free rate of interest.
@cost_of_carry is the leakage in value of the underlying asset, for common stocks, this would be the dividend yield.
@volatility is the annualized volatility in price of the underlying asset.
@EXAMPLES=
@SEEALSO=OPT_BS, OPT_BS_DELTA, OPT_BS_RHO, OPT_BS_THETA, OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_FLOAT_STRK_LKBK
@SYNTAX=OPT_FLOAT_STRK_LKBK(call_put_flag,spot,spot_min,spot_max,time,rate,cost_of_carry,volatility)
@DESCRIPTION=OPT_FLOAT_STRK_LKBK models the theoretical price of an option where the holder of the option may exercise on expiry at the most favourable price observed during the options life of the underlying asset.
@call_put_flag is 'c' or 'p' to indicate whether the option is a call or a put.
@spot is the spot price of the underlying asset.
@spot_min is the minimum spot price of the underlying asset so far observed.
@spot_max is the maximum spot price of the underlying asset so far observed.
@time is the initial maturity of the option in years.
@rate is the risk annualized free rate of interest.
@cost_of_carry is the leakage in value of the underlying asset, for common stocks, this would be the dividend yield.
@volatility is the annualized volatility in price of the underlying asset.
@EXAMPLES=
@SEEALSO=OPT_BS, OPT_BS_DELTA, OPT_BS_RHO, OPT_BS_THETA, OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_FORWARD_START
@SYNTAX=OPT_FORWARD_START(call_put_flag,spot,alpha,time1,time,rate,volatility,cost_of_carry)
@DESCRIPTION=OPT_FORWARD_START models the theoretical price of forward start options
@call_put_flag is 'c' or 'p' to indicate whether the option is a call or a put.
@spot is the spot price of the underlying asset.
@alpha is a fraction that set the strike price the future date @time1.
@time1 is the number of days until the option starts.
@time is the number of days to maturity of the option.
@rate is the risk annualized free rate of interest.
@volatility is the annualized volatility in price of the underlying asset.
@cost_of_carry is the leakage in value of the underlying asset, for common stocks, this would be the dividend yield.
@EXAMPLES=
@SEEALSO=OPT_BS, OPT_BS_DELTA, OPT_BS_RHO, OPT_BS_THETA, OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_FRENCH
@SYNTAX=OPT_FRENCH(call_put_flag,spot,strike,time,t2,rate,volatility[,cost_of_carry])
@DESCRIPTION=OPT_FRENCH values the theoretical price of a European option adjusted for trading day volatility, struck at @strike on an asset with spot price @spot.
@call_put_flag is 'c' or 'p' to indicate whether the option is a call or a put.
@volatility is the annualized volatility, in percent, of the asset for the period through to the exercise date.
@time the number of calendar days to exercise divided by calendar days in the year.
@t2 is the number of trading days to exercise divided by trading days in the year.
@rate is the risk-free interest rate.
@cost_of_carry is the leakage in value of the underlying asset, to the exercise date, in percent.
For common stocks, this would be the dividend yield.
@EXAMPLES=
@SEEALSO=OPT_BS, OPT_BS_DELTA, OPT_BS_RHO, OPT_BS_THETA, OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_GARMAN_KOHLHAGEN
@SYNTAX=OPT_GARMAN_KOHLHAGEN(call_put_flag,spot,strike,time,domestic_rate,foreign_rate,volatility[,cost_of_carry])
@DESCRIPTION=OPT_GARMAN_KOHLHAGEN values the theoretical price of a European currency option struck at @strike on an asset with spot price @spot.
@call_put_flag is 'c' or 'p' to indicate whether the option is a call or a put.
@volatility is the annualized volatility, in percent, of the asset for the period through to the exercise date.
@time the number of days to exercise.
@domestic_rate is the domestic risk-free interest rate to the exercise date.
@foreign_rate is the foreign risk-free interest rate to the exercise date, in percent.
@cost_of_carry is the leakage in value of the underlying asset, for common stocks, this would be the dividend yield.
* The returned value will be expressed as the rate of change of option value, per 100% volatility.
@EXAMPLES=
@SEEALSO=OPT_BS, OPT_BS_DELTA, OPT_BS_RHO, OPT_BS_THETA, OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_JUMP_DIFF
@SYNTAX=OPT_JUMP_DIFF(call_put_flag,spot,strike,time,rate,volatility,lambda,gamma)
@DESCRIPTION=OPT_JUMP_DIFF models the theoretical price of an option according to the Jump Diffusion process (Merton).
@call_put_flag is 'c' or 'p' to indicate whether the option is a call or a put.
@spot is the spot price of the underlying asset.
@strike is the strike price of the option.
@time is the time to maturity of the option expressed in years.
@rate is the annualized rate of interest.
@volatility is the annualized volatility of the underlying asset.
@lambda is expected number of 'jumps' per year.
@gamma is proportion of volatility explained by the 'jumps.'
@EXAMPLES=
@SEEALSO=OPT_BS, OPT_BS_DELTA, OPT_BS_RHO, OPT_BS_THETA, OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_MILTERSEN_SCHWARTZ
@SYNTAX=OPT_MILTERSEN_SCHWARTZ(call_put_flag,p_t,f_t,x,t1,t2,v_s,v_e,v_f,rho_se,rho_sf,rho_ef,kappa_e,kappa_f)
@DESCRIPTION=OPT_MILTERSEN_SCHWARTZ models the theoretical price of options on commodities futures according to Miltersen & Schwartz.
@call_put_flag is 'c' or 'p' to indicate whether the option is a call or a put.
@p_t is a zero coupon bond with expiry at option maturity.
@f_t is is the futures price.
@x is is the strike price.
@t1 is the time to maturity of the option.
@t2 is the time to maturity of the underlying commodity futures contract.
@v_s is the volatility of the spot commodity price.
@v_e is the volatility of the future convenience yield.
@v_f is the volatility of the forward rate of interest.
@rho_se is correlation between the spot commodity price and the convenience yield.
@rho_sf is correlation between the spot commodity price and the forward interest rate.
@rho_ef is correlation between the forward interest rate and the convenience yield.
@kappa_e is the speed of mean reversion of the convenience yield.
@kappa_f is the speed of mean reversion of the forward interest rate.
@EXAMPLES=
@SEEALSO=OPT_BS, OPT_BS_DELTA, OPT_BS_RHO, OPT_BS_THETA, OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_ON_OPTIONS
@SYNTAX=OPT_ON_OPTIONS(type_flag,spot,strike1,strike2,time1,time2,rate,cost_of_carry,volatility)
@DESCRIPTION=OPT_ON_OPTIONS models the theoretical price of options on options.
@type_flag is 'cc' for calls on calls, 'cp' for calls on puts, and so on for 'pc', and 'pp'.
@spot is the spot price of the underlying asset.
@strike1 is the strike price at which the option being valued is struck.
@strike2 is the strike price at which the underlying option is struck.
@time1 is the time in years to maturity of the option.
@time2 is the time in years to the maturity of the underlying option.
(@time2 >= @time1).
@rate is the risk annualized free rate of interest.
@cost_of_carry is the leakage in value of the underlying asset of the underlying option.for common stocks, this would be the dividend yield.
@volatility is the annualized volatility in price of the underlying asset of the underlying option.
@EXAMPLES=
@SEEALSO=OPT_BS, OPT_BS_DELTA, OPT_BS_RHO, OPT_BS_THETA, OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_RGW
@SYNTAX=OPT_RGW(call_put_flag,spot,strike,t1,t2,rate,d,volatility)
@DESCRIPTION=OPT_RGW models the theoretical price of an american option according to the Roll-Geske-Whaley approximation where:
@call_put_flag is 'c' or 'p' to indicate whether the option is a call or a put.
@spot is the spot price of the underlying asset.
@strike is the strike price at which the option is struck.
@t1 is the time to the dividend payout.
@t2 is the time to option expiration.
@rate is the annualized rate of interest.
@d is the amount of the dividend to be paid.
@volatility is the annualized rate of volatility of the underlying asset.
@EXAMPLES=
@SEEALSO=OPT_BS, OPT_BS_DELTA, OPT_BS_RHO, OPT_BS_THETA, OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_SIMPLE_CHOOSER
@SYNTAX=OPT_SIMPLE_CHOOSER(call_put_flag,spot,strike,time1,time2,rate,cost_of_carry,volatility)
@DESCRIPTION=OPT_SIMPLE_CHOOSER models the theoretical price of simple chooser options.
@call_put_flag is 'c' or 'p' to indicate whether the option is a call or a put.
@spot is the spot price of the underlying asset.
@strike is the strike price at which the option is struck.
@time1 is the time in years until the holder chooses a put or a call option.
@time2 is the time in years until the the chosen option expires.
@rate is the risk annualized free rate of interest.
@cost_of_carry is the leakage in value of the underlying asset, for common stocks, this would be the dividend yield.
@EXAMPLES=
@SEEALSO=OPT_BS, OPT_BS_DELTA, OPT_BS_RHO, OPT_BS_THETA, OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_SPREAD_APPROX
@SYNTAX=OPT_SPREAD_APPROX(call_put_flag,fut_price1,fut_price2,strike,time, rate,volatility1,volatility2,rho)
@DESCRIPTION=OPT_SPREAD_APPROX models the theoretical price of a European option on the spread between two futures contracts.
@call_put_flag is 'c' or 'p' to indicate whether the option is a call or a put.
@fut_price1 & @fut_price2 are the prices of the two futures contracts.
@strike is the strike price at which the option is struck
@time is the initial maturity of the option in years.
@rate is the risk annualized free rate of interest.
@volatility1 & @volatility2 are the annualized volatility in price of the underlying futures contracts.
@rho is the correlation between the two futures contracts.
@EXAMPLES=
@SEEALSO=OPT_BS, OPT_BS_DELTA, OPT_BS_RHO, OPT_BS_THETA, OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=OPT_TIME_SWITCH
@SYNTAX=OPT_TIME_SWITCH(call_put_flag,spot,strike,a,time,m,dt,rate,cost_of_carry,volatility)
@DESCRIPTION=OPT_TIME_SWITCH models the theoretical price of time switch options. (Pechtl 1995)
The holder receives @a * @dt for each period dt that the asset price was greater than the strike price (for a call) or below it (for a put).
@call_put_flag is 'c' or 'p' to indicate whether the option is a call or a put.
@spot is the spot price of the underlying asset.
@strike is the strike price at which the option is struck.
@a is the amount received for each time period as discussed above.
@time is the maturity of the option in years.
@m is the number of time units the option has already met the condition.
@dt is the agreed upon discrete time period (often a day) expressed as a fraction of a year.
@rate is the risk annualized free rate of interest.
@cost_of_carry is the leakage in value of the underlying asset, for common stocks, this would be the dividend yield.
@EXAMPLES=
@SEEALSO=OPT_BS, OPT_BS_DELTA, OPT_BS_RHO, OPT_BS_THETA, OPT_BS_GAMMA
@CATEGORY=Finance
@FUNCTION=PMT
@SYNTAX=PMT(rate,nper,pv[,fv,type])
@DESCRIPTION=PMT returns the amount of payment for a loan based on a constant interest rate and constant payments (each payment is equal amount).
@rate is the constant interest rate.
@nper is the overall number of payments.
@pv is the present value.
@fv is the future value.
@type is the type of the payment: 0 means at the end of the period and 1 means at the beginning of the period.
* If @fv is omitted, Gnumeric assumes it to be zero.
* If @type is omitted, Gnumeric assumes it to be zero.
@EXAMPLES=
@SEEALSO=PPMT,PV,FV
@CATEGORY=Finance
@FUNCTION=PPMT
@SYNTAX=PPMT(rate,per,nper,pv[,fv,type])
@DESCRIPTION=PPMT calculates the amount of a payment of an annuity going towards principal.
Formula for it is:
PPMT(per) = PMT - IPMT(per)
where:
PMT = Payment received on annuity
IPMT(per) = amount of interest for period @per
* If @fv is omitted, it is assumed to be 0.
* If @type is omitted, it is assumed to be 0.
@EXAMPLES=
@SEEALSO=IPMT,PV,FV
@CATEGORY=Finance
@FUNCTION=PRICE
@SYNTAX=PRICE(settle,mat,rate,yield,redemption_price,[frequency,basis])
@DESCRIPTION=PRICE returns price per $100 face value of a security. This method can only be used if the security pays periodic interest.
@frequency is the number of coupon payments per year. Allowed frequencies are: 1 = annual, 2 = semi, 4 = quarterly. @basis is the type of day counting system you want to use:
0 US 30/360
1 actual days/actual days
2 actual days/360
3 actual days/365
4 European 30/360
* If @frequency is other than 1, 2, or 4, PRICE returns #NUM! error.
* If @basis is omitted, US 30/360 is applied.
* If @basis is not in between 0 and 4, #NUM! error is returned.
@EXAMPLES=
@SEEALSO=
@CATEGORY=Finance
@FUNCTION=PRICEDISC
@SYNTAX=PRICEDISC(settlement,maturity,discount,redemption[,basis])
@DESCRIPTION=PRICEDISC calculates and returns the price per $100 face value of a security bond. The security does not pay interest at maturity.
@settlement is the settlement date of the security. @maturity is the maturity date of the security. @discount is the rate for which the security is discounted. @redemption is the amount to be received on @maturity date.
@basis is the type of day counting system you want to use:
0 US 30/360
1 actual days/actual days
2 actual days/360
3 actual days/365
4 European 30/360
* If @settlement date or @maturity date is not valid, PRICEDISC returns #NUM! error.
* If @basis is omitted, US 30/360 is applied.
* If @basis < 0 or @basis > 4, PRICEDISC returns #NUM! error.
* If @settlement date is after @maturity date or they are the same, PRICEDISC returns #NUM! error.
@EXAMPLES=
@SEEALSO=PRICEMAT
@CATEGORY=Finance
@FUNCTION=PRICEMAT
@SYNTAX=PRICEMAT(settlement,maturity,issue,rate,yield[,basis])
@DESCRIPTION=PRICEMAT calculates and returns the price per $100 face value of a security. The security pays interest at maturity.
@settlement is the settlement date of the security. @maturity is the maturity date of the security. @issue is the issue date of the security. @rate is the discount rate of the security. @yield is the annual yield of the security. @basis is the type of day counting system you want to use:
0 US 30/360
1 actual days/actual days
2 actual days/360
3 actual days/365
4 European 30/360
* If @settlement date or @maturity date is not valid, PRICEMAT returns #NUM! error.
* If @basis is omitted, US 30/360 is applied.
* If @basis < 0 or @basis > 4, PRICEMAT returns #NUM! error.
* If @settlement date is after @maturity date or they are the same, PRICEMAT returns #NUM! error.
@EXAMPLES=
@SEEALSO=PRICEDISC
@CATEGORY=Finance
@FUNCTION=PV
@SYNTAX=PV(rate,nper,pmt[,fv,type])
@DESCRIPTION=PV calculates the present value of an investment. @rate is the periodic interest rate, @nper is the number of periods used for compounding. @pmt is the payment made each period, @fv is the future value and @type is when the payment is made.
* If @type = 1 then the payment is made at the beginning of the period.
* If @type = 0 (or omitted) it is made at the end of each period.
@EXAMPLES=
@SEEALSO=FV
@CATEGORY=Finance
@FUNCTION=RATE
@SYNTAX=RATE(nper,pmt,pv[,fv,type,guess])
@DESCRIPTION=RATE calculates the rate of an investment.
* If @nper <= 0, RATE returns #NUM! error.
* If @type != 0 and @type != 1, RATE returns #VALUE! error.
@EXAMPLES=
@SEEALSO=PV,FV
@CATEGORY=Finance
@FUNCTION=RECEIVED
@SYNTAX=RECEIVED(settlement,maturity,investment,rate[,basis])
@DESCRIPTION=RECEIVED calculates and returns the amount to be received at maturity date for a security bond.
@settlement is the settlement date of the security. @maturity is the maturity date of the security. The amount of investment is specified in @investment. @rate is the security's discount rate.
@basis is the type of day counting system you want to use:
0 US 30/360
1 actual days/actual days
2 actual days/360
3 actual days/365
4 European 30/360
* If @settlement date or @maturity date is not valid, RECEIVED returns #NUM! error.
* If @basis is omitted, US 30/360 is applied.
* If @basis < 0 or @basis > 4, RECEIVED returns #NUM! error.
* If @settlement date is after @maturity date or they are the same, RECEIVED returns #NUM! error.
@EXAMPLES=
@SEEALSO=INTRATE
@CATEGORY=Finance
@FUNCTION=SLN
@SYNTAX=SLN(cost,salvage_value,life)
@DESCRIPTION=SLN function will determine the straight line depreciation of an asset for a single period.
The formula is:
Depreciation expense = ( @cost - @salvage_value ) / @life
@cost is the cost of an asset when acquired (market value).
@salvage_value is the amount you get when asset is sold at the end of the asset's useful life.
@life is the anticipated life of an asset.
* If @life <= 0, SLN returns #NUM! error.
@EXAMPLES=
For example, lets suppose your company purchases a new machine for $10,000, which has a salvage value of $700 and will have a useful life of 10 years. The SLN yearly depreciation is computed as follows:
=SLN(10000, 700, 10)
This will return the yearly depreciation figure of $930.
@SEEALSO=SYD
@CATEGORY=Finance
@FUNCTION=SYD
@SYNTAX=SYD(cost,salvage_value,life,period)
@DESCRIPTION=SYD function calculates the sum-of-years digits depreciation for an asset based on its cost, salvage value, anticipated life and a particular period. This method accelerates the rate of the depreciation, so that more depreciation expense occurs in earlier periods than in later ones. The depreciable cost is the actual cost minus the salvage value. The useful life is the number of periods (typically years) over with the asset is depreciated.
The Formula used for sum-of-years digits depreciation is:
Depreciation expense =
( @cost - @salvage_value ) * (@life - @period + 1) * 2 / @life * (@life + 1).
@cost is the cost of an asset when acquired (market value).
@salvage_value is the amount you get when asset sold at the end of its useful life.
@life is the anticipated life of an asset.
@period is the period for which we need the expense.
* If @life <= 0, SYD returns #NUM! error.
@EXAMPLES=
For example say a company purchases a new computer for $5000 which has a salvage value of $200, and a useful life of five years. We would use the following to calculate the second year's depreciation using the SYD method:
=SYD(5000, 200, 5, 2) which returns 1,280.00.
@SEEALSO=SLN
@CATEGORY=Finance
@FUNCTION=TBILLEQ
@SYNTAX=TBILLEQ(settlement,maturity,discount)
@DESCRIPTION=TBILLEQ function returns the bond-yield equivalent (BEY) for a treasury bill. TBILLEQ is equivalent to
(365 * @discount) / (360 - @discount * DSM),
where DSM is the days between @settlement and @maturity.
* If @settlement is after @maturity or the @maturity is set to over one year later than the @settlement, TBILLEQ returns #NUM! error.
* If @discount is negative, TBILLEQ returns #NUM! error.
@EXAMPLES=
@SEEALSO=TBILLPRICE,TBILLYIELD
@CATEGORY=Finance
@FUNCTION=TBILLPRICE
@SYNTAX=TBILLPRICE(settlement,maturity,discount)
@DESCRIPTION=TBILLPRICE function returns the price per $100 value for a treasury bill where @settlement is the settlement date and @maturity is the maturity date of the bill. @discount is the treasury bill's discount rate.
* If @settlement is after @maturity or the @maturity is set to over one year later than the @settlement, TBILLPRICE returns #NUM! error.
* If @discount is negative, TBILLPRICE returns #NUM! error.
@EXAMPLES=
@SEEALSO=TBILLEQ,TBILLYIELD
@CATEGORY=Finance
@FUNCTION=TBILLYIELD
@SYNTAX=TBILLYIELD(settlement,maturity,pr)
@DESCRIPTION=TBILLYIELD function returns the yield for a treasury bill. @settlement is the settlement date and @maturity is the maturity date of the bill. @discount is the treasury bill's discount rate.
* If @settlement is after @maturity or the @maturity is set to over one year later than the @settlement, TBILLYIELD returns #NUM! error.
* If @pr is negative, TBILLYIELD returns #NUM! error.
@EXAMPLES=
@SEEALSO=TBILLEQ,TBILLPRICE
@CATEGORY=Finance
@FUNCTION=VDB
@SYNTAX=VDB(cost,salvage,life,start_period,end_period[,factor,switch])
@DESCRIPTION=VDB calculates the depreciation of an asset for a given period or partial period using the double-declining balance method.
* If @start_period < 0, VDB returns #NUM! error.
* If @start_period > @end_period, VDB returns #NUM! error.
* If @end_period > @life, VDB returns #NUM! error.
* If @cost < 0, VDB returns #NUM! error.
* If @salvage > @cost, VDB returns #NUM! error.
* If @factor <= 0, VDB returns #NUM! error.
@EXAMPLES=
@SEEALSO=DB
@CATEGORY=Finance
@FUNCTION=XIRR
@SYNTAX=XIRR(values,dates[,guess])
@DESCRIPTION=XIRR calculates and returns the internal rate of return of an investment that has not necessarily periodic payments. This function is closely related to the net present value function (NPV and XNPV). The XIRR is the interest rate for a series of cash flows where the XNPV is zero.
@values contains the series of cash flows generated by the investment. @dates contains the dates of the payments. The first date describes the payment day of the initial payment and thus all the other dates should be after this date. The optional @guess is the initial value used in calculating the XIRR. You do not have to use that, it is only provided for the Excel compatibility.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1:A5 contain the numbers -6000, 2134, 1422, 1933, and 1422, and the cells B1:B5 contain the dates "1999-01-15", "1999-04-04", "1999-05-09", "2000-03-12", and "2000-05-1". Then
XIRR(A1:A5,B1:B5) returns 0.224838.
@SEEALSO=IRR,XNPV
@CATEGORY=Finance
@FUNCTION=XNPV
@SYNTAX=XNPV(rate,values,dates)
@DESCRIPTION=XNPV calculates the net present value of an investment. The schedule of the cash flows is given in @dates array. The first date indicates the beginning of the payment schedule. @rate is the interest rate and @values are the payments.
* If @values and @dates contain unequal number of values, XNPV returns the #NUM! error.
@EXAMPLES=
@SEEALSO=NPV,PV
@CATEGORY=Finance
@FUNCTION=YIELD
@SYNTAX=YIELD(settlement,maturity,rate,price,redemption_price,frequency[,basis])
@DESCRIPTION=YIELD returns the yield on a security that pays periodic interest.
@frequency is the number of coupon payments per year. Allowed frequencies are: 1 = annual, 2 = semi, 4 = quarterly. @basis is the type of day counting system you want to use:
0 US 30/360
1 actual days/actual days
2 actual days/360
3 actual days/365
4 European 30/360
* If @frequency is other than 1, 2, or 4, YIELD returns #NUM! error.
* If @basis is omitted, US 30/360 is applied.
* If @basis is not in between 0 and 4, #NUM! error is returned.
@EXAMPLES=
@SEEALSO=
@CATEGORY=Finance
@FUNCTION=YIELDDISC
@SYNTAX=YIELDDISC(settlement,maturity,pr,redemption[,basis])
@DESCRIPTION=YIELDDISC calculates the annual yield of a security that is discounted.
@settlement is the settlement date of the security. @maturity is the maturity date of the security. @pr is the price per $100 face value of the security. @redemption is the redemption value per $100 face value. @basis is the type of day counting system you want to use:
0 US 30/360
1 actual days/actual days
2 actual days/360
3 actual days/365
4 European 30/360
* If @frequency is other than 1, 2, or 4, YIELDDISC returns #NUM! error.
* If @basis is omitted, US 30/360 is applied.
* If @basis is not in between 0 and 4, #NUM! error is returned.
@EXAMPLES=
@SEEALSO=
@CATEGORY=Finance
@FUNCTION=YIELDMAT
@SYNTAX=YIELDMAT(settlement,maturity,issue,rate,pr[,basis])
@DESCRIPTION=YIELDMAT calculates the annual yield of a security for which the interest is payed at maturity date.
@settlement is the settlement date of the security. @maturity is the maturity date of the security. @issue is the issue date of the security. @rate is the interest rate set to the security. @pr is the price per $100 face value of the security. @basis is the type of day counting system you want to use:
0 US 30/360
1 actual days/actual days
2 actual days/360
3 actual days/365
4 European 30/360
* If @basis is omitted, US 30/360 is applied.
* If @basis is not in between 0 and 4, #NUM! error is returned.
@EXAMPLES=
@SEEALSO=
@CATEGORY=Gnumeric
@FUNCTION=GNUMERIC_VERSION
@SYNTAX=GNUMERIC_VERSION()
@DESCRIPTION=GNUMERIC_VERSION returns the version of gnumeric as a string.
@EXAMPLES=
GNUMERIC_VERSION().
@SEEALSO=
@CATEGORY=Information
@FUNCTION=CELL
@SYNTAX=CELL(type,ref)
@DESCRIPTION=CELL returns information about the formatting, location, or contents of a cell.
@type specifies the type of information you want to obtain:
address Returns the given cell reference as text.
col Returns the number of the column in @ref.
contents Returns the contents of the cell in @ref.
format Returns the code of the format of the cell.
parentheses Returns 1 if @ref contains a negative value
and its format displays it with parentheses.
row Returns the number of the row in @ref.
width Returns the column width.
* This function is Excel compatible.
@EXAMPLES=
Cell("format",A1) returns the code of the format of the cell A1.
@SEEALSO=INDIRECT
@CATEGORY=Information
@FUNCTION=COUNTBLANK
@SYNTAX=COUNTBLANK(range)
@DESCRIPTION=COUNTBLANK returns the number of blank cells in a @range.
* This function is Excel compatible.
@EXAMPLES=
COUNTBLANK(A1:A20) returns the number of blank cell in A1:A20.
@SEEALSO=COUNT
@CATEGORY=Information
@FUNCTION=ERROR
@SYNTAX=ERROR(text)
@DESCRIPTION=ERROR return the specified error.
@EXAMPLES=
ERROR("#OWN ERROR").
@SEEALSO=ISERROR
@CATEGORY=Information
@FUNCTION=ERROR.TYPE
@SYNTAX=ERROR.TYPE(value)
@DESCRIPTION=ERROR.TYPE returns an error number corresponding to the given error value. The error numbers for error values are:
#DIV/0! 2
#VALUE! 3
#REF! 4
#NAME? 5
#NUM! 6
#N/A 7
* This function is Excel compatible.
@EXAMPLES=
ERROR.TYPE(NA()) equals 7.
@SEEALSO=ISERROR
@CATEGORY=Information
@FUNCTION=EXPRESSION
@SYNTAX=EXPRESSION(cell)
@DESCRIPTION=EXPRESSION returns expression in @cell as a string, or empty if the cell is not an expression.
@EXAMPLES=
entering '=EXPRESSION(A3)' in A2 = empty (assuming there is nothing in A3).
entering '=EXPRESSION(A2)' in A1 = 'EXPRESSION(A3)'.
@SEEALSO=TEXT
@CATEGORY=Information
@FUNCTION=GETENV
@SYNTAX=GETENV(string)
@DESCRIPTION=GETENV retrieves a value from the execution environment.
* If the variable specified by @string does not exist, #N/A! will be returned. Note, that variable names are case sensitive.
@EXAMPLES=
@SEEALSO=
@CATEGORY=Information
@FUNCTION=INFO
@SYNTAX=INFO(type)
@DESCRIPTION=INFO returns information about the current operating environment.
@type is the type of information you want to obtain:
memavail Returns the amount of memory available, bytes.
memused Returns the amount of memory used (bytes).
numfile Returns the number of active worksheets.
osversion Returns the operating system version.
recalc Returns the recalculation mode (automatic).
release Returns the version of Gnumeric as text.
system Returns the name of the environment.
totmem Returns the amount of total memory available.
* This function is Excel compatible, except that types directory and origin are not implemented.
@EXAMPLES=
INFO("system") returns "Linux" on a Linux system.
@SEEALSO=
@CATEGORY=Information
@FUNCTION=ISBLANK
@SYNTAX=ISBLANK(value)
@DESCRIPTION=ISBLANK returns TRUE if the value is blank.
* This function is Excel compatible.
@EXAMPLES=
ISBLANK(A1).
@SEEALSO=
@CATEGORY=Information
@FUNCTION=ISERR
@SYNTAX=ISERR(value)
@DESCRIPTION=ISERR returns TRUE if the value is any error value except #N/A.
* This function is Excel compatible.
@EXAMPLES=
ISERR(NA()) return FALSE.
@SEEALSO=ISERROR
@CATEGORY=Information
@FUNCTION=ISERROR
@SYNTAX=ISERROR(value)
@DESCRIPTION=ISERROR returns a TRUE value if the expression has an error.
* This function is Excel compatible.
@EXAMPLES=
ISERROR(NA()) equals TRUE.
@SEEALSO=ERROR
@CATEGORY=Information
@FUNCTION=ISEVEN
@SYNTAX=ISEVEN(value)
@DESCRIPTION=ISEVEN returns TRUE if the number is even.
* This function is Excel compatible.
@EXAMPLES=
ISEVEN(4) equals TRUE.
@SEEALSO=ISODD
@CATEGORY=Information
@FUNCTION=ISLOGICAL
@SYNTAX=ISLOGICAL(value)
@DESCRIPTION=ISLOGICAL returns TRUE if the value is a logical value.
* This function is Excel compatible.
@EXAMPLES=
ISLOGICAL(A1).
@SEEALSO=
@CATEGORY=Information
@FUNCTION=ISNA
@SYNTAX=ISNA(value)
@DESCRIPTION=ISNA returns TRUE if the value is the #N/A error value.
* This function is Excel compatible.
@EXAMPLES=
ISNA(NA()) equals TRUE.
@SEEALSO=NA
@CATEGORY=Information
@FUNCTION=ISNONTEXT
@SYNTAX=ISNONTEXT(value)
@DESCRIPTION=ISNONTEXT Returns TRUE if the value is not text.
* This function is Excel compatible.
@EXAMPLES=
ISNONTEXT("text") equals FALSE.
@SEEALSO=ISTEXT
@CATEGORY=Information
@FUNCTION=ISNUMBER
@SYNTAX=ISNUMBER(value)
@DESCRIPTION=ISNUMBER returns TRUE if the value is a number.
* This function is Excel compatible.
@EXAMPLES=
ISNUMBER("text") equals FALSE.
@SEEALSO=
@CATEGORY=Information
@FUNCTION=ISODD
@SYNTAX=ISODD(value)
@DESCRIPTION=ISODD returns TRUE if the number is odd.
* This function is Excel compatible.
@EXAMPLES=
ISODD(3) equals TRUE.
@SEEALSO=ISEVEN
@CATEGORY=Information
@FUNCTION=ISREF
@SYNTAX=ISREF(value)
@DESCRIPTION=ISREF returns TRUE if the value is a reference.
* This function is Excel compatible.
@EXAMPLES=
ISREF(A1) equals TRUE.
@SEEALSO=
@CATEGORY=Information
@FUNCTION=ISTEXT
@SYNTAX=ISTEXT(value)
@DESCRIPTION=ISTEXT returns TRUE if the value is text.
* This function is Excel compatible.
@EXAMPLES=
ISTEXT("text") equals TRUE.
@SEEALSO=ISNONTEXT
@CATEGORY=Information
@FUNCTION=N
@SYNTAX=N(value)
@DESCRIPTION=N returns a value converted to a number. Strings containing text are converted to the zero value.
* This function is Excel compatible.
@EXAMPLES=
N("42") equals 42.
@SEEALSO=
@CATEGORY=Information
@FUNCTION=NA
@SYNTAX=NA()
@DESCRIPTION=NA returns the error value #N/A.
* This function is Excel compatible.
@EXAMPLES=
NA() equals #N/A error.
@SEEALSO=ISNA
@CATEGORY=Information
@FUNCTION=TYPE
@SYNTAX=TYPE(value)
@DESCRIPTION=TYPE returns a number indicating the data type of a value.
1 == number
2 == text
4 == boolean
16 == error
64 == array
* This function is Excel compatible.
@EXAMPLES=
TYPE(3) equals 1.
TYPE("text") equals 2.
@SEEALSO=
@CATEGORY=Logic
@FUNCTION=AND
@SYNTAX=AND(b1, b2, ...)
@DESCRIPTION=AND implements the logical AND function: the result is TRUE if all of the expressions evaluate to TRUE, otherwise it returns FALSE.
@b1 trough @bN are expressions that should evaluate to TRUE or FALSE. If an integer or floating point value is provided, zero is considered FALSE and anything else is TRUE.
* If the values contain strings or empty cells those values are ignored.
* If no logical values are provided, then the error #VALUE! is returned.
* This function is Excel compatible.
@EXAMPLES=
AND(TRUE,TRUE) equals TRUE.
AND(TRUE,FALSE) equals FALSE.
Let us assume that A1 holds number five and A2 number one. Then
AND(A1>3,A2<2) equals TRUE.
@SEEALSO=OR, NOT
@CATEGORY=Logic
@FUNCTION=FALSE
@SYNTAX=FALSE()
@DESCRIPTION=FALSE returns boolean value false.
* This function is Excel compatible.
@EXAMPLES=
FALSE() equals FALSE.
@SEEALSO=TRUE
@CATEGORY=Logic
@FUNCTION=IF
@SYNTAX=IF(condition[,if-true,if-false])
@DESCRIPTION=IF function can be used to evaluate conditionally other expressions. IF evaluates @condition. If @condition returns a non-zero value the result of the IF expression is the @if-true expression, otherwise IF evaluates to the value of @if-false.
* If omitted @if-true defaults to TRUE and @if-false to FALSE.
* This function is Excel compatible.
@EXAMPLES=
IF(FALSE,TRUE,FALSE) equals FALSE.
@SEEALSO=
@CATEGORY=Logic
@FUNCTION=NOT
@SYNTAX=NOT(number)
@DESCRIPTION=NOT implements the logical NOT function: the result is TRUE if the @number is zero; otherwise the result is FALSE.
* This function is Excel compatible.
@EXAMPLES=
NOT(0) equals TRUE.
NOT(TRUE) equals FALSE.
@SEEALSO=AND, OR
@CATEGORY=Logic
@FUNCTION=OR
@SYNTAX=OR(b1, b2, ...)
@DESCRIPTION=OR implements the logical OR function: the result is TRUE if any of the values evaluated to TRUE.
@b1 trough @bN are expressions that should evaluate to TRUE or FALSE. If an integer or floating point value is provided, zero is considered FALSE and anything else is TRUE.
* If the values contain strings or empty cells those values are ignored.
* If no logical values are provided, then the error #VALUE! is returned.
* This function is Excel compatible.
@EXAMPLES=
OR(TRUE,FALSE) equals TRUE.
OR(3>4,4<3) equals FALSE.
@SEEALSO=AND, NOT
@CATEGORY=Logic
@FUNCTION=TRUE
@SYNTAX=TRUE()
@DESCRIPTION=TRUE returns boolean value true.
* This function is Excel compatible.
@EXAMPLES=
TRUE() equals TRUE.
@SEEALSO=FALSE
@CATEGORY=Logic
@FUNCTION=XOR
@SYNTAX=XOR(b1, b2, ...)
@DESCRIPTION=XOR implements the logical exclusive OR function: the result is TRUE if an odd number of the values evaluated to TRUE.
@b1 trough @bN are expressions that should evaluate to TRUE or FALSE. If an integer or floating point value is provided, zero is considered FALSE and anything else is TRUE.
* If the values contain strings or empty cells those values are ignored.
* If no logical values are provided, then the error #VALUE! is returned.
@EXAMPLES=
XOR(TRUE,FALSE) equals TRUE.
XOR(3>4,4<3) equals FALSE.
@SEEALSO=OR, AND, NOT
@CATEGORY=Lookup
@FUNCTION=ADDRESS
@SYNTAX=ADDRESS(row_num,col_num[,abs_num,a1,text])
@DESCRIPTION=ADDRESS returns a cell address as text for specified row and column numbers.
@a1 is a logical value that specifies the reference style. If @a1 is TRUE or omitted, ADDRESS returns an A1-style reference, i.e. $D$4. Otherwise ADDRESS returns an R1C1-style reference, i.e. R4C4.
@text specifies the name of the worksheet to be used as the external reference.
* If @abs_num is 1 or omitted, ADDRESS returns absolute reference.
* If @abs_num is 2 ADDRESS returns absolute row and relative column.
* If @abs_num is 3 ADDRESS returns relative row and absolute column.
* If @abs_num is 4 ADDRESS returns relative reference.
* If @abs_num is greater than 4 ADDRESS returns #VALUE! error.
* If @row_num or @col_num is less than one, ADDRESS returns #VALUE! error.
@EXAMPLES=
ADDRESS(5,4) equals "$D$5".
ADDRESS(5,4,4) equals "D5".
ADDRESS(5,4,3,FALSE) equals "R[5]C4".
@SEEALSO=COLUMNNUMBER
@CATEGORY=Lookup
@FUNCTION=AREAS
@SYNTAX=AREAS(reference)
@DESCRIPTION=AREAS returns the number of areas in @reference.
@EXAMPLES=
AREAS((A1,B2,C3)) equals 3.
@SEEALSO=ADDRESS,INDEX,INDIRECT,OFFSET
@CATEGORY=Lookup
@FUNCTION=CHOOSE
@SYNTAX=CHOOSE(index[,value1][,value2]...)
@DESCRIPTION=CHOOSE returns the value of index @index. @index is rounded to an integer if it is not.
* If @index < 1 or @index > number of values, CHOOSE returns #VALUE! error.
@EXAMPLES=
CHOOSE(3,"Apple","Orange","Grape","Perry") equals "Grape".
@SEEALSO=IF
@CATEGORY=Lookup
@FUNCTION=COLUMN
@SYNTAX=COLUMN([reference])
@DESCRIPTION=COLUMN function returns the column number of the current cell unless @reference is given. In that case, it returns an array of the column numbers of all cells in @reference.
* If @reference is neither an array nor a reference nor a range, COLUMN returns #VALUE! error.
@EXAMPLES=
COLUMN() in E1 equals 5.
@SEEALSO=COLUMNS,ROW,ROWS
@CATEGORY=Lookup
@FUNCTION=COLUMNNUMBER
@SYNTAX=COLUMNNUMBER(name)
@DESCRIPTION=COLUMNNUMBER function returns an integer corresponding to the column name supplied as a string.
* If @name is invalid, COLUMNNUMBER returns the #VALUE! error.
@EXAMPLES=
COLUMNNUMBER("E") equals 5.
@SEEALSO=ADDRESS
@CATEGORY=Lookup
@FUNCTION=COLUMNS
@SYNTAX=COLUMNS(reference)
@DESCRIPTION=COLUMNS function returns the number of columns in area or array reference.
* If @reference is neither an array nor a reference nor a range, COLUMNS returns #VALUE! error.
@EXAMPLES=
COLUMNS(H2:J3) equals 3.
@SEEALSO=COLUMN,ROW,ROWS
@CATEGORY=Lookup
@FUNCTION=HLOOKUP
@SYNTAX=HLOOKUP(value,range,row[,approximate,as_index])
@DESCRIPTION=HLOOKUP function finds the col in range that has a first row cell similar to @value. If @approximate is not true it finds the col with an exact equivalence. If @approximate is true, then the values must be sorted in order of ascending value for correct function; in this case it finds the col with value less than @value it returns the value in the col found at a 1-based offset in @row rows into the @range. @as_index returns the 0-based offset that matched rather than the value.
* HLOOKUP returns #NUM! if @row < 0.
* HLOOKUP returns #REF! if @row falls outside @range.
@EXAMPLES=
@SEEALSO=VLOOKUP
@CATEGORY=Lookup
@FUNCTION=HYPERLINK
@SYNTAX=HYPERLINK(link_location[,optional_label])
@DESCRIPTION=HYPERLINK function currently returns its 2nd argument, or if that is omitted the 1st argument.
@EXAMPLES=
HYPERLINK("www.gnome.org","GNOME").
@SEEALSO=
@CATEGORY=Lookup
@FUNCTION=INDEX
@SYNTAX=INDEX(array[,row, col, area])
@DESCRIPTION=INDEX gives a reference to a cell in the given @array.The cell is pointed out by @row and @col, which count the rows and columns in the array.
* If @row and @col are omitted the are assumed to be 1.
* If the reference falls outside the range of the @array, INDEX returns a #REF! error.
@EXAMPLES=Let us assume that the cells A1, A2, ..., A5 contain numbers 11.4, 17.3, 21.3, 25.9, and 40.1. Then INDEX(A1:A5,4,1,1) equals 25.9
@SEEALSO=
@CATEGORY=Lookup
@FUNCTION=INDIRECT
@SYNTAX=INDIRECT(ref_text[,format])
@DESCRIPTION=INDIRECT function returns the contents of the cell pointed to by the @ref_text string. The string specifies a single cell reference the format of which is either A1 or R1C1 style. The style is set by the @format boolean, which defaults to the A1 style.
* If @ref_text is not a valid reference returns #REF!
@EXAMPLES=
If A1 contains 3.14 and A2 contains A1, then
INDIRECT(A2) equals 3.14.
@SEEALSO=AREAS,INDEX,CELL
@CATEGORY=Lookup
@FUNCTION=LOOKUP
@SYNTAX=LOOKUP(value,vector1[,vector2])
@DESCRIPTION=LOOKUP function finds the row index of @value in @vector1 and returns the contents of @vector2 at that row index. Alternatively a single array can be used for @vector1. If the area is longer than it is wide then the sense of the search is rotated.
* If LOOKUP can't find @value it uses the largest value less than @value.
* The data must be sorted.
* If @value is smaller than the first value it returns #N/A.
@EXAMPLES=
@SEEALSO=VLOOKUP,HLOOKUP
@CATEGORY=Lookup
@FUNCTION=MATCH
@SYNTAX=MATCH(seek,vector[,type])
@DESCRIPTION=MATCH function finds the row index of @seek in @vector and returns it.
If the area is longer than it is wide then the sense of the search is rotated. Alternatively a single array can be used.
* The @type parameter, which defaults to +1, controls the search:
* If @type = 1, MATCH finds largest value <= @seek.
* If @type = 0, MATCH finds first value == @seek.
* If @type = -1, MATCH finds smallest value >= @seek.
* For @type = 0, the data can be in any order. * For @type = -1 and @type = +1, the data must be sorted. (And in these cases, MATCH uses a binary search to locate the index.)
* If @seek could not be found, #N/A is returned.
@EXAMPLES=
@SEEALSO=LOOKUP
@CATEGORY=Lookup
@FUNCTION=OFFSET
@SYNTAX=OFFSET(range,row,col[,height[,width]])
@DESCRIPTION=OFFSET function returns a cell range. The cell range starts at offset (@row,@col) from @range, and is of height @height and width @width.
* If @range is neither a reference nor a range, OFFSET returns #VALUE!.
* If either @height or @width is omitted, the height or width of the reference is used.
@EXAMPLES=
@SEEALSO=COLUMN,COLUMNS,ROWS,INDEX,INDIRECT,ADDRESS
@CATEGORY=Lookup
@FUNCTION=ROW
@SYNTAX=ROW([reference])
@DESCRIPTION=ROW function returns an array of the row numbers taking a default argument of the containing cell position.
* If @reference is neither an array nor a reference nor a range, ROW returns #VALUE! error.
@EXAMPLES=
ROW() in G13 equals 13.
@SEEALSO=COLUMN,COLUMNS,ROWS
@CATEGORY=Lookup
@FUNCTION=ROWS
@SYNTAX=ROWS(reference)
@DESCRIPTION=ROWS function returns the number of rows in area or array reference.
* If @reference is neither an array nor a reference nor a range, ROWS returns #VALUE! error.
@EXAMPLES=
ROWS(H7:I13) equals 7.
@SEEALSO=COLUMN,COLUMNS,ROW
@CATEGORY=Lookup
@FUNCTION=TRANSPOSE
@SYNTAX=TRANSPOSE(matrix)
@DESCRIPTION=TRANSPOSE function returns the transpose of the input @matrix.
@EXAMPLES=
@SEEALSO=MMULT
@CATEGORY=Lookup
@FUNCTION=VLOOKUP
@SYNTAX=VLOOKUP(value,range,column[,approximate,as_index])
@DESCRIPTION=VLOOKUP function finds the row in range that has a first column similar to @value. If @approximate is not true it finds the row with an exact equivalence. If @approximate is true, then the values must be sorted in order of ascending value for correct function; in this case it finds the row with value less than @value. It returns the value in the row found at a 1-based offset in @column columns into the @range. @as_index returns the 0-based offset that matched rather than the value.
* VLOOKUP returns #NUM! if @column < 0.
* VLOOKUP returns #REF! if @column falls outside @range.
@EXAMPLES=
@SEEALSO=HLOOKUP
@CATEGORY=Mathematics
@FUNCTION=ABS
@SYNTAX=ABS(b1)
@DESCRIPTION=ABS implements the Absolute Value function: the result is to drop the negative sign (if present). This can be done for integers and floating point numbers.
* This function is Excel compatible.
@EXAMPLES=
ABS(7) equals 7.
ABS(-3.14) equals 3.14.
@SEEALSO=CEIL, CEILING, FLOOR, INT, MOD
@CATEGORY=Mathematics
@FUNCTION=ACOS
@SYNTAX=ACOS(x)
@DESCRIPTION=ACOS function calculates the arc cosine of @x; that is the value whose cosine is @x.
* The value it returns is in radians.
* If @x falls outside the range -1 to 1, ACOS returns the #NUM! error.
* This function is Excel compatible.
@EXAMPLES=
ACOS(0.1) equals 1.470629.
ACOS(-0.1) equals 1.670964.
@SEEALSO=COS, SIN, DEGREES, RADIANS
@CATEGORY=Mathematics
@FUNCTION=ACOSH
@SYNTAX=ACOSH(x)
@DESCRIPTION=ACOSH function calculates the inverse hyperbolic cosine of @x; that is the value whose hyperbolic cosine is @x.
* If @x is less than 1.0, ACOSH() returns the #NUM! error.
* This function is Excel compatible.
@EXAMPLES=
ACOSH(2) equals 1.31696.
ACOSH(5.3) equals 2.35183.
@SEEALSO=ACOS, ASINH, DEGREES, RADIANS
@CATEGORY=Mathematics
@FUNCTION=ASIN
@SYNTAX=ASIN(x)
@DESCRIPTION=ASIN function calculates the arc sine of @x; that is the value whose sine is @x.
* If @x falls outside the range -1 to 1, ASIN returns the #NUM! error.
* This function is Excel compatible.
@EXAMPLES=
ASIN(0.5) equals 0.523599.
ASIN(1) equals 1.570797.
@SEEALSO=SIN, COS, ASINH, DEGREES, RADIANS
@CATEGORY=Mathematics
@FUNCTION=ASINH
@SYNTAX=ASINH(x)
@DESCRIPTION=ASINH function calculates the inverse hyperbolic sine of @x; that is the value whose hyperbolic sine is @x.
* This function is Excel compatible.
@EXAMPLES=
ASINH(0.5) equals 0.481212.
ASINH(1.0) equals 0.881374.
@SEEALSO=ASIN, ACOSH, SIN, COS, DEGREES, RADIANS
@CATEGORY=Mathematics
@FUNCTION=ATAN
@SYNTAX=ATAN(x)
@DESCRIPTION=ATAN function calculates the arc tangent of @x; that is the value whose tangent is @x.
* Return value is in radians.
* This function is Excel compatible.
@EXAMPLES=
ATAN(0.5) equals 0,463648.
ATAN(1) equals 0,785398.
@SEEALSO=TAN, COS, SIN, DEGREES, RADIANS
@CATEGORY=Mathematics
@FUNCTION=ATAN2
@SYNTAX=ATAN2(b1,b2)
@DESCRIPTION=ATAN2 function calculates the arc tangent of the two variables @b1 and @b2. It is similar to calculating the arc tangent of @b2 / @b1, except that the signs of both arguments are used to determine the quadrant of the result.
* The result is in radians.
* This function is Excel compatible.
@EXAMPLES=
ATAN2(0.5,1.0) equals 1.107149.
ATAN2(-0.5,2.0) equals 1.815775.
@SEEALSO=ATAN, ATANH, COS, SIN, DEGREES, RADIANS
@CATEGORY=Mathematics
@FUNCTION=ATANH
@SYNTAX=ATANH(x)
@DESCRIPTION=ATANH function calculates the inverse hyperbolic tangent of @x; that is the value whose hyperbolic tangent is @x.
* If the absolute value of @x is greater than 1.0, ATANH returns #NUM! error.
* This function is Excel compatible.
@EXAMPLES=
ATANH(0.5) equals 0.549306.
ATANH(0.8) equals 1.098612.
@SEEALSO=ATAN, TAN, SIN, COS, DEGREES, RADIANS
@CATEGORY=Mathematics
@FUNCTION=BETA
@SYNTAX=BETA(a,b)
@DESCRIPTION=BETA function returns the value of the mathematic beta function extended to all real numbers except 0 and negative integers.
* If @a, @b, or (@a + @b) are non-positive integers, BETA returns #NUM! error.
@EXAMPLES=
BETA(2,3) equals 0.083333.
BETA(-0.5,0.5) equals #NUM!.
@SEEALSO=BETALN,GAMMALN
@CATEGORY=Mathematics
@FUNCTION=BETALN
@SYNTAX=BETALN(a,b)
@DESCRIPTION=BETALN function returns the natural logarithm of the absolute value of the beta function.
* If @a, @b, or (@a + @b) are non-positive integers, BETALN returns #NUM!
@EXAMPLES=
BETALN(2,3) equals -2.48.
BETALN(-0.5,0.5) equals #NUM!.
@SEEALSO=BETA,GAMMALN
@CATEGORY=Mathematics
@FUNCTION=CEIL
@SYNTAX=CEIL(x)
@DESCRIPTION=CEIL function rounds @x up to the next nearest integer.
@EXAMPLES=
CEIL(0.4) equals 1.
CEIL(-1.1) equals -1.
CEIL(-2.9) equals -2.
@SEEALSO=CEILING, FLOOR, ABS, INT, MOD
@CATEGORY=Mathematics
@FUNCTION=CEILING
@SYNTAX=CEILING(x,significance)
@DESCRIPTION=CEILING function rounds @x up to the nearest multiple of @significance.
* If @x or @significance is non-numeric CEILING returns #VALUE! error.
* If @x and @significance have different signs CEILING returns #NUM! error.
* This function is Excel compatible.
@EXAMPLES=
CEILING(2.43,1) equals 3.
CEILING(123.123,3) equals 126.
@SEEALSO=CEIL, FLOOR, ABS, INT, MOD
@CATEGORY=Mathematics
@FUNCTION=COMBIN
@SYNTAX=COMBIN(n,k)
@DESCRIPTION=COMBIN computes the number of combinations.
* Performing this function on a non-integer or a negative number returns #NUM! error.
* If @n is less than @k COMBIN returns #NUM! error.
* This function is Excel compatible.
@EXAMPLES=
COMBIN(8,6) equals 28.
COMBIN(6,2) equals 15.
@SEEALSO=
@CATEGORY=Mathematics
@FUNCTION=COS
@SYNTAX=COS(x)
@DESCRIPTION=COS function returns the cosine of @x, where @x is given in radians.
* This function is Excel compatible.
@EXAMPLES=
COS(0.5) equals 0.877583.
COS(1) equals 0.540302.
@SEEALSO=COSH, SIN, SINH, TAN, TANH, RADIANS, DEGREES
@CATEGORY=Mathematics
@FUNCTION=COSH
@SYNTAX=COSH(x)
@DESCRIPTION=COSH function returns the hyperbolic cosine of @x, which is defined mathematically as
(exp(@x) + exp(-@x)) / 2.
* @x is in radians.
* This function is Excel compatible.
@EXAMPLES=
COSH(0.5) equals 1.127626.
COSH(1) equals 1.543081.
@SEEALSO=COS, SIN, SINH, TAN, TANH, RADIANS, DEGREES, EXP
@CATEGORY=Mathematics
@FUNCTION=COUNTIF
@SYNTAX=COUNTIF(range,criteria)
@DESCRIPTION=COUNTIF function counts the number of cells in the given @range that meet the given @criteria.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 23, 27, 28, 33, and 39. Then
COUNTIF(A1:A5,"<=28") equals 3.
COUNTIF(A1:A5,"<28") equals 2.
COUNTIF(A1:A5,"28") equals 1.
COUNTIF(A1:A5,">28") equals 2.
@SEEALSO=COUNT,SUMIF
@CATEGORY=Mathematics
@FUNCTION=DEGREES
@SYNTAX=DEGREES(x)
@DESCRIPTION=DEGREES computes the number of degrees equivalent to @x radians.
* This function is Excel compatible.
@EXAMPLES=
DEGREES(2.5) equals 143.2394.
@SEEALSO=RADIANS, PI
@CATEGORY=Mathematics
@FUNCTION=EVEN
@SYNTAX=EVEN(number)
@DESCRIPTION=EVEN function returns the number rounded up to the nearest even integer. Negative numbers are rounded down.
* This function is Excel compatible.
@EXAMPLES=
EVEN(5.4) equals 6.
EVEN(-5.4) equals -6.
@SEEALSO=ODD
@CATEGORY=Mathematics
@FUNCTION=EXP
@SYNTAX=EXP(x)
@DESCRIPTION=EXP computes the value of e (the base of natural logarithms) raised to the power of @x.
* This function is Excel compatible.
@EXAMPLES=
EXP(2) equals 7.389056.
@SEEALSO=LOG, LOG2, LOG10
@CATEGORY=Mathematics
@FUNCTION=EXPM1
@SYNTAX=EXPM1(x)
@DESCRIPTION=EXPM1 computes EXP(@x)-1 with higher resulting precision than the direct formula.
@EXAMPLES=
EXPM1(0.01) equals 0.01005.
@SEEALSO=EXP, LN1P
@CATEGORY=Mathematics
@FUNCTION=FACT
@SYNTAX=FACT(x)
@DESCRIPTION=FACT computes the factorial of @x. ie, @x!
* This function is Excel compatible.
@EXAMPLES=
FACT(3) equals 6.
FACT(9) equals 362880.
@SEEALSO=
@CATEGORY=Mathematics
@FUNCTION=FACTDOUBLE
@SYNTAX=FACTDOUBLE(number)
@DESCRIPTION=FACTDOUBLE function returns the double factorial of a @number, i.e., x!!.
* If @number is not an integer, it is truncated.
* If @number is negative FACTDOUBLE returns #NUM! error.
* This function is Excel compatible.
@EXAMPLES=
FACTDOUBLE(5) equals 15.
@SEEALSO=FACT
@CATEGORY=Mathematics
@FUNCTION=FIB
@SYNTAX=FIB(number)
@DESCRIPTION=FIB function computes Fibonacci numbers.
* If @number is not an integer, it is truncated.
* If @number is negative or zero FIB returns #NUM! error.
@EXAMPLES=
FIB(12) equals 144.
@SEEALSO=
@CATEGORY=Mathematics
@FUNCTION=FLOOR
@SYNTAX=FLOOR(x[,significance])
@DESCRIPTION=FLOOR function rounds @x down to the next nearest multiple of @significance.
* @significance defaults to 1.
* This function is Excel compatible.
@EXAMPLES=
FLOOR(0.5) equals 0.
FLOOR(5,2) equals 4.
FLOOR(-5,-2) equals -4.
FLOOR(-5,2) equals #NUM!.
@SEEALSO=CEIL, CEILING, ABS, INT, MOD
@CATEGORY=Mathematics
@FUNCTION=G_PRODUCT
@SYNTAX=G_PRODUCT(value1, value2, ...)
@DESCRIPTION=G_PRODUCT returns the product of all the values and cells referenced in the argument list.
* Empty cells are ignored and the empty product is 1.
@EXAMPLES=
G_PRODUCT(2,5,9) equals 90.
@SEEALSO=SUM, COUNT
@CATEGORY=Mathematics
@FUNCTION=GCD
@SYNTAX=GCD(number1,number2,...)
@DESCRIPTION=GCD returns the greatest common divisor of given numbers.
* If any of the arguments is less than one, GCD returns #NUM! error.
* If any of the arguments is non-integer, it is truncated.
* This function is Excel compatible.
@EXAMPLES=
GCD(470,770) equals 10.
GCD(470,770,1495) equals 5.
@SEEALSO=LCM
@CATEGORY=Mathematics
@FUNCTION=HYPOT
@SYNTAX=HYPOT(number1,number2,...)
@DESCRIPTION=HYPOT returns the square root of the sum of the squares of the arguments.
@EXAMPLES=
HYPOT(3,4) equals to 5.
@SEEALSO=MIN,MAX
@CATEGORY=Mathematics
@FUNCTION=INT
@SYNTAX=INT(a)
@DESCRIPTION=INT function returns the largest integer that is not bigger than its argument.
* This function is Excel compatible.
@EXAMPLES=
INT(7.2) equals 7.
INT(-5.5) equals -6.
@SEEALSO=CEIL, CEILING, FLOOR, ABS, MOD
@CATEGORY=Mathematics
@FUNCTION=LCM
@SYNTAX=LCM(number1,number2,...)
@DESCRIPTION=LCM returns the least common multiple of integers. The least common multiple is the smallest positive number that is a multiple of all integer arguments given.
* If any of the arguments is less than one, LCM returns #NUM!.
* If any of the arguments is non-integer, it is truncated.
* This function is Excel compatible.
@EXAMPLES=
LCM(2,13) equals to 26.
LCM(4,7,5) equals to 140.
@SEEALSO=GCD
@CATEGORY=Mathematics
@FUNCTION=LN
@SYNTAX=LN(x)
@DESCRIPTION=LN returns the natural logarithm of @x.
* If @x <= 0, LN returns #NUM! error.
* This function is Excel compatible.
@EXAMPLES=
LN(7) equals 1.94591.
@SEEALSO=EXP, LOG2, LOG10
@CATEGORY=Mathematics
@FUNCTION=LN1P
@SYNTAX=LN1P(x)
@DESCRIPTION=LN1P computes LN(1+@x) with higher resulting precision than the direct formula.
* If @x <= -1, LN1P returns #NUM! error.
@EXAMPLES=
LN1P(0.01) equals 0.00995.
@SEEALSO=LN, EXPM1
@CATEGORY=Mathematics
@FUNCTION=LOG
@SYNTAX=LOG(x[,base])
@DESCRIPTION=LOG computes the logarithm of @x in the given base @base. If no @base is given LOG returns the logarithm in base 10. @base must be > 0. and cannot equal 1.
* This function is Excel compatible.
@EXAMPLES=
LOG(2) equals 0.30103.
LOG(8192,2) equals 13.
@SEEALSO=LN, LOG2, LOG10
@CATEGORY=Mathematics
@FUNCTION=LOG10
@SYNTAX=LOG10(x)
@DESCRIPTION=LOG10 computes the base-10 logarithm of @x.
* If @x <= 0, LOG10 returns #NUM! error.
* This function is Excel compatible.
@EXAMPLES=
LOG10(7) equals 0.845098.
@SEEALSO=EXP, LOG2, LOG
@CATEGORY=Mathematics
@FUNCTION=LOG2
@SYNTAX=LOG2(x)
@DESCRIPTION=LOG2 computes the base-2 logarithm of @x.
* If @x <= 0, LOG2 returns #NUM! error.
@EXAMPLES=
LOG2(1024) equals 10.
@SEEALSO=EXP, LOG10, LOG
@CATEGORY=Mathematics
@FUNCTION=MDETERM
@SYNTAX=MDETERM(matrix)
@DESCRIPTION=MDETERM function returns the determinant of a given matrix.
* If the @matrix does not contain equal number of columns and rows, MDETERM returns #VALUE! error.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that A1, ..., A4 contain numbers 2, 3, 7, and 3, B1, ..., B4 4, 2, 4, and 1, C1, ..., C4 9, 4, 3, and 2, and D1, ..., D4 7, 3, 6, and 5. Then
MDETERM(A1:D4) equals 148.
@SEEALSO=MMULT, MINVERSE
@CATEGORY=Mathematics
@FUNCTION=MINVERSE
@SYNTAX=MINVERSE(matrix)
@DESCRIPTION=MINVERSE function returns the inverse matrix of @matrix.
* If @matrix cannot be inverted, MINVERSE returns #NUM! error.
* If @matrix does not contain equal number of columns and rows, MINVERSE returns #VALUE! error.
* This function is Excel compatible.
@EXAMPLES=
@SEEALSO=MMULT, MDETERM
@CATEGORY=Mathematics
@FUNCTION=MMULT
@SYNTAX=MMULT(array1,array2)
@DESCRIPTION=MMULT function returns the matrix product of two arrays. The result is an array with the same number of rows as @array1 and the same number of columns as @array2.
* This function is Excel compatible.
@EXAMPLES=
@SEEALSO=TRANSPOSE,MINVERSE
@CATEGORY=Mathematics
@FUNCTION=MOD
@SYNTAX=MOD(number,divisor)
@DESCRIPTION=MOD function returns the remainder when @divisor is divided into @number.
* MOD returns #DIV/0! if @divisor is zero.
* This function is Excel compatible.
@EXAMPLES=
MOD(23,7) equals 2.
@SEEALSO=CEIL, CEILING, FLOOR, ABS, INT, ABS
@CATEGORY=Mathematics
@FUNCTION=MROUND
@SYNTAX=MROUND(number,multiple)
@DESCRIPTION=MROUND function rounds a given number to the desired multiple.
@number is the number you want rounded and @multiple is the the multiple to which you want to round the number.
* If @number and @multiple have different sign, MROUND returns #NUM! error.
* This function is Excel compatible.
@EXAMPLES=
MROUND(1.7,0.2) equals 1.8.
MROUND(321.123,0.12) equals 321.12.
@SEEALSO=ROUNDDOWN,ROUND,ROUNDUP
@CATEGORY=Mathematics
@FUNCTION=MULTINOMIAL
@SYNTAX=MULTINOMIAL(value1, value2, ...)
@DESCRIPTION=MULTINOMIAL returns the ratio of the factorial of a sum of values to the product of factorials.
* This function is Excel compatible.
@EXAMPLES=
MULTINOMIAL(2,3,4) equals 1260.
@SEEALSO=SUM
@CATEGORY=Mathematics
@FUNCTION=ODD
@SYNTAX=ODD(number)
@DESCRIPTION=ODD function returns the @number rounded up to the nearest odd integer. Negative numbers are rounded down.
* This function is Excel compatible.
@EXAMPLES=
ODD(4.4) equals 5.
ODD(-4.4) equals -5.
@SEEALSO=EVEN
@CATEGORY=Mathematics
@FUNCTION=PI
@SYNTAX=PI()
@DESCRIPTION=PI functions returns the value of pi.
* This function is called with no arguments.
* This function is Excel compatible, except that it returns pi with a better precision.
@EXAMPLES=
PI() equals about 3.141593.
@SEEALSO=SQRTPI
@CATEGORY=Mathematics
@FUNCTION=POWER
@SYNTAX=POWER(x,y)
@DESCRIPTION=POWER returns the value of @x raised to the power @y.
* If both @x and @y equals to 0, POWER returns #NUM! error.
* If @x = 0 and @y < 0, POWER returns #DIV/0! error.
* If @x < 0 and @y is non-integer, POWER returns #NUM! error.
* This function is Excel compatible.
@EXAMPLES=
POWER(2,7) equals 128.
POWER(3,3.141) equals 31.523749.
@SEEALSO=EXP
@CATEGORY=Mathematics
@FUNCTION=PRODUCT
@SYNTAX=PRODUCT(value1, value2, ...)
@DESCRIPTION=PRODUCT returns the product of all the values and cells referenced in the argument list.
* This function is Excel compatible. In particular, this means that if all cells are empty, the result will be 0.
@EXAMPLES=
PRODUCT(2,5,9) equals 90.
@SEEALSO=SUM, COUNT, G_PRODUCT
@CATEGORY=Mathematics
@FUNCTION=QUOTIENT
@SYNTAX=QUOTIENT(numerator,denominator)
@DESCRIPTION=QUOTIENT function returns the integer portion of a division. @numerator is the divided number and @denominator is the divisor.
* This function is Excel compatible.
@EXAMPLES=
QUOTIENT(23,5) equals 4.
@SEEALSO=MOD
@CATEGORY=Mathematics
@FUNCTION=RADIANS
@SYNTAX=RADIANS(x)
@DESCRIPTION=RADIANS computes the number of radians equivalent to @x degrees.
* This function is Excel compatible.
@EXAMPLES=
RADIANS(180) equals 3.14159.
@SEEALSO=PI,DEGREES
@CATEGORY=Mathematics
@FUNCTION=ROMAN
@SYNTAX=ROMAN(number[,type])
@DESCRIPTION=ROMAN function returns an arabic number in the roman numeral style, as text. @number is the number you want to convert and @type is the type of roman numeral you want.
* If @type is 0 or it is omitted, ROMAN returns classic roman numbers.
* Type 1 is more concise than classic type, type 2 is more concise than type 1, and type 3 is more concise than type 2. Type 4 is simplified type.
* If @number is negative or greater than 3999, ROMAN returns #VALUE! error.
* This function is Excel compatible.
@EXAMPLES=
ROMAN(999) equals CMXCIX.
ROMAN(999,1) equals LMVLIV.
ROMAN(999,2) equals XMIX.
ROMAN(999,3) equals VMIV.
ROMAN(999,4) equals IM.
@SEEALSO=
@CATEGORY=Mathematics
@FUNCTION=ROUND
@SYNTAX=ROUND(number[,digits])
@DESCRIPTION=ROUND function rounds a given number.
@number is the number you want rounded and @digits is the number of digits to which you want to round that number.
* If @digits is greater than zero, @number is rounded to the given number of digits.
* If @digits is zero or omitted, @number is rounded to the nearest integer.
* If @digits is less than zero, @number is rounded to the left of the decimal point.
* This function is Excel compatible.
@EXAMPLES=
ROUND(5.5) equals 6.
ROUND(-3.3) equals -3.
ROUND(1501.15,1) equals 1501.2.
ROUND(1501.15,-2) equals 1500.0.
@SEEALSO=ROUNDDOWN,ROUNDUP
@CATEGORY=Mathematics
@FUNCTION=ROUNDDOWN
@SYNTAX=ROUNDDOWN(number[,digits])
@DESCRIPTION=ROUNDDOWN function rounds a given @number down. @number is the number you want rounded down and @digits is the number of digits to which you want to round that number.
* If @digits is greater than zero, @number is rounded down to the given number of digits.
* If @digits is zero or omitted, @number is rounded down to the nearest integer.
* If @digits is less than zero, @number is rounded down to the left of the decimal point.
* This function is Excel compatible.
@EXAMPLES=
ROUNDDOWN(5.5) equals 5.
ROUNDDOWN(-3.3) equals -4.
ROUNDDOWN(1501.15,1) equals 1501.1.
ROUNDDOWN(1501.15,-2) equals 1500.0.
@SEEALSO=ROUND,ROUNDUP
@CATEGORY=Mathematics
@FUNCTION=ROUNDUP
@SYNTAX=ROUNDUP(number[,digits])
@DESCRIPTION=ROUNDUP function rounds a given number up.
@number is the number you want rounded up and @digits is the number of digits to which you want to round that number.
* If @digits is greater than zero, @number is rounded up to the given number of digits.
* If @digits is zero or omitted, @number is rounded up to the nearest integer.
* If @digits is less than zero, @number is rounded up to the left of the decimal point.
* This function is Excel compatible.
@EXAMPLES=
ROUNDUP(5.5) equals 6.
ROUNDUP(-3.3) equals -3.
ROUNDUP(1501.15,1) equals 1501.2.
ROUNDUP(1501.15,-2) equals 1600.0.
@SEEALSO=ROUND,ROUNDDOWN
@CATEGORY=Mathematics
@FUNCTION=SERIESSUM
@SYNTAX=SERIESSUM(x,n,m,coefficients)
@DESCRIPTION=SERIESSUM function returns the sum of a power series. @x is the base of the power series, @n is the initial power to raise @x, @m is the increment to the power for each term in the series, and @coefficients are the coefficients by which each successive power of @x is multiplied.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 1.23, 2.32, 2.98, 3.42, and 4.33. Then
SERIESSUM(3,1,2.23,A1:A5) equals 251416.43018.
@SEEALSO=COUNT,SUM
@CATEGORY=Mathematics
@FUNCTION=SIGN
@SYNTAX=SIGN(number)
@DESCRIPTION=SIGN function returns 1 if the @number is positive, zero if the @number is 0, and -1 if the @number is negative.
* This function is Excel compatible.
@EXAMPLES=
SIGN(3) equals 1.
SIGN(-3) equals -1.
SIGN(0) equals 0.
@SEEALSO=
@CATEGORY=Mathematics
@FUNCTION=SIN
@SYNTAX=SIN(x)
@DESCRIPTION=SIN function returns the sine of @x, where @x is given in radians.
* This function is Excel compatible.
@EXAMPLES=
SIN(0.5) equals 0.479426.
@SEEALSO=COS, COSH, SINH, TAN, TANH, RADIANS, DEGREES
@CATEGORY=Mathematics
@FUNCTION=SINH
@SYNTAX=SINH(x)
@DESCRIPTION=SINH function returns the hyperbolic sine of @x, which is defined mathematically as
(exp(@x) - exp(-@x)) / 2.
* This function is Excel compatible.
@EXAMPLES=
SINH(0.5) equals 0.521095.
@SEEALSO=SIN, COS, COSH, TAN, TANH, DEGREES, RADIANS, EXP
@CATEGORY=Mathematics
@FUNCTION=SQRT
@SYNTAX=SQRT(x)
@DESCRIPTION=SQRT function returns the square root of @x.
* If @x is negative, SQRT returns #NUM! error.
* This function is Excel compatible.
@EXAMPLES=
SQRT(2) equals 1.4142136.
@SEEALSO=POWER
@CATEGORY=Mathematics
@FUNCTION=SQRTPI
@SYNTAX=SQRTPI(number)
@DESCRIPTION=SQRTPI function returns the square root of a @number multiplied by pi.
* This function is Excel compatible.
@EXAMPLES=
SQRTPI(2) equals 2.506628275.
@SEEALSO=PI
@CATEGORY=Mathematics
@FUNCTION=SUM
@SYNTAX=SUM(value1, value2, ...)
@DESCRIPTION=SUM computes the sum of all the values and cells referenced in the argument list.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 11, 15, 17, 21, and 43. Then
SUM(A1:A5) equals 107.
@SEEALSO=AVERAGE, COUNT
@CATEGORY=Mathematics
@FUNCTION=SUMA
@SYNTAX=SUMA(value1, value2, ...)
@DESCRIPTION=SUMA computes the sum of all the values and cells referenced in the argument list. Numbers, text and logical values are included in the calculation too. If the cell contains text or the argument evaluates to FALSE, it is counted as value zero (0). If the argument evaluates to TRUE, it is counted as one (1).
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 11, 15, 17, 21, and 43. Then
SUMA(A1:A5) equals 107.
@SEEALSO=AVERAGE, SUM, COUNT
@CATEGORY=Mathematics
@FUNCTION=SUMIF
@SYNTAX=SUMIF(range,criteria[,actual_range])
@DESCRIPTION=SUMIF function sums the values in the given @range that meet the given @criteria. If @actual_range is given, SUMIF sums the values in the @actual_range whose corresponding components in @range meet the given @criteria.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 23, 27, 28, 33, and 39. Then
SUMIF(A1:A5,"<=28") equals 78.
SUMIF(A1:A5,"<28") equals 50.
In addition, if the cells B1, B2, ..., B5 hold numbers 5, 3, 2, 6, and 7 then:
SUMIF(A1:A5,"<=27",B1:B5) equals 8.
@SEEALSO=COUNTIF, SUM
@CATEGORY=Mathematics
@FUNCTION=SUMPRODUCT
@SYNTAX=SUMPRODUCT(range1,range2,...)
@DESCRIPTION=SUMPRODUCT function multiplies corresponding data entries in the given arrays or ranges, and then returns the sum of those products. If an array entry is not numeric, the value zero is used instead.
* If arrays or range arguments do not have the same dimensions, SUMPRODUCT returns #VALUE! error.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 11, 15, 17, 21, and 43 and the cells B1, B2, ..., B5 hold numbers 13, 22, 31, 33, and 39. Then
SUMPRODUCT(A1:A5,B1:B5) equals 3370.
@SEEALSO=SUM,PRODUCT
@CATEGORY=Mathematics
@FUNCTION=SUMSQ
@SYNTAX=SUMSQ(value1, value2, ...)
@DESCRIPTION=SUMSQ returns the sum of the squares of all the values and cells referenced in the argument list.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 11, 15, 17, 21, and 43. Then
SUMSQ(A1:A5) equals 2925.
@SEEALSO=SUM, COUNT
@CATEGORY=Mathematics
@FUNCTION=SUMX2MY2
@SYNTAX=SUMX2MY2(array1,array2)
@DESCRIPTION=SUMX2MY2 function returns the sum of the difference of squares of corresponding values in two arrays. @array1 is the first array or range of data points and @array2 is the second array or range of data points. The equation of SUMX2MY2 is SUM (x^2-y^2).
* Strings and empty cells are simply ignored.
* If @array1 and @array2 have different number of data points, SUMX2MY2 returns #N/A error.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 11, 15, 17, 21, and 43 and the cells B1, B2, ..., B5 hold numbers 13, 22, 31, 33, and 39. Then
SUMX2MY2(A1:A5,B1:B5) equals -1299.
@SEEALSO=SUMSQ,SUMX2PY2
@CATEGORY=Mathematics
@FUNCTION=SUMX2PY2
@SYNTAX=SUMX2PY2(array1,array2)
@DESCRIPTION=SUMX2PY2 function returns the sum of the sum of squares of corresponding values in two arrays. @array1 is the first array or range of data points and @array2 is the second array or range of data points. The equation of SUMX2PY2 is SUM (x^2+y^2).
* Strings and empty cells are simply ignored.
* If @array1 and @array2 have different number of data points, SUMX2PY2 returns #N/A error.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 11, 15, 17, 21, and 43 and the cells B1, B2, ..., B5 hold numbers 13, 22, 31, 33, and 39. Then
SUMX2PY2(A1:A5,B1:B5) equals 7149.
@SEEALSO=SUMSQ,SUMX2MY2
@CATEGORY=Mathematics
@FUNCTION=SUMXMY2
@SYNTAX=SUMXMY2(array1,array2)
@DESCRIPTION=SUMXMY2 function returns the sum of squares of differences of corresponding values in two arrays. @array1 is the first array or range of data points and @array2 is the second array or range of data points. The equation of SUMXMY2 is SUM (x-y)^2.
* Strings and empty cells are simply ignored.
* If @array1 and @array2 have different number of data points, SUMXMY2 returns #N/A error.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 11, 15, 17, 21, and 43 and the cells B1, B2, ..., B5 hold numbers 13, 22, 31, 33, and 39. Then
SUMXMY2(A1:A5,B1:B5) equals 409.
@SEEALSO=SUMSQ,SUMX2MY2,SUMX2PY2
@CATEGORY=Mathematics
@FUNCTION=TAN
@SYNTAX=TAN(x)
@DESCRIPTION=TAN function returns the tangent of @x, where @x is given in radians.
* This function is Excel compatible.
@EXAMPLES=
TAN(3) equals -0.1425465.
@SEEALSO=TANH, COS, COSH, SIN, SINH, DEGREES, RADIANS
@CATEGORY=Mathematics
@FUNCTION=TANH
@SYNTAX=TANH(x)
@DESCRIPTION=TANH function returns the hyperbolic tangent of @x, which is defined mathematically as
sinh(@x) / cosh(@x).
* This function is Excel compatible.
@EXAMPLES=
TANH(2) equals 0.96402758.
@SEEALSO=TAN, SIN, SINH, COS, COSH, DEGREES, RADIANS
@CATEGORY=Mathematics
@FUNCTION=TRUNC
@SYNTAX=TRUNC(number[,digits])
@DESCRIPTION=TRUNC function returns the value of @number truncated to the number of digits specified.
* If @digits is omitted or negative then @digits defaults to zero.
* If @digits is not an integer, it is truncated.
* This function is Excel compatible.
@EXAMPLES=
TRUNC(3.12) equals 3.
TRUNC(4.15,1) equals 4.1.
@SEEALSO=INT
@CATEGORY=Number Theory
@FUNCTION=ISPRIME
@SYNTAX=ISPRIME(i)
@DESCRIPTION=ISPRIME function returns TRUE if @i is prime and FALSE otherwise.
@SEEALSO=ITHPRIME, NT_D, NT_SIGMA
@CATEGORY=Number Theory
@FUNCTION=ITHPRIME
@SYNTAX=ITHPRIME(i)
@DESCRIPTION=ITHPRIME function returns the @ith prime.
@EXAMPLES=
@SEEALSO=NT_D, NT_SIGMA
@CATEGORY=Number Theory
@FUNCTION=NT_D
@SYNTAX=NT_D(n)
@DESCRIPTION=NT_D function calculates the number of divisors of @n.
@EXAMPLES=
@SEEALSO=ITHPRIME, NT_PHI, NT_SIGMA
@CATEGORY=Number Theory
@FUNCTION=NT_MU
@SYNTAX=NT_MU(n)
@DESCRIPTION=NT_MU function (Möbius mu function) returns
0 if @n is divisible by the square of a prime .
Otherwise it returns:
-1 if @n has an odd number of different prime factors .
1 if @n has an even number of different prime factors .
* If @n = 1 NT_MU returns 1.
@EXAMPLES=
@SEEALSO=NT_D, ITHPRIME, NT_PHI
@CATEGORY=Number Theory
@FUNCTION=NT_PHI
@SYNTAX=NT_PHI(n)
@DESCRIPTION=NT_PHI function calculates the number of integers less than or equal to @n that are relatively prime to @n.
@EXAMPLES=
@SEEALSO=NT_D, ITHPRIME, NT_SIGMA
@CATEGORY=Number Theory
@FUNCTION=NT_PI
@SYNTAX=NT_PI(n)
@DESCRIPTION=NT_PI function returns the number of primes less than or equal to @n.
@SEEALSO=ITHPRIME, NT_PHI, NT_D, NT_SIGMA
@CATEGORY=Number Theory
@FUNCTION=NT_SIGMA
@SYNTAX=NT_SIGMA(n)
@DESCRIPTION=NT_SIGMA function calculates the sum of the divisors of @n.
@EXAMPLES=
@SEEALSO=NT_D, ITHPRIME, NT_PHI
@CATEGORY=Number Theory
@FUNCTION=PFACTOR
@SYNTAX=PFACTOR(n)
@DESCRIPTION=PFACTOR function returns the smallest prime factor of its argument.
The argument must be at least 2, or else a #VALUE! error is returned.
@SEEALSO=ITHPRIME
@CATEGORY=Random Numbers
@FUNCTION=RAND
@SYNTAX=RAND()
@DESCRIPTION=RAND returns a random number between zero and one.
* This function is Excel compatible.
@EXAMPLES=
RAND() returns a random number greater than zero but less than one.
@SEEALSO=RANDBETWEEN
@CATEGORY=Random Numbers
@FUNCTION=RANDBERNOULLI
@SYNTAX=RANDBERNOULLI(p)
@DESCRIPTION=RANDBERNOULLI returns a Bernoulli-distributed random number.
* If @p < 0 or @p > 1 RANDBERNOULLI returns #NUM! error.
@EXAMPLES=
RANDBERNOULLI(0.5).
@SEEALSO=RAND,RANDBETWEEN
@CATEGORY=Random Numbers
@FUNCTION=RANDBETA
@SYNTAX=RANDBETA(a,b)
@DESCRIPTION=RANDBETA returns a Beta-distributed random number.
@EXAMPLES=
RANDBETA(1,2).
@SEEALSO=RAND,RANDGAMMA
@CATEGORY=Random Numbers
@FUNCTION=RANDBETWEEN
@SYNTAX=RANDBETWEEN(bottom,top)
@DESCRIPTION=RANDBETWEEN function returns a random integer number between and including @bottom and @top.
* If @bottom or @top is non-integer, they are truncated.
* If @bottom > @top, RANDBETWEEN returns #NUM! error.
* This function is Excel compatible.
@EXAMPLES=
RANDBETWEEN(3,7).
@SEEALSO=RAND,RANDUNIFORM
@CATEGORY=Random Numbers
@FUNCTION=RANDBINOM
@SYNTAX=RANDBINOM(p,trials)
@DESCRIPTION=RANDBINOM returns a binomially-distributed random number.
* If @p < 0 or @p > 1 RANDBINOM returns #NUM! error.
* If @trials < 0 RANDBINOM returns #NUM! error.
@EXAMPLES=
RANDBINOM(0.5,2).
@SEEALSO=RAND,RANDBETWEEN
@CATEGORY=Random Numbers
@FUNCTION=RANDCAUCHY
@SYNTAX=RANDCAUCHY(a)
@DESCRIPTION=RANDCAUCHY returns a Cauchy-distributed random number with scale parameter a. The Cauchy distribution is also known as the Lorentz distribution.
* If @a < 0 RANDCAUCHY returns #NUM! error.
@EXAMPLES=
RANDCAUCHY(1).
@SEEALSO=RAND
@CATEGORY=Random Numbers
@FUNCTION=RANDCHISQ
@SYNTAX=RANDCHISQ(nu)
@DESCRIPTION=RANDCHISQ returns a Chi-Square-distributed random number.
@EXAMPLES=
RANDCHISQ(0.5).
@SEEALSO=RAND,RANDGAMMA
@CATEGORY=Random Numbers
@FUNCTION=RANDDISCRETE
@SYNTAX=RANDDISCRETE(val_range[,prob_range])
@DESCRIPTION=RANDDISCRETE returns one of the values in the @val_range. The probabilities for each value are given in the @prob_range.
* If @prob_range is omitted, the uniform discrete distribution is assumed.
* If the sum of all values in @prob_range is other than one, RANDDISCRETE returns #NUM! error.
* If @val_range and @prob_range are not the same size, RANDDISCRETE returns #NUM! error.
* If @val_range or @prob_range is not a range, RANDDISCRETE returns #VALUE! error.
@EXAMPLES=
RANDDISCRETE(A1:A6) returns one of the values in the range A1:A6.
@SEEALSO=RANDBETWEEN,RAND
@CATEGORY=Random Numbers
@FUNCTION=RANDEXP
@SYNTAX=RANDEXP(b)
@DESCRIPTION=RANDEXP returns a exponentially-distributed random number.
@EXAMPLES=
RANDEXP(0.5).
@SEEALSO=RAND,RANDBETWEEN
@CATEGORY=Random Numbers
@FUNCTION=RANDEXPPOW
@SYNTAX=RANDEXPPOW(a,b)
@DESCRIPTION=RANDEXPPOW returns a random variate from the exponential power distribution with scale parameter @a and exponent @b. The distribution is,
p(x) dx = {1 over 2 a Gamma(1+1/b)} exp(-|x/a|^b) dx, for x >= 0.
* For @b = 1 this reduces to the Laplace distribution.
* For @b = 2 it has the same form as a normal distribution with sigma = a/sqrt(2).
@EXAMPLES=
RANDEXPPOW(0.5,0.1).
@SEEALSO=RAND
@CATEGORY=Random Numbers
@FUNCTION=RANDFDIST
@SYNTAX=RANDFDIST(nu1,nu2)
@DESCRIPTION=RANDFDIST returns a F-distributed random number.
@EXAMPLES=
RANDFDIST(1,2).
@SEEALSO=RAND,RANDGAMMA
@CATEGORY=Random Numbers
@FUNCTION=RANDGAMMA
@SYNTAX=RANDGAMMA(a,b)
@DESCRIPTION=RANDGAMMA returns a Gamma-distributed random number.
* If @a <= 0 RANDGAMMA returns #NUM! error.
@EXAMPLES=
RANDGAMMA(1,2).
@SEEALSO=RAND
@CATEGORY=Random Numbers
@FUNCTION=RANDGEOM
@SYNTAX=RANDGEOM(p)
@DESCRIPTION=RANDGEOM returns a geometric-distributed random number. The number of independent trials with probability @p until the first success. The probability distribution for geometric variates is,
p(k) = p (1-p)^(k-1), for k >= 1.
* If @p < 0 or @p > 1 RANDGEOM returns #NUM! error.
@EXAMPLES=
RANDGEOM(0.4).
@SEEALSO=RAND
@CATEGORY=Random Numbers
@FUNCTION=RANDGUMBEL
@SYNTAX=RANDGUMBEL(a,b[,type])
@DESCRIPTION=RANDGUMBEL returns a Type I or Type II Gumbel-distributed random number. @type is either 1 or 2 and specifies the type of the distribution (Type I or Type II).
* If @type is neither 1 nor 2, RANDGUMBEL returns #NUM! error.
* If @type is omitted, Type I is assumed.
@EXAMPLES=
RANDGUMBEL(0.5,1,2).
@SEEALSO=RAND
@CATEGORY=Random Numbers
@FUNCTION=RANDHYPERG
@SYNTAX=RANDHYPERG(n1,n2,t)
@DESCRIPTION=RANDHYPERG returns a hypergeometric-distributed random number. The probability distribution for hypergeometric random variates is,
p(k) = C(n_1,k) C(n_2, t-k) / C(n_1 + n_2,k),
where C(a,b) = a!/(b!(a-b)!).
The domain of k is max(0,t-n_2), ..., max(t,n_1).
@EXAMPLES=
RANDHYPERG(21,1,9).
@SEEALSO=RAND
@CATEGORY=Random Numbers
@FUNCTION=RANDLANDAU
@SYNTAX=RANDLANDAU()
@DESCRIPTION=RANDLANDAU returns a random variate from the Landau distribution. The probability distribution for Landau random variates is defined analytically by the complex integral,
p(x) = (1/(2 pi i)) int_{c-i infty}^{c+i infty} ds exp(s log(s) + x s).
For numerical purposes it is more convenient to use the following equivalent form of the integral,
p(x) = (1/pi) int_0^ infty dt exp(-t log(t) - x t) sin(pi t).
@EXAMPLES=
RANDLANDAU().
@SEEALSO=RAND
@CATEGORY=Random Numbers
@FUNCTION=RANDLAPLACE
@SYNTAX=RANDLAPLACE(a)
@DESCRIPTION=RANDLAPLACE returns a Laplace-distributed random number. Laplace distribution is also known as two-sided exponential probability distribution.
@EXAMPLES=
RANDLAPLACE(1).
@SEEALSO=RAND
@CATEGORY=Random Numbers
@FUNCTION=RANDLEVY
@SYNTAX=RANDLEVY(c,alpha[,beta])
@DESCRIPTION=RANDLEVY returns a Levy-distributed random number. If @beta is omitted, it is assumed to be 0.
* For @alpha = 1, @beta=0, we get the Lorentz distribution.
* For @alpha = 2, @beta=0, we get the normal distribution.
* If @alpha <= 0 or @alpha > 2, RANDLEVY returns #NUM! error.
* If @beta < -1 or @beta > 1, RANDLEVY returns #NUM! error.
@EXAMPLES=
RANDLEVY(0.5,0.1,1).
@SEEALSO=RAND
@CATEGORY=Random Numbers
@FUNCTION=RANDLOG
@SYNTAX=RANDLOG(p)
@DESCRIPTION=RANDLOG returns a logarithmic-distributed random number.
* If @p < 0 or @p > 1 RANDLOG returns #NUM! error.
@EXAMPLES=
RANDLOG(0.72).
@SEEALSO=RAND
@CATEGORY=Random Numbers
@FUNCTION=RANDLOGISTIC
@SYNTAX=RANDLOGISTIC(a)
@DESCRIPTION=RANDLOGISTIC returns a logistic-distributed random number. The distribution function is,
p(x) dx = { exp(-x/a) over a (1 + exp(-x/a))^2 } dx for -infty < x < +infty.
@EXAMPLES=
RANDLOGISTIC(1).
@SEEALSO=RAND
@CATEGORY=Random Numbers
@FUNCTION=RANDLOGNORM
@SYNTAX=RANDLOGNORM(zeta,sigma)
@DESCRIPTION=RANDLOGNORM returns a lognormal-distributed random number.
@EXAMPLES=
RANDLOGNORM(1,2).
@SEEALSO=RAND
@CATEGORY=Random Numbers
@FUNCTION=RANDNEGBINOM
@SYNTAX=RANDNEGBINOM(p,failures)
@DESCRIPTION=RANDNEGBINOM returns a negative binomially-distributed random number.
* If @p < 0 or @p > 1, RANDNEGBINOM returns #NUM! error.
* If @failures < 1, RANDNEGBINOM returns #NUM! error.
@EXAMPLES=
RANDNEGBINOM(0.5,2).
@SEEALSO=RAND,RANDBETWEEN
@CATEGORY=Random Numbers
@FUNCTION=RANDNORM
@SYNTAX=RANDNORM(mean,stdev)
@DESCRIPTION=RANDNORM returns a normal-distributed random number.
* If @stdev < 0 RANDNORM returns #NUM! error.
@EXAMPLES=
RANDNORM(0,1).
@SEEALSO=RAND
@CATEGORY=Random Numbers
@FUNCTION=RANDNORMTAIL
@SYNTAX=RANDNORMTAIL(a,sigma)
@DESCRIPTION=RANDNORMTAIL returns a random variates from the upper tail of a normal distribution with standard deviation @sigma. The values returned are larger than the lower limit @a, which must be positive. The method is based on Marsaglia's famous rectangle-wedge-tail algorithm (Ann Math Stat 32, 894-899 (1961)), with this aspect explained in Knuth, v2, 3rd ed, p139, 586 (exercise 11).
The probability distribution for normal tail random variates is,
p(x) dx = {1 over N(a;sigma)} exp (- x^2/(2 sigma^2)) dx,
for x > a where N(a;sigma) is the normalization constant, N(a;sigma) = (1/2) erfc(a / sqrt(2 sigma^2)).
@EXAMPLES=
RANDNORMTAIL(0.5,0.1).
@SEEALSO=RAND
@CATEGORY=Random Numbers
@FUNCTION=RANDPARETO
@SYNTAX=RANDPARETO(a,b)
@DESCRIPTION=RANDPARETO returns a Pareto-distributed random number.
@EXAMPLES=
RANDPARETO(1,2).
@SEEALSO=RAND
@CATEGORY=Random Numbers
@FUNCTION=RANDPOISSON
@SYNTAX=RANDPOISSON(lambda)
@DESCRIPTION=RANDPOISSON returns a Poisson-distributed random number.
* If @lambda < 0 RANDPOISSON returns #NUM! error.
@EXAMPLES=
RANDPOISSON(3).
@SEEALSO=RAND,RANDBETWEEN
@CATEGORY=Random Numbers
@FUNCTION=RANDRAYLEIGH
@SYNTAX=RANDRAYLEIGH(sigma)
@DESCRIPTION=RANDRAYLEIGH returns a Rayleigh-distributed random number.
@EXAMPLES=
RANDRAYLEIGH(1).
@SEEALSO=RAND
@CATEGORY=Random Numbers
@FUNCTION=RANDRAYLEIGHTAIL
@SYNTAX=RANDRAYLEIGHTAIL(a,sigma)
@DESCRIPTION=RANDRAYLEIGHTAIL returns a random variate from the tail of the Rayleigh distribution with scale parameter sigma and a lower limit of a. The distribution is,
p(x) dx = {x over sigma^2} exp ((a^2 - x^2) /(2 sigma^2)) dx,
for x > a.
@EXAMPLES=
RANDRAYLEIGHTAIL(0.3,1).
@SEEALSO=RAND,RANDRAYLEIGH
@CATEGORY=Random Numbers
@FUNCTION=RANDTDIST
@SYNTAX=RANDTDIST(nu)
@DESCRIPTION=RANDTDIST returns a T-distributed random number.
@EXAMPLES=
RANDTDIST(0.5).
@SEEALSO=RAND
@CATEGORY=Random Numbers
@FUNCTION=RANDUNIFORM
@SYNTAX=RANDUNIFORM(a,b)
@DESCRIPTION=RANDUNIFORM returns a random variate from the uniform (flat) distribution from a to b. The distribution is,
p(x) dx = {1 over (b-a)} dx : for a <= x < b.
p(x) dx = 0 : for x < a or b <= x.
* If @a > @b RANDUNIFORM returns #NUM! error.
@EXAMPLES=
RANDUNIFORM(1.4,4.2) returns a random number greater than or equal to 1.4 but less than 4.2.
@SEEALSO=RANDBETWEEN,RAND
@CATEGORY=Random Numbers
@FUNCTION=RANDWEIBULL
@SYNTAX=RANDWEIBULL(a,b)
@DESCRIPTION=RANDWEIBULL returns a Weibull-distributed random number.
@EXAMPLES=
RANDWEIBULL(1,2).
@SEEALSO=RAND
@CATEGORY=Random Numbers
@FUNCTION=SIMTABLE
@SYNTAX=SIMTABLE(d1, d2, ..., dN)
@DESCRIPTION=SIMTABLE returns one of the values in the given argument list depending on the round number of the simulation tool. When the simulation tool is not activated, SIMTABLE returns @d1.
With the simulation tool and the SIMTABLE function you can test given decision variables. Each SIMTABLE function contains the possible values of a simulation variable. In most valid simulation models you should have the same number of values @dN for all decision variables. If the simulation is run more rounds than there are values defined, SIMTABLE returns #N/A! error (e.g. if A1 contains `=SIMTABLE(1)' and A2 `=SIMTABLE(1,2)', A1 yields #N/A! error on the second round).
The successive use of the simulation tool also requires that you give to the tool at least one input variable having RAND() or any other RAND<distribution name>() function in it. On each round, the simulation tool iterates for the given number of rounds over all the input variables to reevaluate them. On each iteration, the values of the output variables are stored, and when the round is completed, descriptive statistical information is created according to the values.
@EXAMPLES=
SIMTABLE(TRUE,FALSE) returns TRUE on the first simulation round and FALSE on the second round.
SIMTABLE(223,225,227,229) returns 227 on the simulation round #3.
@SEEALSO=
@CATEGORY=Statistics
@FUNCTION=AVEDEV
@SYNTAX=AVEDEV(n1, n2, ...)
@DESCRIPTION=AVEDEV returns the average of the absolute deviations of a data set from their mean.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 11.4, 17.3, 21.3, 25.9, and 40.1. Then
AVEDEV(A1:A5) equals 7.84.
@SEEALSO=STDEV
@CATEGORY=Statistics
@FUNCTION=AVERAGE
@SYNTAX=AVERAGE(value1, value2,...)
@DESCRIPTION=AVERAGE computes the average of all the values and cells referenced in the argument list. This is equivalent to the sum of the arguments divided by the count of the arguments.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 11.4, 17.3, 21.3, 25.9, and 40.1. Then
AVERAGE(A1:A5) equals 23.2.
@SEEALSO=SUM, COUNT
@CATEGORY=Statistics
@FUNCTION=AVERAGEA
@SYNTAX=AVERAGEA(number1,number2,...)
@DESCRIPTION=AVERAGEA returns the average of the given arguments. Numbers, text and logical values are included in the calculation too. If the cell contains text or the argument evaluates to FALSE, it is counted as value zero (0). If the argument evaluates to TRUE, it is counted as one (1). Note that empty cells are not counted.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers and strings 11.4, 17.3, "missing", 25.9, and 40.1. Then
AVERAGEA(A1:A5) equals 18.94.
@SEEALSO=AVERAGE
@CATEGORY=Statistics
@FUNCTION=BERNOULLI
@SYNTAX=BERNOULLI(k,p)
@DESCRIPTION=BERNOULLI returns the probability p(k) of obtaining @k from a Bernoulli distribution with probability parameter @p.
* If @k != 0 and @k != 1 BERNOULLI returns #NUM! error.
* If @p < 0 or @p > 1 BERNOULLI returns #NUM! error.
@EXAMPLES=
BERNOULLI(0,0.5).
@SEEALSO=RANDBERNOULLI
@CATEGORY=Statistics
@FUNCTION=BETADIST
@SYNTAX=BETADIST(x,alpha,beta[,a,b])
@DESCRIPTION=BETADIST function returns the cumulative beta distribution. @a is the optional lower bound of @x and @b is the optional upper bound of @x.
* If @a is not given, BETADIST uses 0.
* If @b is not given, BETADIST uses 1.
* If @x < @a or @x > @b BETADIST returns #NUM! error.
* If @alpha <= 0 or @beta <= 0, BETADIST returns #NUM! error.
* If @a >= @b BETADIST returns #NUM! error.
* This function is Excel compatible.
@EXAMPLES=
BETADIST(0.12,2,3) equals 0.07319808.
@SEEALSO=BETAINV
@CATEGORY=Statistics
@FUNCTION=BETAINV
@SYNTAX=BETAINV(p,alpha,beta[,a,b])
@DESCRIPTION=BETAINV function returns the inverse of cumulative beta distribution. @a is the optional lower bound of @x and @b is the optional upper bound of @x.
* If @a is not given, BETAINV uses 0.
* If @b is not given, BETAINV uses 1.
* If @p < 0 or @p > 1 BETAINV returns #NUM! error.
* If @alpha <= 0 or @beta <= 0, BETAINV returns #NUM! error.
* If @a >= @b BETAINV returns #NUM! error.
* This function is Excel compatible.
@EXAMPLES=
BETAINV(0.45,1.6,1) equals 0.607096629.
@SEEALSO=BETADIST
@CATEGORY=Statistics
@FUNCTION=BINOMDIST
@SYNTAX=BINOMDIST(n,trials,p,cumulative)
@DESCRIPTION=BINOMDIST function returns the binomial distribution. @n is the number of successes, @trials is the total number of independent trials, @p is the probability of success in trials, and @cumulative describes whether to return the sum of the binomial function from 0 to @n.
* If @n or @trials are non-integer they are truncated.
* If @n < 0 or @trials < 0 BINOMDIST returns #NUM! error.
* If @n > @trials BINOMDIST returns #NUM! error.
* If @p < 0 or @p > 1 BINOMDIST returns #NUM! error.
* This function is Excel compatible.
@EXAMPLES=
BINOMDIST(3,5,0.8,0) equals 0.2048.
@SEEALSO=POISSON
@CATEGORY=Statistics
@FUNCTION=CAUCHY
@SYNTAX=CAUCHY(x,a,cum)
@DESCRIPTION=CAUCHY returns the Cauchy distribution with scale parameter @a. If @cum is TRUE, CAUCHY returns the cumulative distribution.
* If @a < 0 CAUCHY returns #NUM! error.
* If @cum != TRUE and @cum != FALSE CAUCHY returns #VALUE! error.
@EXAMPLES=
CAUCHY(0.43,1,TRUE) returns 0.370735.
@SEEALSO=RANDCAUCHY
@CATEGORY=Statistics
@FUNCTION=CHIDIST
@SYNTAX=CHIDIST(x,dof)
@DESCRIPTION=CHIDIST function returns the one-tailed probability of the chi-squared distribution. @dof is the number of degrees of freedom.
* If @dof is non-integer it is truncated.
* If @dof < 1 CHIDIST returns #NUM! error.
* This function is Excel compatible.
@EXAMPLES=
CHIDIST(5.3,2) equals 0.070651213.
@SEEALSO=CHIINV,CHITEST
@CATEGORY=Statistics
@FUNCTION=CHIINV
@SYNTAX=CHIINV(p,dof)
@DESCRIPTION=CHIINV function returns the inverse of the one-tailed probability of the chi-squared distribution.
* If @p < 0 or @p > 1 or @dof < 1 CHIINV returns #NUM! error.
* This function is Excel compatible.
@EXAMPLES=
CHIINV(0.98,7) equals 1.564293004.
@SEEALSO=CHIDIST,CHITEST
@CATEGORY=Statistics
@FUNCTION=CHITEST
@SYNTAX=CHITEST(actual_range,theoretical_range)
@DESCRIPTION=CHITEST function returns the test for independence of chi-squared distribution.
@actual_range is a range that contains the observed data points. @theoretical_range is a range that contains the expected values of the data points.
* This function is Excel compatible.
@EXAMPLES=
@SEEALSO=CHIDIST,CHIINV
@CATEGORY=Statistics
@FUNCTION=CONFIDENCE
@SYNTAX=CONFIDENCE(x,stddev,size)
@DESCRIPTION=CONFIDENCE function returns the confidence interval for a mean. @x is the significance level, @stddev is the population standard deviation, and @size is the size of the sample.
* If @size is non-integer it is truncated.
* If @size < 0 CONFIDENCE returns #NUM! error.
* If @size is 0 CONFIDENCE returns #DIV/0! error.
* This function is Excel compatible.
@EXAMPLES=
CONFIDENCE(0.05,1,33) equals 0.341185936.
@SEEALSO=AVERAGE
@CATEGORY=Statistics
@FUNCTION=CORREL
@SYNTAX=CORREL(array1,array2)
@DESCRIPTION=CORREL returns the correlation coefficient of two data sets.
* Strings and empty cells are simply ignored.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 11.4, 17.3, 21.3, 25.9, and 40.1, and the cells B1, B2, ... B5 23.2, 25.8, 29.9, 33.5, and 42.7. Then
CORREL(A1:A5,B1:B5) equals 0.996124788.
@SEEALSO=COVAR,FISHER,FISHERINV
@CATEGORY=Statistics
@FUNCTION=COUNT
@SYNTAX=COUNT(b1, b2, ...)
@DESCRIPTION=COUNT returns the total number of integer or floating point arguments passed.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 11.4, 17.3, 21.3, 25.9, and 40.1. Then
COUNT(A1:A5) equals 5.
@SEEALSO=AVERAGE
@CATEGORY=Statistics
@FUNCTION=COUNTA
@SYNTAX=COUNTA(b1, b2, ...)
@DESCRIPTION=COUNTA returns the number of arguments passed not including empty cells.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers and strings 11.4, "missing", "missing", 25.9, and 40.1. Then
COUNTA(A1:A5) equals 5.
@SEEALSO=AVERAGE,COUNT,DCOUNT,DCOUNTA,PRODUCT,SUM
@CATEGORY=Statistics
@FUNCTION=COVAR
@SYNTAX=COVAR(array1,array2)
@DESCRIPTION=COVAR returns the covariance of two data sets.
* Strings and empty cells are simply ignored.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 11.4, 17.3, 21.3, 25.9, and 40.1, and the cells B1, B2, ... B5 23.2, 25.8, 29.9, 33.5, and 42.7. Then
COVAR(A1:A5,B1:B5) equals 65.858.
@SEEALSO=CORREL,FISHER,FISHERINV
@CATEGORY=Statistics
@FUNCTION=CRITBINOM
@SYNTAX=CRITBINOM(trials,p,alpha)
@DESCRIPTION=CRITBINOM function returns the smallest value for which the cumulative is greater than or equal to a given value. @n is the number of trials, @p is the probability of success in trials, and @alpha is the criterion value.
* If @trials is a non-integer it is truncated.
* If @trials < 0 CRITBINOM returns #NUM! error.
* If @p < 0 or @p > 1 CRITBINOM returns #NUM! error.
* If @alpha < 0 or @alpha > 1 CRITBINOM returns #NUM! error.
* This function is Excel compatible.
@EXAMPLES=
CRITBINOM(10,0.5,0.75) equals 6.
@SEEALSO=BINOMDIST
@CATEGORY=Statistics
@FUNCTION=CRONBACH
@SYNTAX=CRONBACH(ref1,ref2,...)
@DESCRIPTION=CRONBACH returns Cronbach's alpha for the given cases.
@ref1 is a data set, @ref2 the second data set, etc..
@EXAMPLES=
@SEEALSO=
@CATEGORY=Statistics
@FUNCTION=DEVSQ
@SYNTAX=DEVSQ(n1, n2, ...)
@DESCRIPTION=DEVSQ returns the sum of squares of deviations of a data set from the sample mean.
* Strings and empty cells are simply ignored.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 11.4, 17.3, 21.3, 25.9, and 40.1. Then
DEVSQ(A1:A5) equals 470.56.
@SEEALSO=STDEV
@CATEGORY=Statistics
@FUNCTION=EXPONDIST
@SYNTAX=EXPONDIST(x,y,cumulative)
@DESCRIPTION=EXPONDIST function returns the exponential distribution. If the @cumulative boolean is false it will return:
@y * exp (-@y*@x),
otherwise it will return
1 - exp (-@y*@x).
* If @x < 0 or @y <= 0 this will return an error.
* This function is Excel compatible.
@EXAMPLES=
EXPONDIST(2,4,0) equals 0.001341851.
@SEEALSO=POISSON
@CATEGORY=Statistics
@FUNCTION=EXPPOWDIST
@SYNTAX=EXPPOWDIST(x,a,b)
@DESCRIPTION=EXPPOWDIST returns the probability density p(x) at @x for Exponential Power distribution with scale parameter @a and exponent @b.
@EXAMPLES=
EXPPOWDIST(0.4,1,2).
@SEEALSO=RANDEXPPOW
@CATEGORY=Statistics
@FUNCTION=FDIST
@SYNTAX=FDIST(x,dof1,dof2)
@DESCRIPTION=FDIST function returns the F probability distribution. @dof1 is the numerator degrees of freedom and @dof2 is the denominator degrees of freedom.
* If @x < 0 FDIST returns #NUM! error.
* If @dof1 < 1 or @dof2 < 1, FDIST returns #NUM! error.
* This function is Excel compatible.
@EXAMPLES=
FDIST(2,5,5) equals 0.232511319.
@SEEALSO=FINV
@CATEGORY=Statistics
@FUNCTION=FINV
@SYNTAX=FINV(p,dof1,dof2)
@DESCRIPTION=FINV function returns the inverse of the F probability distribution.
* If @p < 0 or @p > 1 FINV returns #NUM! error.
* If @dof1 < 1 or @dof2 < 1 FINV returns #NUM! error.
* This function is Excel compatible.
@EXAMPLES=
FINV(0.2,2,4) equals 2.472135955.
@SEEALSO=FDIST
@CATEGORY=Statistics
@FUNCTION=FISHER
@SYNTAX=FISHER(x)
@DESCRIPTION=FISHER function returns the Fisher transformation at @x.
* If @x is not a number, FISHER returns #VALUE! error.
* If @x <= -1 or @x >= 1, FISHER returns #NUM! error.
* This function is Excel compatible.
@EXAMPLES=
FISHER(0.332) equals 0.345074339.
@SEEALSO=SKEW
@CATEGORY=Statistics
@FUNCTION=FISHERINV
@SYNTAX=FISHERINV(x)
@DESCRIPTION=FISHERINV function returns the inverse of the Fisher transformation at @x.
* If @x is non-number FISHERINV returns #VALUE! error.
* This function is Excel compatible.
@EXAMPLES=
FISHERINV(2) equals 0.96402758.
@SEEALSO=FISHER
@CATEGORY=Statistics
@FUNCTION=FORECAST
@SYNTAX=FORECAST(x,known_y's,known_x's)
@DESCRIPTION=FORECAST function estimates a future value according to existing values using simple linear regression. The estimated future value is a y-value for a given x-value (@x).
* If @known_x or @known_y contains no data entries or different number of data entries, FORECAST returns #N/A error.
* If the variance of the @known_x is zero, FORECAST returns #DIV/0 error.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 11.4, 17.3, 21.3, 25.9, and 40.1, and the cells B1, B2, ... B5 23.2, 25.8, 29.9, 33.5, and 42.7. Then
FORECAST(7,A1:A5,B1:B5) equals -10.859397661.
@SEEALSO=INTERCEPT,TREND
@CATEGORY=Statistics
@FUNCTION=FREQUENCY
@SYNTAX=FREQUENCY(data_array,bins_array)
@DESCRIPTION=FREQUENCY function counts how often given values occur within a range of values. The results are given as an array.
@data_array is a data array for which you want to count the frequencies. @bin_array is an array containing the intervals into which you want to group the values in data_array. If the @bin_array is empty, FREQUENCY returns the number of data points in @data_array.
* This function is Excel compatible.
@EXAMPLES=
@SEEALSO=
@CATEGORY=Statistics
@FUNCTION=FTEST
@SYNTAX=FTEST(array1,array2)
@DESCRIPTION=FTEST function returns the two-tailed probability that the variances in the given two data sets are not significantly different.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 11.4, 17.3, 21.3, 25.9, and 40.1, and the cells B1, B2, ... B5 23.2, 25.8, 29.9, 33.5, and 42.7. Then
FTEST(A1:A5,B1:B5) equals 0.510815017.
@SEEALSO=FDIST,FINV
@CATEGORY=Statistics
@FUNCTION=GAMMADIST
@SYNTAX=GAMMADIST(x,alpha,beta,cum)
@DESCRIPTION=GAMMADIST function returns the gamma distribution. If @cum is TRUE, GAMMADIST returns the incomplete gamma function, otherwise it returns the probability mass function.
* If @x < 0 GAMMADIST returns #NUM! error.
* If @alpha <= 0 or @beta <= 0, GAMMADIST returns #NUM! error.
* This function is Excel compatible.
@EXAMPLES=
GAMMADIST(1,2,3,0) equals 0.07961459.
@SEEALSO=GAMMAINV
@CATEGORY=Statistics
@FUNCTION=GAMMAINV
@SYNTAX=GAMMAINV(p,alpha,beta)
@DESCRIPTION=GAMMAINV function returns the inverse of the cumulative gamma distribution.
* If @p < 0 or @p > 1 GAMMAINV returns #NUM! error.
* If @alpha <= 0 or @beta <= 0 GAMMAINV returns #NUM! error.
* This function is Excel compatible.
@EXAMPLES=
GAMMAINV(0.34,2,4) equals 4.829093908.
@SEEALSO=GAMMADIST
@CATEGORY=Statistics
@FUNCTION=GAMMALN
@SYNTAX=GAMMALN(x)
@DESCRIPTION=GAMMALN function returns the natural logarithm of the gamma function.
* If @x is non-number then GAMMALN returns #VALUE! error.
* If @x <= 0 then GAMMALN returns #NUM! error.
* This function is Excel compatible.
@EXAMPLES=
GAMMALN(23) equals 48.471181352.
@SEEALSO=POISSON
@CATEGORY=Statistics
@FUNCTION=GEOMDIST
@SYNTAX=GEOMDIST(k,p,cum)
@DESCRIPTION=GEOMDIST returns the probability p(k) of obtaining @k from a geometric distribution with probability parameter @p.
* If @k < 0 GEOMDIST returns #NUM! error.
* If @p < 0 or @p > 1 GEOMDIST returns #NUM! error.
* If @cum != TRUE and @cum != FALSE GEOMDIST returns #NUM! error.
@EXAMPLES=
GEOMDIST(2,10.4,TRUE).
@SEEALSO=RANDGEOM
@CATEGORY=Statistics
@FUNCTION=GEOMEAN
@SYNTAX=GEOMEAN(b1, b2, ...)
@DESCRIPTION=GEOMEAN returns the geometric mean of the given arguments. This is equal to the Nth root of the product of the terms.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 11.4, 17.3, 21.3, 25.9, and 40.1. Then
GEOMEAN(A1:A5) equals 21.279182482.
@SEEALSO=AVERAGE,HARMEAN,MEDIAN,MODE,TRIMMEAN
@CATEGORY=Statistics
@FUNCTION=GROWTH
@SYNTAX=GROWTH(known_y's[,known_x's,new_x's,const])
@DESCRIPTION=GROWTH function applies the ``least squares'' method to fit an exponential curve to your data and predicts the exponential growth by using this curve.
GROWTH returns an array having one column and a row for each data point in @new_x.
* If @known_x's is omitted, an array {1, 2, 3, ...} is used.
* If @new_x's is omitted, it is assumed to be the same as @known_x's.
* If @known_y's and @known_x's have unequal number of data points, GROWTH returns #NUM! error.
* If @const is FALSE, the line will be forced to go through the origin, i.e., b will be zero. The default is TRUE.
@EXAMPLES=
@SEEALSO=LOGEST,GROWTH,TREND
@CATEGORY=Statistics
@FUNCTION=HARMEAN
@SYNTAX=HARMEAN(b1, b2, ...)
@DESCRIPTION=HARMEAN returns the harmonic mean of the N data points (that is, N divided by the sum of the inverses of the data points).
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 11.4, 17.3, 21.3, 25.9, and 40.1. Then
HARMEAN(A1:A5) equals 19.529814427.
@SEEALSO=AVERAGE,GEOMEAN,MEDIAN,MODE,TRIMMEAN
@CATEGORY=Statistics
@FUNCTION=HYPGEOMDIST
@SYNTAX=HYPGEOMDIST(x,n,M,N[,cumulative])
@DESCRIPTION=HYPGEOMDIST function returns the hypergeometric distribution. @x is the number of successes in the sample, @n is the number of trials, @M is the number of successes overall, and @N is the population size.
If the optional argument @cumulative is TRUE, the cumulative left tail will be returned.
* If @x,@n,@M or @N is a non-integer it is truncated.
* If @x,@n,@M or @N < 0 HYPGEOMDIST returns #NUM! error.
* If @x > @M or @n > @N HYPGEOMDIST returns #NUM! error.
* This function is Excel compatible.
@EXAMPLES=
HYPGEOMDIST(1,2,3,10) equals 0.4666667.
@SEEALSO=BINOMDIST,POISSON
@CATEGORY=Statistics
@FUNCTION=INTERCEPT
@SYNTAX=INTERCEPT(known_y's,known_x's)
@DESCRIPTION=INTERCEPT function calculates the point where the linear regression line intersects the y-axis.
* If @known_x or @known_y contains no data entries or different number of data entries, INTERCEPT returns #N/A error.
* If the variance of the @known_x is zero, INTERCEPT returns #DIV/0 error.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 11.4, 17.3, 21.3, 25.9, and 40.1, and the cells B1, B2, ... B5 23.2, 25.8, 29.9, 33.5, and 42.7. Then
INTERCEPT(A1:A5,B1:B5) equals -20.785117212.
@SEEALSO=FORECAST,TREND
@CATEGORY=Statistics
@FUNCTION=KURT
@SYNTAX=KURT(n1, n2, ...)
@DESCRIPTION=KURT returns an unbiased estimate of the kurtosis of a data set.
Note, that this is only meaningful if the underlying distribution really has a fourth moment. The kurtosis is offset by three such that a normal distribution will have zero kurtosis.
* Strings and empty cells are simply ignored.
* If fewer than four numbers are given or all of them are equal KURT returns #DIV/0! error.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 11.4, 17.3, 21.3, 25.9, and 40.1. Then
KURT(A1:A5) equals 1.234546305.
@SEEALSO=AVERAGE,VAR,SKEW,KURTP
@CATEGORY=Statistics
@FUNCTION=KURTP
@SYNTAX=KURTP(n1, n2, ...)
@DESCRIPTION=KURTP returns the population kurtosis of a data set.
* Strings and empty cells are simply ignored.
* If fewer than two numbers are given or all of them are equal KURTP returns #DIV/0! error.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 11.4, 17.3, 21.3, 25.9, and 40.1. Then
KURTP(A1:A5) equals -0.691363424.
@SEEALSO=AVERAGE,VARP,SKEWP,KURT
@CATEGORY=Statistics
@FUNCTION=LANDAU
@SYNTAX=LANDAU(x)
@DESCRIPTION=LANDAU returns the probability density p(x) at @x for the Landau distribution using an approximation method.
@EXAMPLES=
LANDAU(0.34).
@SEEALSO=RANDLANDAU
@CATEGORY=Statistics
@FUNCTION=LAPLACE
@SYNTAX=LAPLACE(x,a)
@DESCRIPTION=LAPLACE returns the probability density p(x) at @x for Laplace distribution with mean @a.
@EXAMPLES=
LAPLACE(0.4,1).
@SEEALSO=RANDLAPLACE
@CATEGORY=Statistics
@FUNCTION=LARGE
@SYNTAX=LARGE(n1, n2, ..., k)
@DESCRIPTION=LARGE returns the k-th largest value in a data set.
* If data set is empty LARGE returns #NUM! error.
* If @k <= 0 or @k is greater than the number of data items given LARGE returns #NUM! error.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 11.4, 17.3, 21.3, 25.9, and 40.1. Then
LARGE(A1:A5,2) equals 25.9.
LARGE(A1:A5,4) equals 17.3.
@SEEALSO=PERCENTILE,PERCENTRANK,QUARTILE,SMALL
@CATEGORY=Statistics
@FUNCTION=LINEST
@SYNTAX=LINEST(known_y's[,known_x's[,const[,stat]]])
@DESCRIPTION=LINEST function calculates the ``least squares'' line that best fit to your data in @known_y's. @known_x's contains the corresponding x's where y=mx+b.
LINEST returns an array having two columns and one row. The slope (m) of the regression line y=mx+b is given in the first column and the y-intercept (b) in the second.
If @stat is TRUE, extra statistical information will be returned. Extra statistical information is written bellow the regression line coefficients in the result array. Extra statistical information consists of four rows of data. In the first row the standard error values for the coefficients m1, (m2, ...), b are represented. The second row contains the square of R and the standard error for the y estimate. The third row contains the F-observed value and the degrees of freedom. The last row contains the regression sum of squares and the residual sum of squares.
* If @known_x's is omitted, an array {1, 2, 3, ...} is used.
* If @known_y's and @known_x's have unequal number of data points, LINEST returns #NUM! error.
* If @const is FALSE, the line will be forced to go through the origin, i.e., b will be zero. The default is TRUE.
* The default of @stat is FALSE.
@EXAMPLES=
@SEEALSO=LOGEST,TREND
@CATEGORY=Statistics
@FUNCTION=LOGEST
@SYNTAX=LOGEST(known_y's[,known_x's,const,stat])
@DESCRIPTION=LOGEST function applies the ``least squares'' method to fit an exponential curve of the form
y = b * m{1}^x{1} * m{2}^x{2}... to your data.
If @stat is TRUE, extra statistical information will be returned. Extra statistical information is written bellow the regression line coefficients in the result array. Extra statistical information consists of four rows of data. In the first row the standard error values for the coefficients m1, (m2, ...), b are represented. The second row contains the square of R and the standard error for the y estimate. The third row contains the F-observed value and the degrees of freedom. The last row contains the regression sum of squares and the residual sum of squares.
* If @known_x's is omitted, an array {1, 2, 3, ...} is used. LOGEST returns an array { m{n},m{n-1}, ...,m{1},b }.
* If @known_y's and @known_x's have unequal number of data points, LOGEST returns #NUM! error.
* If @const is FALSE, the line will be forced to go through (0,1),i.e., b will be one. The default is TRUE.
* The default of @stat is FALSE.
@EXAMPLES=
@SEEALSO=GROWTH,TREND
@CATEGORY=Statistics
@FUNCTION=LOGFIT
@SYNTAX=LOGFIT(known_y's,known_x's)
@DESCRIPTION=LOGFIT function applies the ``least squares'' method to fit the logarithmic equation
y = a + b * ln(sign * (x - c)) , sign = +1 or -1
to your data. The graph of the equation is a logarithmic curve moved horizontally by c and possibly mirrored across the y-axis (if sign = -1).
LOGFIT returns an array having five columns and one row. `Sign' is given in the first column, `a', `b', and `c' are given in columns 2 to 4. Column 5 holds the sum of squared residuals.
An error is returned when there are less than 3 different x's or y's, or when the shape of the point cloud is too different from a ``logarithmic'' one.
You can use the above formula
= a + b * ln(sign * (x - c))
or rearrange it to
= (exp((y - a) / b)) / sign + c
to compute unknown y's or x's, respectively.
Technically, this is non-linear fitting by trial-and-error. The accuracy of `c' is: width of x-range -> rounded to the next smaller (10^integer), times 0.000001. There might be cases in which the returned fit is not the best possible.
@EXAMPLES=
@SEEALSO=LOGREG,LINEST,LOGEST
@CATEGORY=Statistics
@FUNCTION=LOGINV
@SYNTAX=LOGINV(p,mean,stddev)
@DESCRIPTION=LOGINV function returns the inverse of the lognormal cumulative distribution. @p is the given probability corresponding to the normal distribution, @mean is the arithmetic mean of the distribution, and @stddev is the standard deviation of the distribution.
* If @p < 0 or @p > 1 or @stddev <= 0 LOGINV returns #NUM! error.
* This function is Excel compatible.
@EXAMPLES=
LOGINV(0.5,2,3) equals 7.389056099.
@SEEALSO=EXP,LN,LOG,LOG10,LOGNORMDIST
@CATEGORY=Statistics
@FUNCTION=LOGISTIC
@SYNTAX=LOGISTIC(x,a)
@DESCRIPTION=LOGISTIC returns the probability density p(x) at @x for a logistic distribution with scale parameter @a.
@EXAMPLES=
LOGISTIC(0.4,1).
@SEEALSO=RANDLOGISTIC
@CATEGORY=Statistics
@FUNCTION=LOGNORMDIST
@SYNTAX=LOGNORMDIST(x,mean,stddev)
@DESCRIPTION=LOGNORMDIST function returns the lognormal distribution. @x is the value for which you want the distribution, @mean is the mean of the distribution, and @stddev is the standard deviation of the distribution.
* If @stddev = 0 LOGNORMDIST returns #DIV/0! error.
* If @x <= 0, @mean < 0 or @stddev < 0 LOGNORMDIST returns #NUM! error.
* This function is Excel compatible.
@EXAMPLES=
LOGNORMDIST(3,1,2) equals 0.519662338.
@SEEALSO=NORMDIST
@CATEGORY=Statistics
@FUNCTION=LOGREG
@SYNTAX=LOGREG(known_y's[,known_x's[,const[,stat]]])
@DESCRIPTION=LOGREG function transforms your x's to z=ln(x) and applies the ``least squares'' method to fit the linear equation
y = m * z + b
to your y's and z's --- equivalent to fitting the equation
y = m * ln(x) + b
to y's and x's.
If @known_x's is omitted, an array {1, 2, 3, ...} is used. LOGREG returns an array having two columns and one row. m is given in the first column and b in the second.
If @known_y's and @known_x's have unequal number of data points, LOGREG returns #NUM! error.
If @const is FALSE, the curve will be forced to go through [1; 0], i.e., b will be zero. The default is TRUE.
If @stat is TRUE, extra statistical information will be returned which applies to the state AFTER transformation to z. Extra statistical information is written below m and b in the result array. Extra statistical information consists of four rows of data. In the first row the standard error values for the coefficients m, b are represented. The second row contains the square of R and the standard error for the y estimate. The third row contains the F-observed value and the degrees of freedom. The last row contains the regression sum of squares and the residual sum of squares.The default of @stat is FALSE.
@EXAMPLES=
@SEEALSO=LOGFIT,LINEST,LOGEST
@CATEGORY=Statistics
@FUNCTION=MAX
@SYNTAX=MAX(b1, b2, ...)
@DESCRIPTION=MAX returns the value of the element of the values passed that has the largest value, with negative numbers considered smaller than positive numbers.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 11.4, 17.3, 21.3, 25.9, and 40.1. Then
MAX(A1:A5) equals 40.1.
@SEEALSO=MIN,ABS
@CATEGORY=Statistics
@FUNCTION=MAXA
@SYNTAX=MAXA(number1,number2,...)
@DESCRIPTION=MAXA returns the largest value of the given arguments. Numbers, text and logical values are included in the calculation too. If the cell contains text or the argument evaluates to FALSE, it is counted as value zero (0). If the argument evaluates to TRUE, it is counted as one (1). Note that empty cells are not counted.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers and strings 11.4, 17.3, "missing", 25.9, and 40.1. Then
MAXA(A1:A5) equals 40.1.
@SEEALSO=MAX,MINA
@CATEGORY=Statistics
@FUNCTION=MEDIAN
@SYNTAX=MEDIAN(n1, n2, ...)
@DESCRIPTION=MEDIAN returns the median of the given data set.
* Strings and empty cells are simply ignored.
* If even numbers are given MEDIAN returns the average of the two numbers in the middle.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 11.4, 17.3, 21.3, 25.9, and 40.1. Then
MEDIAN(A1:A5) equals 21.3.
@SEEALSO=AVERAGE,COUNT,COUNTA,DAVERAGE,MODE,SSMEDIAN,SUM
@CATEGORY=Statistics
@FUNCTION=MIN
@SYNTAX=MIN(b1, b2, ...)
@DESCRIPTION=MIN returns the value of the element of the values passed that has the smallest value, with negative numbers considered smaller than positive numbers.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 11.4, 17.3, 21.3, 25.9, and 40.1. Then
MIN(A1:A5) equals 11.4.
@SEEALSO=MAX,ABS
@CATEGORY=Statistics
@FUNCTION=MINA
@SYNTAX=MINA(number1,number2,...)
@DESCRIPTION=MINA returns the smallest value of the given arguments. Numbers, text and logical values are included in the calculation too. If the cell contains text or the argument evaluates to FALSE, it is counted as value zero (0). If the argument evaluates to TRUE, it is counted as one (1). Note that empty cells are not counted.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers and strings 11.4, 17.3, "missing", 25.9, and 40.1. Then
MINA(A1:A5) equals 0.
@SEEALSO=MIN,MAXA
@CATEGORY=Statistics
@FUNCTION=MODE
@SYNTAX=MODE(n1, n2, ...)
@DESCRIPTION=MODE returns the most common number of the data set. If the data set has many most common numbers MODE returns the first one of them.
* Strings and empty cells are simply ignored.
* If the data set does not contain any duplicates MODE returns #N/A error.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 11.4, 17.3, 11.4, 25.9, and 40.1. Then
MODE(A1:A5) equals 11.4.
@SEEALSO=AVERAGE,MEDIAN
@CATEGORY=Statistics
@FUNCTION=NEGBINOMDIST
@SYNTAX=NEGBINOMDIST(f,t,p)
@DESCRIPTION=NEGBINOMDIST function returns the negative binomial distribution. @f is the number of failures, @t is the threshold number of successes, and @p is the probability of a success.
* If @f or @t is a non-integer it is truncated.
* If (@f + @t -1) <= 0 NEGBINOMDIST returns #NUM! error.
* If @p < 0 or @p > 1 NEGBINOMDIST returns #NUM! error.
* This function is Excel compatible.
@EXAMPLES=
NEGBINOMDIST(2,5,0.55) equals 0.152872629.
@SEEALSO=BINOMDIST,COMBIN,FACT,HYPGEOMDIST,PERMUT
@CATEGORY=Statistics
@FUNCTION=NORMDIST
@SYNTAX=NORMDIST(x,mean,stddev,cumulative)
@DESCRIPTION=NORMDIST function returns the normal cumulative distribution. @x is the value for which you want the distribution, @mean is the mean of the distribution, @stddev is the standard deviation.
* If @stddev is 0 NORMDIST returns #DIV/0! error.
* This function is Excel compatible.
@EXAMPLES=
NORMDIST(2,1,2,0) equals 0.176032663.
@SEEALSO=POISSON
@CATEGORY=Statistics
@FUNCTION=NORMINV
@SYNTAX=NORMINV(p,mean,stddev)
@DESCRIPTION=NORMINV function returns the inverse of the normal cumulative distribution. @p is the given probability corresponding to the normal distribution, @mean is the arithmetic mean of the distribution, and @stddev is the standard deviation of the distribution.
* If @p < 0 or @p > 1 or @stddev <= 0 NORMINV returns #NUM! error.
* This function is Excel compatible.
@EXAMPLES=
NORMINV(0.76,2,3) equals 4.118907689.
@SEEALSO=NORMDIST,NORMSDIST,NORMSINV,STANDARDIZE,ZTEST
@CATEGORY=Statistics
@FUNCTION=NORMSDIST
@SYNTAX=NORMSDIST(x)
@DESCRIPTION=NORMSDIST function returns the standard normal cumulative distribution. @x is the value for which you want the distribution.
* This function is Excel compatible.
@EXAMPLES=
NORMSDIST(2) equals 0.977249868.
@SEEALSO=NORMDIST
@CATEGORY=Statistics
@FUNCTION=NORMSINV
@SYNTAX=NORMSINV(p)
@DESCRIPTION=NORMSINV function returns the inverse of the standard normal cumulative distribution. @p is the given probability corresponding to the normal distribution.
* If @p < 0 or @p > 1 NORMSINV returns #NUM! error.
* This function is Excel compatible.
@EXAMPLES=
NORMSINV(0.2) equals -0.841621234.
@SEEALSO=NORMDIST,NORMINV,NORMSDIST,STANDARDIZE,ZTEST
@CATEGORY=Statistics
@FUNCTION=PARETO
@SYNTAX=PARETO(x,a,b)
@DESCRIPTION=PARETO returns the probability density p(x) at @x for a Pareto distribution with exponent @a and scale @b.
@EXAMPLES=
PARETO(0.6,1,2).
@SEEALSO=RANDPARETO
@CATEGORY=Statistics
@FUNCTION=PEARSON
@SYNTAX=PEARSON(array1,array2)
@DESCRIPTION=PEARSON returns the Pearson correlation coefficient of two data sets.
* Strings and empty cells are simply ignored.
* This function is Excel compatible.
@EXAMPLES=
@SEEALSO=INTERCEPT,LINEST,RSQ,SLOPE,STEYX
@CATEGORY=Statistics
@FUNCTION=PERCENTILE
@SYNTAX=PERCENTILE(array,k)
@DESCRIPTION=PERCENTILE function returns the 100*@k-th percentile of the given data points (that is, a number x such that a fraction @k of the data points are less than x).
* If @array is empty, PERCENTILE returns #NUM! error.
* If @k < 0 or @k > 1, PERCENTILE returns #NUM! error.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 11.4, 17.3, 21.3, 25.9, and 40.1. Then
PERCENTILE(A1:A5,0.42) equals 20.02.
@SEEALSO=QUARTILE
@CATEGORY=Statistics
@FUNCTION=PERCENTRANK
@SYNTAX=PERCENTRANK(array,x[,significance])
@DESCRIPTION=PERCENTRANK function returns the rank of a data point in a data set. @array is the range of numeric values, @x is the data point which you want to rank, and the optional @significance specifies the number of significant digits for the returned value, truncating the remainder. If @significance is omitted, PERCENTRANK uses three digits.
* If @array contains no data points, PERCENTRANK returns #NUM! error.
* If @significance is less than one, PERCENTRANK returns #NUM! error.
* If @x exceeds the largest value or is less than the smallest value in @array, PERCENTRANK returns #NUM! error.
* If @x does not match any of the values in @array or @x matches more than once, PERCENTRANK interpolates the returned value.
@EXAMPLES=
@SEEALSO=LARGE,MAX,MEDIAN,MIN,PERCENTILE,QUARTILE,SMALL
@CATEGORY=Statistics
@FUNCTION=PERMUT
@SYNTAX=PERMUT(n,k)
@DESCRIPTION=PERMUT function returns the number of permutations. @n is the number of objects, @k is the number of objects in each permutation.
* If @n = 0 PERMUT returns #NUM! error.
* If @n < @k PERMUT returns #NUM! error.
* This function is Excel compatible.
@EXAMPLES=
PERMUT(7,3) equals 210.
@SEEALSO=COMBIN
@CATEGORY=Statistics
@FUNCTION=POISSON
@SYNTAX=POISSON(x,mean,cumulative)
@DESCRIPTION=POISSON function returns the Poisson distribution. @x is the number of events, @mean is the expected numeric value @cumulative describes whether to return the sum of the Poisson function from 0 to @x.
* If @x is a non-integer it is truncated.
* If @x < 0 POISSON returns #NUM! error.
* If @mean <= 0 POISSON returns the #NUM! error.
* This function is Excel compatible.
@EXAMPLES=
POISSON(3,6,0) equals 0.089235078.
@SEEALSO=NORMDIST, WEIBULL
@CATEGORY=Statistics
@FUNCTION=PROB
@SYNTAX=PROB(x_range,prob_range,lower_limit[,upper_limit])
@DESCRIPTION=PROB function returns the probability that values in a range or an array are between two limits. If @upper_limit is not given, PROB returns the probability that values in @x_range are equal to @lower_limit.
* If the sum of the probabilities in @prob_range is not equal to 1 PROB returns #NUM! error.
* If any value in @prob_range is <=0 or > 1, PROB returns #NUM! error.
* If @x_range and @prob_range contain a different number of data entries, PROB returns #N/A error.
* This function is Excel compatible.
@EXAMPLES=
@SEEALSO=BINOMDIST,CRITBINOM
@CATEGORY=Statistics
@FUNCTION=QUARTILE
@SYNTAX=QUARTILE(array,quart)
@DESCRIPTION=QUARTILE function returns the quartile of the given data points.
If @quart is equal to: QUARTILE returns:
0 the smallest value of @array.
1 the first quartile
2 the second quartile
3 the third quartile
4 the largest value of @array.
* If @array is empty, QUARTILE returns #NUM! error.
* If @quart < 0 or @quart > 4, QUARTILE returns #NUM! error.
* If @quart is not an integer, it is truncated.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 11.4, 17.3, 21.3, 25.9, and 40.1. Then
QUARTILE(A1:A5,1) equals 17.3.
@SEEALSO=LARGE,MAX,MEDIAN,MIN,PERCENTILE,SMALL
@CATEGORY=Statistics
@FUNCTION=RANK
@SYNTAX=RANK(x,ref[,order])
@DESCRIPTION=RANK returns the rank of a number in a list of numbers. @x is the number whose rank you want to find, @ref is the list of numbers, and @order specifies how to rank numbers. If @order is 0, numbers are ranked in descending order, otherwise numbers are ranked in ascending order.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 11.4, 17.3, 21.3, 25.9, and 40.1. Then
RANK(17.3,A1:A5) equals 4.
@SEEALSO=PERCENTRANK
@CATEGORY=Statistics
@FUNCTION=RAYLEIGH
@SYNTAX=RAYLEIGH(x,sigma)
@DESCRIPTION=RAYLEIGH returns the probability density p(x) at @x for a Rayleigh distribution with scale parameter @sigma.
@EXAMPLES=
RAYLEIGH(0.4,1).
@SEEALSO=RANDRAYLEIGH
@CATEGORY=Statistics
@FUNCTION=RAYLEIGHTAIL
@SYNTAX=RAYLEIGHTAIL(x,a,sigma)
@DESCRIPTION=RAYLEIGHTAIL returns the probability density p(x) at @x for a Rayleigh tail distribution with scale parameter @sigma and lower limit @a.
@EXAMPLES=
RAYLEIGHTAIL(0.6,0.3,1).
@SEEALSO=RANDRAYLEIGHTAIL
@CATEGORY=Statistics
@FUNCTION=RSQ
@SYNTAX=RSQ(array1,array2)
@DESCRIPTION=RSQ returns the square of the Pearson correlation coefficient of two data sets.
* Strings and empty cells are simply ignored.
* This function is Excel compatible.
@EXAMPLES=
@SEEALSO=CORREL,COVAR,INTERCEPT,LINEST,LOGEST,PEARSON,SLOPE,STEYX,TREND
@CATEGORY=Statistics
@FUNCTION=SKEW
@SYNTAX=SKEW(n1, n2, ...)
@DESCRIPTION=SKEW returns an unbiased estimate for skewness of a distribution.
Note, that this is only meaningful if the underlying distribution really has a third moment. The skewness of a symmetric (e.g., normal) distribution is zero.
* Strings and empty cells are simply ignored.
* If less than three numbers are given, SKEW returns #DIV/0! error.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 11.4, 17.3, 21.3, 25.9, and 40.1. Then
SKEW(A1:A5) equals 0.976798268.
@SEEALSO=AVERAGE,VAR,SKEWP,KURT
@CATEGORY=Statistics
@FUNCTION=SKEWP
@SYNTAX=SKEWP(n1, n2, ...)
@DESCRIPTION=SKEWP returns the population skewness of a data set.
* Strings and empty cells are simply ignored.
* If less than two numbers are given, SKEWP returns #DIV/0! error.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 11.4, 17.3, 21.3, 25.9, and 40.1. Then
SKEWP(A1:A5) equals 0.655256198.
@SEEALSO=AVERAGE,VARP,SKEW,KURTP
@CATEGORY=Statistics
@FUNCTION=SLOPE
@SYNTAX=SLOPE(known_y's,known_x's)
@DESCRIPTION=SLOPE returns the slope of the linear regression line.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 11.4, 17.3, 21.3, 25.9, and 40.1, and the cells B1, B2, ... B5 23.2, 25.8, 29.9, 33.5, and 42.7. Then
SLOPE(A1:A5,B1:B5) equals 1.417959936.
@SEEALSO=STDEV,STDEVPA
@CATEGORY=Statistics
@FUNCTION=SMALL
@SYNTAX=SMALL(n1, n2, ..., k)
@DESCRIPTION=SMALL returns the k-th smallest value in a data set.
* If data set is empty SMALL returns #NUM! error.
* If @k <= 0 or @k is greater than the number of data items given SMALL returns #NUM! error.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 11.4, 17.3, 21.3, 25.9, and 40.1. Then
SMALL(A1:A5,2) equals 17.3.
SMALL(A1:A5,4) equals 25.9.
@SEEALSO=PERCENTILE,PERCENTRANK,QUARTILE,LARGE
@CATEGORY=Statistics
@FUNCTION=SSMEDIAN
@SYNTAX=SSMEDIAN(array[,interval)]
@DESCRIPTION=The SSMEDIAN function returns the median for grouped data as commonly determined in the social sciences. The data points given in @array are assumed to be the result of grouping data into intervals of length @interval
* If @interval is not given, SSMEDIAN uses 1.
* If @array is empty, SSMEDIAN returns #NUM! error.
* If @interval <= 0, SSMEDIAN returns #NUM! error.
* SSMEDIAN does not check whether the data points are at least @interval apart.
@EXAMPLES=
Let us assume that the cells A1, A2, A3 contain numbers 7, 8, 8. Then
SSMEDIAN(A1:A3, 1) equals 7.75.
@SEEALSO=MEDIAN
@CATEGORY=Statistics
@FUNCTION=STANDARDIZE
@SYNTAX=STANDARDIZE(x,mean,stddev)
@DESCRIPTION=STANDARDIZE function returns a normalized value. @x is the number to be normalized, @mean is the mean of the distribution, @stddev is the standard deviation of the distribution.
* If @stddev is 0 STANDARDIZE returns #DIV/0! error.
* This function is Excel compatible.
@EXAMPLES=
STANDARDIZE(3,2,4) equals 0.25.
@SEEALSO=AVERAGE
@CATEGORY=Statistics
@FUNCTION=STDEV
@SYNTAX=STDEV(b1, b2, ...)
@DESCRIPTION=STDEV returns the sample standard deviation of the given sample.
To obtain the population standard deviation of a whole population use STDEVP.
STDEV is also known as the N-1-standard deviation.
Under reasonable conditions, it is the maximum-likelihood estimator for the true population standard deviation.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 11.4, 17.3, 21.3, 25.9, and 40.1. Then
STDEV(A1:A5) equals 10.84619749.
@SEEALSO=AVERAGE,DSTDEV,DSTDEVP,STDEVA,STDEVPA,VAR
@CATEGORY=Statistics
@FUNCTION=STDEVA
@SYNTAX=STDEVA(number1,number2,...)
@DESCRIPTION=STDEVA returns the sample standard deviation of the given sample.
To obtain the population standard deviation of a whole population use STDEVPA.
STDEVA is also known as the N-1-standard deviation.
Under reasonable conditions, it is the maximum-likelihood estimator for the true population standard deviation.
Numbers, text and logical values are included in the calculation too. If the cell contains text or the argument evaluates to FALSE, it is counted as value zero (0). If the argument evaluates to TRUE, it is counted as one (1). Note that empty cells are not counted.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers and strings 11.4, 17.3, "missing", 25.9, and 40.1. Then
STDEVA(A1:A5) equals 15.119953704.
@SEEALSO=STDEV,STDEVPA
@CATEGORY=Statistics
@FUNCTION=STDEVP
@SYNTAX=STDEVP(b1, b2, ...)
@DESCRIPTION=STDEVP returns the population standard deviation of the given population.
This is also known as the N-standard deviation
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 11.4, 17.3, 21.3, 25.9, and 40.1. Then
STDEVP(A1:A5) equals 9.701133954.
@SEEALSO=STDEV,STDEVA,STDEVPA
@CATEGORY=Statistics
@FUNCTION=STDEVPA
@SYNTAX=STDEVPA(number1,number2,...)
@DESCRIPTION=STDEVPA returns the population standard deviation of an entire population.
This is also known as the N-standard deviation
Numbers, text and logical values are included in the calculation too. If the cell contains text or the argument evaluates to FALSE, it is counted as value zero (0). If the argument evaluates to TRUE, it is counted as one (1). Note that empty cells are not counted.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers and strings 11.4, 17.3, "missing", 25.9, and 40.1. Then
STDEVPA(A1:A5) equals 13.523697719.
@SEEALSO=STDEVA,STDEVP
@CATEGORY=Statistics
@FUNCTION=STEYX
@SYNTAX=STEYX(known_y's,known_x's)
@DESCRIPTION=STEYX function returns the standard error of the predicted y-value for each x in the regression.
* If @known_y's and @known_x's are empty or have a different number of arguments then STEYX returns #N/A error.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 11.4, 17.3, 21.3, 25.9, and 40.1, and the cells B1, B2, ... B5 23.2, 25.8, 29.9, 33.5, and 42.7. Then
STEYX(A1:A5,B1:B5) equals 1.101509979.
@SEEALSO=PEARSON,RSQ,SLOPE
@CATEGORY=Statistics
@FUNCTION=SUBTOTAL
@SYNTAX=SUBTOTAL(function_nbr,ref1,ref2,...)
@DESCRIPTION=SUBTOTAL function returns a subtotal of given list of arguments. @function_nbr is the number that specifies which function to use in calculating the subtotal.
The following functions are available:
1 AVERAGE
2 COUNT
3 COUNTA
4 MAX
5 MIN
6 PRODUCT
7 STDEV
8 STDEVP
9 SUM
10 VAR
11 VARP
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 23, 27, 28, 33, and 39. Then
SUBTOTAL(1,A1:A5) equals 30.
SUBTOTAL(6,A1:A5) equals 22378356.
SUBTOTAL(7,A1:A5) equals 6.164414003.
SUBTOTAL(9,A1:A5) equals 150.
SUBTOTAL(11,A1:A5) equals 30.4.
@SEEALSO=COUNT,SUM
@CATEGORY=Statistics
@FUNCTION=TDIST
@SYNTAX=TDIST(x,dof,tails)
@DESCRIPTION=TDIST function returns the Student's t-distribution. @dof is the degree of freedom and @tails is 1 or 2 depending on whether you want one-tailed or two-tailed distribution.
@tails = 1 returns the size of the right tail.
* If @dof < 1 TDIST returns #NUM! error.
* If @tails is neither 1 or 2 TDIST returns #NUM! error.
* This function is Excel compatible for non-negative @x.
@EXAMPLES=
TDIST(2,5,1) equals 0.050969739.
TDIST(-2,5,1) equals 0.949030261.
TDIST(0,5,2) equals 1.
@SEEALSO=TINV,TTEST
@CATEGORY=Statistics
@FUNCTION=TINV
@SYNTAX=TINV(p,dof)
@DESCRIPTION=TINV function returns the inverse of the two-tailed Student's t-distribution.
* If @p < 0 or @p > 1 or @dof < 1 TINV returns #NUM! error.
* This function is Excel compatible.
@EXAMPLES=
TINV(0.4,32) equals 0.852998454.
@SEEALSO=TDIST,TTEST
@CATEGORY=Statistics
@FUNCTION=TREND
@SYNTAX=TREND(known_y's[,known_x's[,new_x's[,const]]])
@DESCRIPTION=TREND function estimates future values of a given data set using the ``least squares'' line that best fit to your data. @known_y's is the y-values where y=mx+b and @known_x's contains the corresponding x-values. @new_x's contains the x-values for which you want to estimate the y-values. If @const is FALSE, the line will be forced to go through the origin, i.e., b will be zero.
* If @known_x's is omitted, an array {1, 2, 3, ...} is used.
* If @new_x's is omitted, it is assumed to be the same as @known_x's.
* If @const is omitted, it is assumed to be TRUE.
* If @known_y's and @known_x's have unequal number of data points, TREND returns #NUM! error.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 11.4, 17.3, 21.3, 25.9, and 40.1, and the cells B1, B2, ... B5 23.2, 25.8, 29.9, 33.5, and 42.7. Then
TREND(A1:A5,B1:B5) equals {12.1, 15.7, 21.6, 26.7, 39.7}.
@SEEALSO=LINEST
@CATEGORY=Statistics
@FUNCTION=TRIMMEAN
@SYNTAX=TRIMMEAN(ref,fraction)
@DESCRIPTION=TRIMMEAN returns the mean of the interior of a data set. @ref is the list of numbers whose mean you want to calculate and @fraction is the fraction of the data set excluded from the mean. For example, if @fraction=0.2 and the data set contains 40 numbers, 8 numbers are trimmed from the data set (40 x 0.2), 4 from the top and 4 from the bottom of the set.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 11.4, 17.3, 21.3, 25.9, and 40.1. Then
TRIMMEAN(A1:A5,0.2) equals 23.2.
@SEEALSO=AVERAGE,GEOMEAN,HARMEAN,MEDIAN,MODE
@CATEGORY=Statistics
@FUNCTION=TTEST
@SYNTAX=TTEST(array1,array2,tails,type)
@DESCRIPTION=TTEST function returns the probability of a Student's t-Test.
@array1 is the first data set and @array2 is the second data set. If @tails is one, TTEST uses the one-tailed distribution and if @tails is two, TTEST uses the two-tailed distribution. @type determines the kind of the test:
1 Paired test
2 Two-sample equal variance
3 Two-sample unequal variance
* If the data sets contain a different number of data points and the test is paired (@type one), TTEST returns the #N/A error.
* @tails and @type are truncated to integers.
* If @tails is not one or two, TTEST returns #NUM! error.
* If @type is any other than one, two, or three, TTEST returns #NUM! error.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 11.4, 17.3, 21.3, 25.9, and 40.1, and the cells B1, B2, ... B5 23.2, 25.8, 29.9, 33.5, and 42.7. Then
TTEST(A1:A5,B1:B5,1,1) equals 0.003127619.
TTEST(A1:A5,B1:B5,2,1) equals 0.006255239.
TTEST(A1:A5,B1:B5,1,2) equals 0.111804322.
TTEST(A1:A5,B1:B5,1,3) equals 0.113821797.
@SEEALSO=FDIST,FINV
@CATEGORY=Statistics
@FUNCTION=VAR
@SYNTAX=VAR(b1, b2, ...)
@DESCRIPTION=VAR calculates sample variance of the given sample. To get the true variance of a complete population use VARP.
VAR is also known as the N-1-variance. Under reasonable conditions, it is the maximum-likelihood estimator for the true variance.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 11.4, 17.3, 21.3, 25.9, and 40.1. Then
VAR(A1:A5) equals 117.64.
@SEEALSO=VARP,STDEV
@CATEGORY=Statistics
@FUNCTION=VARA
@SYNTAX=VARA(number1,number2,...)
@DESCRIPTION=VARA calculates sample variance of the given sample.
To get the true variance of a complete population use VARPA.
VARA is also known as the N-1-variance.
Under reasonable conditions, it is the maximum-likelihood estimator for the true variance.
Numbers, text and logical values are included in the calculation too. If the cell contains text or the argument evaluates to FALSE, it is counted as value zero (0). If the argument evaluates to TRUE, it is counted as one (1). Note that empty cells are not counted.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers and strings 11.4, 17.3, "missing", 25.9, and 40.1. Then
VARA(A1:A5) equals 228.613.
@SEEALSO=VAR,VARPA
@CATEGORY=Statistics
@FUNCTION=VARP
@SYNTAX=VARP(b1, b2, ...)
@DESCRIPTION=VARP calculates the variance of an entire population.
VARP is also known as the N-variance.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 11.4, 17.3, 21.3, 25.9, and 40.1. Then
VARP(A1:A5) equals 94.112.
@SEEALSO=AVERAGE,DVAR,DVARP,STDEV,VAR
@CATEGORY=Statistics
@FUNCTION=VARPA
@SYNTAX=VARPA(number1,number2,...)
@DESCRIPTION=VARPA calculates the variance of an entire population.
VARPA is also known as the N-variance.
Numbers, text and logical values are included in the calculation too. If the cell contains text or the argument evaluates to FALSE, it is counted as value zero (0). If the argument evaluates to TRUE, it is counted as one (1). Note that empty cells are not counted.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers and strings 11.4, 17.3, "missing", 25.9, and 40.1. Then
VARPA(A1:A5) equals 182.8904.
@SEEALSO=VARA,VARP
@CATEGORY=Statistics
@FUNCTION=WEIBULL
@SYNTAX=WEIBULL(x,alpha,beta,cumulative)
@DESCRIPTION=WEIBULL function returns the Weibull distribution. If the @cumulative boolean is true it will return:
1 - exp (-(@x/@beta)^@alpha),
otherwise it will return
(@alpha/@beta^@alpha) * @x^(@alpha-1) * exp(-(@x/@beta^@alpha)).
* If @x < 0 WEIBULL returns #NUM! error.
* If @alpha <= 0 or @beta <= 0 WEIBULL returns #NUM! error.
* This function is Excel compatible.
@EXAMPLES=
WEIBULL(3,2,4,0) equals 0.213668559.
@SEEALSO=POISSON
@CATEGORY=Statistics
@FUNCTION=ZTEST
@SYNTAX=ZTEST(ref,x)
@DESCRIPTION=ZTEST returns the two-tailed probability of a z-test.
@ref is the data set and @x is the value to be tested.
* If @ref contains less than two data items ZTEST returns #DIV/0! error.
* This function is Excel compatible.
@EXAMPLES=
Let us assume that the cells A1, A2, ..., A5 contain numbers 11.4, 17.3, 21.3, 25.9, and 40.1. Then
ZTEST(A1:A5,20) equals 0.254717826.
@SEEALSO=CONFIDENCE,NORMDIST,NORMINV,NORMSDIST,NORMSINV,STANDARDIZE
@CATEGORY=String
@FUNCTION=CHAR
@SYNTAX=CHAR(x)
@DESCRIPTION=CHAR returns the ASCII character represented by the number @x.
@EXAMPLES=
CHAR(65) equals A.
@SEEALSO=CODE
@CATEGORY=String
@FUNCTION=CLEAN
@SYNTAX=CLEAN(string)
@DESCRIPTION=CLEAN removes any non-printable characters from @string.
* This function is Excel compatible.
@EXAMPLES=
CLEAN("one"\&char(7)) equals "one".
@SEEALSO=
@CATEGORY=String
@FUNCTION=CODE
@SYNTAX=CODE(char)
@DESCRIPTION=CODE returns the ASCII number for the character @char.
* This function is Excel compatible.
@EXAMPLES=
CODE("A") equals 65.
@SEEALSO=CHAR
@CATEGORY=String
@FUNCTION=CONCATENATE
@SYNTAX=CONCATENATE(string1[,string2...])
@DESCRIPTION=CONCATENATE returns the string obtained by concatenation of the given strings.
* This function is Excel compatible.
@EXAMPLES=
CONCATENATE("aa","bb") equals "aabb".
@SEEALSO=LEFT, MID, RIGHT
@CATEGORY=String
@FUNCTION=DOLLAR
@SYNTAX=DOLLAR(num[,decimals])
@DESCRIPTION=DOLLAR returns @num formatted as currency.
* This function is Excel compatible.
@EXAMPLES=
DOLLAR(12345) equals "$12,345.00".
@SEEALSO=FIXED, TEXT, VALUE
@CATEGORY=String
@FUNCTION=EXACT
@SYNTAX=EXACT(string1, string2)
@DESCRIPTION=EXACT returns true if @string1 is exactly equal to @string2 (this routine is case sensitive).
* This function is Excel compatible.
@EXAMPLES=
EXACT("key","key") equals TRUE.
EXACT("key","Key") equals FALSE.
@SEEALSO=LEN, SEARCH, DELTA
@CATEGORY=String
@FUNCTION=FIND
@SYNTAX=FIND(string1,string2[,start])
@DESCRIPTION=FIND returns position of @string1 in @string2 (case-sensitive), searching only from character @start onwards (assuming 1 if omitted).
* This function is Excel compatible.
@EXAMPLES=
FIND("ac","Jack") equals 2.
@SEEALSO=EXACT, LEN, MID, SEARCH
@CATEGORY=String
@FUNCTION=FIXED
@SYNTAX=FIXED(num,[decimals, no_commas])
@DESCRIPTION=FIXED returns @num as a formatted string with @decimals numbers after the decimal point, omitting commas if requested by @no_commas.
* This function is Excel compatible.
@EXAMPLES=
FIXED(1234.567,2) equals "1,234.57".
@SEEALSO=TEXT, VALUE, DOLLAR
@CATEGORY=String
@FUNCTION=LEFT
@SYNTAX=LEFT(text[,num_chars])
@DESCRIPTION=LEFT returns the leftmost @num_chars characters or the left character if @num_chars is not specified.
* This function is Excel compatible.
@EXAMPLES=
LEFT("Directory",3) equals "Dir".
@SEEALSO=MID, RIGHT
@CATEGORY=String
@FUNCTION=LEN
@SYNTAX=LEN(string)
@DESCRIPTION=LEN returns the length in characters of the string @string.
* This function is Excel compatible.
@EXAMPLES=
LEN("Helsinki") equals 8.
@SEEALSO=CHAR, CODE
@CATEGORY=String
@FUNCTION=LENB
@SYNTAX=LENB(string)
@DESCRIPTION=LENB returns the length in bytes of the string @string.
* This function is Excel compatible.
@EXAMPLES=
LENB("Helsinki") equals 8.
@SEEALSO=CHAR, CODE, LEN
@CATEGORY=String
@FUNCTION=LOWER
@SYNTAX=LOWER(text)
@DESCRIPTION=LOWER returns a lower-case version of the string in @text.
* This function is Excel compatible.
@EXAMPLES=
LOWER("J. F. Kennedy") equals "j. f. kennedy".
@SEEALSO=UPPER
@CATEGORY=String
@FUNCTION=MID
@SYNTAX=MID(string, position, length)
@DESCRIPTION=MID returns a substring from @string starting at @position for @length characters.
* This function is Excel compatible.
@EXAMPLES=
MID("testing",2,3) equals "est".
@SEEALSO=LEFT, RIGHT
@CATEGORY=String
@FUNCTION=PROPER
@SYNTAX=PROPER(string)
@DESCRIPTION=PROPER returns @string with initial of each word capitalised.
* This function is Excel compatible.
@EXAMPLES=
PROPER("j. f. kennedy") equals "J. F. Kennedy".
@SEEALSO=LOWER, UPPER
@CATEGORY=String
@FUNCTION=REPLACE
@SYNTAX=REPLACE(old,start,num,new)
@DESCRIPTION=REPLACE returns @old with @new replacing @num characters from @start.
* This function is Excel compatible.
@EXAMPLES=
REPLACE("testing",2,3,"*****") equals "t*****ing".
@SEEALSO=MID, SEARCH, SUBSTITUTE, TRIM
@CATEGORY=String
@FUNCTION=REPT
@SYNTAX=REPT(string,num)
@DESCRIPTION=REPT returns @num repetitions of @string.
* This function is Excel compatible.
@EXAMPLES=
REPT(".",3) equals "...".
@SEEALSO=CONCATENATE
@CATEGORY=String
@FUNCTION=RIGHT
@SYNTAX=RIGHT(text[,num_chars])
@DESCRIPTION=RIGHT returns the rightmost @num_chars characters or the right character if @num_chars is not specified.
* This function is Excel compatible.
@EXAMPLES=
RIGHT("end") equals "d".
RIGHT("end",2) equals "nd".
@SEEALSO=MID, LEFT
@CATEGORY=String
@FUNCTION=SEARCH
@SYNTAX=SEARCH(search_string,text[,start_num])
@DESCRIPTION=SEARCH returns the location of the @search_ string within @text. The search starts with the @start_num character of text @text. If @start_num is omitted, it is assumed to be one. The search is not case sensitive.
@search_string can contain wildcard characters (*) and question marks (?). A question mark matches any character and a wildcard matches any string including the empty string. If you want the actual wildcard or question mark to be found, use tilde (~) before the character.
* If @search_string is not found, SEARCH returns #VALUE! error.
* If @start_num is less than one or it is greater than the length of @text, SEARCH returns #VALUE! error.
* This function is Excel compatible.
@EXAMPLES=
SEARCH("c","Cancel") equals 1.
SEARCH("c","Cancel",2) equals 4.
@SEEALSO=FIND
@CATEGORY=String
@FUNCTION=SUBSTITUTE
@SYNTAX=SUBSTITUTE(text, old, new [,num])
@DESCRIPTION=SUBSTITUTE replaces @old with @new in @text. Substitutions are only applied to instance @num of @old in @text, otherwise every one is changed.
* This function is Excel compatible.
@EXAMPLES=
SUBSTITUTE("testing","test","wait") equals "waiting".
@SEEALSO=REPLACE, TRIM
@CATEGORY=String
@FUNCTION=T
@SYNTAX=T(value)
@DESCRIPTION=T returns @value if and only if it is text, otherwise a blank string.
* This function is Excel compatible.
@EXAMPLES=
T("text") equals "text".
T(64) returns an empty cell.
@SEEALSO=CELL, N, VALUE
@CATEGORY=String
@FUNCTION=TEXT
@SYNTAX=TEXT(value,format_text)
@DESCRIPTION=TEXT returns @value as a string with the specified format.
* This function is Excel compatible.
@EXAMPLES=
TEXT(3.223,"$0.00") equals "$3.22".
TEXT(date(1999,4,15),"mmmm, dd, yy") equals "April, 15, 99".
@SEEALSO=DOLLAR, FIXED, VALUE
@CATEGORY=String
@FUNCTION=TRIM
@SYNTAX=TRIM(text)
@DESCRIPTION=TRIM returns @text with only single spaces between words.
* This function is Excel compatible.
@EXAMPLES=
TRIM(" a bbb cc") equals "a bbb cc".
@SEEALSO=CLEAN, MID, REPLACE, SUBSTITUTE
@CATEGORY=String
@FUNCTION=UNICHAR
@SYNTAX=UNICHAR(x)
@DESCRIPTION=UNICHAR returns the Unicode character represented by the number @x.
@EXAMPLES=
UNICHAR(65) equals A.
UNICHAR(960) equals a small Greek pi.
@SEEALSO=CHAR,UNICODE,CODE
@CATEGORY=String
@FUNCTION=UNICODE
@SYNTAX=UNICODE(char)
@DESCRIPTION=UNICODE returns the Unicode number for the character @char.
@EXAMPLES=
UNICODE("A") equals 65.
@SEEALSO=UNICHAR,CODE,CHAR
@CATEGORY=String
@FUNCTION=UPPER
@SYNTAX=UPPER(text)
@DESCRIPTION=UPPER returns a upper-case version of the string in @text.
* This function is Excel compatible.
@EXAMPLES=
UPPER("cancelled") equals "CANCELLED".
@SEEALSO=LOWER
@CATEGORY=String
@FUNCTION=VALUE
@SYNTAX=VALUE(text)
@DESCRIPTION=VALUE returns numeric value of @text.
* This function is Excel compatible.
@EXAMPLES=
VALUE("$1,000") equals 1000.
@SEEALSO=DOLLAR, FIXED, TEXT
|