File: elgamal.c

package info (click to toggle)
gnupg 1.4.18-7+deb8u5
  • links: PTS, VCS
  • area: main
  • in suites: jessie
  • size: 34,476 kB
  • sloc: ansic: 127,074; sh: 7,535; asm: 4,610; makefile: 1,186; yacc: 291; perl: 196; pascal: 72; sed: 16
file content (546 lines) | stat: -rw-r--r-- 14,137 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
/* elgamal.c  -  elgamal Public Key encryption
 * Copyright (C) 1998, 2000, 2001, 2003,
 *               2004 Free Software Foundation, Inc.
 *
 * For a description of the algorithm, see:
 *   Bruce Schneier: Applied Cryptography. John Wiley & Sons, 1996.
 *   ISBN 0-471-11709-9. Pages 476 ff.
 *
 * This file is part of GnuPG.
 *
 * GnuPG is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 3 of the License, or
 * (at your option) any later version.
 *
 * GnuPG is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
 */

#include <config.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "util.h"
#include "mpi.h"
#include "cipher.h"
#include "elgamal.h"

/* Blinding is used to mitigate side-channel attacks.  You may undef
   this to speed up the operation in case the system is secured
   against physical and network mounted side-channel attacks.  */
#define USE_BLINDING 1

typedef struct {
    MPI p;	    /* prime */
    MPI g;	    /* group generator */
    MPI y;	    /* g^x mod p */
} ELG_public_key;


typedef struct {
    MPI p;	    /* prime */
    MPI g;	    /* group generator */
    MPI y;	    /* g^x mod p */
    MPI x;	    /* secret exponent */
} ELG_secret_key;


static void test_keys( ELG_secret_key *sk, unsigned nbits );
static MPI gen_k( MPI p, int small_k );
static void generate( ELG_secret_key *sk, unsigned nbits, MPI **factors );
static int  check_secret_key( ELG_secret_key *sk );
static void do_encrypt(MPI a, MPI b, MPI input, ELG_public_key *pkey );
static void decrypt(MPI output, MPI a, MPI b, ELG_secret_key *skey );


static void (*progress_cb) ( void *, int );
static void *progress_cb_data;

void
register_pk_elg_progress ( void (*cb)( void *, int), void *cb_data )
{
    progress_cb = cb;
    progress_cb_data = cb_data;
}


static void
progress( int c )
{
    if ( progress_cb )
	progress_cb ( progress_cb_data, c );
    else
	fputc( c, stderr );
}


/****************
 * Michael Wiener's table about subgroup sizes to match field sizes
 * (floating around somewhere - Fixme: need a reference)
 */
static unsigned int
wiener_map( unsigned int n )
{
    static struct { unsigned int p_n, q_n; } t[] =
    {	/*   p	  q	 attack cost */
	{  512, 119 },	/* 9 x 10^17 */
	{  768, 145 },	/* 6 x 10^21 */
	{ 1024, 165 },	/* 7 x 10^24 */
	{ 1280, 183 },	/* 3 x 10^27 */
	{ 1536, 198 },	/* 7 x 10^29 */
	{ 1792, 212 },	/* 9 x 10^31 */
	{ 2048, 225 },	/* 8 x 10^33 */
	{ 2304, 237 },	/* 5 x 10^35 */
	{ 2560, 249 },	/* 3 x 10^37 */
	{ 2816, 259 },	/* 1 x 10^39 */
	{ 3072, 269 },	/* 3 x 10^40 */
	{ 3328, 279 },	/* 8 x 10^41 */
	{ 3584, 288 },	/* 2 x 10^43 */
	{ 3840, 296 },	/* 4 x 10^44 */
	{ 4096, 305 },	/* 7 x 10^45 */
	{ 4352, 313 },	/* 1 x 10^47 */
	{ 4608, 320 },	/* 2 x 10^48 */
	{ 4864, 328 },	/* 2 x 10^49 */
	{ 5120, 335 },	/* 3 x 10^50 */
	{ 0, 0 }
    };
    int i;

    for(i=0; t[i].p_n; i++ )  {
	if( n <= t[i].p_n )
	    return t[i].q_n;
    }
    /* not in table - use some arbitrary high number ;-) */
    return  n / 8 + 200;
}

static void
test_keys( ELG_secret_key *sk, unsigned int nbits )
{
    ELG_public_key pk;
    MPI test = mpi_alloc( 0 );
    MPI out1_a = mpi_alloc ( mpi_nlimb_hint_from_nbits (nbits) );
    MPI out1_b = mpi_alloc ( mpi_nlimb_hint_from_nbits (nbits) );
    MPI out2   = mpi_alloc ( mpi_nlimb_hint_from_nbits (nbits) );

    pk.p = sk->p;
    pk.g = sk->g;
    pk.y = sk->y;

    /*mpi_set_bytes( test, nbits, get_random_byte, 0 );*/
    {	char *p = get_random_bits( nbits, 0, 0 );
	mpi_set_buffer( test, p, (nbits+7)/8, 0 );
	xfree(p);
    }

    do_encrypt( out1_a, out1_b, test, &pk );
    decrypt( out2, out1_a, out1_b, sk );
    if( mpi_cmp( test, out2 ) )
	log_fatal("Elgamal operation: encrypt, decrypt failed\n");

    mpi_free( test );
    mpi_free( out1_a );
    mpi_free( out1_b );
    mpi_free( out2 );
}


/****************
 * Generate a random secret exponent k from prime p, so that k is
 * relatively prime to p-1.  With SMALL_K set, k will be selected for
 * better encryption performance - this must never bee used signing!
 */
static MPI
gen_k( MPI p, int small_k )
{
    MPI k = mpi_alloc_secure( 0 );
    MPI temp = mpi_alloc( mpi_get_nlimbs(p) );
    MPI p_1 = mpi_copy(p);
    unsigned int orig_nbits = mpi_get_nbits(p);
    unsigned int nbits;
    unsigned int nbytes;
    char *rndbuf = NULL;

    if (small_k)
      {
        /* Using a k much lesser than p is sufficient for encryption and
         * it greatly improves the encryption performance.  We use
         * Wiener's table and add a large safety margin.
         */
        nbits = wiener_map( orig_nbits ) * 3 / 2;
        if( nbits >= orig_nbits )
          BUG();
      }
    else
      nbits = orig_nbits;

    nbytes = (nbits+7)/8;
    if( DBG_CIPHER )
	log_debug("choosing a random k of %u bits", nbits);
    mpi_sub_ui( p_1, p, 1);
    for(;;) {
	if( !rndbuf || nbits < 32 ) {
	    xfree(rndbuf);
	    rndbuf = get_random_bits( nbits, 1, 1 );
	}
	else { /* Change only some of the higher bits. */
	    /* We could impprove this by directly requesting more memory
	     * at the first call to get_random_bits() and use this the here
	     * maybe it is easier to do this directly in random.c
	     * Anyway, it is highly inlikely that we will ever reach this code
	     */
	    char *pp = get_random_bits( 32, 1, 1 );
	    memcpy( rndbuf,pp, 4 );
	    xfree(pp);
	}
	mpi_set_buffer( k, rndbuf, nbytes, 0 );

	for(;;) {
	    if( !(mpi_cmp( k, p_1 ) < 0) ) {  /* check: k < (p-1) */
		if( DBG_CIPHER )
		    progress('+');
		break; /* no  */
	    }
	    if( !(mpi_cmp_ui( k, 0 ) > 0) ) { /* check: k > 0 */
		if( DBG_CIPHER )
		    progress('-');
		break; /* no */
	    }
	    if( mpi_gcd( temp, k, p_1 ) )
		goto found;  /* okay, k is relatively prime to (p-1) */
	    mpi_add_ui( k, k, 1 );
	    if( DBG_CIPHER )
		progress('.');
	}
    }
  found:
    xfree(rndbuf);
    if( DBG_CIPHER )
	progress('\n');
    mpi_free(p_1);
    mpi_free(temp);

    return k;
}

/****************
 * Generate a key pair with a key of size NBITS
 * Returns: 2 structures filles with all needed values
 *	    and an array with n-1 factors of (p-1)
 */
static void
generate(  ELG_secret_key *sk, unsigned int nbits, MPI **ret_factors )
{
    MPI p;    /* the prime */
    MPI p_min1;
    MPI g;
    MPI x;    /* the secret exponent */
    MPI y;
    MPI temp;
    unsigned int qbits;
    unsigned int xbits;
    byte *rndbuf;

    p_min1 = mpi_alloc ( mpi_nlimb_hint_from_nbits (nbits) );
    temp   = mpi_alloc ( mpi_nlimb_hint_from_nbits (nbits) );
    qbits  = wiener_map ( nbits );
    if( qbits & 1 ) /* better have a even one */
	qbits++;
    g = mpi_alloc(1);
    p = generate_elg_prime( 0, nbits, qbits, g, ret_factors );
    mpi_sub_ui(p_min1, p, 1);


    /* select a random number which has these properties:
     *	 0 < x < p-1
     * This must be a very good random number because this is the
     * secret part.  The prime is public and may be shared anyway,
     * so a random generator level of 1 is used for the prime.
     *
     * I don't see a reason to have a x of about the same size as the
     * p.  It should be sufficient to have one about the size of q or
     * the later used k plus a large safety margin. Decryption will be
     * much faster with such an x.  Note that this is not optimal for
     * signing keys becuase it makes an attack using accidential small
     * K values even easier.  Well, one should not use ElGamal signing
     * anyway.
     */
    xbits = qbits * 3 / 2;
    if( xbits >= nbits )
	BUG();
    x = mpi_alloc_secure ( mpi_nlimb_hint_from_nbits (xbits) );
    if( DBG_CIPHER )
	log_debug("choosing a random x of size %u", xbits );
    rndbuf = NULL;
    do {
	if( DBG_CIPHER )
	    progress('.');
	if( rndbuf ) { /* change only some of the higher bits */
	    if( xbits < 16 ) {/* should never happen ... */
		xfree(rndbuf);
		rndbuf = get_random_bits( xbits, 2, 1 );
	    }
	    else {
		char *r = get_random_bits( 16, 2, 1 );
		memcpy(rndbuf, r, 16/8 );
		xfree(r);
	    }
	}
	else
	    rndbuf = get_random_bits( xbits, 2, 1 );
	mpi_set_buffer( x, rndbuf, (xbits+7)/8, 0 );
	mpi_clear_highbit( x, xbits+1 );
    } while( !( mpi_cmp_ui( x, 0 )>0 && mpi_cmp( x, p_min1 )<0 ) );
    xfree(rndbuf);

    y = mpi_alloc ( mpi_nlimb_hint_from_nbits (nbits) );
    mpi_powm( y, g, x, p );

    if( DBG_CIPHER ) {
	progress('\n');
	log_mpidump("elg  p= ", p );
	log_mpidump("elg  g= ", g );
	log_mpidump("elg  y= ", y );
	log_mpidump("elg  x= ", x );
    }

    /* copy the stuff to the key structures */
    sk->p = p;
    sk->g = g;
    sk->y = y;
    sk->x = x;

    /* now we can test our keys (this should never fail!) */
    test_keys( sk, nbits - 64 );

    mpi_free( p_min1 );
    mpi_free( temp   );
}


/****************
 * Test whether the secret key is valid.
 * Returns: if this is a valid key.
 */
static int
check_secret_key( ELG_secret_key *sk )
{
    int rc;
    MPI y = mpi_alloc( mpi_get_nlimbs(sk->y) );

    mpi_powm( y, sk->g, sk->x, sk->p );
    rc = !mpi_cmp( y, sk->y );
    mpi_free( y );
    return rc;
}


static void
do_encrypt(MPI a, MPI b, MPI input, ELG_public_key *pkey )
{
    MPI k;

    /* Note: maybe we should change the interface, so that it
     * is possible to check that input is < p and return an
     * error code.
     */

    k = gen_k( pkey->p, 1 );
    mpi_powm( a, pkey->g, k, pkey->p );
    /* b = (y^k * input) mod p
     *	 = ((y^k mod p) * (input mod p)) mod p
     * and because input is < p
     *	 = ((y^k mod p) * input) mod p
     */
    mpi_powm( b, pkey->y, k, pkey->p );
    mpi_mulm( b, b, input, pkey->p );
#if 0
    if( DBG_CIPHER ) {
	log_mpidump("elg encrypted y= ", pkey->y);
	log_mpidump("elg encrypted p= ", pkey->p);
	log_mpidump("elg encrypted k= ", k);
	log_mpidump("elg encrypted M= ", input);
	log_mpidump("elg encrypted a= ", a);
	log_mpidump("elg encrypted b= ", b);
    }
#endif
    mpi_free(k);
}


static void
decrypt(MPI output, MPI a, MPI b, ELG_secret_key *skey )
{
  MPI t1, t2, r;
  unsigned int nbits = mpi_get_nbits (skey->p);

  mpi_normalize (a);
  mpi_normalize (b);

  t1 = mpi_alloc_secure (mpi_nlimb_hint_from_nbits (nbits));
#ifdef USE_BLINDING

  t2 = mpi_alloc_secure (mpi_nlimb_hint_from_nbits (nbits));
  r  = mpi_alloc (mpi_nlimb_hint_from_nbits (nbits));

  /* We need a random number of about the prime size.  The random
     number merely needs to be unpredictable; thus we use level 0.  */
  randomize_mpi (r, nbits, 0);

  /* t1 = r^x mod p */
  mpi_powm (t1, r, skey->x, skey->p);
  /* t2 = (a * r)^-x mod p */
  mpi_mulm (t2, a, r, skey->p);
  mpi_powm (t2, t2, skey->x, skey->p);
  mpi_invm (t2, t2, skey->p);
  /* t1 = (t1 * t2) mod p*/
  mpi_mulm (t1, t1, t2, skey->p);

  mpi_free (r);
  mpi_free (t2);

#else /*!USE_BLINDING*/

  /* output = b/(a^x) mod p */
  mpi_powm (t1, a, skey->x, skey->p);
  mpi_invm (t1, t1, skey->p);

#endif  /*!USE_BLINDING*/

  mpi_mulm (output, b, t1, skey->p);

#if 0
  if (DBG_CIPHER)
    {
      log_mpidump("elg decrypted x= ", skey->x);
      log_mpidump("elg decrypted p= ", skey->p);
      log_mpidump("elg decrypted a= ", a);
      log_mpidump("elg decrypted b= ", b);
      log_mpidump("elg decrypted M= ", output);
    }
#endif
  mpi_free (t1);
}


/*********************************************
 **************  interface  ******************
 *********************************************/

int
elg_generate( int algo, unsigned nbits, MPI *skey, MPI **retfactors )
{
    ELG_secret_key sk;

    if( !is_ELGAMAL(algo) )
	return G10ERR_PUBKEY_ALGO;

    generate( &sk, nbits, retfactors );
    skey[0] = sk.p;
    skey[1] = sk.g;
    skey[2] = sk.y;
    skey[3] = sk.x;
    return 0;
}


int
elg_check_secret_key( int algo, MPI *skey )
{
    ELG_secret_key sk;

    if( !is_ELGAMAL(algo) )
	return G10ERR_PUBKEY_ALGO;
    if( !skey[0] || !skey[1] || !skey[2] || !skey[3] )
	return G10ERR_BAD_MPI;

    sk.p = skey[0];
    sk.g = skey[1];
    sk.y = skey[2];
    sk.x = skey[3];
    if( !check_secret_key( &sk ) )
	return G10ERR_BAD_SECKEY;

    return 0;
}


int
elg_encrypt( int algo, MPI *resarr, MPI data, MPI *pkey )
{
    ELG_public_key pk;

    if( !is_ELGAMAL(algo) )
	return G10ERR_PUBKEY_ALGO;
    if( !data || !pkey[0] || !pkey[1] || !pkey[2] )
	return G10ERR_BAD_MPI;

    pk.p = pkey[0];
    pk.g = pkey[1];
    pk.y = pkey[2];
    resarr[0] = mpi_alloc( mpi_get_nlimbs( pk.p ) );
    resarr[1] = mpi_alloc( mpi_get_nlimbs( pk.p ) );
    do_encrypt( resarr[0], resarr[1], data, &pk );
    return 0;
}

int
elg_decrypt( int algo, MPI *result, MPI *data, MPI *skey )
{
    ELG_secret_key sk;

    if( !is_ELGAMAL(algo) )
	return G10ERR_PUBKEY_ALGO;
    if( !data[0] || !data[1]
	|| !skey[0] || !skey[1] || !skey[2] || !skey[3] )
	return G10ERR_BAD_MPI;

    sk.p = skey[0];
    sk.g = skey[1];
    sk.y = skey[2];
    sk.x = skey[3];
    *result = mpi_alloc_secure( mpi_get_nlimbs( sk.p ) );
    decrypt( *result, data[0], data[1], &sk );
    return 0;
}


unsigned int
elg_get_nbits( int algo, MPI *pkey )
{
    if( !is_ELGAMAL(algo) )
	return 0;
    return mpi_get_nbits( pkey[0] );
}


/****************
 * Return some information about the algorithm.  We need algo here to
 * distinguish different flavors of the algorithm.
 * Returns: A pointer to string describing the algorithm or NULL if
 *	    the ALGO is invalid.
 * Usage: Bit 0 set : allows signing
 *	      1 set : allows encryption
 */
const char *
elg_get_info( int algo, int *npkey, int *nskey, int *nenc, int *nsig,
							 int *use )
{
    *npkey = 3;
    *nskey = 4;
    *nenc = 2;
    *nsig = 2;

    switch( algo ) {
      case PUBKEY_ALGO_ELGAMAL_E:
	*use = PUBKEY_USAGE_ENC;
	return "ELG-E";
      default: *use = 0; return NULL;
    }
}