1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 16638 16639 16640 16641 16642 16643 16644 16645 16646 16647 16648 16649 16650 16651 16652 16653 16654 16655 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 16684 16685 16686 16687 16688 16689 16690 16691 16692 16693 16694 16695 16696 16697 16698 16699 16700 16701 16702 16703 16704 16705 16706 16707 16708 16709 16710 16711 16712 16713 16714 16715 16716 16717 16718 16719 16720 16721 16722 16723 16724 16725 16726 16727 16728 16729 16730 16731 16732 16733 16734 16735 16736 16737 16738 16739 16740 16741 16742 16743 16744 16745 16746 16747 16748 16749 16750 16751 16752 16753 16754 16755 16756 16757 16758 16759 16760 16761 16762 16763 16764 16765 16766 16767 16768 16769 16770 16771 16772 16773 16774 16775 16776 16777 16778 16779 16780 16781 16782 16783 16784 16785 16786 16787 16788 16789 16790 16791 16792 16793 16794 16795 16796 16797 16798 16799 16800 16801 16802 16803 16804 16805 16806 16807 16808 16809 16810 16811 16812 16813 16814 16815 16816 16817 16818 16819 16820 16821 16822 16823 16824 16825 16826 16827 16828 16829 16830 16831 16832 16833 16834 16835 16836 16837 16838 16839 16840 16841 16842 16843 16844 16845 16846 16847 16848 16849 16850 16851 16852 16853 16854 16855 16856 16857 16858 16859 16860 16861 16862 16863 16864 16865 16866 16867 16868 16869 16870 16871 16872 16873 16874 16875 16876 16877 16878 16879 16880 16881 16882 16883 16884 16885 16886 16887 16888 16889 16890 16891 16892 16893 16894 16895 16896 16897 16898 16899 16900 16901 16902 16903 16904 16905 16906 16907 16908 16909 16910 16911 16912 16913 16914 16915 16916 16917 16918 16919 16920 16921 16922 16923 16924 16925 16926 16927 16928 16929 16930 16931 16932 16933 16934 16935 16936 16937 16938 16939 16940 16941 16942 16943 16944 16945 16946 16947 16948 16949 16950 16951 16952 16953 16954 16955 16956 16957 16958 16959 16960 16961 16962 16963 16964 16965 16966 16967 16968 16969 16970 16971 16972 16973 16974 16975 16976 16977 16978 16979 16980 16981 16982 16983 16984 16985 16986 16987 16988 16989 16990 16991 16992 16993 16994 16995 16996 16997 16998 16999 17000 17001 17002 17003 17004 17005 17006 17007 17008 17009 17010 17011 17012 17013 17014 17015 17016 17017 17018 17019 17020 17021 17022 17023 17024 17025 17026 17027 17028 17029 17030 17031 17032 17033 17034 17035 17036 17037 17038 17039 17040 17041 17042 17043 17044 17045 17046 17047 17048 17049 17050 17051 17052 17053 17054 17055 17056 17057 17058 17059 17060 17061 17062 17063 17064 17065 17066 17067 17068 17069 17070 17071 17072 17073 17074 17075 17076 17077 17078 17079 17080 17081 17082 17083 17084 17085 17086 17087 17088 17089 17090 17091 17092 17093 17094 17095 17096 17097 17098 17099 17100 17101 17102 17103 17104 17105 17106 17107 17108 17109 17110 17111 17112 17113 17114 17115 17116 17117 17118 17119 17120 17121 17122 17123 17124 17125 17126 17127 17128 17129 17130 17131 17132 17133 17134 17135 17136 17137 17138 17139 17140 17141 17142 17143 17144 17145 17146 17147 17148 17149 17150 17151 17152 17153 17154 17155 17156 17157 17158 17159 17160 17161 17162 17163 17164 17165 17166 17167 17168 17169 17170 17171 17172 17173 17174 17175 17176 17177 17178 17179 17180 17181 17182 17183 17184 17185 17186 17187 17188 17189 17190 17191 17192 17193 17194 17195 17196 17197 17198 17199 17200 17201 17202 17203 17204 17205 17206 17207 17208 17209 17210 17211 17212 17213 17214 17215 17216 17217 17218 17219 17220 17221 17222 17223 17224 17225 17226 17227 17228 17229 17230 17231 17232 17233 17234 17235 17236 17237 17238 17239 17240 17241 17242 17243 17244 17245 17246 17247 17248 17249 17250 17251 17252 17253 17254 17255 17256 17257 17258 17259 17260 17261 17262 17263 17264 17265 17266 17267 17268 17269 17270 17271 17272 17273 17274 17275 17276 17277 17278 17279 17280 17281 17282 17283 17284 17285 17286 17287 17288 17289 17290 17291 17292 17293 17294 17295 17296 17297 17298 17299 17300 17301 17302 17303 17304 17305 17306 17307 17308 17309 17310 17311 17312 17313 17314 17315 17316 17317 17318 17319 17320 17321 17322 17323 17324 17325 17326 17327 17328 17329 17330 17331 17332 17333 17334 17335 17336 17337 17338 17339 17340 17341 17342 17343 17344 17345 17346 17347 17348 17349 17350 17351 17352 17353 17354 17355 17356 17357 17358 17359 17360 17361 17362 17363 17364 17365 17366 17367 17368 17369 17370 17371 17372 17373 17374 17375 17376 17377 17378 17379 17380 17381 17382 17383 17384 17385 17386 17387 17388 17389 17390 17391 17392 17393 17394 17395 17396 17397 17398 17399 17400 17401 17402 17403 17404 17405 17406 17407 17408 17409 17410 17411 17412 17413 17414 17415 17416 17417 17418 17419 17420 17421 17422 17423 17424 17425 17426 17427 17428 17429 17430 17431 17432 17433 17434 17435 17436 17437 17438 17439 17440 17441 17442 17443 17444 17445 17446 17447 17448 17449 17450 17451 17452 17453 17454 17455 17456 17457 17458 17459 17460 17461 17462 17463 17464 17465 17466 17467 17468 17469 17470 17471 17472 17473 17474 17475 17476 17477 17478 17479 17480 17481 17482 17483 17484 17485 17486 17487 17488 17489 17490 17491 17492 17493 17494 17495 17496 17497 17498 17499 17500 17501 17502 17503 17504 17505 17506 17507 17508 17509 17510 17511 17512 17513 17514 17515 17516 17517 17518 17519 17520 17521 17522 17523 17524 17525 17526 17527 17528 17529 17530 17531 17532 17533 17534 17535 17536 17537 17538 17539 17540 17541 17542 17543 17544 17545 17546 17547 17548 17549 17550 17551 17552 17553 17554 17555 17556 17557 17558 17559 17560 17561 17562 17563 17564 17565 17566 17567 17568 17569 17570 17571 17572 17573 17574 17575 17576 17577 17578 17579 17580 17581 17582 17583 17584 17585 17586 17587 17588 17589 17590 17591 17592 17593 17594 17595 17596 17597 17598 17599 17600 17601 17602 17603 17604 17605 17606 17607 17608 17609 17610 17611 17612 17613 17614 17615 17616 17617 17618 17619 17620 17621 17622 17623 17624 17625 17626 17627 17628 17629 17630 17631 17632 17633 17634 17635 17636 17637 17638 17639 17640 17641 17642 17643 17644 17645 17646 17647 17648 17649 17650 17651 17652 17653 17654 17655 17656 17657 17658 17659 17660 17661 17662 17663 17664 17665 17666 17667 17668 17669 17670 17671 17672 17673 17674 17675 17676 17677 17678 17679 17680 17681 17682 17683 17684 17685 17686 17687 17688 17689 17690 17691 17692 17693 17694 17695 17696 17697 17698 17699 17700 17701 17702 17703 17704 17705 17706 17707 17708 17709 17710 17711 17712 17713 17714 17715 17716 17717 17718 17719 17720 17721 17722 17723 17724 17725 17726 17727 17728 17729 17730 17731 17732 17733 17734 17735 17736 17737 17738 17739 17740 17741 17742 17743 17744 17745 17746 17747 17748 17749 17750 17751 17752 17753 17754 17755 17756 17757 17758 17759 17760 17761 17762 17763 17764 17765 17766 17767 17768 17769 17770 17771 17772 17773 17774 17775 17776 17777 17778 17779 17780 17781 17782 17783 17784 17785 17786 17787 17788 17789 17790 17791 17792 17793 17794 17795 17796 17797 17798 17799 17800 17801 17802 17803 17804 17805 17806 17807 17808 17809 17810 17811 17812 17813 17814 17815 17816 17817 17818 17819 17820 17821 17822 17823 17824 17825 17826 17827 17828 17829 17830 17831 17832 17833 17834 17835 17836 17837 17838 17839 17840 17841 17842 17843 17844 17845 17846 17847 17848 17849 17850 17851 17852 17853 17854 17855 17856 17857 17858 17859 17860 17861 17862 17863 17864 17865 17866 17867 17868 17869 17870 17871 17872 17873 17874 17875 17876 17877 17878 17879 17880 17881 17882 17883 17884 17885 17886 17887 17888 17889 17890 17891 17892 17893 17894 17895 17896 17897 17898 17899 17900 17901 17902 17903 17904 17905 17906 17907 17908 17909 17910 17911 17912 17913 17914 17915 17916 17917 17918 17919 17920 17921 17922 17923 17924 17925 17926 17927 17928 17929 17930 17931 17932 17933 17934 17935 17936 17937 17938 17939 17940 17941 17942 17943 17944 17945 17946 17947 17948 17949 17950 17951 17952 17953 17954 17955 17956 17957 17958 17959 17960 17961 17962 17963 17964 17965 17966 17967 17968 17969 17970 17971 17972 17973 17974 17975 17976 17977 17978 17979 17980 17981 17982 17983 17984 17985 17986 17987 17988 17989 17990 17991 17992 17993 17994 17995 17996 17997 17998 17999 18000 18001 18002 18003 18004 18005 18006 18007 18008 18009 18010 18011 18012 18013 18014 18015 18016 18017 18018 18019 18020 18021 18022 18023 18024 18025 18026 18027 18028 18029 18030 18031 18032 18033 18034 18035 18036 18037 18038 18039 18040 18041 18042 18043 18044 18045 18046 18047 18048 18049 18050 18051 18052 18053 18054 18055 18056 18057 18058 18059 18060 18061 18062 18063 18064 18065 18066 18067 18068 18069 18070 18071 18072 18073 18074 18075 18076 18077 18078 18079 18080 18081 18082 18083 18084 18085 18086 18087 18088 18089 18090 18091 18092 18093 18094 18095 18096 18097 18098 18099 18100 18101 18102 18103 18104 18105 18106 18107 18108 18109 18110 18111 18112 18113 18114 18115 18116 18117 18118 18119 18120 18121 18122 18123 18124 18125 18126 18127 18128 18129 18130 18131 18132 18133 18134 18135 18136 18137 18138 18139 18140 18141 18142 18143 18144 18145 18146 18147 18148 18149 18150 18151 18152 18153 18154 18155 18156 18157 18158 18159 18160 18161 18162 18163 18164 18165 18166 18167 18168 18169 18170 18171 18172 18173 18174 18175 18176 18177 18178 18179 18180 18181 18182 18183 18184 18185 18186 18187 18188 18189 18190 18191 18192 18193 18194 18195 18196 18197 18198 18199 18200 18201 18202 18203 18204 18205 18206 18207 18208 18209 18210 18211 18212 18213 18214 18215 18216 18217 18218 18219 18220 18221 18222 18223 18224 18225 18226 18227 18228 18229 18230 18231 18232 18233 18234 18235 18236 18237 18238 18239 18240 18241 18242 18243 18244 18245 18246 18247 18248 18249 18250 18251 18252 18253 18254 18255 18256 18257 18258 18259 18260 18261 18262 18263 18264 18265 18266 18267 18268 18269 18270 18271 18272 18273 18274 18275 18276 18277 18278 18279 18280 18281 18282 18283 18284 18285 18286 18287 18288 18289 18290 18291 18292 18293 18294 18295 18296 18297 18298 18299 18300 18301 18302 18303 18304 18305 18306 18307 18308 18309 18310 18311 18312 18313 18314 18315 18316 18317 18318 18319 18320 18321 18322 18323 18324 18325 18326 18327 18328 18329 18330 18331 18332 18333 18334 18335 18336 18337 18338 18339 18340 18341 18342 18343 18344 18345 18346 18347 18348 18349 18350 18351 18352 18353 18354 18355 18356 18357 18358 18359 18360 18361 18362 18363 18364 18365 18366 18367 18368 18369 18370 18371 18372 18373 18374 18375 18376 18377 18378 18379 18380 18381 18382 18383 18384 18385 18386 18387 18388 18389 18390 18391 18392 18393 18394 18395 18396 18397 18398 18399 18400 18401 18402 18403 18404 18405 18406 18407 18408 18409 18410 18411 18412 18413 18414 18415 18416 18417 18418 18419 18420 18421 18422 18423 18424 18425 18426 18427 18428 18429 18430 18431 18432 18433 18434 18435 18436 18437 18438 18439 18440 18441 18442 18443 18444 18445 18446 18447 18448 18449 18450 18451 18452 18453 18454 18455 18456 18457 18458 18459 18460 18461 18462 18463 18464 18465 18466 18467 18468 18469 18470 18471 18472 18473 18474 18475 18476 18477 18478 18479 18480 18481 18482 18483 18484 18485 18486 18487 18488 18489 18490 18491 18492 18493 18494 18495 18496 18497 18498 18499 18500 18501 18502 18503 18504 18505 18506 18507 18508 18509 18510 18511 18512 18513 18514 18515 18516 18517 18518 18519 18520 18521 18522 18523 18524 18525 18526 18527 18528 18529 18530 18531 18532 18533 18534 18535 18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 18547 18548 18549 18550 18551 18552 18553 18554 18555 18556 18557 18558 18559 18560 18561 18562 18563 18564 18565 18566 18567 18568 18569 18570 18571 18572 18573 18574 18575 18576 18577 18578 18579 18580 18581 18582 18583 18584 18585 18586 18587 18588 18589 18590 18591 18592 18593 18594 18595 18596 18597 18598 18599 18600 18601 18602 18603 18604 18605 18606 18607 18608 18609 18610 18611 18612 18613 18614 18615 18616 18617 18618 18619 18620 18621 18622 18623 18624 18625 18626 18627 18628 18629 18630 18631 18632 18633 18634 18635 18636 18637 18638 18639 18640 18641 18642 18643 18644 18645 18646 18647 18648 18649 18650 18651 18652 18653 18654 18655 18656 18657 18658 18659 18660 18661 18662 18663 18664 18665 18666 18667 18668 18669 18670 18671 18672 18673 18674 18675 18676 18677 18678 18679 18680 18681 18682 18683 18684 18685 18686 18687 18688 18689 18690 18691 18692 18693 18694 18695 18696 18697 18698 18699 18700 18701 18702 18703 18704 18705 18706 18707 18708 18709 18710 18711 18712 18713 18714 18715 18716 18717 18718 18719 18720 18721 18722 18723 18724 18725 18726 18727 18728 18729 18730 18731 18732 18733 18734 18735 18736 18737 18738 18739 18740 18741 18742 18743 18744 18745 18746 18747 18748 18749 18750 18751 18752 18753 18754 18755 18756 18757 18758 18759 18760 18761 18762 18763 18764 18765 18766 18767 18768 18769 18770 18771 18772 18773 18774 18775 18776 18777 18778 18779 18780 18781 18782 18783 18784 18785 18786 18787 18788 18789 18790 18791 18792 18793 18794 18795 18796 18797 18798 18799 18800 18801 18802 18803 18804 18805 18806 18807 18808 18809 18810 18811 18812 18813 18814 18815 18816 18817 18818 18819 18820 18821 18822 18823 18824 18825 18826 18827 18828 18829 18830 18831 18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 18879 18880 18881 18882 18883 18884 18885 18886 18887 18888 18889 18890 18891 18892 18893 18894 18895 18896 18897 18898 18899 18900 18901 18902 18903 18904 18905 18906 18907 18908 18909 18910 18911 18912 18913 18914 18915 18916 18917 18918 18919 18920 18921 18922 18923 18924 18925 18926 18927 18928 18929 18930 18931 18932 18933 18934 18935 18936 18937 18938 18939 18940 18941 18942 18943 18944 18945 18946 18947 18948 18949 18950 18951 18952 18953 18954 18955 18956 18957 18958 18959 18960 18961 18962 18963 18964 18965 18966 18967 18968 18969 18970 18971 18972 18973 18974 18975 18976 18977 18978 18979 18980 18981 18982 18983 18984 18985 18986 18987 18988 18989 18990 18991 18992 18993 18994 18995 18996 18997 18998 18999 19000 19001 19002 19003 19004 19005 19006 19007 19008 19009 19010 19011 19012 19013 19014 19015 19016 19017 19018 19019 19020 19021 19022 19023 19024 19025 19026 19027 19028 19029 19030 19031 19032 19033 19034 19035 19036 19037 19038 19039 19040 19041 19042 19043 19044 19045 19046 19047 19048 19049 19050 19051 19052 19053 19054 19055 19056 19057 19058 19059 19060 19061 19062 19063 19064 19065 19066 19067 19068 19069 19070 19071 19072 19073 19074 19075 19076 19077 19078 19079 19080 19081 19082 19083 19084 19085 19086 19087 19088 19089 19090 19091 19092 19093 19094 19095 19096 19097 19098 19099 19100 19101 19102 19103 19104 19105 19106 19107 19108 19109 19110 19111 19112 19113 19114 19115 19116 19117 19118 19119 19120 19121 19122 19123 19124 19125 19126 19127 19128 19129 19130 19131 19132 19133 19134 19135 19136 19137 19138 19139 19140 19141 19142 19143 19144 19145 19146 19147 19148 19149 19150 19151 19152 19153 19154 19155 19156 19157 19158 19159 19160 19161 19162 19163 19164 19165 19166 19167 19168 19169 19170 19171 19172 19173 19174 19175 19176 19177 19178 19179 19180 19181 19182 19183 19184 19185 19186 19187 19188 19189 19190 19191 19192 19193 19194 19195 19196 19197 19198 19199 19200 19201 19202 19203 19204 19205 19206 19207 19208 19209 19210 19211 19212 19213 19214 19215 19216 19217 19218 19219 19220 19221 19222 19223 19224 19225 19226 19227 19228 19229 19230 19231 19232 19233 19234 19235 19236 19237 19238 19239 19240 19241 19242 19243 19244 19245 19246 19247 19248 19249 19250 19251 19252 19253 19254 19255 19256 19257 19258 19259 19260 19261 19262 19263 19264 19265 19266 19267 19268 19269 19270 19271 19272 19273 19274 19275 19276 19277 19278 19279 19280 19281 19282 19283 19284 19285 19286 19287 19288 19289 19290 19291 19292 19293 19294 19295 19296 19297 19298 19299 19300 19301 19302 19303 19304 19305 19306 19307 19308 19309 19310 19311 19312 19313 19314 19315 19316 19317 19318 19319 19320 19321 19322 19323 19324 19325 19326 19327 19328 19329 19330 19331 19332 19333 19334 19335 19336 19337 19338 19339 19340 19341 19342 19343 19344 19345 19346 19347 19348 19349 19350 19351 19352 19353 19354 19355 19356 19357 19358 19359 19360 19361 19362 19363 19364 19365 19366 19367 19368 19369 19370 19371 19372 19373 19374 19375 19376 19377 19378 19379 19380 19381 19382 19383 19384 19385 19386 19387 19388 19389 19390 19391 19392 19393 19394 19395 19396 19397 19398 19399 19400 19401 19402 19403 19404 19405 19406 19407 19408 19409 19410 19411 19412 19413 19414 19415 19416 19417 19418 19419 19420 19421 19422 19423 19424 19425 19426 19427 19428 19429 19430 19431 19432 19433 19434 19435 19436 19437 19438 19439 19440 19441 19442 19443 19444 19445 19446 19447 19448 19449 19450 19451 19452 19453 19454 19455 19456 19457 19458 19459 19460 19461 19462 19463 19464 19465 19466 19467 19468 19469 19470 19471 19472 19473 19474 19475 19476 19477 19478 19479 19480 19481 19482 19483 19484 19485 19486 19487 19488 19489 19490 19491 19492 19493 19494 19495 19496 19497 19498 19499 19500 19501 19502 19503 19504 19505 19506 19507 19508 19509 19510 19511 19512 19513 19514 19515 19516 19517 19518 19519 19520 19521 19522 19523 19524 19525 19526 19527 19528 19529 19530 19531 19532 19533 19534 19535 19536 19537 19538 19539 19540 19541 19542 19543 19544 19545 19546 19547 19548 19549 19550 19551 19552 19553 19554 19555 19556 19557 19558 19559 19560 19561 19562 19563 19564 19565 19566 19567 19568 19569 19570 19571 19572 19573 19574 19575 19576 19577 19578 19579 19580 19581 19582 19583 19584 19585 19586 19587 19588 19589 19590 19591 19592 19593 19594 19595 19596 19597 19598 19599 19600 19601 19602 19603 19604 19605 19606 19607 19608 19609 19610 19611 19612 19613 19614 19615 19616 19617 19618 19619 19620 19621 19622 19623 19624 19625 19626 19627 19628 19629 19630 19631 19632 19633 19634 19635 19636 19637 19638 19639 19640 19641 19642 19643 19644 19645 19646 19647 19648 19649 19650 19651 19652 19653 19654 19655 19656 19657 19658 19659 19660 19661 19662 19663 19664 19665 19666 19667 19668 19669 19670 19671 19672 19673 19674 19675 19676 19677 19678 19679 19680 19681 19682 19683 19684 19685 19686 19687 19688 19689 19690 19691 19692 19693 19694 19695 19696 19697 19698 19699 19700 19701 19702 19703 19704 19705 19706 19707 19708 19709 19710 19711 19712 19713 19714 19715 19716 19717 19718 19719 19720 19721 19722 19723 19724 19725 19726 19727 19728 19729 19730 19731 19732 19733 19734 19735 19736 19737 19738 19739 19740 19741 19742 19743 19744 19745 19746 19747 19748 19749 19750 19751 19752 19753 19754 19755 19756 19757 19758 19759 19760 19761 19762 19763 19764 19765 19766 19767 19768 19769 19770 19771 19772 19773 19774 19775 19776 19777 19778 19779 19780 19781 19782 19783 19784 19785 19786 19787 19788 19789 19790 19791 19792 19793 19794 19795 19796 19797 19798 19799 19800 19801 19802 19803 19804 19805 19806 19807 19808 19809 19810 19811 19812 19813 19814 19815 19816 19817 19818 19819 19820 19821 19822 19823 19824 19825 19826 19827 19828 19829 19830 19831 19832 19833 19834 19835 19836 19837 19838 19839 19840 19841 19842 19843 19844 19845 19846 19847 19848 19849 19850 19851 19852 19853 19854 19855 19856 19857 19858 19859 19860 19861 19862 19863 19864 19865 19866 19867 19868 19869 19870 19871 19872 19873 19874 19875 19876 19877 19878 19879 19880 19881 19882 19883 19884 19885 19886 19887 19888 19889 19890 19891 19892 19893 19894 19895 19896 19897 19898 19899 19900 19901 19902 19903 19904 19905 19906 19907 19908 19909 19910 19911 19912 19913 19914 19915 19916 19917 19918 19919 19920 19921 19922 19923 19924 19925 19926 19927 19928 19929 19930 19931 19932 19933 19934 19935 19936 19937 19938 19939 19940 19941 19942 19943 19944 19945 19946 19947 19948 19949 19950 19951 19952 19953 19954 19955 19956 19957 19958 19959 19960 19961 19962 19963 19964 19965 19966 19967 19968 19969 19970 19971 19972 19973 19974 19975 19976 19977 19978 19979 19980 19981 19982 19983 19984 19985 19986 19987 19988 19989 19990 19991 19992 19993 19994 19995 19996 19997 19998 19999 20000 20001 20002 20003 20004 20005 20006 20007 20008 20009 20010 20011 20012 20013 20014 20015 20016 20017 20018 20019 20020 20021 20022 20023 20024 20025 20026 20027 20028 20029 20030 20031 20032 20033 20034 20035 20036 20037 20038 20039 20040 20041 20042 20043 20044 20045 20046 20047 20048 20049 20050 20051 20052 20053 20054 20055 20056 20057 20058 20059 20060 20061 20062 20063 20064 20065 20066 20067 20068 20069 20070 20071 20072 20073 20074 20075 20076 20077 20078 20079 20080 20081 20082 20083 20084 20085 20086 20087 20088 20089 20090 20091 20092 20093 20094 20095 20096 20097 20098 20099 20100 20101 20102 20103 20104 20105 20106 20107 20108 20109 20110 20111 20112 20113 20114 20115 20116 20117 20118 20119 20120 20121 20122 20123 20124 20125 20126 20127 20128 20129 20130 20131 20132 20133 20134 20135 20136 20137 20138 20139 20140 20141 20142 20143 20144 20145 20146 20147 20148 20149 20150 20151 20152 20153 20154 20155 20156 20157 20158 20159 20160 20161 20162 20163 20164 20165 20166 20167 20168 20169 20170 20171 20172 20173 20174 20175 20176 20177 20178 20179 20180 20181 20182 20183 20184 20185 20186 20187 20188 20189 20190 20191 20192 20193 20194 20195 20196 20197 20198 20199 20200 20201 20202 20203 20204 20205 20206 20207 20208 20209 20210 20211 20212 20213 20214 20215 20216 20217 20218 20219 20220 20221 20222 20223 20224 20225 20226 20227 20228 20229 20230 20231 20232 20233 20234 20235 20236 20237 20238 20239 20240 20241 20242 20243 20244 20245 20246 20247 20248 20249 20250 20251 20252 20253 20254 20255 20256 20257 20258 20259 20260 20261 20262 20263 20264 20265 20266 20267 20268 20269 20270 20271 20272 20273 20274 20275 20276 20277 20278 20279 20280 20281 20282 20283 20284 20285 20286 20287 20288 20289 20290 20291 20292 20293 20294 20295 20296 20297 20298 20299 20300 20301 20302 20303 20304 20305 20306 20307 20308 20309 20310 20311 20312 20313 20314 20315 20316 20317 20318 20319 20320 20321 20322 20323 20324 20325 20326 20327 20328 20329 20330 20331 20332 20333 20334 20335 20336 20337 20338 20339 20340 20341 20342 20343 20344 20345 20346 20347 20348 20349 20350 20351 20352 20353 20354 20355 20356 20357 20358 20359 20360 20361 20362 20363 20364 20365 20366 20367 20368 20369 20370 20371 20372 20373 20374 20375 20376 20377 20378 20379 20380 20381 20382 20383 20384 20385 20386 20387 20388 20389 20390 20391 20392 20393 20394 20395 20396 20397 20398 20399 20400 20401 20402 20403 20404 20405 20406 20407 20408 20409 20410 20411 20412 20413 20414 20415 20416 20417 20418 20419 20420 20421 20422 20423 20424 20425 20426 20427 20428 20429 20430 20431 20432 20433 20434 20435 20436 20437 20438 20439 20440 20441 20442 20443 20444 20445 20446 20447 20448 20449 20450 20451 20452 20453 20454 20455 20456 20457 20458 20459 20460 20461 20462 20463 20464 20465 20466 20467 20468 20469 20470 20471 20472 20473 20474 20475 20476 20477 20478 20479 20480 20481 20482 20483 20484 20485 20486 20487 20488 20489 20490 20491 20492 20493 20494 20495 20496 20497 20498 20499 20500 20501 20502 20503 20504 20505 20506 20507 20508 20509 20510 20511 20512 20513 20514 20515 20516 20517 20518 20519 20520 20521 20522 20523 20524 20525 20526 20527 20528 20529 20530 20531 20532 20533 20534 20535 20536 20537 20538 20539 20540 20541 20542 20543 20544 20545 20546 20547 20548 20549 20550 20551 20552 20553 20554 20555 20556 20557 20558 20559 20560 20561 20562 20563 20564 20565 20566 20567 20568 20569 20570 20571 20572 20573 20574 20575 20576 20577 20578 20579 20580 20581 20582 20583 20584 20585 20586 20587 20588 20589 20590 20591 20592 20593 20594 20595 20596 20597 20598 20599 20600 20601 20602 20603 20604 20605 20606 20607 20608 20609 20610 20611 20612 20613 20614 20615 20616 20617 20618 20619 20620 20621 20622 20623 20624 20625 20626 20627 20628 20629 20630 20631 20632 20633 20634 20635 20636 20637 20638 20639 20640 20641 20642 20643 20644 20645 20646 20647 20648 20649 20650 20651 20652 20653 20654 20655 20656 20657 20658 20659 20660 20661 20662 20663 20664 20665 20666 20667 20668 20669 20670 20671 20672 20673 20674 20675 20676 20677 20678 20679 20680 20681 20682 20683 20684 20685 20686 20687 20688 20689 20690 20691 20692 20693 20694 20695 20696 20697 20698 20699 20700 20701 20702 20703 20704 20705 20706 20707 20708 20709 20710 20711 20712 20713 20714 20715 20716 20717 20718 20719 20720 20721 20722 20723 20724 20725 20726 20727 20728 20729 20730 20731 20732 20733 20734 20735 20736 20737 20738 20739 20740 20741 20742 20743 20744 20745 20746 20747 20748 20749 20750 20751 20752 20753 20754 20755 20756 20757 20758 20759 20760 20761 20762 20763 20764 20765 20766 20767 20768 20769 20770 20771 20772 20773 20774 20775 20776 20777 20778 20779 20780 20781 20782 20783 20784 20785 20786 20787 20788 20789 20790 20791 20792 20793 20794 20795 20796 20797 20798 20799 20800 20801 20802 20803 20804 20805 20806 20807 20808 20809 20810 20811 20812 20813 20814 20815 20816 20817 20818 20819 20820 20821 20822 20823 20824 20825 20826 20827 20828 20829 20830 20831 20832 20833 20834 20835 20836 20837 20838 20839 20840 20841 20842 20843 20844 20845 20846 20847 20848 20849 20850 20851 20852 20853 20854 20855 20856 20857 20858 20859 20860 20861 20862 20863 20864 20865 20866 20867 20868 20869 20870 20871 20872 20873 20874 20875 20876 20877 20878 20879 20880 20881 20882 20883 20884 20885 20886 20887 20888 20889 20890 20891 20892 20893 20894 20895 20896 20897 20898 20899 20900 20901 20902 20903 20904 20905 20906 20907 20908 20909 20910 20911 20912 20913 20914 20915 20916 20917 20918 20919 20920 20921 20922 20923 20924 20925 20926 20927 20928 20929 20930 20931 20932 20933 20934 20935 20936 20937 20938 20939 20940 20941 20942 20943 20944 20945 20946 20947 20948 20949 20950 20951 20952 20953 20954 20955 20956 20957 20958 20959 20960 20961 20962 20963 20964 20965 20966 20967 20968 20969 20970 20971 20972 20973 20974 20975 20976 20977 20978 20979 20980 20981 20982 20983 20984 20985 20986 20987 20988 20989 20990 20991 20992 20993 20994 20995 20996 20997 20998 20999 21000 21001 21002 21003 21004 21005 21006 21007 21008 21009 21010 21011 21012 21013 21014 21015 21016 21017 21018 21019 21020 21021 21022 21023 21024 21025 21026 21027 21028 21029 21030 21031 21032 21033 21034 21035 21036 21037 21038 21039 21040 21041 21042 21043 21044 21045 21046 21047 21048 21049 21050 21051 21052 21053 21054 21055 21056 21057 21058 21059 21060 21061 21062 21063 21064 21065 21066 21067 21068 21069 21070 21071 21072 21073 21074 21075 21076 21077 21078 21079 21080 21081 21082 21083 21084 21085 21086 21087 21088 21089 21090 21091 21092 21093 21094 21095 21096 21097 21098 21099 21100 21101 21102 21103 21104 21105 21106 21107 21108 21109 21110 21111 21112 21113 21114 21115 21116 21117 21118 21119 21120 21121 21122 21123 21124 21125 21126 21127 21128 21129 21130 21131 21132 21133 21134 21135 21136 21137 21138 21139 21140 21141 21142 21143 21144 21145 21146 21147 21148 21149 21150 21151 21152 21153 21154 21155 21156 21157 21158 21159 21160 21161 21162 21163 21164 21165 21166 21167 21168 21169 21170 21171 21172 21173 21174 21175 21176 21177 21178 21179 21180 21181 21182 21183 21184 21185 21186 21187 21188 21189 21190 21191 21192 21193 21194 21195 21196 21197 21198 21199 21200 21201 21202 21203 21204 21205 21206 21207 21208 21209 21210 21211 21212 21213 21214 21215 21216 21217 21218 21219 21220 21221 21222 21223 21224 21225 21226 21227 21228 21229 21230 21231 21232 21233 21234 21235 21236 21237 21238 21239 21240 21241 21242 21243 21244 21245 21246 21247 21248 21249 21250 21251 21252 21253 21254 21255 21256 21257 21258 21259 21260 21261 21262 21263 21264 21265 21266 21267 21268 21269 21270 21271 21272 21273 21274 21275 21276 21277 21278 21279 21280 21281 21282 21283 21284 21285 21286 21287 21288 21289 21290 21291 21292 21293 21294 21295 21296 21297 21298 21299 21300 21301 21302 21303 21304 21305 21306 21307 21308 21309 21310 21311 21312 21313 21314 21315 21316 21317 21318 21319 21320 21321 21322 21323 21324 21325 21326 21327 21328 21329 21330 21331 21332 21333 21334 21335 21336 21337 21338 21339 21340 21341 21342 21343 21344 21345 21346 21347 21348 21349 21350 21351 21352 21353 21354 21355 21356 21357 21358 21359 21360 21361 21362 21363 21364 21365 21366 21367 21368 21369 21370 21371 21372 21373 21374 21375 21376 21377 21378 21379 21380 21381 21382 21383 21384 21385 21386 21387 21388 21389 21390 21391 21392 21393 21394 21395 21396 21397 21398 21399 21400 21401 21402 21403 21404 21405 21406 21407 21408 21409 21410 21411 21412 21413 21414 21415 21416 21417 21418 21419 21420 21421 21422 21423 21424 21425 21426 21427 21428 21429 21430 21431 21432 21433 21434 21435 21436 21437 21438 21439 21440 21441 21442 21443 21444 21445 21446 21447 21448 21449 21450 21451 21452 21453 21454 21455 21456 21457 21458 21459 21460 21461 21462 21463 21464 21465 21466 21467 21468 21469 21470 21471 21472 21473 21474 21475 21476 21477 21478 21479 21480 21481 21482 21483 21484 21485 21486 21487 21488 21489 21490 21491 21492 21493 21494 21495 21496 21497 21498 21499 21500 21501 21502 21503 21504 21505 21506 21507 21508 21509 21510 21511 21512 21513 21514 21515 21516 21517 21518 21519 21520 21521 21522 21523 21524 21525 21526 21527 21528 21529 21530 21531 21532 21533 21534 21535 21536 21537 21538 21539 21540 21541 21542 21543 21544 21545 21546 21547 21548 21549 21550 21551 21552 21553 21554 21555 21556 21557 21558 21559 21560 21561 21562 21563 21564 21565 21566 21567 21568 21569 21570 21571 21572 21573 21574 21575 21576 21577 21578 21579 21580 21581 21582 21583 21584 21585 21586 21587 21588 21589 21590 21591 21592 21593 21594 21595 21596 21597 21598 21599 21600 21601 21602 21603 21604 21605 21606 21607 21608 21609 21610 21611 21612 21613 21614 21615 21616 21617 21618 21619 21620 21621 21622 21623 21624 21625 21626 21627 21628 21629 21630 21631 21632 21633 21634 21635 21636 21637 21638 21639 21640 21641 21642 21643 21644 21645 21646 21647 21648 21649 21650 21651 21652 21653 21654 21655 21656 21657 21658 21659 21660 21661 21662 21663 21664 21665 21666 21667 21668 21669 21670 21671 21672 21673 21674 21675 21676 21677 21678 21679 21680 21681 21682 21683 21684 21685 21686 21687 21688 21689 21690 21691 21692 21693 21694 21695 21696 21697 21698 21699 21700 21701 21702 21703 21704 21705 21706 21707 21708 21709 21710 21711 21712 21713 21714 21715 21716 21717 21718 21719 21720 21721 21722 21723 21724 21725 21726 21727 21728 21729 21730 21731 21732 21733 21734 21735 21736 21737 21738 21739 21740 21741 21742 21743 21744 21745 21746 21747 21748 21749 21750 21751 21752 21753 21754 21755 21756 21757 21758 21759 21760 21761 21762 21763 21764 21765 21766 21767 21768 21769 21770 21771 21772 21773 21774 21775 21776 21777 21778 21779 21780 21781 21782 21783 21784 21785 21786 21787 21788 21789 21790 21791 21792 21793 21794 21795 21796 21797 21798 21799 21800 21801 21802 21803 21804 21805 21806 21807 21808 21809 21810 21811 21812 21813 21814 21815 21816 21817 21818 21819 21820 21821 21822 21823 21824 21825 21826 21827 21828 21829 21830 21831 21832 21833 21834 21835 21836 21837 21838 21839 21840 21841 21842 21843 21844 21845 21846 21847 21848 21849 21850 21851 21852 21853 21854 21855 21856 21857 21858 21859 21860 21861 21862 21863 21864 21865 21866 21867 21868 21869 21870 21871 21872 21873 21874 21875 21876 21877 21878 21879 21880 21881 21882 21883 21884 21885 21886 21887 21888 21889 21890 21891 21892 21893 21894 21895 21896 21897 21898 21899 21900 21901 21902 21903 21904 21905 21906 21907 21908 21909 21910 21911 21912 21913 21914 21915 21916 21917 21918 21919 21920 21921 21922 21923 21924 21925 21926 21927 21928 21929 21930 21931 21932 21933 21934 21935 21936 21937 21938 21939 21940 21941 21942 21943 21944 21945 21946 21947 21948 21949 21950 21951 21952 21953 21954 21955 21956 21957 21958 21959 21960 21961 21962 21963 21964 21965 21966 21967 21968 21969 21970 21971 21972 21973 21974 21975 21976 21977 21978 21979 21980 21981 21982 21983 21984 21985 21986 21987 21988 21989 21990 21991 21992 21993 21994 21995 21996 21997 21998 21999 22000 22001 22002 22003 22004 22005 22006 22007 22008 22009 22010 22011 22012 22013 22014 22015 22016 22017 22018 22019 22020 22021 22022 22023 22024 22025 22026 22027 22028 22029 22030 22031 22032 22033 22034 22035 22036 22037 22038 22039 22040 22041 22042 22043 22044 22045 22046 22047 22048 22049 22050 22051 22052 22053 22054 22055 22056 22057 22058 22059 22060 22061 22062 22063 22064 22065 22066 22067 22068 22069 22070 22071 22072 22073 22074 22075 22076 22077 22078 22079 22080 22081 22082 22083 22084 22085 22086 22087 22088 22089 22090 22091 22092 22093 22094 22095 22096 22097 22098 22099 22100 22101 22102 22103 22104 22105 22106 22107 22108 22109 22110 22111 22112 22113 22114 22115 22116 22117 22118 22119 22120 22121 22122 22123 22124 22125 22126 22127 22128 22129 22130 22131 22132 22133 22134 22135 22136 22137 22138 22139 22140 22141 22142 22143 22144 22145 22146 22147 22148 22149 22150 22151 22152 22153 22154 22155 22156 22157 22158 22159 22160 22161 22162 22163 22164 22165 22166 22167 22168 22169 22170 22171 22172 22173 22174 22175 22176 22177 22178 22179 22180 22181 22182 22183 22184 22185 22186 22187 22188 22189 22190 22191 22192 22193 22194 22195 22196 22197 22198 22199 22200 22201 22202 22203 22204 22205 22206 22207 22208 22209 22210 22211 22212 22213 22214 22215 22216 22217 22218 22219 22220 22221 22222 22223 22224 22225 22226 22227 22228 22229 22230 22231 22232 22233 22234 22235 22236 22237 22238 22239 22240 22241 22242 22243 22244 22245 22246 22247 22248 22249 22250 22251 22252 22253 22254 22255 22256 22257 22258 22259 22260 22261 22262 22263 22264 22265 22266 22267 22268 22269 22270 22271 22272 22273 22274 22275 22276 22277 22278 22279 22280 22281 22282 22283 22284 22285 22286 22287 22288 22289 22290 22291 22292 22293 22294 22295 22296 22297 22298 22299 22300 22301 22302 22303 22304 22305 22306 22307 22308 22309 22310 22311 22312 22313 22314 22315 22316 22317 22318 22319 22320 22321 22322 22323 22324 22325 22326 22327 22328 22329 22330 22331 22332 22333 22334 22335 22336 22337 22338 22339 22340 22341 22342 22343 22344 22345 22346 22347 22348 22349 22350 22351 22352 22353 22354 22355 22356 22357 22358 22359 22360 22361 22362 22363 22364 22365 22366 22367 22368 22369 22370 22371 22372 22373 22374 22375 22376 22377 22378 22379 22380 22381 22382 22383 22384 22385 22386 22387 22388 22389 22390 22391 22392 22393 22394 22395 22396 22397 22398 22399 22400 22401 22402 22403 22404 22405 22406 22407 22408 22409 22410 22411 22412 22413 22414 22415 22416 22417 22418 22419 22420 22421 22422 22423 22424 22425 22426 22427 22428 22429 22430 22431 22432 22433 22434 22435 22436 22437 22438 22439 22440 22441 22442 22443 22444 22445 22446 22447 22448 22449 22450 22451 22452 22453 22454 22455 22456 22457 22458 22459 22460 22461 22462 22463 22464 22465 22466 22467 22468 22469 22470 22471 22472 22473 22474 22475 22476 22477 22478 22479 22480 22481 22482 22483 22484 22485 22486 22487 22488 22489 22490 22491 22492 22493 22494 22495 22496 22497 22498 22499 22500 22501 22502 22503 22504 22505 22506 22507 22508 22509 22510 22511 22512 22513 22514 22515 22516 22517 22518 22519 22520 22521 22522 22523 22524 22525 22526 22527 22528 22529 22530 22531 22532 22533 22534 22535 22536 22537 22538 22539 22540 22541 22542 22543 22544 22545 22546 22547 22548 22549 22550 22551 22552 22553 22554 22555 22556 22557 22558 22559 22560 22561 22562 22563 22564 22565 22566 22567 22568 22569 22570 22571 22572 22573 22574 22575 22576 22577 22578 22579 22580 22581 22582 22583 22584 22585 22586 22587 22588 22589 22590 22591 22592 22593 22594 22595 22596 22597 22598 22599 22600 22601 22602 22603 22604 22605 22606 22607 22608 22609 22610 22611 22612 22613 22614 22615 22616 22617 22618 22619 22620 22621 22622 22623 22624 22625 22626 22627 22628 22629 22630 22631 22632 22633 22634 22635 22636 22637 22638 22639 22640 22641 22642 22643 22644 22645 22646 22647 22648 22649 22650 22651 22652 22653 22654 22655 22656 22657 22658 22659 22660 22661 22662 22663 22664 22665 22666 22667 22668 22669 22670 22671 22672 22673 22674 22675 22676 22677 22678 22679 22680 22681 22682 22683 22684 22685 22686 22687 22688 22689 22690 22691 22692 22693 22694 22695 22696 22697 22698 22699 22700 22701 22702 22703 22704 22705 22706 22707 22708 22709 22710 22711 22712 22713 22714 22715 22716 22717 22718 22719 22720 22721 22722 22723 22724 22725 22726 22727 22728 22729 22730 22731 22732 22733 22734 22735 22736 22737 22738 22739 22740 22741 22742 22743 22744 22745 22746 22747 22748 22749 22750 22751 22752 22753 22754 22755 22756 22757 22758 22759 22760 22761 22762 22763 22764 22765 22766 22767 22768 22769 22770 22771 22772 22773 22774 22775 22776 22777 22778 22779 22780 22781 22782 22783 22784 22785 22786 22787 22788 22789 22790 22791 22792 22793 22794 22795 22796 22797 22798 22799 22800 22801 22802 22803 22804 22805 22806 22807 22808 22809 22810 22811 22812 22813 22814 22815 22816 22817 22818 22819 22820 22821 22822 22823 22824 22825 22826 22827 22828 22829 22830 22831 22832 22833 22834 22835 22836 22837 22838 22839 22840 22841 22842 22843 22844 22845 22846 22847 22848 22849 22850 22851 22852 22853 22854 22855 22856 22857 22858 22859 22860 22861 22862 22863 22864 22865 22866 22867 22868 22869 22870 22871 22872 22873 22874 22875 22876 22877 22878 22879 22880 22881 22882 22883 22884 22885 22886 22887 22888 22889 22890 22891 22892 22893 22894 22895 22896 22897 22898 22899 22900 22901 22902 22903 22904 22905 22906 22907 22908 22909 22910 22911 22912 22913 22914 22915 22916 22917 22918 22919 22920 22921 22922 22923 22924 22925 22926 22927 22928 22929 22930 22931 22932 22933 22934 22935 22936 22937 22938 22939 22940 22941 22942 22943 22944 22945 22946 22947 22948 22949 22950 22951 22952 22953 22954 22955 22956 22957 22958 22959 22960 22961 22962 22963 22964 22965 22966 22967 22968 22969 22970 22971 22972 22973 22974 22975 22976 22977 22978 22979 22980 22981 22982 22983 22984 22985 22986 22987 22988 22989 22990 22991 22992 22993 22994 22995 22996 22997 22998 22999 23000 23001 23002 23003 23004 23005 23006 23007 23008 23009 23010 23011 23012 23013 23014 23015 23016 23017 23018 23019 23020 23021 23022 23023 23024 23025 23026 23027 23028 23029 23030 23031 23032 23033 23034 23035 23036 23037 23038 23039 23040 23041 23042 23043 23044 23045 23046 23047 23048 23049 23050 23051 23052 23053 23054 23055 23056 23057 23058 23059 23060 23061 23062 23063 23064 23065 23066 23067 23068 23069 23070 23071 23072 23073 23074 23075 23076 23077 23078 23079 23080 23081 23082 23083 23084 23085 23086 23087 23088 23089 23090 23091 23092 23093 23094 23095 23096 23097 23098 23099 23100 23101 23102 23103 23104 23105 23106 23107 23108 23109 23110 23111 23112 23113 23114 23115 23116 23117 23118 23119 23120 23121 23122 23123 23124 23125 23126 23127 23128 23129 23130 23131 23132 23133 23134 23135 23136 23137 23138 23139 23140 23141 23142 23143 23144 23145 23146 23147 23148 23149 23150 23151 23152 23153 23154 23155 23156 23157 23158 23159 23160 23161 23162 23163 23164 23165 23166 23167 23168 23169 23170 23171 23172 23173 23174 23175 23176 23177 23178 23179 23180 23181 23182 23183 23184 23185 23186 23187 23188 23189 23190 23191 23192 23193 23194 23195 23196 23197 23198 23199 23200 23201 23202 23203 23204 23205 23206 23207 23208 23209 23210 23211 23212 23213 23214 23215 23216 23217 23218 23219 23220 23221 23222 23223 23224 23225 23226 23227 23228 23229 23230 23231 23232 23233 23234 23235 23236 23237 23238 23239 23240 23241 23242 23243 23244 23245 23246 23247 23248 23249 23250 23251 23252 23253 23254 23255 23256 23257 23258 23259 23260 23261 23262 23263 23264 23265 23266 23267 23268 23269 23270 23271 23272 23273 23274 23275 23276 23277 23278 23279 23280 23281 23282 23283 23284 23285 23286 23287 23288 23289 23290 23291 23292 23293 23294 23295 23296 23297 23298 23299 23300 23301 23302 23303 23304 23305 23306 23307 23308 23309 23310 23311 23312 23313 23314 23315 23316 23317 23318 23319 23320 23321 23322 23323 23324 23325 23326 23327 23328 23329 23330 23331 23332 23333 23334 23335 23336 23337 23338 23339 23340 23341 23342 23343 23344 23345 23346 23347 23348 23349 23350 23351 23352 23353 23354 23355 23356 23357 23358 23359 23360 23361 23362 23363 23364 23365 23366 23367 23368 23369 23370 23371 23372 23373 23374 23375 23376 23377 23378 23379 23380 23381 23382 23383 23384 23385 23386 23387 23388 23389 23390 23391 23392 23393 23394 23395 23396 23397 23398 23399 23400 23401 23402 23403 23404 23405 23406 23407 23408 23409 23410 23411 23412 23413 23414 23415 23416 23417 23418 23419 23420 23421 23422 23423 23424 23425 23426 23427 23428 23429 23430 23431 23432 23433 23434 23435 23436 23437 23438 23439 23440 23441 23442 23443 23444 23445 23446 23447 23448 23449 23450 23451 23452 23453 23454 23455 23456 23457 23458 23459 23460 23461 23462 23463 23464 23465 23466 23467 23468 23469 23470 23471 23472 23473 23474 23475 23476 23477 23478 23479 23480 23481 23482 23483 23484 23485 23486 23487 23488 23489 23490 23491 23492 23493 23494 23495 23496 23497 23498 23499 23500 23501 23502 23503 23504 23505 23506 23507 23508 23509 23510 23511 23512 23513 23514 23515 23516 23517 23518 23519 23520 23521 23522 23523 23524 23525 23526 23527 23528 23529 23530 23531 23532 23533 23534 23535 23536 23537 23538 23539 23540 23541 23542 23543 23544 23545 23546 23547 23548 23549 23550 23551 23552 23553 23554 23555 23556 23557 23558 23559 23560 23561 23562 23563 23564 23565 23566 23567 23568 23569 23570 23571 23572 23573 23574 23575 23576 23577 23578 23579 23580 23581 23582 23583 23584 23585 23586 23587 23588 23589 23590 23591 23592 23593 23594 23595 23596 23597 23598 23599 23600 23601 23602 23603 23604 23605 23606 23607 23608 23609 23610 23611 23612 23613 23614 23615 23616 23617 23618 23619 23620 23621 23622 23623 23624 23625 23626 23627 23628 23629 23630 23631 23632 23633 23634 23635 23636 23637 23638 23639 23640 23641 23642 23643 23644 23645 23646 23647 23648 23649 23650 23651 23652 23653 23654 23655 23656 23657 23658 23659 23660 23661 23662 23663 23664 23665 23666 23667 23668 23669 23670 23671 23672 23673 23674 23675 23676 23677 23678 23679 23680 23681 23682 23683 23684 23685 23686 23687 23688 23689 23690 23691 23692 23693 23694 23695 23696 23697 23698 23699 23700 23701 23702 23703 23704 23705 23706 23707 23708 23709 23710 23711 23712 23713 23714 23715 23716 23717 23718 23719 23720 23721 23722 23723 23724 23725 23726 23727 23728 23729 23730 23731 23732 23733 23734 23735 23736 23737 23738 23739 23740 23741 23742 23743 23744 23745 23746 23747 23748 23749 23750 23751 23752 23753 23754 23755 23756 23757 23758 23759 23760 23761 23762 23763 23764 23765 23766 23767 23768 23769 23770 23771 23772 23773 23774 23775 23776 23777 23778 23779 23780 23781 23782 23783 23784 23785 23786 23787 23788 23789 23790 23791 23792 23793 23794 23795 23796 23797 23798 23799 23800 23801 23802 23803 23804 23805 23806 23807 23808 23809 23810 23811 23812 23813 23814 23815 23816 23817 23818 23819 23820 23821 23822 23823 23824 23825 23826 23827 23828 23829 23830 23831 23832 23833 23834 23835 23836 23837 23838 23839 23840 23841 23842 23843 23844 23845 23846 23847 23848 23849 23850 23851 23852 23853 23854 23855 23856 23857 23858 23859 23860 23861 23862 23863 23864 23865 23866 23867 23868 23869 23870 23871 23872 23873 23874 23875 23876 23877 23878 23879 23880 23881 23882 23883 23884 23885 23886 23887 23888 23889 23890 23891 23892 23893 23894 23895 23896 23897 23898 23899 23900 23901 23902 23903 23904 23905 23906 23907 23908 23909 23910 23911 23912 23913 23914 23915 23916 23917 23918 23919 23920 23921 23922 23923 23924 23925 23926 23927 23928 23929 23930 23931 23932 23933 23934 23935 23936 23937 23938 23939 23940 23941 23942 23943 23944 23945 23946 23947 23948 23949 23950 23951 23952 23953 23954 23955 23956 23957 23958 23959 23960 23961 23962 23963 23964 23965 23966 23967 23968 23969 23970 23971 23972 23973 23974 23975 23976 23977 23978 23979 23980 23981 23982 23983 23984 23985 23986 23987 23988 23989 23990 23991 23992 23993 23994 23995 23996 23997 23998 23999 24000 24001 24002 24003 24004 24005 24006 24007 24008 24009 24010 24011 24012 24013 24014 24015 24016 24017 24018 24019 24020 24021 24022 24023 24024 24025 24026 24027 24028 24029 24030 24031 24032 24033 24034 24035 24036 24037 24038 24039 24040 24041 24042 24043 24044 24045 24046 24047 24048 24049 24050 24051 24052 24053 24054 24055 24056 24057 24058 24059 24060 24061 24062 24063 24064 24065 24066 24067 24068 24069 24070 24071 24072 24073 24074 24075 24076 24077 24078 24079 24080 24081 24082 24083 24084 24085 24086 24087 24088 24089 24090 24091 24092 24093 24094 24095 24096 24097 24098 24099 24100 24101 24102 24103 24104 24105 24106 24107 24108 24109 24110 24111 24112 24113 24114 24115 24116 24117 24118 24119 24120 24121 24122 24123 24124 24125 24126 24127 24128 24129 24130 24131 24132 24133 24134 24135 24136 24137 24138 24139 24140 24141 24142 24143 24144 24145 24146 24147 24148 24149 24150 24151 24152 24153 24154 24155 24156 24157 24158 24159 24160 24161 24162 24163 24164 24165 24166 24167 24168 24169 24170 24171 24172 24173 24174 24175 24176 24177 24178 24179 24180 24181 24182 24183 24184 24185 24186 24187 24188 24189 24190 24191 24192 24193 24194 24195 24196 24197 24198 24199 24200 24201 24202 24203 24204 24205 24206 24207 24208 24209 24210 24211 24212 24213 24214 24215 24216 24217 24218 24219 24220 24221 24222 24223 24224 24225 24226 24227 24228 24229 24230 24231 24232 24233 24234 24235 24236 24237 24238 24239 24240 24241 24242 24243 24244 24245 24246 24247 24248 24249 24250 24251 24252 24253 24254 24255 24256 24257 24258 24259 24260 24261 24262 24263 24264 24265 24266 24267 24268 24269 24270 24271 24272 24273 24274 24275 24276 24277 24278 24279 24280 24281 24282 24283 24284 24285 24286 24287 24288 24289 24290 24291 24292 24293 24294 24295 24296 24297 24298 24299 24300 24301 24302 24303 24304 24305 24306 24307 24308 24309 24310 24311 24312 24313 24314 24315 24316 24317 24318 24319 24320 24321 24322 24323 24324 24325 24326 24327 24328 24329 24330 24331 24332 24333 24334 24335 24336 24337 24338 24339 24340 24341 24342 24343 24344 24345 24346 24347 24348 24349 24350 24351 24352 24353 24354 24355 24356 24357 24358 24359 24360 24361 24362 24363 24364 24365 24366 24367 24368 24369 24370 24371 24372 24373 24374 24375 24376 24377 24378 24379 24380 24381 24382 24383 24384 24385 24386 24387 24388 24389 24390 24391 24392 24393 24394 24395 24396 24397 24398 24399 24400 24401 24402 24403 24404 24405 24406 24407 24408 24409 24410 24411 24412 24413 24414 24415 24416 24417 24418 24419 24420 24421 24422 24423 24424 24425 24426 24427 24428 24429 24430 24431 24432 24433 24434 24435 24436 24437 24438 24439 24440 24441 24442 24443 24444 24445 24446 24447 24448 24449 24450 24451 24452 24453 24454 24455 24456 24457 24458 24459 24460 24461 24462 24463 24464 24465 24466 24467 24468 24469 24470 24471 24472 24473 24474 24475 24476 24477 24478 24479 24480 24481 24482 24483 24484 24485 24486 24487 24488 24489 24490 24491 24492 24493 24494 24495 24496 24497 24498 24499 24500 24501 24502 24503 24504 24505 24506 24507 24508 24509 24510 24511 24512 24513 24514 24515 24516 24517 24518 24519 24520 24521 24522 24523 24524 24525 24526 24527 24528 24529 24530 24531 24532 24533 24534 24535 24536 24537 24538 24539 24540 24541 24542 24543 24544 24545 24546 24547 24548 24549 24550 24551 24552 24553 24554 24555 24556 24557 24558 24559 24560 24561 24562 24563 24564 24565 24566 24567 24568 24569 24570 24571 24572 24573 24574 24575 24576 24577 24578 24579 24580 24581 24582 24583 24584 24585 24586 24587 24588 24589 24590 24591 24592 24593 24594 24595 24596 24597 24598 24599 24600 24601 24602 24603 24604 24605 24606 24607 24608 24609 24610 24611 24612 24613 24614 24615 24616 24617 24618 24619 24620 24621 24622 24623 24624 24625 24626 24627 24628 24629 24630 24631 24632 24633 24634 24635 24636 24637 24638 24639 24640 24641 24642 24643 24644 24645 24646 24647 24648 24649 24650 24651 24652 24653 24654 24655 24656 24657 24658 24659 24660 24661 24662 24663 24664 24665 24666 24667 24668 24669 24670 24671 24672 24673 24674 24675 24676 24677 24678 24679 24680 24681 24682 24683 24684 24685 24686 24687 24688 24689 24690 24691 24692 24693 24694 24695 24696 24697 24698 24699 24700 24701 24702 24703 24704 24705 24706 24707 24708 24709 24710 24711 24712 24713 24714 24715 24716 24717 24718 24719 24720 24721 24722 24723 24724 24725 24726 24727 24728 24729 24730 24731 24732 24733 24734 24735 24736 24737 24738 24739 24740 24741 24742 24743 24744 24745 24746 24747 24748 24749 24750 24751 24752 24753 24754 24755 24756 24757 24758 24759 24760 24761 24762 24763 24764 24765 24766 24767 24768 24769 24770 24771 24772 24773 24774 24775 24776 24777 24778 24779 24780 24781 24782 24783 24784 24785 24786 24787 24788 24789 24790 24791 24792 24793 24794 24795 24796 24797 24798 24799 24800 24801 24802 24803 24804 24805 24806 24807 24808 24809 24810 24811 24812 24813 24814 24815 24816 24817 24818 24819 24820 24821 24822 24823 24824 24825 24826 24827 24828 24829 24830 24831 24832 24833 24834 24835 24836 24837 24838 24839 24840 24841 24842 24843 24844 24845 24846 24847 24848 24849 24850 24851 24852 24853 24854 24855 24856 24857 24858 24859 24860 24861 24862 24863 24864 24865 24866 24867 24868 24869 24870 24871 24872 24873 24874 24875 24876 24877 24878 24879 24880 24881 24882 24883 24884 24885 24886 24887 24888 24889 24890 24891 24892 24893 24894 24895 24896 24897 24898 24899 24900 24901 24902 24903 24904 24905 24906 24907 24908 24909 24910 24911 24912 24913 24914 24915 24916 24917 24918 24919 24920 24921 24922 24923 24924 24925 24926 24927 24928 24929 24930 24931 24932 24933 24934 24935 24936 24937 24938 24939 24940 24941 24942 24943 24944 24945 24946 24947 24948 24949 24950 24951 24952 24953 24954 24955 24956 24957 24958 24959 24960 24961 24962 24963 24964 24965 24966 24967 24968 24969 24970 24971 24972 24973 24974 24975 24976 24977 24978 24979 24980 24981 24982 24983 24984 24985 24986 24987 24988 24989 24990 24991 24992 24993 24994 24995 24996 24997 24998 24999 25000 25001 25002 25003 25004 25005 25006 25007 25008 25009 25010 25011 25012 25013 25014 25015 25016 25017 25018 25019 25020 25021 25022 25023 25024 25025 25026 25027 25028 25029 25030 25031 25032 25033 25034 25035 25036 25037 25038 25039 25040 25041 25042 25043 25044 25045 25046 25047 25048 25049 25050 25051 25052 25053 25054 25055 25056 25057 25058 25059 25060 25061 25062 25063 25064 25065 25066 25067 25068 25069 25070 25071 25072 25073 25074 25075 25076 25077 25078 25079 25080 25081 25082 25083 25084 25085 25086 25087 25088 25089 25090 25091 25092 25093 25094 25095 25096 25097 25098 25099 25100 25101 25102 25103 25104 25105 25106 25107 25108 25109 25110 25111 25112 25113 25114 25115 25116 25117 25118 25119 25120 25121 25122 25123 25124 25125 25126 25127 25128 25129 25130 25131 25132 25133 25134 25135 25136 25137 25138 25139 25140 25141 25142 25143 25144 25145 25146 25147 25148 25149 25150 25151 25152 25153 25154 25155 25156 25157 25158 25159 25160 25161 25162 25163 25164 25165 25166 25167 25168 25169 25170 25171 25172 25173 25174 25175 25176 25177 25178 25179 25180 25181 25182 25183 25184 25185 25186 25187 25188 25189 25190 25191 25192 25193 25194 25195 25196 25197 25198 25199 25200 25201 25202 25203 25204 25205 25206 25207 25208 25209 25210 25211 25212 25213 25214 25215 25216 25217 25218 25219 25220 25221 25222 25223 25224 25225 25226 25227 25228 25229 25230 25231 25232 25233 25234 25235 25236 25237 25238 25239 25240 25241 25242 25243 25244 25245 25246 25247 25248 25249 25250 25251 25252 25253 25254 25255 25256 25257 25258 25259 25260 25261 25262 25263 25264 25265 25266 25267 25268 25269 25270 25271 25272 25273 25274 25275 25276 25277 25278 25279 25280 25281 25282 25283 25284 25285 25286 25287 25288 25289 25290 25291 25292 25293 25294 25295 25296 25297 25298 25299 25300 25301 25302 25303 25304 25305 25306 25307 25308 25309 25310 25311 25312 25313 25314 25315 25316 25317 25318 25319 25320 25321 25322 25323 25324 25325 25326 25327 25328 25329 25330 25331 25332 25333 25334 25335 25336 25337 25338 25339 25340 25341 25342 25343 25344 25345 25346 25347 25348 25349 25350 25351 25352 25353 25354 25355 25356 25357 25358 25359 25360 25361 25362 25363 25364 25365 25366 25367 25368 25369 25370 25371 25372 25373 25374 25375 25376 25377 25378 25379 25380 25381 25382 25383 25384 25385 25386 25387 25388 25389 25390 25391 25392 25393 25394 25395 25396 25397 25398 25399 25400 25401 25402 25403 25404 25405 25406 25407 25408 25409 25410 25411 25412 25413 25414 25415 25416 25417 25418 25419 25420 25421 25422 25423 25424 25425 25426 25427 25428 25429 25430 25431 25432 25433 25434 25435 25436 25437 25438 25439 25440 25441 25442 25443 25444 25445 25446 25447 25448 25449 25450 25451 25452 25453 25454 25455 25456 25457 25458 25459 25460 25461 25462 25463 25464 25465 25466 25467 25468 25469 25470 25471 25472 25473 25474 25475 25476 25477 25478 25479 25480 25481 25482 25483 25484 25485 25486 25487 25488 25489 25490 25491 25492 25493 25494 25495 25496 25497 25498 25499 25500 25501 25502 25503 25504 25505 25506 25507 25508 25509 25510 25511 25512 25513 25514 25515 25516 25517 25518 25519 25520 25521 25522 25523 25524 25525 25526 25527 25528 25529 25530 25531 25532 25533 25534 25535 25536 25537 25538 25539 25540 25541 25542 25543 25544 25545 25546 25547 25548 25549 25550 25551 25552 25553 25554 25555 25556 25557 25558 25559 25560 25561 25562 25563 25564 25565 25566 25567 25568 25569 25570 25571 25572 25573 25574 25575 25576 25577 25578 25579 25580 25581 25582 25583 25584 25585 25586 25587 25588 25589 25590 25591 25592 25593 25594 25595 25596 25597 25598 25599 25600 25601 25602 25603 25604 25605 25606 25607 25608 25609 25610 25611 25612 25613 25614 25615 25616 25617 25618 25619 25620 25621 25622 25623 25624 25625 25626 25627 25628 25629 25630 25631 25632 25633 25634 25635 25636 25637 25638 25639 25640 25641 25642 25643 25644 25645 25646 25647 25648 25649 25650 25651 25652 25653 25654 25655 25656 25657 25658 25659 25660 25661 25662 25663 25664 25665 25666 25667 25668 25669 25670 25671 25672 25673 25674 25675 25676 25677 25678 25679 25680 25681 25682 25683 25684 25685 25686 25687 25688 25689 25690 25691 25692 25693 25694 25695 25696 25697 25698 25699 25700 25701 25702 25703 25704 25705 25706 25707 25708 25709 25710 25711 25712 25713 25714 25715 25716 25717 25718 25719 25720 25721 25722 25723 25724 25725 25726 25727 25728 25729 25730 25731 25732 25733 25734 25735 25736 25737 25738 25739 25740 25741 25742 25743 25744 25745 25746 25747 25748 25749 25750 25751 25752 25753 25754 25755 25756 25757 25758 25759 25760 25761 25762 25763 25764 25765 25766 25767 25768 25769 25770 25771 25772 25773 25774 25775 25776 25777 25778 25779 25780 25781 25782 25783 25784 25785 25786 25787 25788 25789 25790 25791 25792 25793 25794 25795 25796 25797 25798 25799 25800 25801 25802 25803 25804 25805 25806 25807 25808 25809 25810 25811 25812 25813 25814 25815 25816 25817 25818 25819 25820 25821 25822 25823 25824 25825 25826 25827 25828 25829 25830 25831 25832 25833 25834 25835 25836 25837 25838 25839 25840 25841 25842 25843 25844 25845 25846 25847 25848 25849 25850 25851 25852 25853 25854 25855 25856 25857 25858 25859 25860 25861 25862 25863 25864 25865 25866 25867 25868 25869 25870 25871 25872 25873 25874 25875 25876 25877 25878 25879 25880 25881 25882 25883 25884 25885 25886 25887 25888 25889 25890 25891 25892 25893 25894 25895 25896 25897 25898 25899 25900 25901 25902 25903 25904 25905 25906 25907 25908 25909 25910 25911 25912 25913 25914 25915 25916 25917 25918 25919 25920 25921 25922 25923 25924 25925 25926 25927 25928 25929 25930 25931 25932 25933 25934 25935 25936 25937 25938 25939 25940 25941 25942 25943 25944 25945 25946 25947 25948 25949 25950 25951 25952 25953 25954 25955 25956 25957 25958 25959 25960 25961 25962 25963 25964 25965 25966 25967 25968 25969 25970 25971 25972 25973 25974 25975 25976 25977 25978 25979 25980 25981 25982 25983 25984 25985 25986 25987 25988 25989 25990 25991 25992 25993 25994 25995 25996 25997 25998 25999 26000 26001 26002 26003 26004 26005 26006 26007 26008 26009 26010 26011 26012 26013 26014 26015 26016 26017 26018 26019 26020 26021 26022 26023 26024 26025 26026 26027 26028 26029 26030 26031 26032 26033 26034 26035 26036 26037 26038 26039 26040 26041 26042 26043 26044 26045 26046 26047 26048 26049 26050 26051 26052 26053 26054 26055 26056 26057 26058 26059 26060 26061 26062 26063 26064 26065 26066 26067 26068 26069 26070 26071 26072 26073 26074 26075 26076 26077 26078 26079 26080 26081 26082 26083 26084 26085 26086 26087 26088 26089 26090 26091 26092 26093 26094 26095 26096 26097 26098 26099 26100 26101 26102 26103 26104 26105 26106 26107 26108 26109 26110 26111 26112 26113 26114 26115 26116 26117 26118 26119 26120 26121 26122 26123 26124 26125 26126 26127 26128 26129 26130 26131 26132 26133 26134 26135 26136 26137 26138 26139 26140 26141 26142 26143 26144 26145 26146 26147 26148 26149 26150 26151 26152 26153 26154 26155 26156 26157 26158 26159 26160 26161 26162 26163 26164 26165 26166 26167 26168 26169 26170 26171 26172 26173 26174 26175 26176 26177 26178 26179 26180 26181 26182 26183 26184 26185 26186 26187 26188 26189 26190 26191 26192 26193 26194 26195 26196 26197 26198 26199 26200 26201 26202 26203 26204 26205 26206 26207 26208 26209 26210 26211 26212 26213 26214 26215 26216 26217 26218 26219 26220 26221 26222 26223 26224 26225 26226 26227 26228 26229 26230 26231 26232 26233 26234 26235 26236 26237 26238 26239 26240 26241 26242 26243 26244 26245 26246 26247 26248 26249 26250 26251 26252 26253 26254 26255 26256 26257 26258 26259 26260 26261 26262 26263 26264 26265 26266 26267 26268 26269 26270 26271 26272 26273 26274 26275 26276 26277 26278 26279 26280 26281 26282 26283 26284 26285 26286 26287 26288 26289 26290 26291 26292 26293 26294 26295 26296 26297 26298 26299 26300 26301 26302 26303 26304 26305 26306 26307 26308 26309 26310 26311 26312 26313 26314 26315 26316 26317 26318 26319 26320 26321 26322 26323 26324 26325 26326 26327 26328 26329 26330 26331 26332 26333 26334 26335 26336 26337 26338 26339 26340 26341 26342 26343 26344 26345 26346 26347 26348 26349 26350 26351 26352 26353 26354 26355 26356 26357 26358 26359 26360 26361 26362 26363 26364 26365 26366 26367 26368 26369 26370 26371 26372 26373 26374 26375 26376 26377 26378 26379 26380 26381 26382 26383 26384 26385 26386 26387 26388 26389 26390 26391 26392 26393 26394 26395 26396 26397 26398 26399 26400 26401 26402 26403 26404 26405 26406 26407 26408 26409 26410 26411 26412 26413 26414 26415 26416 26417 26418 26419 26420 26421 26422 26423 26424 26425 26426 26427 26428 26429 26430 26431 26432 26433 26434 26435 26436 26437 26438 26439 26440 26441 26442 26443 26444 26445 26446 26447 26448 26449 26450 26451 26452 26453 26454 26455 26456 26457 26458 26459 26460 26461 26462 26463 26464 26465 26466 26467 26468 26469 26470 26471 26472 26473 26474 26475 26476 26477 26478 26479 26480 26481 26482 26483 26484 26485 26486 26487 26488 26489 26490 26491 26492 26493 26494 26495 26496 26497 26498 26499 26500 26501 26502 26503 26504 26505 26506 26507 26508 26509 26510 26511 26512 26513 26514 26515 26516 26517 26518 26519 26520 26521 26522 26523 26524 26525 26526 26527 26528 26529 26530 26531 26532 26533 26534 26535 26536 26537 26538 26539 26540 26541 26542 26543 26544 26545 26546 26547 26548 26549 26550 26551 26552 26553 26554 26555 26556 26557 26558 26559 26560 26561 26562 26563 26564 26565 26566 26567 26568 26569 26570 26571 26572 26573 26574 26575 26576 26577 26578 26579 26580 26581 26582 26583 26584 26585 26586 26587 26588 26589 26590 26591 26592 26593 26594 26595 26596 26597 26598 26599 26600 26601 26602 26603 26604 26605 26606 26607 26608 26609 26610 26611 26612 26613 26614 26615 26616 26617 26618 26619 26620 26621 26622 26623 26624 26625 26626 26627 26628 26629 26630 26631 26632 26633 26634 26635 26636 26637 26638 26639 26640 26641 26642 26643 26644 26645 26646 26647 26648 26649 26650 26651 26652 26653 26654 26655 26656 26657 26658 26659 26660 26661 26662 26663 26664 26665 26666 26667 26668 26669 26670 26671 26672 26673 26674 26675 26676 26677 26678 26679 26680 26681 26682 26683 26684 26685 26686 26687 26688 26689 26690 26691 26692 26693 26694 26695 26696 26697 26698 26699 26700 26701 26702 26703 26704 26705 26706 26707 26708 26709 26710 26711 26712 26713 26714 26715 26716 26717 26718 26719 26720 26721 26722 26723 26724 26725 26726 26727 26728 26729 26730 26731 26732 26733 26734 26735 26736 26737 26738 26739 26740 26741 26742 26743 26744 26745 26746 26747 26748 26749 26750 26751 26752 26753 26754 26755 26756 26757 26758 26759 26760 26761 26762 26763 26764 26765 26766 26767 26768 26769 26770 26771 26772 26773 26774 26775 26776 26777 26778 26779 26780 26781 26782 26783 26784 26785 26786 26787 26788 26789 26790 26791 26792 26793 26794 26795 26796 26797 26798 26799 26800 26801 26802 26803 26804 26805 26806 26807 26808 26809 26810 26811 26812 26813 26814 26815 26816 26817 26818 26819 26820 26821 26822 26823 26824 26825 26826 26827 26828 26829 26830 26831 26832 26833 26834 26835 26836 26837 26838 26839 26840 26841 26842 26843 26844 26845 26846 26847 26848 26849 26850 26851 26852 26853 26854 26855 26856 26857 26858 26859 26860 26861 26862 26863 26864 26865 26866 26867 26868 26869 26870 26871 26872 26873 26874 26875 26876 26877 26878 26879 26880 26881 26882 26883 26884 26885 26886 26887 26888 26889 26890 26891 26892 26893 26894 26895 26896 26897 26898 26899 26900 26901 26902 26903 26904 26905 26906 26907 26908 26909 26910 26911 26912 26913 26914 26915 26916 26917 26918 26919 26920 26921 26922 26923 26924 26925 26926 26927 26928 26929 26930 26931 26932 26933 26934 26935 26936 26937 26938 26939 26940 26941 26942 26943 26944 26945 26946 26947 26948 26949 26950 26951 26952 26953 26954 26955 26956 26957 26958 26959 26960 26961 26962 26963 26964 26965 26966 26967 26968 26969 26970 26971 26972 26973 26974 26975 26976 26977 26978 26979 26980 26981 26982 26983 26984 26985 26986 26987 26988 26989 26990 26991 26992 26993 26994 26995 26996 26997 26998 26999 27000 27001 27002 27003 27004 27005 27006 27007 27008 27009 27010 27011 27012 27013 27014 27015 27016 27017 27018 27019 27020 27021 27022 27023 27024 27025 27026 27027 27028 27029 27030 27031 27032 27033 27034 27035 27036 27037 27038 27039 27040 27041 27042 27043 27044 27045 27046 27047 27048 27049 27050 27051 27052 27053 27054 27055 27056 27057 27058 27059 27060 27061 27062 27063 27064 27065 27066 27067 27068 27069 27070 27071 27072 27073 27074 27075 27076 27077 27078 27079 27080 27081 27082 27083 27084 27085 27086 27087 27088 27089 27090 27091 27092 27093 27094 27095 27096 27097 27098 27099 27100 27101 27102 27103 27104 27105 27106 27107 27108 27109 27110 27111 27112 27113 27114 27115 27116 27117 27118 27119 27120 27121 27122 27123 27124 27125 27126 27127 27128 27129 27130 27131 27132 27133 27134 27135 27136 27137 27138 27139 27140 27141 27142 27143 27144 27145 27146 27147 27148 27149 27150 27151 27152 27153 27154 27155 27156 27157 27158 27159 27160 27161 27162 27163 27164 27165 27166 27167 27168 27169 27170 27171 27172 27173 27174 27175 27176 27177 27178 27179 27180 27181 27182 27183 27184 27185 27186 27187 27188 27189 27190 27191 27192 27193 27194 27195 27196 27197 27198 27199 27200 27201 27202 27203 27204 27205 27206 27207 27208 27209 27210 27211 27212 27213 27214 27215 27216 27217 27218 27219 27220 27221 27222 27223 27224 27225 27226 27227 27228 27229 27230 27231 27232 27233 27234 27235 27236 27237 27238 27239 27240 27241 27242 27243 27244 27245 27246 27247 27248 27249 27250 27251 27252 27253 27254 27255 27256 27257 27258 27259 27260 27261 27262 27263 27264 27265 27266 27267 27268 27269 27270 27271 27272 27273 27274 27275 27276 27277 27278 27279 27280 27281 27282 27283 27284 27285 27286 27287 27288 27289 27290 27291 27292 27293 27294 27295 27296 27297 27298 27299 27300 27301 27302 27303 27304 27305 27306 27307 27308 27309 27310 27311 27312 27313 27314 27315 27316 27317 27318 27319 27320 27321 27322 27323 27324 27325 27326 27327 27328 27329 27330 27331 27332 27333 27334 27335 27336 27337 27338 27339 27340 27341 27342 27343 27344 27345 27346 27347 27348 27349 27350 27351 27352 27353 27354 27355 27356 27357 27358 27359 27360 27361 27362 27363 27364 27365 27366 27367 27368 27369 27370 27371 27372 27373 27374 27375 27376 27377 27378 27379 27380 27381 27382 27383 27384 27385 27386 27387 27388 27389 27390 27391 27392 27393 27394 27395 27396 27397 27398 27399 27400 27401 27402 27403 27404 27405 27406 27407 27408 27409 27410 27411 27412 27413 27414 27415 27416 27417 27418 27419 27420 27421 27422 27423 27424 27425 27426 27427 27428 27429 27430 27431 27432 27433 27434 27435 27436 27437 27438 27439 27440 27441 27442 27443 27444 27445 27446 27447 27448 27449 27450 27451 27452 27453 27454 27455 27456 27457 27458 27459 27460 27461 27462 27463 27464 27465 27466 27467 27468 27469 27470 27471 27472 27473 27474 27475 27476 27477 27478 27479 27480 27481 27482 27483 27484 27485 27486 27487 27488 27489 27490 27491 27492 27493 27494 27495 27496 27497 27498 27499 27500 27501 27502 27503 27504 27505 27506 27507 27508 27509 27510 27511 27512 27513 27514 27515 27516 27517 27518 27519 27520 27521 27522 27523 27524 27525 27526 27527 27528 27529 27530 27531 27532 27533 27534 27535 27536 27537 27538 27539 27540 27541 27542 27543 27544 27545 27546 27547 27548 27549 27550 27551 27552 27553 27554 27555 27556 27557 27558 27559 27560 27561 27562 27563 27564 27565 27566 27567 27568 27569 27570 27571 27572 27573 27574 27575 27576 27577 27578 27579 27580 27581 27582 27583 27584 27585 27586 27587 27588 27589 27590 27591 27592 27593 27594 27595 27596 27597 27598 27599 27600 27601 27602 27603 27604 27605 27606 27607 27608 27609 27610 27611 27612 27613 27614 27615 27616 27617 27618 27619 27620 27621 27622 27623 27624 27625 27626 27627 27628 27629 27630 27631 27632 27633 27634 27635 27636 27637 27638 27639 27640 27641 27642 27643 27644 27645 27646 27647 27648 27649 27650 27651 27652 27653 27654 27655 27656 27657 27658 27659 27660 27661 27662 27663 27664 27665 27666 27667 27668 27669 27670 27671 27672 27673 27674 27675 27676 27677 27678 27679 27680 27681 27682 27683 27684 27685 27686 27687 27688 27689 27690 27691 27692 27693 27694 27695 27696 27697 27698 27699 27700 27701 27702 27703 27704 27705 27706 27707 27708 27709 27710 27711 27712 27713 27714 27715 27716 27717 27718 27719 27720 27721 27722 27723 27724 27725 27726 27727 27728 27729 27730 27731 27732 27733 27734 27735 27736 27737 27738 27739 27740 27741 27742 27743 27744 27745 27746 27747 27748 27749 27750 27751 27752 27753 27754 27755 27756 27757 27758 27759 27760 27761 27762 27763 27764 27765 27766 27767 27768 27769 27770 27771 27772 27773 27774 27775 27776 27777 27778 27779 27780 27781 27782 27783 27784 27785 27786 27787 27788 27789 27790 27791 27792 27793 27794 27795 27796 27797 27798 27799 27800 27801 27802 27803 27804 27805 27806 27807 27808 27809 27810 27811 27812 27813 27814 27815 27816 27817 27818 27819 27820 27821 27822 27823 27824 27825 27826 27827 27828 27829 27830 27831 27832 27833 27834 27835 27836 27837 27838 27839 27840 27841 27842 27843 27844 27845 27846 27847 27848 27849 27850 27851 27852 27853 27854 27855 27856 27857 27858 27859 27860 27861 27862 27863 27864 27865 27866 27867 27868 27869 27870 27871 27872 27873 27874 27875 27876 27877 27878 27879 27880 27881 27882 27883 27884 27885 27886 27887 27888 27889 27890 27891 27892 27893 27894 27895 27896 27897 27898 27899 27900 27901 27902 27903 27904 27905 27906 27907 27908 27909 27910 27911 27912 27913 27914 27915 27916 27917 27918 27919 27920 27921 27922 27923 27924 27925 27926 27927 27928 27929 27930 27931 27932 27933 27934 27935 27936 27937 27938 27939 27940 27941 27942 27943 27944 27945 27946 27947 27948 27949 27950 27951 27952 27953 27954 27955 27956 27957 27958 27959 27960 27961 27962 27963 27964 27965 27966 27967 27968 27969 27970 27971 27972 27973 27974 27975 27976 27977 27978 27979 27980 27981 27982 27983 27984 27985 27986 27987 27988 27989 27990 27991 27992 27993 27994 27995 27996 27997 27998 27999 28000 28001 28002 28003 28004 28005 28006 28007 28008 28009 28010 28011 28012 28013 28014 28015 28016 28017 28018 28019 28020 28021 28022 28023 28024 28025 28026 28027 28028 28029 28030 28031 28032 28033 28034 28035 28036 28037 28038 28039 28040 28041 28042 28043 28044 28045 28046 28047 28048 28049 28050 28051 28052 28053 28054 28055 28056 28057 28058 28059 28060 28061 28062 28063 28064 28065 28066 28067 28068 28069 28070 28071 28072 28073 28074 28075 28076 28077 28078 28079 28080 28081 28082 28083 28084 28085 28086 28087 28088 28089 28090 28091 28092 28093 28094 28095 28096 28097 28098 28099 28100 28101 28102 28103 28104 28105 28106 28107 28108 28109 28110 28111 28112 28113 28114 28115 28116 28117 28118 28119 28120 28121 28122 28123 28124 28125 28126 28127 28128 28129 28130 28131 28132 28133 28134 28135 28136 28137 28138 28139 28140 28141 28142 28143 28144 28145 28146 28147 28148 28149 28150 28151 28152 28153 28154 28155 28156 28157 28158 28159 28160 28161 28162 28163 28164 28165 28166 28167 28168 28169 28170 28171 28172 28173 28174 28175 28176 28177 28178 28179 28180 28181 28182 28183 28184 28185 28186 28187 28188 28189 28190 28191 28192 28193 28194 28195 28196 28197 28198 28199 28200 28201 28202 28203 28204 28205 28206 28207 28208 28209 28210 28211 28212 28213 28214 28215 28216 28217 28218 28219 28220 28221 28222 28223 28224 28225 28226 28227 28228 28229 28230 28231 28232 28233 28234 28235 28236 28237 28238 28239 28240 28241 28242 28243 28244 28245 28246 28247 28248 28249 28250 28251 28252 28253 28254 28255 28256 28257 28258 28259 28260 28261 28262 28263 28264 28265 28266 28267 28268 28269 28270 28271 28272 28273 28274 28275 28276 28277 28278 28279 28280 28281 28282 28283 28284 28285 28286 28287 28288 28289 28290 28291 28292 28293 28294 28295 28296 28297 28298 28299 28300 28301 28302 28303 28304 28305 28306 28307 28308 28309 28310 28311 28312 28313 28314 28315 28316 28317 28318 28319 28320 28321 28322 28323 28324 28325 28326 28327 28328 28329 28330 28331 28332 28333 28334 28335 28336 28337 28338 28339 28340 28341 28342 28343 28344 28345 28346 28347 28348 28349 28350 28351 28352 28353 28354 28355 28356 28357 28358 28359 28360 28361 28362 28363 28364 28365 28366 28367 28368 28369 28370 28371 28372 28373 28374 28375 28376 28377 28378 28379 28380 28381 28382 28383 28384 28385 28386 28387 28388 28389 28390 28391 28392 28393 28394 28395 28396 28397 28398 28399 28400 28401 28402 28403 28404 28405 28406 28407 28408 28409 28410 28411 28412 28413 28414 28415 28416 28417 28418 28419 28420 28421 28422 28423 28424 28425 28426 28427 28428 28429 28430 28431 28432 28433 28434 28435 28436 28437 28438 28439 28440 28441 28442 28443 28444 28445 28446 28447 28448 28449 28450 28451 28452 28453 28454 28455 28456 28457 28458 28459 28460 28461 28462 28463 28464 28465 28466 28467 28468 28469 28470 28471 28472 28473 28474 28475 28476 28477 28478 28479 28480 28481 28482 28483 28484 28485 28486 28487 28488 28489 28490 28491 28492 28493 28494 28495 28496 28497 28498 28499 28500 28501 28502 28503 28504 28505 28506 28507 28508 28509 28510 28511 28512 28513 28514 28515 28516 28517 28518 28519 28520 28521 28522 28523 28524 28525 28526 28527 28528 28529 28530 28531 28532 28533 28534 28535 28536 28537 28538 28539 28540 28541 28542 28543 28544 28545 28546 28547 28548 28549 28550 28551 28552 28553 28554 28555 28556 28557 28558 28559 28560 28561 28562 28563 28564 28565 28566 28567 28568 28569 28570 28571 28572 28573 28574 28575 28576 28577 28578 28579 28580 28581 28582 28583 28584 28585 28586 28587 28588 28589 28590 28591 28592 28593 28594 28595 28596 28597 28598 28599 28600 28601 28602 28603 28604 28605 28606 28607 28608 28609 28610 28611 28612 28613 28614 28615 28616 28617 28618 28619 28620 28621 28622 28623 28624 28625 28626 28627 28628 28629 28630 28631 28632 28633 28634 28635 28636 28637 28638 28639 28640 28641 28642 28643 28644 28645 28646 28647 28648 28649 28650 28651 28652 28653 28654 28655 28656 28657 28658 28659 28660 28661 28662 28663 28664 28665 28666 28667 28668 28669 28670 28671 28672 28673 28674 28675 28676 28677 28678 28679 28680 28681 28682 28683 28684 28685 28686 28687 28688 28689 28690 28691 28692 28693 28694 28695 28696 28697 28698 28699 28700 28701 28702 28703 28704 28705 28706 28707 28708 28709 28710 28711 28712 28713 28714 28715 28716 28717 28718 28719 28720 28721 28722 28723 28724 28725 28726 28727 28728 28729 28730 28731 28732 28733 28734 28735 28736 28737 28738 28739 28740 28741 28742 28743 28744 28745 28746 28747 28748 28749 28750 28751 28752 28753 28754 28755 28756 28757 28758 28759 28760 28761 28762 28763 28764 28765 28766 28767 28768 28769 28770 28771 28772 28773 28774 28775 28776 28777 28778 28779 28780 28781 28782 28783 28784 28785 28786 28787 28788 28789 28790 28791 28792 28793 28794 28795 28796 28797 28798 28799 28800 28801 28802 28803 28804 28805 28806 28807 28808 28809 28810 28811 28812 28813 28814 28815 28816 28817 28818 28819 28820 28821 28822 28823 28824 28825 28826 28827 28828 28829 28830 28831 28832 28833 28834 28835 28836 28837 28838 28839 28840 28841 28842 28843 28844 28845 28846 28847 28848 28849 28850 28851 28852 28853 28854 28855 28856 28857 28858 28859 28860 28861 28862 28863 28864 28865 28866 28867 28868 28869 28870 28871 28872 28873 28874 28875 28876 28877 28878 28879 28880 28881 28882 28883 28884 28885 28886 28887 28888 28889 28890 28891 28892 28893 28894 28895 28896 28897 28898 28899 28900 28901 28902 28903 28904 28905 28906 28907 28908 28909 28910 28911 28912 28913 28914 28915 28916 28917 28918 28919 28920 28921 28922 28923 28924 28925 28926 28927 28928 28929 28930 28931 28932 28933 28934 28935 28936 28937 28938 28939 28940 28941 28942 28943 28944 28945 28946 28947 28948 28949 28950 28951 28952 28953 28954 28955 28956 28957 28958 28959 28960 28961 28962 28963 28964 28965 28966 28967 28968 28969 28970 28971 28972 28973 28974 28975 28976 28977 28978 28979 28980 28981 28982 28983 28984 28985 28986 28987 28988 28989 28990 28991 28992 28993 28994 28995 28996 28997 28998 28999 29000 29001 29002 29003 29004 29005 29006 29007 29008 29009 29010 29011 29012 29013 29014 29015 29016 29017 29018 29019 29020 29021 29022 29023 29024 29025 29026 29027 29028 29029 29030 29031 29032 29033 29034 29035 29036 29037 29038 29039 29040 29041 29042 29043 29044 29045 29046 29047 29048 29049 29050 29051 29052 29053 29054 29055 29056 29057 29058 29059 29060 29061 29062 29063 29064 29065 29066 29067 29068 29069 29070 29071 29072 29073 29074 29075 29076 29077 29078 29079 29080 29081 29082 29083 29084 29085 29086 29087 29088 29089 29090 29091 29092 29093 29094 29095 29096 29097 29098 29099 29100 29101 29102 29103 29104 29105 29106 29107 29108 29109 29110 29111 29112 29113 29114 29115 29116 29117 29118 29119 29120 29121 29122 29123 29124 29125 29126 29127 29128 29129 29130 29131 29132 29133 29134 29135 29136 29137 29138 29139 29140 29141 29142 29143 29144 29145 29146 29147 29148 29149 29150 29151 29152 29153 29154 29155 29156 29157 29158 29159 29160 29161 29162 29163 29164 29165 29166 29167 29168 29169 29170 29171 29172 29173 29174 29175 29176 29177 29178 29179 29180 29181 29182 29183 29184 29185 29186 29187 29188 29189 29190 29191 29192 29193 29194 29195 29196 29197 29198 29199 29200 29201 29202 29203 29204 29205 29206 29207 29208 29209 29210 29211 29212 29213 29214 29215 29216 29217 29218 29219 29220 29221 29222 29223 29224 29225 29226 29227 29228 29229 29230 29231 29232 29233 29234 29235 29236 29237 29238 29239 29240 29241 29242 29243 29244 29245 29246 29247 29248 29249 29250 29251 29252 29253 29254 29255 29256 29257 29258 29259 29260 29261 29262 29263 29264 29265 29266 29267 29268 29269 29270 29271 29272 29273 29274 29275 29276 29277 29278 29279 29280 29281 29282 29283 29284 29285 29286 29287 29288 29289 29290 29291 29292 29293 29294 29295 29296 29297 29298 29299 29300 29301 29302 29303 29304 29305 29306 29307 29308 29309 29310 29311 29312 29313 29314 29315 29316 29317 29318 29319 29320 29321 29322 29323 29324 29325 29326 29327 29328 29329 29330 29331 29332 29333 29334 29335 29336 29337 29338 29339 29340 29341 29342 29343 29344 29345 29346 29347 29348 29349 29350 29351 29352 29353 29354 29355 29356 29357 29358 29359 29360 29361 29362 29363 29364 29365 29366 29367 29368 29369 29370 29371 29372 29373 29374 29375 29376 29377 29378 29379 29380 29381 29382 29383 29384 29385 29386 29387 29388 29389 29390 29391 29392 29393 29394 29395 29396 29397 29398 29399 29400 29401 29402 29403 29404 29405 29406 29407 29408 29409 29410 29411 29412 29413 29414 29415 29416 29417 29418 29419 29420 29421 29422 29423 29424 29425 29426 29427 29428 29429 29430 29431 29432 29433 29434 29435 29436 29437 29438 29439 29440 29441 29442 29443 29444 29445 29446 29447 29448 29449 29450 29451 29452 29453 29454 29455 29456 29457 29458 29459 29460 29461 29462 29463 29464 29465 29466 29467 29468 29469 29470 29471 29472 29473 29474 29475 29476 29477 29478 29479 29480 29481 29482 29483 29484 29485 29486 29487 29488 29489 29490 29491 29492 29493 29494 29495 29496 29497 29498 29499 29500 29501 29502 29503 29504 29505 29506 29507 29508 29509 29510 29511 29512 29513 29514 29515 29516 29517 29518 29519 29520 29521 29522 29523 29524 29525 29526 29527 29528 29529 29530 29531 29532 29533 29534 29535 29536 29537 29538 29539 29540 29541 29542 29543 29544 29545 29546 29547 29548 29549 29550 29551 29552 29553 29554 29555 29556 29557 29558 29559 29560 29561 29562 29563 29564 29565 29566 29567 29568 29569 29570 29571 29572 29573 29574 29575 29576 29577 29578 29579 29580 29581 29582 29583 29584 29585 29586 29587 29588 29589 29590 29591 29592 29593 29594 29595 29596 29597 29598 29599 29600 29601 29602 29603 29604 29605 29606 29607 29608 29609 29610 29611 29612 29613 29614 29615 29616 29617 29618 29619 29620 29621 29622 29623 29624 29625 29626 29627 29628 29629 29630 29631 29632 29633 29634 29635 29636 29637 29638 29639 29640 29641 29642 29643 29644 29645 29646 29647 29648 29649 29650 29651 29652 29653 29654 29655 29656 29657 29658 29659 29660 29661 29662 29663 29664 29665 29666 29667 29668 29669 29670 29671 29672 29673 29674 29675 29676 29677 29678 29679 29680 29681 29682 29683 29684 29685 29686 29687 29688 29689 29690 29691 29692 29693 29694 29695 29696 29697 29698 29699 29700 29701 29702 29703 29704 29705 29706 29707 29708 29709 29710 29711 29712 29713 29714 29715 29716 29717 29718 29719 29720 29721 29722 29723 29724 29725 29726 29727 29728 29729 29730 29731 29732 29733 29734
|
\input texinfo @c -*-texinfo-*-
@c %**start of header
@setfilename gnuplot.info
@settitle Gnuplot: An Interactive Plotting Program
@setchapternewpage odd
@c %**end of header
@c define the command and options indices
@defindex cm
@defindex op
@defindex tm
@dircategory Math
@direntry
* GNUPLOT: (gnuplot). An Interactive Plotting Program
@end direntry
@ifnottex
@node Top, Gnuplot, (dir), (dir)
@top Master Menu
@end ifnottex
@example
GNUPLOT
An Interactive Plotting Program
Thomas Williams & Colin Kelley
Version 5.0 organized by
Ethan A Merritt with help from many others
Copyright (C) 1986 - 1993, 1998, 2004 Thomas Williams, Colin Kelley
Copyright (C) 2004 - 2012 various authors
Mailing list for comments: gnuplot-info@@lists.sourceforge.net
Mailing list for bug reports: gnuplot-bugs@@lists.sourceforge.net
This manual was originally prepared by Dick Crawford
Version 5.0 - March 2014
Major contributors (alphabetic order):
@end example
@menu
* Gnuplot::
* Plotting_styles::
* Commands::
* Terminal_types::
* Concept_Index::
* Command_Index::
* Options_Index::
* Function_Index::
* Terminal_Index::
@end menu
@node Gnuplot, Plotting_styles, Top, Top
@chapter Gnuplot
@cindex gnuplot
@c ^<h2 align="center"> An Interactive Plotting Program </h2>
@c ^<p align="center"> Thomas Williams & Colin Kelley</p>
@c ^<p align="center"> Version 6 organized by Ethan A Merritt</p>
@c ^<p align="center">Major contributors (alphabetic order):<br>
@c ^<br>
@c ^ Hans-Bernhard Broeker, John Campbell,<br>
@c ^ Robert Cunningham, David Denholm,<br>
@c ^ Gershon Elber, Roger Fearick,<br>
@c ^ Carsten Grammes, Lucas Hart, Lars Hecking,<br>
@c ^ Péter Juhász, Thomas Koenig, David Kotz,<br>
@c ^ Ed Kubaitis, Russell Lang, Timothée Lecomte,<br>
@c ^ Alexander Lehmann, Alexander Mai, Bastian Märkisch,<br>
@c ^ Tatsuro Matsuoka, Ethan A Merritt, Petr MikulÃk,<br>
@c ^ Hiroki Motoyoshi, Carsten Steger, Shigeharu Takeno,<br>
@c ^ Tom Tkacik, Jos Van der Woude,<br>
@c ^ James R. Van Zandt, Alex Woo, Johannes Zellner<br>
@c ^</p>
@c ^<p align="center"> Copyright (C) 1986 - 1993, 1998 - 2004 Thomas Williams, Colin Kelley<br>
@c ^ Copyright (C) 2004 - 2024 various authors</p>
@c ^<p align="center"> Mailing list for comments: <tt>gnuplot-info@@lists.sourceforge.net</tt><br>
@c ^ Gnuplot <a href="http://gnuplot.info"> home page </a><br>
@c ^ Issue trackers:
@uref{https://sourceforge.net/p/gnuplot/bugs,bugs }
@uref{https://sourceforge.net/p/gnuplot/feature-requests,feature requests }
@c ^<p align="center"> This manual was originally prepared by Dick Crawford</p>
@c ^<!-- end of titlepage -->
@menu
* Copyright::
* Introduction::
* Seeking-assistance_/_Bugs::
* New_features_in_version_6::
* Differences_between_versions_5_and_6::
* Demos_and_Online_Examples::
* Batch/Interactive_Operation::
* Canvas_size::
* Command-line-editing::
* Comments::
* Coordinates::
* Datastrings::
* Enhanced_text_mode::
* Environment::
* Expressions::
* Fonts::
* Glossary::
* inline_data_and_datablocks::
* iteration::
* linetypes::
* layers::
* mouse_input::
* Persist::
* Plotting::
* Plugins::
* Scope_of_variables::
* Start-up_(initialization)::
* String_constants::
* Substitution_and_Command_line_macros::
* Syntax::
* Time/Date_data::
* Watchpoints_::
@end menu
@node Copyright, Introduction, Gnuplot, Gnuplot
@section Copyright
@cindex copyright
@cindex license
@example
Copyright (C) 1986 - 1993, 1998, 2004, 2007 Thomas Williams, Colin Kelley
Copyright (C) 2004-2024 various authors
@end example
Permission to use, copy, and distribute this software and its
documentation for any purpose with or without fee is hereby granted,
provided that the above copyright notice appear in all copies and
that both that copyright notice and this permission notice appear
in supporting documentation.
Permission to modify the software is granted, but not the right to
distribute the complete modified source code. Modifications are to
be distributed as patches to the released version. Permission to
distribute binaries produced by compiling modified sources is granted,
provided you
@example
1. distribute the corresponding source modifications from the
released version in the form of a patch file along with the binaries,
2. add special version identification to distinguish your version
in addition to the base release version number,
3. provide your name and address as the primary contact for the
support of your modified version, and
4. retain our contact information in regard to use of the base software.
@end example
Permission to distribute the released version of the source code along
with corresponding source modifications in the form of a patch file is
granted with same provisions 2 through 4 for binary distributions.
This software is provided "as is" without express or implied warranty
to the extent permitted by applicable law.
@example
AUTHORS
Original Software:
Thomas Williams, Colin Kelley.
Gnuplot 2.0 additions:
Russell Lang, Dave Kotz, John Campbell.
Gnuplot 3.0 additions:
Gershon Elber and many others.
Gnuplot 4.0 and subsequent releases:
See list of contributors at head of this document.
@end example
@node Introduction, Seeking-assistance_/_Bugs, Copyright, Gnuplot
@section Introduction
@cindex introduction
@c ?
`Gnuplot` is a portable command-line driven graphing utility for Linux, OS/2,
MS Windows, macOS, VMS, and many other platforms. The source code is copyrighted
but freely distributed (i.e., you don't have to pay for it). It was originally
created to allow scientists and students to visualize mathematical functions
and data interactively, but has grown to support many non-interactive uses
such as web scripting. It is also used as a plotting engine by third-party
applications like Octave. Gnuplot has been supported and under active
development since 1986.
Gnuplot can generate many types of plot in 2D and 3D. It can draw using lines,
points, boxes, contours, vector fields, images, surfaces, and associated text.
It also supports specialized graphs such as heat maps, spider plots, polar
projection, histograms, boxplots, bee swarm plots, and nonlinear coordinates.
Gnuplot supports many different types of output: interactive screen terminals
(with mouse and hotkey input), direct output to pen plotters or modern
printers, and output to many file formats (eps, emf, fig, jpeg, LaTeX, pdf, png,
postscript, ...). Gnuplot is easily extensible to include new output modes.
A recent example is support for webp animation. Mouseable plots embedded in
web pages can be generated using the svg or HTML5 canvas terminal drivers.
The command language of `gnuplot` is case sensitive, i.e. commands and
function names written in lowercase are not the same as those written in
capitals. All command names may be abbreviated as long as the abbreviation is
not ambiguous. Any number of commands may appear on a line, separated by
semicolons (;). Strings may be set off by either single or double quotes,
although there are some subtle differences. See `syntax` and `quotes` for
more details. Example:
@example
set title "My First Plot"; plot 'data'; print "all done!"
@end example
Commands may extend over several input lines by ending each line but the last
with a backslash (\). The backslash must be the _last_ character on each
line. The effect is as if the backslash and newline were not there. That
is, no white space is implied, nor is a comment terminated. Therefore,
commenting out a continued line comments out the entire command
(see `comments`). But note that if an error occurs somewhere on a multi-line
command, the parser may not be able to locate precisely where the error is
and in that case will not necessarily point to the correct line.
In this document, curly braces (@{@}) denote optional arguments and a vertical
bar (|) separates mutually exclusive choices. `Gnuplot` keywords or @ref{help}
topics are indicated by backquotes or `boldface` (where available). Angle
brackets (<>) are used to mark replaceable tokens. In many cases, a default
value of the token will be taken for optional arguments if the token is
omitted, but these cases are not always denoted with braces around the angle
brackets.
For built-in help on any topic, type @ref{help} followed by the name of the topic
or `help ?` to get a menu of available topics.
A large set of demo plots is available on the web page
@uref{http://www.gnuplot.info/demo/,http://www.gnuplot.info/demo/
}
When run from command line, gnuplot is invoked using the syntax
@example
gnuplot @{OPTIONS@} file1 file2 ...
@end example
where file1, file2, etc. are input files as in the `load` command.
Options interpreted by gnuplot may come anywhere on the line. Files are
executed in the order specified, as are commands supplied by the -e option,
for example
@example
gnuplot file1.in -e "reset" file2.in
@end example
The special filename "-" is used to force reading from stdin. `Gnuplot` exits
after the last file is processed. If no load files are named, `Gnuplot` takes
interactive input from stdin. See help `batch/interactive` for more details.
See `command-line-options` for more details, or type
@example
gnuplot --help
@end example
In sessions with an interactive plot window you can hit 'h' anywhere on the
plot for help about `hotkeys` and `mousing` features.
@node Seeking-assistance_/_Bugs, New_features_in_version_6, Introduction, Gnuplot
@section Seeking-assistance / Bugs
@cindex help-desk
@cindex faq
@cindex FAQ
@cindex bugs
@cindex seeking-assistance
The canonical gnuplot home page can be found at
@uref{http://www.gnuplot.info,http://www.gnuplot.info
}
Before seeking help, please check file FAQ.pdf or the above website for a
@uref{http://www.gnuplot.info/faq/,FAQ (Frequently Asked Questions) list.
}
Another resource for help with specific plotting problems (not bugs) is
@example
https://stackoverflow.com/questions/tagged/gnuplot
@end example
Bug reports and feature requests should be uploaded to the trackers at
@example
https://sourceforge.net/p/gnuplot/_list/tickets
@end example
Please check previous reports to see if the bug you want to report has
already been fixed in a newer version.
When reporting a bug or posting a question, please include full details
of the gnuplot version, the terminal type, and the operating system.
A short self-contained script demonstrating the problem is very helpful.
Instructions for subscribing to gnuplot mailing lists may be
found via the gnuplot development website
@uref{http://sourceforge.net/projects/gnuplot,http://sourceforge.net/projects/gnuplot
}
Please note that before you write to any of the gnuplot mailing lists you
must first subscribe to the list. This helps reduce the amount of spam.
The address for mailing to list members is:
@example
gnuplot-info@@lists.sourceforge.net
@end example
A mailing list for those interested in the development version of gnuplot is:
@example
gnuplot-beta@@lists.sourceforge.net
@end example
@node New_features_in_version_6, Differences_between_versions_5_and_6, Seeking-assistance_/_Bugs, Gnuplot
@section New features in version 6
@c ?new version_6
@cindex new
@cindex version
@opindex version
Version 6 is the latest major release in a history of gnuplot development
dating back to 1986. It follows major version 5 (2015) and subsequent
minor version releases 5.2 (2017) and 5.4 (2020). Development continues
in a separate unreleased branch in the project git repository on SourceForge.
Some features described in this document are present only if chosen and
configured at the time gnuplot is compiled from source. To determine what
configuration options were used to build the particular copy of gnuplot you
are running, type `show version long`.
@menu
* Function_blocks_and_scoped_variables::
* Special_and_complex-valued_functions::
* New_plot_styles::
* Hulls::
* Named_palettes::
* New_data_formats::
* New_built-in_functions_and_array_operations::
* Program_control_flow::
* Multiplots::
* New_terminals_and_terminal_options::
* Watchpoints::
* Week-date_time_support::
* Other_new_features::
* Brief_summary_of_features_introduced_in_version_5::
@end menu
@node Function_blocks_and_scoped_variables, Special_and_complex-valued_functions, New_features_in_version_6, New_features_in_version_6
@subsection Function blocks and scoped variables
@c ?new function blocks
This version of gnuplot introduces a mechanism for invoking a block of
standard gnuplot commands as a callable function. A function block can
accept from 0 to 9 parameters and returns a value. Function blocks can be
used to calculate and assign a new value to a variable, to combine with other
functions and operators, or to perform a repetitive task preparing data.
There are three components to this mechanism.
See `local`, `scope`, `function blocks`, @ref{return}.
@itemize @bullet
@item
The `local` qualifier allows optional declaration of a variable or array
whose scope is limited to the duration of execution of the program unit in
which it is found. These units currently include execution of a
`load` or @ref{call} statement, function block evaluation, and the code block
in curly brackets following an @ref{if}, `else`, `do for`, or `while` statement.
If the name of a local variable duplicates the name of a global variable,
the global variable is shadowed until exit from the local scope.
@item
The `function` command declares a named function block (effectively an
array of strings) containing gnuplot commands. When the function block
is invoked, commands are executed successively until the end of the block
or until a @ref{return} command is encountered.
@item
The `return <expression>` command terminates execution of a function block.
The result of evaluating <expression> is returned as the value of the
function. Anywhere outside a function block @ref{return} acts like @ref{exit}.
@end itemize
For an example of using this mechanism to define and plot a non-trivial
function that is too complicated for a simple one-line definition `f(x) = ...`
please see
@uref{http://www.gnuplot.info/demo_6.0/function_block.html,`function_block.dem`
}
@node Special_and_complex-valued_functions, New_plot_styles, Function_blocks_and_scoped_variables, New_features_in_version_6
@subsection Special and complex-valued functions
@c ?new math
Gnuplot 6 provides an expanded set of complex-valued functions and updated
versions of some functions that were present in earlier versions.
@itemize @bullet
@item
New: Riemann zeta function with complex domain and range. See @ref{zeta}.
@item
Updated lower incomplete gamma function with improved domain and precision.
Complex arguments accepted.
See `igamma`.
@item
New upper incomplete gamma function (real arguments only).
See @ref{uigamma}.
@item
Updated incomplete beta function with improved domain and precision.
See `ibeta`.
@item
New function for the inverse incomplete gamma function.
See `invigamma`.
@item
New function for the inverse incomplete beta function.
See `invibeta`.
@item
New complex function LambertW(z,k) returns the kth branch of multivalued
function W_k(z).
@c ^<br>
Note that the older function lambertw(x) = real(LambertW( real(z), 0 )).
See @ref{LambertW}.
@item
New complex function lnGamma(z).
Note that existing function lgamma(x) = real(lnGamma(real(z)).
See @ref{lnGamma}.
@item
Complex function conj(z) returns the complex conjugate of z.
@item
Synchrotron function F(x), see `SynchrotronF`.
@item
acosh(z) domain extended to cover negative real axis.
@item
asin(z) asinh(z) improved precision for complex arguments.
@item
Predefined variable I = sqrt(-1) = @{0,1@} for convenience.
@c ^<br>
This is useful because gnuplot does not accept @{a,b@} as a valid complex
constant but does accept (a + b*I) as a valid complex expression.
@end itemize
Additional special functions are supported if a suitable external
library is found at build time. See `special_functions`.
@itemize @bullet
@item
Complex Bessel functions Iν(z), Jν(z), Kν(z), Yν(z) of order ν (real)
with complex argument z. See `BesselK`.
@item
Complex Hankel functions H1ν(z), H2ν(z) of order ν with complex z.
See `BesselH1`.
@item
Complex Airy functions Ai(z), Bi(z).
@item
Complex exponential integral of order n. See `expint`.
@item
Fresnel integrals C(x) and S(x). See `FresnelC`.
@item
Function `VP_fwhm(sigma,gamma)` returns the full width at half maximum
of the Voigt profile. See `VP`, `VP_fwhm`.
@end itemize
@node New_plot_styles, Hulls, Special_and_complex-valued_functions, New_features_in_version_6
@subsection New plot styles
@c ?new styles
@itemize @bullet
@item
The plot style `with surface` works in 2D polar coordinates to produce
a solid-fill gridded representation of the plane, colored by weighted
contributions from an arbitrary set of input points. This is analogous to
the use of @ref{dgrid3d} and style `with pm3d` to produce a 3D gridded surface.
See `set polar grid` and `polar heatmap`.
@item
New 2D plot style @ref{sectors} is an alternative to generating a full
polar gridded surface. For each input data point it generates a single
annular wedge in a conceptual polar grid. Unlike polar mode `with surface`
it can be used in either a polar or cartesian coordinate graph.
@item
New 2D plot style @ref{hsteps} allows construction of step-like plots with
a variety of representations in addition to those offered by existing styles
@ref{steps}, @ref{histeps}, @ref{fsteps}, and @ref{fillsteps}. See @ref{hsteps}.
@item
Plot style `with lines` now has a filter option `sharpen`. This filter
detects spikes in a function plot that appear truncated in the output
because the peak lies between two x-coordinates at which the function has
been sampled. It adds a new sample point at the location of each such peak.
See @ref{filters}.
@item
Although it is not strictly speaking a new plot style, the combination
of the concave hull filter with along-path smoothing of filled areas
allows creation of 'blobby region' plots showing, for example,
the extents of overlapping data clusters. See `concavehull`.
@item
3D plot style `with pm3d` accepts an optional modifier `zclip [zmin:zmax]`
that selects only a slice of the full surface. Successive plots with
incremental changes to the clipping limits can be used to animate a
cross-sectional cutaway view in 3D or to create a filled area contour map.
This is automated by a new plot style @ref{contourfill} that is
particularly useful in 2D projection. See @ref{contourfill}.
@end itemize
D polargrid 4
DB
D windrose 1
D sectors 4
DB
D sharpen 1
D iris 2
DB
D contourfill 4
DB
D logic_timing 1
D rank_sequence 1
@node Hulls, Named_palettes, New_plot_styles, New_features_in_version_6
@subsection Hulls, masks, and smoothing
@c ?new hulls
@itemize @bullet
@item
A cluster of 2D points can be replaced by its bounding polygon using the
new filter `convexhull`. A path-smoothed bounding curve can be plotted
as a filled area using "convexhull smooth path with filledcurves".
See `convexhull`.
@item
An alternative filter `concavehull` generates a bounding polygon that
is not necessarily convex; instead it forms a χ-shape determined by a
characteristic length parameter that controls the degree of concavity.
This essentially draws a blob around the data points. See `concavehull`.
@item
A convex hull or other polygon can be used as a mask to display only
selected portions of a pm3d surface or an image plot.
See new plot style `with mask` (defines a mask) and keyword `mask`
(applies the mask to a subsequent plot component).
@item
curve smoothing using along-path cubic splines suitable for closed curves
or for 2D curves that are not monotonic on x. See `smooth path`.
This allows smoothing of hulls and masks.
@item
cubic spline smoothing of 3D lines. See `splot smooth csplines`
@item
Smoothing options apply to plotting @ref{filledcurves} @{above|below|between@}.
@item
New keyword `period` for smoothing periodic data. See `smooth kdensity`.
@end itemize
D convex_hull 2
D mask_pm3d 3
D smooth_path 2
@node Named_palettes, New_data_formats, Hulls, New_features_in_version_6
@subsection Named palettes
@c ?new colormaps
@itemize @bullet
@item
The current palette can be saved to a named colormap for future use.
See @ref{colormap}.
@item
pm3d and image plots can specify a previously saved palette by name.
This permits the use of multiple palettes in a single plot command.
See @ref{palette}.
@item
Named palette colormaps can be manipulated as arrays of 32-bit ARGB
color values. This permits addition of alpha-channel values or other
modifications not easily specified in a @ref{palette} command.
@item
There is a new predefined color scheme @ref{viridis}.
@item
Palettes read from a file or datablock (`set palette file`) may be specified
either using fractional color components or 24-bit packed RGB values.
@end itemize
D named_palettes 4
D viridis 1
@node New_data_formats, New_built-in_functions_and_array_operations, Named_palettes, New_features_in_version_6
@subsection New data formats
@c ?new data_formats
@itemize @bullet
@item
The `sparse matrix=(cols,rows)` option to `plot` and `splot` generates
a uniform pixel grid into which individual pixel values may be loaded in
any order. This is useful for plotting heat maps from incomplete data.
See `sparse`.
@item
During input of non-uniform matrix data, column(0) now returns the linear
ordering of matrix elements. I.e. for element A[i,j] in an MxN matrix A,
column(0)/M gives the row index i, and column(0)%M gives the column index j.
@end itemize
@node New_built-in_functions_and_array_operations, Program_control_flow, New_data_formats, New_features_in_version_6
@subsection New built-in functions and array operations
@c ?new built-in functions
@itemize @bullet
@item
`palette(z)` returns the current RGB palette color mapping z into cbrange.
@item
`rgbcolor("name")` returns the 32bit ARGB value for a named color.
@item
`index( Array, element )` returns the first index `i` for which
Array[i] is equal to element. See @ref{arrays}.
@item
User-defined functions allow an array as a parameter.
@c ^<br>
Example: dot(A,B) = sum [i=1:|A|] A[i]*B[i]
@item
Array slices are generated by appending a range to the array name.
Array[n] is single element. Array[n:n+5] is a six element slice of
the original array. See @ref{arrays}, `slice`.
@item
`split("string", "separator")` unpacks the fields in a string into
an array of strings. See @ref{split}.
@item
`join(array, "separator")` is the complement to @ref{split}. It concatenates
the elements of a string array into a single string with field separators.
See @ref{join}.
@item
`stats <non-existent file>` yields a testable value. See `stats test`.
@item
`stats $vgrid` finds min/max/mean/stddev of voxels in grid
@end itemize
@node Program_control_flow, Multiplots, New_built-in_functions_and_array_operations, New_features_in_version_6
@subsection Program control flow
@c ?control flow
@itemize @bullet
@item
New syntax `if ... else if ... else ...`
@item
XDG base directory conventions for configuration preferences are supported.
The program reads initial commands from $XDG_CONFIG_HOME/gnuplot/gnuplotrc.
Session command history is saved to $XDG_STATE_HOME/gnuplot_history.
If these files are not found, $HOME/.gnuplot and $HOME/.gnuplot_history
are used as in previous gnuplot versions.
@item
@ref{warnings} suppresses output of warning messages to stderr.
@item
`warn "message"` prints filename, line number and message to stderr.
@item
Exception handling for the "fit" command. Control always returns to the
next line of input, even in the case of fit errors. On return, FIT_ERROR is
non-zero if an error occurred. This allows scripted recovery from a bad fit.
See `fit error_recovery`.
@end itemize
@node Multiplots, New_terminals_and_terminal_options, Program_control_flow, New_features_in_version_6
@subsection Multiplots
@c ?new multiplots
Commands executed during initial creation of a multiplot are now stored in a
datablock $GPVAL_LAST_MULTIPLOT. They can be replayed by the new command
@ref{remultiplot}. Certain saved commands that would be problematic during replay
are not reexecuted. Note that the regenerated multiplot may not exactly
match the original if graphics settings (axis ranges, logscale, etc)
have changed in the interim.
The following sequence of commands will save both the original graphics state
and the multiplot commands to a script file that can be reloaded later.
@example
save "my_multiplot.gp"
set multiplot
... various commands to generate the component plots ...
unset multiplot
set print "my_multiplot.gp" append
print $GPVAL_LAST_MULTIPLOT
unset print
@end example
@itemize @bullet
@item
The @ref{replot} command will check to see if the most recent plot command
was part of a completed multiplot. If so, it will execute @ref{remultiplot}
instead of reexecuting that single plot command.
@item
EXPERIMENTAL. Replot requests generated by window events, mouse events,
or hot keys in a displayed multiplot will call @ref{remultiplot} if appropriate.
This means, for example, that you can now resize a multiplot displayed on
the screen. However the mouse coordinate readout and thus zoom/pan operations
are still based solely on the axis settings for the final component plot,
as was the case in earlier gnuplot versions. Because the commands stored
in $GPVAL_LAST_MULTIPLOT may not be sufficient to recreate the appropriate
graphics settings for each component plot, mousing in a multiplot may not
act as you would like. This will be improved in the future.
@end itemize
@node New_terminals_and_terminal_options, Watchpoints, Multiplots, New_features_in_version_6
@subsection New terminals and terminal options
@c ?new terminals
@itemize @bullet
@item
New terminals `kittygd` and `kittycairo` provide in-window graphics for
terminal emulators that support the kitty protocol. Kitty is an alternative
to sixel graphics that offers full 24-bit RGB color. See `kittycairo`.
@item
New terminal `block` for text-mode pseudo-graphics uses Unicode
block or Braille characters to offer improved resolution compared
to the `dumb` or `caca` terminals.
@item
New terminal `webp` generates a single frame or an animation sequence
using webp encoding. Frames are generated using pngcairo, then
encoded through the WebPAnimEncoder API exported by libwebp and libwebpmux.
@item
Terminals that use the same window for text entry and graphical display,
including `dumb`, `sixel`, `kitty`, and `block` now respond to keyboard
input during a `pause mouse` command. While paused, they interpret keystrokes
in the same way that a mousing terminal would. See `pseudo-mousing`.
For example the left/right/up/down arrow keys change the view angle of 3D
plots and perform incremental pan/zoom steps for 2D plots.
@end itemize
@node Watchpoints, Week-date_time_support, New_terminals_and_terminal_options, New_features_in_version_6
@subsection Watchpoints
@c ?new watchpoints
Watchpoints are target values associated with individual plots in a graph.
As that plot is drawn, each component line segment is monitored to see if
its endpoints bracket the target value of a watchpoint coordinate (x, y, or z)
or function f(x,y). If a match is found, the [x,y] coordinates of the
match point are saved for later use. See @ref{watchpoints}.
Possible uses include
@itemize @bullet
@item
Find the intersection points of two curves
@item
Find zeros of a function
@item
Find and notate where a dependent variable (y or z) or function f(x,y)
crosses a threshold value
@item
Use the mouse to track values along multiple plots simultaneously
@end itemize
D watchpoints 2
@node Week-date_time_support, Other_new_features, Watchpoints, New_features_in_version_6
@subsection Week-date time support
@c ?new week-date time
The Covid-19 pandemic that began in 2020 generated increased interest in
plotting epidemiological data, which is often tabulated using a "week date"
reporting convention. Deficiencies with gnuplot support for this convention
were remedied and the support for week-date time was extended.
@itemize @bullet
@item
Time specifier format %W has been brought into accord with the
ISO 8601 week date standard.
@item
Time specifier format %U has been brought into accord with the
CDC/MMWR week date standard.
@item
New function `tm_week(time, std)` returns ISO or CDC standard week of year.
@item
New function `weekdate_iso(year, week, day)` converts ISO standard week date
to calendar time.
@item
New function `weekdate_cdc(year, week, day)` converts CDC standard week date
to calendar time.
@end itemize
D epi_data 1
@node Other_new_features, Brief_summary_of_features_introduced_in_version_5, Week-date_time_support, New_features_in_version_6
@subsection Other new features
@c ?new other_features
@itemize @bullet
@item
`Time units for setting major and minor tics.`
Both major and minor tics along a time axis now accept tic intervals given
in units of minutes/hours/days/weeks/months/years.
See `set xtics`, `set mxtics time`.
@item
The character sequence $# in a `using` specifier evaluates to the total
number of columns available in the current line of data. For example
`plot FOO using 0:(column($# - 1))` plots the last-but-one field of each row.
@item
keyword `binvalue=avg` plots the average, rather than the sum, of binned data.
@item
`set colorbox bottom` places a horizontal color box underneath the plot
rather than a vertical box on the right.
@item
Improved rendering of intersecting pm3d surfaces - overlapping surface tiles
are split into two pieces along the line of intersection so that tiles
from one surface do not incorrectly protrude though the other surface.
@item
User-controlled spotlight added to the pm3d lighting model.
See `set pm3d spotlight`.
@item
New options to force total key width and number of columns. See `key layout`.
@item
`set pm3d border retrace` draws a border around each pm3d quadrangle in the
same color as the filled area. In principle this should have no visible
effect, but it prevents some display modes like glitchy pdf or postscript
viewers from introducing aliasing artifacts.
@item
@ref{isotropic} adjusts the axis scaling in both 2D and 3D plots such that
the x, y, and z axes all have the same scale.
@item
Change: Text rotation angle is not limited to integral degrees.
@item
Special (non-numerical) linetypes `lt nodraw`, `lt black`, `lt background`
See `special_linetypes`.
@item
Data-driven color assignments in histogram plots. See `histograms colors`.
@item
The position of the key box can be manually tweaked by specifying an
offset to be added to whatever position the program would otherwise use.
See `set key offset`.
@item
A keyentry with text but no plot style can be used to generate a secondary
title in the key spanning the entire width of the key. For example
@example
`plot A, keyentry "left-justified text" left, B`
@end example
This can also be used to create a key with two columns of text by
providing both a text string and a title. See `keyentry`.
@end itemize
@node Brief_summary_of_features_introduced_in_version_5, , Other_new_features, New_features_in_version_6
@subsection Brief summary of features introduced in version 5
@c ?new version_5
@cindex version_5
@menu
* Features_introduced_in_5.4::
* Features_introduced_in_5.2::
* Features_introduced_in_5.0::
@end menu
@node Features_introduced_in_5.4, Features_introduced_in_5.2, Brief_summary_of_features_introduced_in_version_5, Brief_summary_of_features_introduced_in_version_5
@subsubsection Features introduced in 5.4
@c ?new version_5 version_5.4
@c ?version_5 version_5.4
@itemize @bullet
@item
Expressions and functions use 64-bit integer arithmetic. See `integer`
@item
2D plot styles @ref{polygons}, @ref{spiderplot}, `arrows`
@item
3D plot styles @ref{boxes}, @ref{circles}, @ref{polygons}, @ref{isosurface} and
other representations of gridded voxel data
@item
Data preprocessing filter `zsort`
@item
Construction of customized keys using `keyentry`
@item
New LaTeX terminal pict2e supersedes older terminals `latex`, `emtex`, `eepic`,
and `tpic`. The older terminals are no longer built by default
@item
`set pixmap` imports a png/jpeg/gif image as a pixmap that can be scaled and
positioned anywhere in a plot or on the page
@item
Enhanced text mode accepts \U+xxxx (xxxx is a 4 or 5 character hexadecimal)
as representing a Unicode code point that is converted to the corresponding
UTF-8 byte sequence on output
@item
Revised syntax for @ref{parallelaxes} allows convenient iteration inside the
plot command, similar to plot styles `histogram` and @ref{spiderplot}
@end itemize
@node Features_introduced_in_5.2, Features_introduced_in_5.0, Features_introduced_in_5.4, Brief_summary_of_features_introduced_in_version_5
@subsubsection Features introduced in 5.2
@c ?new version_5 version_5.2
@c ?version_5 version_5.2
@itemize @bullet
@item
Nonlinear coordinate systems (see @ref{nonlinear})
@item
Automated binning of data (see `bins`)
@item
2D beeswarm plots. See @ref{jitter}
@item
3D plot style `zerrorfill`
@item
3D lighting model provides shading and specular highlighted (see @ref{lighting}).
@item
Array data type, associated commands and operators. See @ref{arrays}.
@item
New terminals `sixelgd`, `domterm`
@item
New format descriptors tH tM tS handle relative times (interval lengths).
See `time_specifiers`.
@end itemize
@node Features_introduced_in_5.0, , Features_introduced_in_5.2, Brief_summary_of_features_introduced_in_version_5
@subsubsection Features introduced in 5.0
@c ?new version_5 version_5.0
@c ?version_5 version_5.0
@itemize @bullet
@item
Terminal independent dash types.
@item
The default sequence of colors used for successive elements in a plot is
more easily distinguished by users with color-vision defects.
@item
New plot types @ref{parallelaxes}, @ref{table}.
@item
Hypertext labels activated by a mouse-over event.
@item
Explicit sampling ranges in 2D and 3D function plots and pseudofiles
'+' and '++'.
@item
Plugin support through new command @ref{import} that attaches a user-defined
function name to a function provided by an external shared object.
@end itemize
@node Differences_between_versions_5_and_6, Demos_and_Online_Examples, New_features_in_version_6, Gnuplot
@section Differences between versions 5 and 6
Some changes introduced in version 5 could cause certain scripts written
for earlier versions of gnuplot to fail or to behave differently.
There are very few such changes in version 6.
@menu
* Plot_style_details::
* Deprecated_syntax::
@end menu
@node Plot_style_details, Deprecated_syntax, Differences_between_versions_5_and_6, Differences_between_versions_5_and_6
@subsection Plot style details
@cindex v6_changes
Apart from adding entirely new plot styles, version 6 also makes a few
tweaks to existing plot styles.
@itemize @bullet
@item
More terminals (png/jpeg/sixel/kitty) scale the size of a "dot" by the
current line width. Some other terminals already did this.
@item
Plot styles that draw error bars place a gap at the position of the data
point. The size of the gap is controlled by @ref{pointintervalbox}.
@item
Multiplots can now be redrawn or rescaled (see `new multiplots`).
Because of this it is no longer possible to read in-line data from
pseudofile '-'. Use a data block instead.
@end itemize
@node Deprecated_syntax, , Plot_style_details, Differences_between_versions_5_and_6
@subsection Deprecated syntax
@c ?deprecated syntax
Deprecated in version 5.4, removed in 6.0
@example
# use of a file containing @ref{reread} to perform iteration
N = 0; load "file-containing-reread";
file content:
N = N+1
plot func(N,x)
pause -1
if (N<5) reread
@end example
Current equivalent
@example
do for [N=1:5] @{
plot func(N, x)
pause -1
@}
@end example
Deprecated in version 5.4, removed in 6.0
@example
set dgrid3d ,,foo # no keyword to indicate meaning of foo
@end example
Current equivalent
@example
set dgrid3d qnorm foo # (example only; qnorm is not the only option)
@end example
Deprecated in version 5.0, not present in 6.0 unless built with configuration
optione --enable-backward-compatibility
@example
set style increment user
@end example
Current equivalent
@example
use "set linetype" to redefine a convenient range of linetypes
explicit use of "linestyle N" or "linestyle variable"
@end example
Deprecated in version 5.0, removed in 6.0
@example
set clabel
@end example
Current equivalent
@example
`set clabel "format"` is replaced by `set cntrlabel format "format"`.
@ref{clabel} is replaced by `set cntrlabel onecolor`.
@end example
Deprecated in version 5.0, removed in 6.0
@example
show palette fit2rgbformulae
@end example
@node Demos_and_Online_Examples, Batch/Interactive_Operation, Differences_between_versions_5_and_6, Gnuplot
@section Demos and Online Examples
@cindex demos
@c ?online examples
@cindex examples
The `gnuplot` distribution contains a collection of examples in the `demo`
directory. You can browse on-line versions of these examples produced by the
png, svg, and canvas terminals at
@uref{http://gnuplot.info/demos/,http://gnuplot.info/demos
}
The commands that produced each demo plot are shown next to the plot, and
the corresponding gnuplot script can be downloaded to serve as a model for
generating similar plots.
@node Batch/Interactive_Operation, Canvas_size, Demos_and_Online_Examples, Gnuplot
@section Batch/Interactive Operation
@cindex batch/interactive
`Gnuplot` may be executed in either batch or interactive modes, and the two
may even be mixed together.
Command-line arguments are assumed to be either program options or names
of files containing `gnuplot` commands.
Each file or command string will be executed in the order specified.
The special filename "-" is indicates that commands are to be read from stdin.
`Gnuplot` exits after the last file is processed. If no load files and no
command strings are specified, `gnuplot` accepts interactive input from stdin.
@menu
* command_line_options::
* Examples::
@end menu
@node command_line_options, Examples, Batch/Interactive_Operation, Batch/Interactive_Operation
@subsection command line options
@cindex command-line-options
@c ?batch/interactive command-line-options
Gnuplot accepts the following options on the command line
@example
-V, --version
-h, --help
-p, --persist
-d, --default-settings
-s, --slow
-e "command1; command2; ..."
-c scriptfile ARG1 ARG2 ...
@end example
-p tells the program not to close any remaining interactive plot windows
when the program exits.
-d tells the program not to execute any private or system initialization
(see `initialization`).
-s tells the program to wait for slow font initialization on startup.
Otherwise it prints an error and continues with bad font metrics.
-e "command" tells gnuplot to execute that single command before continuing.
-c is equivalent to -e "call scriptfile ARG1 ARG2 ...". See @ref{call}.
@node Examples, , command_line_options, Batch/Interactive_Operation
@subsection Examples
@c ?batch/interactive examples
To launch an interactive session:
@example
gnuplot
@end example
To execute two command files "input1" and "input2" in batch mode:
@example
gnuplot input1 input2
@end example
To launch an interactive session after an initialization file "header" and
followed by another command file "trailer":
@example
gnuplot header - trailer
@end example
To give `gnuplot` commands directly in the command line, using the "-persist"
option so that the plot remains on the screen afterwards:
@example
gnuplot -persist -e "set title 'Sine curve'; plot sin(x)"
@end example
To set user-defined variables a and s prior to executing commands from a file:
@example
gnuplot -e "a=2; s='file.png'" input.gpl
@end example
@node Canvas_size, Command-line-editing, Batch/Interactive_Operation, Gnuplot
@section Canvas size
@c ?canvas size
@cindex canvas
@c ?set term size
This documentation uses the term "canvas" to mean the full drawing area
available for positioning the plot and associated elements like labels,
titles, key, etc. NB: For information about the HTML5 canvas terminal
see `set term canvas`.
`set term <terminal_type> size <XX>, <YY>` controls the size of the output
file, or "canvas". By default, the plot will fill this canvas.
`set size <XX>, <YY>` scales the plot itself relative to the size of the
canvas. Scale values less than 1 will cause the plot to not fill the entire
canvas. Scale values larger than 1 will cause only a portion of the plot to
fit on the canvas. Please be aware that setting scale values larger than 1
may cause problems.
Example:
@example
set size 0.5, 0.5
set term png size 600, 400
set output "figure.png"
plot "data" with lines
@end example
These commands produce an output file "figure.png" that is 600 pixels wide
and 400 pixels tall. The plot will fill the lower left quarter of this canvas.
Note: In early versions of gnuplot some terminal types used @ref{size}
to control the size of the output canvas. This was deprecated in version 4.
@node Command-line-editing, Comments, Canvas_size, Gnuplot
@section Command-line-editing
@cindex line-editing
@cindex editing
@cindex command-line-editing
Command-line editing and command history are supported using either an
external gnu readline library, an external BSD libedit library, or a
built-in equivalent. This choice is a configuration option at the time
gnuplot is built.
The editing commands of the built-in version are given below. Please note that
the action of the DEL key is system-dependent. The gnu readline and BSD libedit
libraries have their own documentation.
@example
`Line-editing`:
@end example
@example
^B moves back a single character.
^F moves forward a single character.
^A moves to the beginning of the line.
^E moves to the end of the line.
^H deletes the previous character.
DEL deletes the current character.
^D deletes current character, sends EOF if the line is empty.
^K deletes from current position to the end of line.
^L redraws line in case it gets trashed.
^U deletes the entire line.
^W deletes previous word.
^V inhibits the interpretation of the following key as editing command.
TAB performs filename-completion.
@end example
@example
`History`:
@end example
@example
^P moves back through history.
^N moves forward through history.
^R starts a backward-search.
@end example
@c ^<table align="center" border="1" rules="groups" frame="hsides" cellpadding="3">
@c ^<colgroup>
@c ^ <col align="center">
@c ^ <col align="left">
@c ^</colgroup>
@c ^<thead>
@c ^<tr> <th>Character</th> <th>Function</th></tr>
@c ^</thead>
@c ^<tbody>
@c ^<tr> <td></td> <th>Line Editing</th></tr>
@c ^<tr> <td><tt>^B</tt></td> <td>move back a single character.</td></tr>
@c ^<tr> <td><tt>^F</tt></td> <td>move forward a single character.</td></tr>
@c ^<tr> <td><tt>^A</tt></td> <td>move to the beginning of the line.</td></tr>
@c ^<tr> <td><tt>^E</tt></td> <td>move to the end of the line.</td></tr>
@c ^<tr> <td><tt>^H</tt></td> <td>delete the previous character.</td></tr>
@c ^<tr> <td><tt>DEL</tt></td> <td>delete the current character.</td></tr>
@c ^<tr> <td><tt>^D</tt></td> <td>delete current character. EOF if line is empty</td></tr>
@c ^<tr> <td><tt>^K</tt></td> <td>delete from current position to the end of line.</td></tr>
@c ^<tr> <td><tt>^L</tt></td> <td>redraw line in case it gets trashed.</td></tr>
@c ^<tr> <td><tt>^U</tt></td> <td>delete the entire line.</td></tr>
@c ^<tr> <td><tt>^W</tt></td> <td>delete previous word.</td></tr>
@c ^<tr> <td><tt>^V</tt></td> <td>inhibits the interpretation of the following key as editing command.</td></tr>
@c ^<tr> <td><tt>TAB</tt></td> <td>performs filename-completion.</td></tr>
@c ^</tbody>
@c ^<tbody>
@c ^<tr> <th></th> <th>History</th></tr>
@c ^<tr> <td><tt>^P</tt></td> <td>move back through history.</td></tr>
@c ^<tr> <td><tt>^N</tt></td> <td>move forward through history.</td></tr>
@c ^<tr> <td><tt>^R</tt></td> <td>starts a backward-search.</td></tr>
@c ^</tbody>
@c ^</table>
@node Comments, Coordinates, Command-line-editing, Gnuplot
@section Comments
@cindex comments
The comment character `#` may appear almost anywhere in a command line, and
`gnuplot` will ignore the rest of that line. A `#` does not have this effect
inside a quoted string. Note that if a commented line ends in '\' then the
subsequent line is also treated as part of the comment.
See also `set datafile commentschars` for specifying a comment character for
data files.
@node Coordinates, Datastrings, Comments, Gnuplot
@section Coordinates
@cindex coordinates
@cindex axes
The commands `set arrow`, `set key`, `set label` and @ref{object} allow you
to draw something at an arbitrary position on the graph. This position is
specified by the syntax:
@example
@{<system>@} <x>, @{<system>@} <y> @{,@{<system>@} <z>@}
@end example
Each <system> can either be `first`, `second`, `polar`, `graph`, `screen`, or
`character`.
`first` places the x, y, or z coordinate in the system defined by the left
and bottom axes; `second` places it in the system defined by the x2,y2 axes
(top and right); `graph` specifies the area within the axes---0,0 is bottom
left and 1,1 is top right (for splot, 0,0,0 is bottom left of plotting area;
use negative z to get to the base---see @ref{xyplane}); `screen`
specifies the screen area (the entire area---not just the portion selected by
@ref{size}), with 0,0 at bottom left and 1,1 at top right. `character`
coordinates are used primarily for offsets, not absolute positions.
The `character` vertical and horizontal size depend on the current font.
`polar` causes the first two values to be interpreted as angle theta and radius
r rather than as x and y. This could be used, for example, to place labels on
a 2D plot in polar coordinates or a 3D plot in cylindrical coordinates.
If the coordinate system for x is not specified, `first` is used. If the
system for y is not specified, the one used for x is adopted.
In some cases, the given coordinate is not an absolute position but a
relative value (e.g., the second position in `set arrow` ... `rto`). In
most cases, the given value serves as difference to the first position.
If the given coordinate belongs to a log-scaled axis, a relative value is
interpreted as multiplier. For example,
@example
set logscale x
set arrow 100,5 rto 10,2
@end example
plots an arrow from position 100,5 to position 1000,7 since the x axis is
logarithmic while the y axis is linear.
If one (or more) axis is timeseries, the appropriate coordinate should
be given as a quoted time string according to the @ref{timefmt} format string.
See @ref{xdata} and @ref{timefmt}. `Gnuplot` will also accept an integer
expression, which will be interpreted as seconds relative to 1 January 1970.
@node Datastrings, Enhanced_text_mode, Coordinates, Gnuplot
@section Datastrings
@cindex datastrings
Data files may contain string data consisting of either an arbitrary string
of printable characters containing no whitespace or an arbitrary string of
characters, possibly including whitespace, delimited by double quotes.
The following line from a datafile is interpreted to contain four
columns, with a text field in column 3:
@example
1.000 2.000 "Third column is all of this text" 4.00
@end example
Text fields can be positioned within a 2-D or 3-D plot using the commands:
@example
plot 'datafile' using 1:2:4 with labels
splot 'datafile' using 1:2:3:4 with labels
@end example
A column of text data can also be used to label the ticmarks along one or more
of the plot axes. The example below plots a line through a series of points
with (X,Y) coordinates taken from columns 3 and 4 of the input datafile.
However, rather than generating regularly spaced tics along the x axis
labeled numerically, gnuplot will position a tic mark along the x axis at the
X coordinate of each point and label the tic mark with text taken from column
1 of the input datafile.
@example
set xtics
plot 'datafile' using 3:4:xticlabels(1) with linespoints
@end example
@cindex columnheader
There is also an option that will interpret the first entry in a column of
input data (i.e. the column heading) as a text field, and use it as the key
title for data plotted from that column. The example given below will use the
first entry in column 2 to generate a title in the key box, while processing
the remainder of columns 2 and 4 to draw the required line:
@example
plot 'datafile' using 1:(f($2)/$4) with lines title columnhead(2)
@end example
Another example:
@example
plot for [i=2:6] 'datafile' using i title "Results for ".columnhead(i)
@end example
This use of column headings is automated by @ref{columnheaders} or
`set key autotitle columnhead`.
See @ref{labels}, `using xticlabels`, @ref{title}, `using`, `key autotitle`.
@node Enhanced_text_mode, Environment, Datastrings, Gnuplot
@section Enhanced text mode
@c ?enhanced text
@cindex enhanced
@cindex text_markup
@cindex markup
@cindex bold
@cindex italic
Many terminal types support an enhanced text mode in which additional
formatting information can be embedded in the text string. For example, "x^2"
will write x-squared as we are used to seeing it, with a superscript 2.
This mode is selected by default when you set the terminal, but may be
toggled afterward using "set termoption [no]enhanced", or disabled for
individual strings as in `set label "x_2" noenhanced`.
Note: For output to TeX-based terminals (e.g. cairolatex, pict2e, pslatex,
tikz) all text strings should instead use TeX/LaTeX syntax. See `latex`.
@example
Control Examples Explanation
^ a^x superscript
_ a_x subscript
@@ @@x or a@@^b_@{cd@} phantom box (occupies no width)
& &@{space@} inserts space of specified length
~ ~a@{.8-@} overprints '-' on 'a', raised by .8
times the current fontsize
@{/Times abc@} print abc in font Times at current size
@{/Times*2 abc@} print abc in font Times at twice current size
@{/Times:Italic abc@} print abc in font Times with style italic
@{/Arial:Bold=20 abc@} print abc in boldface Arial font size 20
\U+ \U+221E Unicode point U+221E (INFINITY)
@end example
@c ^<table align="center" border="1" rules="groups" frame="hsides" cellpadding="3">
@c ^<colgroup>
@c ^ <col align="center">
@c ^ <col align="center">
@c ^ <col align="left">
@c ^</colgroup>
@c ^<thead>
@c ^<tr> <th>Control</th> <th>Examples</th> <th>Explanation</th></tr>
@c ^</thead>
@c ^<tbody>
@c ^<tr> <td><tt> ^ </tt></td> <td><tt>a^x</tt></td> <td>superscript</td></tr>
@c ^<tr> <td><tt> _ </tt></td> <td><tt>a_x</tt></td> <td>subscript</td></tr>
@c ^<tr> <td><tt> @@ </tt></td> <td><tt> @@x</tt> or <tt>a@@^b_@{cd@}</tt></td> <td>phantom box (occupies no width)</td></tr>
@c ^<tr> <td><tt> &</tt></td> <td><tt> &@{space@}</tt></td> <td>inserts space of specified length</td></tr>
@c ^<tr> <td><tt> ~ </tt></td> <td><tt> ~a@{.8-@}</tt></td> <td>overprints '-' on 'a', raised by .8<br>times the current fontsize</td></tr>
@c ^</tbody>
@c ^</table>
The markup control characters act on the following single character or
bracketed clause. The bracketed clause may contain a string of characters with
no additional markup, e.g. 2^@{10@}, or it may contain additional markup that
changes font properties. Font specifiers MUST be preceded by a '/' character
that immediately follows the opening '@{'. If a font name contains spaces it
must be enclosed in single or double quotes.
Examples: The first example illustrates nesting one bracketed clause inside
another to produce a boldface A with an italic subscript i, all in the current
font. If the clause introduced by :Normal were omitted the subscript would be
both italic and boldface. The second example illustrates the same markup
applied to font "Times New Roman" at 20 point size.
@example
@{/:Bold A_@{/:Normal@{/:Italic i@}@}@}
@{/"Times New Roman":Bold=20 A_@{/:Normal@{/:Italic i@}@}@}
@end example
The phantom box is useful for a@@^b_c to align superscripts and subscripts
but does not work well for overwriting a diacritical mark on a letter.
For that purpose it is much better to use an encoding (e.g. utf8) that contains
letters with accents or other diacritical marks. See @ref{encoding}.
Since the box is non-spacing, it is sensible to put the shorter of the subscript
or superscript in the box (that is, after the @@).
Space equal in length to a string can be inserted using the '&' character.
Thus
@example
'abc&@{def@}ghi'
@end example
would produce
@example
'abc ghi'.
@end example
The '~' character causes the next character or bracketed text to be
overprinted by the following character or bracketed text. The second text
will be horizontally centered on the first. Thus '~a/' will result in an 'a'
with a slash through it. You can also shift the second text vertically by
preceding the second text with a number, which will define the fraction of the
current fontsize by which the text will be raised or lowered. In this case
the number and text must be enclosed in brackets because more than one
character is necessary. If the overprinted text begins with a number, put a
space between the vertical offset and the text ('~@{abc@}@{.5 000@}'); otherwise
no space is needed ('~@{abc@}@{.5---@}'). You can change the font for one or
both strings ('~a@{.5 /*.2 o@}'---an 'a' with a one-fifth-size 'o' on top---and
the space between the number and the slash is necessary), but you can't
change it after the beginning of the string. Neither can you use any other
special syntax within either string. Control characters must be escaped,
e.g. '~a@{.8\^@}' to print â. See `escape sequences` below.
Note that strings in double-quotes are parsed differently than those enclosed
in single-quotes. The major difference is that backslashes may need to be
doubled when in double-quoted strings.
The file "ps_guide.ps" in the /docs/psdoc subdirectory of the gnuplot source
distribution contains more examples of the enhanced syntax, as does the demo
@uref{http://www.gnuplot.info/demo/enhanced_utf8.html,`enhanced_utf8.dem`
}
@menu
* escape_sequences::
@end menu
@node escape_sequences, , Enhanced_text_mode, Enhanced_text_mode
@subsection escape sequences
@c ?escape sequences
@c ?enhanced text escape sequences
@cindex unicode
The backslash character \ is used to escape single byte character codes or
Unicode entry points.
The form \ooo (where ooo is a 3 character octal value) can be used to index a
known character code in a specific font encoding. For example the Adobe Symbol
font uses a custom encoding in which octal 245 represents the infinity symbol.
You could embed this in an enhanced text string by giving the font name and the
character code "@{/Symbol \245@}". This is mostly useful for the PostScript
terminal, which cannot easily handle UTF-8 encoding.
You can specify a character by its Unicode code point as \U+hhhh, where hhhh
is the 4 or 5 character hexadecimal code point. For example the code point for
the infinity symbol ∞ is \U+221E. This will be converted to a UTF-8 byte
sequence on output if appropriate. In a UTF-8 environment this mechanism
is not needed for printable special characters since they are handled in a
text string like any other character. However it is useful for combining forms
or supplemental diacritical marks (e.g. an arrow over a letter to represent
a vector). See @ref{encoding}, `utf8`, and the
@uref{http://www.gnuplot.info/demo_5.4/unicode.html,online unicode demo.
}
@node Environment, Expressions, Enhanced_text_mode, Gnuplot
@section Environment
@cindex environment
A number of shell environment variables are understood by `gnuplot`.
None of these are required.
GNUTERM, if defined, is passed to "set term" on start-up.
This can be overridden by a system or personal initialization file
(see `startup`) and of course by later explicit `set term` commands.
Terminal options may be included. E.g.
@example
bash$ export GNUTERM="postscript eps color size 5in, 3in"
@end example
GNUHELP, if defined, sets the pathname of the HELP file (gnuplot.gih).
Initialization at start-up may search for configuration files $HOME/.gnuplot,
and $XDG_CONFIG_HOME/gnuplot/gnuplotrc.
On MS-DOS, Windows and OS/2, files in GNUPLOT or USERPROFILE are searched.
For more details see `startup`.
On Unix, PAGER is used as an output filter for help messages.
On Unix, SHELL is used for the @ref{shell} command. On MS-DOS and OS/2, COMSPEC
is used.
FIT_SCRIPT may be used to specify a `gnuplot` command to be executed when a
fit is interrupted---see @ref{fit}. FIT_LOG specifies the default filename of the
logfile maintained by fit.
GNUPLOT_LIB may be used to define additional search directories for data
and command files. The variable may contain a single directory name, or
a list of directories separated by a platform-specific path separator,
eg. ':' on Unix, or ';' on DOS/Windows/OS/2 platforms. The contents
of GNUPLOT_LIB are appended to the @ref{loadpath} variable, but not saved
with the @ref{save} and `save set` commands.
Several gnuplot terminal drivers access TrueType fonts via the gd library
(see `fonts`). For these terminals GDFONTPATH and GNUPLOT_DEFAULT_GDFONT
may affect font selection.
The postscript terminal uses its own font search path. It is controlled by
the environmental variable GNUPLOT_FONTPATH.
GNUPLOT_PS_DIR is used by the postscript driver to search for external
prologue files. Depending on the build process, gnuplot contains either a
built-in copy of those files or a default hardcoded path. You can use this
variable to have the postscript terminal use custom prologue files rather
than the default prologue files. See `postscript prologue`.
@node Expressions, Fonts, Environment, Gnuplot
@section Expressions
@cindex expressions
@cindex division
In general, any mathematical expression accepted by C, FORTRAN, Pascal, or
BASIC is valid. The precedence of these operators is determined by the
specifications of the C programming language. White space (spaces and tabs)
is ignored inside expressions.
Note that gnuplot uses both "real" and "integer" arithmetic, like FORTRAN and
C. Integers are entered as "1", "-10", etc; reals as "1.0", "-10.0", "1e1",
3.5e-1, etc. The most important difference between the two forms is in
division: division of integers truncates: 5/2 = 2; division of reals does
not: 5.0/2.0 = 2.5. In mixed expressions, integers are "promoted" to reals
before evaluation: 5/2e0 = 2.5. The result of division of a negative integer
by a positive one may vary among compilers. Try a test like "print -5/2" to
determine if your system always rounds down (-5/2 yields -3) or always rounds
toward zero (-5/2 yields -2).
The integer expression "1/0" may be used to generate an "undefined" flag,
which causes a point to be ignored. Or you can use the pre-defined variable
NaN to achieve the same result. See `using` for an example.
@cindex NaN
Gnuplot can also perform simple operations on strings and string variables.
For example, the expression ("A" . "B" eq "AB") evaluates as true, illustrating
the string concatenation operator and the string equality operator.
A string which contains a numerical value is promoted to the corresponding
integer or real value if used in a numerical expression. Thus ("3" + "4" == 7)
and (6.78 == "6.78") both evaluate to true. An integer, but not a real or
complex value, is promoted to a string if used in string concatenation.
A typical case is the use of integers to construct file names or other strings;
e.g. ("file" . 4 eq "file4") is true.
Substrings can be specified using a postfixed range descriptor [beg:end].
For example, "ABCDEF"[3:4] == "CD" and "ABCDEF"[4:*] == "DEF"
The syntax "string"[beg:end] is exactly equivalent to calling the built-in
string-valued function substr("string",beg,end), except that you cannot
omit either beg or end from the function call.
@menu
* Complex_values::
* Constants::
* Functions::
* operators::
* summation::
* Gnuplot-defined_variables::
* User-defined_variables_and_functions::
* arrays::
@end menu
@node Complex_values, Constants, Expressions, Expressions
@subsection Complex values
@c ?complex values
@cindex complex
Arithmetic operations and most built-in functions support the use of complex
arguments. Complex constants are expressed as @{<real>,<imag>@}, where <real>
and <imag> must be numerical constants. Thus @{0,1@} represents 'i'.
The program predefines a variable I = @{0,1@} on entry that can be used to
generate complex values in terms of other variables.
Thus `x + y*I` is a valid expression but `@{x,y@}` is not.
The real and imaginary components of complex value z can be extracted as
real(z) and imag(z). The modulus is given by abs(z).
The phase angle is given by arg(z).
Gnuplot's 2D and 3D plot styles expect real values; to plot a complex-valued
function f(z) with non-zero imaginary components you must plot the real or
imaginary component, or the modulus or phase.
For example to represent the modulus and phase of a function f(z) with
complex argument and complex result it is possible to use the height of the
surface to represent modulus and use the color to represent the phase.
It is convenient to use a color palette in HSV space with component H (hue),
running from 0 to 1, mapped to the range of the phase returned by arg(z),
[-Ï€:Ï€], so that the color wraps when the phase angle does. By default this
would be at H = 0 (red). You can change this with the `start` keyword in
@ref{palette} so that some other value of H is mapped to 0.
The example shown starts and wraps at H = 0.3 (green).
See @ref{defined}, @ref{arg}, @ref{angles}.
@example
set palette model HSV start 0.3 defined (0 0 1 1, 1 1 1 1)
set cbrange [-pi:pi]
set cbtics ("-Ï€" -pi, "Ï€" pi)
set pm3d corners2color c1
E0(z) = exp(-z)/z
I = @{0,1@}
splot '++' using 1:2:(abs(E0(x+I*y))):(arg(E0(x+I*y))) with pm3d
@end example
@node Constants, Functions, Complex_values, Expressions
@subsection Constants
@cindex constants
@c ?expressions constants
@cindex octal
@cindex hexadecimal
@c ?complex constants
Integer constants are interpreted via the C library routine strtoll().
This means that constants beginning with "0" are interpreted as octal,
and constants beginning with "0x" or "0X" are interpreted as hexadecimal.
Floating point constants are interpreted via the C library routine atof().
Complex constants are expressed as @{<real>,<imag>@}, where <real> and <imag>
must be numerical constants. For example, @{0,1@} represents 'i' itself;
@{3,2@} represents 3 + 2i. The curly braces are explicitly required here.
The program predefines a variable I = @{0,1@} on entry that can be used to
avoid typing the explicit form. For example `3 + 2*I` is the same as `@{3,2@}`,
with the advantage that it can be used with variable coefficient for the
imaginary component. Thus `x + y*I` is a valid expression but `@{x,y@}` is not.
String constants consist of any sequence of characters enclosed either in
single quotes or double quotes. The distinction between single and double
quotes is important. See `quotes`.
Examples:
@example
1 -10 0xffaabb # integer constants
1.0 -10. 1e1 3.5e-1 # floating point constants
@{1.2, -3.4@} # complex constant
"Line 1\nLine 2" # string constant (\n is expanded to newline)
'123\na\456' # string constant (\ and n are ordinary characters)
@end example
@node Functions, operators, Constants, Expressions
@subsection Functions
@c ?expressions functions
Arguments to math functions in `gnuplot` can be integer, real, or complex
unless otherwise noted. Functions that accept or return angles (e.g. sin(x))
treat angle values as radians, but this may be changed to degrees using the
command @ref{angles}.
@c ^<table align="center" border="1" rules="groups" frame="hsides" cellpadding="3" width="90%">
@c ^<colgroup>
@c ^ <col align="center">
@c ^ <col align="center">
@c ^ <col align="left">
@c ^</colgroup>
@c ^<thead>
@c ^<tr> <th colspan="3"> Math library and built-in functions </th></tr>
@c ^<tr> <th>Function</th> <th>Arguments</th> <th>Returns</th></tr>
@c ^</thead>
@c ^<tbody>
@c ^<tr> <td>abs(x)</td> <td>int or real</td> <td>|<i>x</i>|, absolute value of <i>x</i>; same type</td></tr>
@c ^<tr> <td>abs(x)</td> <td>complex</td> <td>length of <i>x</i>, √( Re(<i>x</i>)<sup>2</sup> + Im(<i>x</i>)<sup>2</sup> )</td></tr>
@c ^<tr> <td>acos(x)</td> <td>any</td> <td>cos<sup>-1</sup> <i>x</i> (inverse cosine)</td></tr>
@c ^<tr> <td>acosh(x)</td> <td>any</td> <td>cosh<sup>-1</sup> <i>x</i> (inverse hyperbolic cosine) </td></tr>
@c ^<tr> <td>airy(x)</td> <td>real</td> <td>Airy function Ai(<i>x</i>) for real x</td></tr>
@c ^<tr> <td>arg(x)</td> <td>complex</td> <td>the phase of <i>x</i></td></tr>
@c ^<tr> <td>asin(x)</td> <td>any</td> <td>sin<sup>-1</sup> <i>x</i> (inverse sin)</td></tr>
@c ^<tr> <td>asinh(x)</td> <td>any</td> <td>sinh<sup>-1</sup> <i>x</i> (inverse hyperbolic sin) </td></tr>
@c ^<tr> <td>atan(x)</td> <td>any</td> <td>tan<sup>-1</sup> <i>x</i> (inverse tangent)</td></tr>
@c ^<tr> <td>atan2(y,x)</td> <td>int or real</td> <td>tan<sup>-1</sup>(<i>y/x</i>) (inverse tangent)</td></tr>
@c ^<tr> <td>atanh(x)</td> <td>any</td> <td>tanh<sup>-1</sup> <i>x</i> (inverse hyperbolic tangent) </td></tr>
@c ^<tr> <td>besj0(x)</td> <td>real</td> <td><i>J</i><sub>0</sub> Bessel function of <i>x</i> in radians</td></tr>
@c ^<tr> <td>besj1(x)</td> <td>real</td> <td><i>J</i><sub>1</sub> Bessel function of <i>x</i> in radians</td></tr>
@c ^<tr> <td>besjn(n,x)</td> <td>int,real</td> <td><i>J</i><sub>n</sub> Bessel function of <i>x</i> in radians</td></tr>
@c ^<tr> <td>besy0(x)</td> <td>real</td> <td><i>Y</i><sub>0</sub> Bessel function of <i>x</i> in radians</td></tr>
@c ^<tr> <td>besy1(x)</td> <td>real</td> <td><i>Y</i><sub>1</sub> Bessel function of <i>x</i> in radians</td></tr>
@c ^<tr> <td>besyn(n,x)</td> <td>int,real</td> <td><i>Y</i><sub>n</sub> Bessel function of <i>x</i> in radians</td></tr>
@c ^<tr> <td>besi0(x)</td> <td>real</td> <td>Modified Bessel function of order 0, <i>x</i> in radians</td></tr>
@c ^<tr> <td>besi1(x)</td> <td>real</td> <td>Modified Bessel function of order 1, <i>x</i> in radians</td></tr>
@c ^<tr> <td>besin(n,x)</td> <td>int,real</td><td>Modified Bessel function of order n, <i>x</i> in radians</td></tr>
@c ^<tr> <td>cbrt(x)</td> <td>real</td> <td>cube root of x, domain and range both real </td></tr>
@c ^<tr> <td>ceil(x)</td> <td>any</td> <td>⌈<i>x</i>⌉, smallest integer not less than <i>x</i> (real part)</td></tr>
@c ^<tr> <td>conj(x)</td> <td>complex</td> <td>complex conjugate of <i>x</i></td></tr>
@c ^<tr> <td>cos(x)</td> <td>radians</td> <td>cos <i>x</i>, cosine of <i>x</i></td></tr>
@c ^<tr> <td>cosh(x)</td> <td>any</td> <td>cosh <i>x</i>, hyperbolic cosine of <i>x</i> in radians</td></tr>
@c ^<tr> <td>EllipticK(k)</td> <td>real k in (-1:1)</td> <td><i>K(k)</i> complete elliptic integral of the first kind</td></tr>
@c ^<tr> <td>EllipticE(k)</td> <td>real k in [-1:1]</td> <td><i>E(k)</i> complete elliptic integral of the second kind</td></tr>
@c ^<tr> <td>EllipticPi(n,k)</td> <td> real n<1, real k in (-1:1)</td> <td> Π(<i>n,k</i>) complete elliptic integral of the third kind</td></tr>
@c ^<tr> <td>erf(x)</td> <td>any</td> <td>erf(Re(<i>x</i>)), error function of real(<i>x</i>)</td></tr>
@c ^<tr> <td>erfc(x)</td> <td>any</td> <td>erfc(Re(<i>x</i>)), 1.0 - error function of real(<i>x</i>)</td></tr>
@c ^<tr> <td>exp(x)</td> <td>any</td> <td><i>e<sup>x</sup></i>, exponential function of <i>x</i></td></tr>
@c ^<tr> <td>expint(n,x)</td> <td>any</td> <td><i>E<sub>n</sub></i>(<i>x</i>), exponential integral function of <i>x</i></td></tr>
@c ^<tr> <td>floor(x)</td> <td>any</td> <td>⌊<i>x</i>⌋, largest integer not greater than <i>x</i> (real part)</td></tr>
@c ^<tr> <td>gamma(x)</td> <td>any</td> <td>Γ(Re(<i>x</i>)), gamma function of real(<i>x</i>)</td></tr>
@c ^<tr> <td>ibeta(p,q,x)</td> <td>any</td> <td>ibeta(Re(<i>p,q,x</i>)), ibeta function of real(<i>p</i>,<i>q</i>,<i>x</i>)</td></tr>
@c ^<tr> <td>inverf(x)</td> <td>any</td> <td>inverse error function real(<i>x</i>)</td></tr>
@c ^<tr> <td>igamma(a,z)</td> <td>complex</td> <td>igamma(<i>a>0,z</i>), igamma function of complex <a>a>0</a>,<i>z</i></td></tr>
@c ^<tr> <td>imag(x)</td> <td>complex</td> <td>Im(<i>x</i>), imaginary part of <i>x</i> as a real number</td></tr>
@c ^<tr> <td>int(x)</td> <td>real</td> <td>integer part of <i>x</i>, truncated toward zero</td></tr>
@c ^<tr> <td>invibeta(a,b,p)</td> <td>0<p<1</td> <td>inverse incomplete beta function</td></tr>
@c ^<tr> <td>invigamma(a,p)</td> <td>0<p<1</td> <td>inverse incomplete gamma function</td></tr>
@c ^<tr> <td>invnorm(x)</td> <td>any</td> <td>inverse normal distribution function real(<i>x</i>)</td></tr>
@c ^<tr> <td>LambertW(z,k)</td> <td>complex, int</td> <td>kth branch of complex Lambert W function</td></tr>
@c ^<tr> <td>lambertw(x)</td> <td>real</td> <td>principal branch (k=0) of Lambert <i>W</i> function</td></tr>
@c ^<tr> <td>lgamma(x)</td> <td>real</td> <td>lgamma(Re(<i>x</i>)), lgamma function of real(<i>x</i>)</td></tr>
@c ^<tr> <td>lnGamma(x)</td> <td>complex</td> <td>lnGamma(x) valid over entire complex plane</td></tr>
@c ^<tr> <td>log(x)</td> <td>any</td> <td>ln <i>x</i>, natural logarithm (base <i>e</i>) of <i>x</i></td></tr>
@c ^<tr> <td>log10(x)</td> <td>any</td> <td>log<sub>10</sub> <i>x</i>, logarithm (base 10) of <i>x</i></td></tr>
@c ^<tr> <td>norm(x)</td> <td>any</td> <td>norm(<i>x</i>), normal distribution function of real(<i>x</i>)</td></tr>
@c ^<tr> <td>rand(x)</td> <td>int</td> <td>pseudo random number in the interval (0:1)</td></tr>
@c ^<tr> <td>real(x)</td> <td>any</td> <td>Re(<i>x</i>), real part of <i>x</i></td></tr>
@c ^<tr> <td>sgn(x)</td> <td>any</td> <td>1 if <i>x</i> > 0, -1 if <i>x</i> < 0, 0 if <i>x</i> = 0. ℑ(<i>x</i>) ignored</td></tr>
@c ^<tr> <td>Sign(x)</td> <td>complex</td> <td> 0 if <i>x</i> = 0, otherwise <i>x</i>/|<i>x</i>|</td></tr>
@c ^<tr> <td>sin(x)</td> <td>any</td> <td>sin <i>x</i>, sine of <i>x</i></td></tr>
@c ^<tr> <td>sinh(x)</td> <td>any</td> <td>sinh <i>x</i>, hyperbolic sine of <i>x</i> in radians</td></tr>
@c ^<tr> <td>sqrt(x)</td> <td>any</td> <td>√<i>x</i>, square root of <i>x</i></td></tr>
@c ^<tr> <td>SynchrotronF(x)</td> <td>real</td> <td> Synchtrotron function F</td></tr>
@c ^<tr> <td>tan(x)</td> <td>any</td> <td>tan <i>x</i>, tangent of <i>x</i></td></tr>
@c ^<tr> <td>tanh(x)</td> <td>any</td> <td>tanh <i>x</i>, hyperbolic tangent of <i>x</i> in radians</td></tr>
@c ^<tr> <td>uigamma(a,x)</td> <td>real</td> <td>uigamma(<i>a,x</i>), upper incomplete gamma function <a>a>0</a>,<i>x</i></td></tr>
@c ^<tr> <td>voigt(x,y)</td> <td>real</td> <td>convolution of Gaussian and Lorentzian</td></tr>
@c ^<tr> <td>zeta(s)</td> <td>any</td> <td>Riemann zeta function </td></tr>
@c ^</tbody>
@c ^</table>
@c ^<p> </p>
@c ^<table align="center" border="1" rules="groups" frame="hsides" cellpadding="3" width="90%">
@c ^<colgroup>
@c ^ <col align="center">
@c ^ <col align="center">
@c ^ <col align="left">
@c ^</colgroup>
@c ^<thead>
@c ^<tr> <th colspan="3">Special functions from libcerf (only if available)</th></tr>
@c ^<tr> <th>Function</th> <th>Arguments</th> <th>Returns</th></tr>
@c ^</thead>
@c ^<tbody>
@c ^<tr> <td>cerf(z)</td> <td>complex</td> <td>complex error function</td></tr>
@c ^<tr> <td>cdawson(z)</td> <td>complex</td> <td>complex Dawson's integral</td></tr>
@c ^<tr> <td>faddeeva(z)</td> <td>complex</td> <td>rescaled complex error function <i>w</i>(<i>z</i>) = exp(-<i>z</i>²) × erfc(-i<i>z</i>)</td></tr>
@c ^<tr> <td>erfi(x)</td> <td>real</td> <td>imaginary error function erfi(<i>x</i>) = -i × erf(i<i>x</i>)</td></tr>
@c ^<tr> <td>FresnelC(x)</td> <td>real</td> <td> cosine (real) component of Fresnel integral </td></tr>
@c ^<tr> <td>FresnelS(x)</td> <td>real</td> <td> sine (imaginary) component of Fresnel integral </td></tr>
@c ^<tr> <td>VP(x,sigma,gamma)</td> <td>real</td> <td>Voigt profile</td></tr>
@c ^<tr> <td>VP_fwhm(sigma,gamma)</td> <td>real</td> <td>Voigt profile full width at half max</td></tr>
@c ^</tbody>
@c ^</table>
@c ^<p> </p>
@c ^<table align="center" border="1" rules="groups" frame="hsides" cellpadding="3" width="90%">
@c ^<colgroup>
@c ^ <col align="center">
@c ^ <col align="center">
@c ^ <col align="left">
@c ^</colgroup>
@c ^<thead>
@c ^<tr> <th colspan="3"> String functions </th></tr>
@c ^<tr> <th>Function</th> <th>Arguments</th> <th>Returns</th></tr>
@c ^</thead>
@c ^<tbody>
@c ^<tr> <td>gprintf("format",x,...)</td> <td>any</td> <td>string result from applying gnuplot's format parser</td></tr>
@c ^<tr> <td>sprintf("format",x,...)</td> <td>multiple</td> <td>string result from C-language sprintf</td></tr>
@c ^<tr> <td>strlen("string")</td> <td>string</td> <td>number of characters in string</td></tr>
@c ^<tr> <td>strstrt("string","key")</td> <td>strings</td> <td>int index of first character of substring "key"</td></tr>
@c ^<tr> <td>substr("string",beg,end)</td> <td>multiple</td> <td>string "string"[beg:end]</td></tr>
@c ^<tr> <td>split("string","separator")</td> <td>string</td> <td>array containing individual fields of original string</td></tr>
@c ^<tr> <td>join(array,"separator")</td> <td>array,string</td> <td>concatenates array elements into a string</td></tr>
@c ^<tr> <td>strftime("timeformat",t)</td> <td>any</td> <td>string result from applying gnuplot's time parser</td></tr>
@c ^<tr> <td>strptime("timeformat",s)</td> <td>string</td> <td>seconds since year 1970 as given in string s</td></tr>
@c ^<tr> <td>system("command")</td> <td>string</td> <td>string containing output stream of shell command</td></tr>
@c ^<tr> <td>trim(" string ")</td> <td>string</td> <td>string without leading or trailing whitespace</td></tr>
@c ^<tr> <td>word("string",n)</td> <td>string, int</td> <td>returns the nth word in "string"</td></tr>
@c ^<tr> <td>words("string")</td> <td>string</td> <td>returns the number of words in "string"</td></tr>
@c ^</tbody>
@c ^</table>
@c ^<p> </p>
@c ^<table align="center" border="1" rules="groups" frame="hsides" cellpadding="3" width="90%">
@c ^<colgroup>
@c ^ <col align="center">
@c ^ <col align="center">
@c ^ <col align="left">
@c ^</colgroup>
@c ^<thead>
@c ^<tr> <th colspan="3"> time functions </th></tr>
@c ^<tr> <th>Function</th> <th>Arguments</th> <th>Returns</th></tr>
@c ^</thead>
@c ^<tbody>
@c ^<tr> <td>time(x)</td> <td>any</td> <td>the current system time</td></tr>
@c ^<tr> <td>timecolumn(N,format)</td> <td>int, string</td> <td> formatted time data from column <i>N</i> of input data</td></tr>
@c ^<tr> <td>tm_hour(t)</td> <td>time in sec</td> <td>the hour</td></tr>
@c ^<tr> <td>tm_mday(t)</td> <td>time in sec</td> <td>the day of the month</td></tr>
@c ^<tr> <td>tm_min(t)</td> <td>time in sec</td> <td>the minute</td></tr>
@c ^<tr> <td>tm_mon(t)</td> <td>time in sec</td> <td>the month</td></tr>
@c ^<tr> <td>tm_sec(t)</td> <td>time in sec</td> <td>the second</td></tr>
@c ^<tr> <td>tm_wday(t)</td> <td>time in sec</td> <td>the day of the week</td></tr>
@c ^<tr> <td>tm_week(t)</td> <td>time in sec</td> <td>ISO 8601 week of year</td></tr>
@c ^<tr> <td>tm_yday(t)</td> <td>time in sec</td> <td>the day of the year</td></tr>
@c ^<tr> <td>tm_year(t)</td> <td>time in sec</td> <td>the year</td></tr>
@c ^<tr> <td>weekdate_iso(year,week,day)</td> <td>int</td> <td> time eqv to ISO 8601 standard week date</td></tr>
@c ^<tr> <td>weekdate_cdc(year,week,day)</td> <td>int</td> <td> time eqv to CDC epidemiological week date</td></tr>
@c ^</tbody>
@c ^</table>
@c ^<p> </p>
@c ^<table align="center" border="1" rules="groups" frame="hsides" cellpadding="3" width="90%">
@c ^<colgroup>
@c ^ <col align="center">
@c ^ <col align="center">
@c ^ <col align="left">
@c ^</colgroup>
@c ^<thead>
@c ^<tr> <th colspan="3"> other gnuplot functions </th></tr>
@c ^<tr> <th>Function</th> <th>Arguments</th> <th>Returns</th></tr>
@c ^</thead>
@c ^<tbody>
@c ^<tr> <td>column(x)</td> <td>int or string</td> <td> contents of column <i>x</i> during data input.</td></tr>
@c ^<tr> <td>columnhead(x)</td> <td>int</td> <td> string containing first entry of column <i>x</i> in datafile.</td></tr>
@c ^<tr> <td>exists("X")</td> <td>string</td> <td> returns 1 if a variable named X is defined, 0 otherwise.</td></tr>
@c ^<tr> <td>hsv2rgb(h,s,v)</td> <td>h,s,v in [0:1]</td> <td> converts HSV color to 24bit RGB color.</td></tr>
@c ^<tr> <td>index(A,x)</td> <td>array, any</td> <td> returns i such that A[i] equals x</td></tr>
@c ^<tr> <td>palette(z)</td> <td>real</td> <td> 24bit RGB palette color mapped to z</td></tr>
@c ^<tr> <td>rgbcolor("name")</td> <td>string</td> <td> 32bit ARGB color from name</td></tr>
@c ^<tr> <td>stringcolumn(x)</td> <td>int</td> <td> content column <i>x</i> as a string.</td></tr>
@c ^<tr> <td>valid(x)</td> <td>int</td> <td> test validity of column <i>x</i> during datafile input</td></tr>
@c ^<tr> <td>value("name")</td> <td>string</td> <td> returns the current value of the named variable.</td></tr>
@c ^</tbody>
@c ^</table>
@c ^<!-- INCLUDE_NEXT_TABLE -->
@menu
* abs::
* acos::
* acosh::
* airy::
* arg::
* asin::
* asinh::
* atan::
* atan2::
* atanh::
* besj0::
* besj1::
* besjn::
* besy0::
* besy1::
* besyn::
* besi0::
* besi1::
* besin::
* cbrt::
* conj::
* cos::
* cosh::
* EllipticK::
* EllipticE::
* EllipticPi::
* erf::
* erfc::
* exp::
* gamma::
* inverf::
* imag::
* invnorm::
* lambertw::
* lgamma::
* lngamma::
* log::
* log10::
* norm::
* rand::
* real::
* sgn::
* Sign::
* sin::
* sinh::
* sqrt::
* tan::
* tanh::
* voigt::
* cerf::
* cdawson::
* faddeeva::
* erfi::
* Voigt_Profile::
* gprintf::
* sprintf::
* strlen::
* strstrt::
* substr::
* split::
* join::
* strftime::
* strptime::
* system::
* trim::
* word::
* words::
* exists::
* hsv2rgb::
* palette::
* rgbcolor::
* voxel::
* integer_conversion_functions_(int_floor_ceil_round)::
* elliptic_integrals::
* Complex_Airy_functions::
* Complex_Bessel_functions::
* Expint::
* Fresnel_integrals_FresnelC(x)_and_FresnelS(x)::
* Gamma::
* Igamma::
* Invigamma::
* Ibeta::
* Invibeta::
* LambertW::
* lnGamma::
* Random_number_generator::
* Special_functions_with_complex_arguments::
* Synchrotron_function::
* Time_functions::
* uigamma::
* using_specifier_functions::
* value::
* Counting_and_extracting_words::
* zeta::
@end menu
@node abs, acos, Functions, Functions
@subsubsection abs
@c ?expressions functions abs
@cindex abs
@findex abs
The `abs(x)` function returns the absolute value of its argument. The
returned value is of the same type as the argument.
@cindex norm
@findex norm
@cindex modulus
For complex arguments, abs(x) is defined as the length of x in the complex
plane [i.e., sqrt(real(x)**2 + imag(x)**2) ]. This is also known as the norm
or complex modulus of x.
@node acos, acosh, abs, Functions
@subsubsection acos
@c ?expressions functions acos
@cindex acos
@findex acos
The `acos(x)` function returns the arc cosine (inverse cosine) of its
argument. `acos` returns its argument in radians or degrees, as selected by
@ref{angles}.
@node acosh, airy, acos, Functions
@subsubsection acosh
@c ?expressions functions acosh
@cindex acosh
@findex acosh
The `acosh(x)` function returns the inverse hyperbolic cosine of its argument
in radians or degrees, as selected by @ref{angles}.
@node airy, arg, acosh, Functions
@subsubsection airy
@c ?expressions functions airy
@cindex airy
@findex airy
The `airy(x)` function returns the value of the Airy function Ai(x) of its
argument. The function Ai(x) is that solution of the equation y'' - x y = 0
which is everywhere finite. If the argument is complex, its imaginary part
is ignored.
@node arg, asin, airy, Functions
@subsubsection arg
@c ?expressions functions arg
@cindex arg
@findex arg
The `arg(x)` function returns the phase of a complex number in radians or
degrees, as selected by @ref{angles}.
@node asin, asinh, arg, Functions
@subsubsection asin
@c ?expressions functions asin
@cindex asin
@findex asin
The `asin(x)` function returns the arc sin (inverse sin) of its argument.
`asin` returns its argument in radians or degrees, as selected by @ref{angles}.
@node asinh, atan, asin, Functions
@subsubsection asinh
@c ?expressions functions asinh
@cindex asinh
@findex asinh
The `asinh(x)` function returns the inverse hyperbolic sin of its argument in
radians or degrees, as selected by @ref{angles}.
@node atan, atan2, asinh, Functions
@subsubsection atan
@c ?expressions functions atan
@cindex atan
@findex atan
The `atan(x)` function returns the arc tangent (inverse tangent) of its
argument. `atan` returns its argument in radians or degrees, as selected by
@ref{angles}.
@node atan2, atanh, atan, Functions
@subsubsection atan2
@c ?expressions functions atan2
@cindex atan2
@findex atan2
The `atan2(y,x)` function returns the arc tangent (inverse tangent) of the
ratio of the real parts of its arguments. @ref{atan2} returns its argument in
radians or degrees, as selected by @ref{angles}, in the correct quadrant.
@node atanh, besj0, atan2, Functions
@subsubsection atanh
@c ?expressions functions atanh
@cindex atanh
@findex atanh
The `atanh(x)` function returns the inverse hyperbolic tangent of its
argument in radians or degrees, as selected by @ref{angles}.
@node besj0, besj1, atanh, Functions
@subsubsection besj0
@c ?expressions functions besj0
@cindex besj0
@findex besj0
The `besj0(x)` function returns the J0th Bessel function of its argument.
@ref{besj0} expects its argument to be in radians.
@node besj1, besjn, besj0, Functions
@subsubsection besj1
@c ?expressions functions besj1
@cindex besj1
@findex besj1
The `besj1(x)` function returns the J1st Bessel function of its argument.
@ref{besj1} expects its argument to be in radians.
@node besjn, besy0, besj1, Functions
@subsubsection besjn
@c ?expressions functions besjn
@cindex besjn
@findex besjn
The `besjn(n,x)` functions returns the Jn Bessel function of x in radians.
@node besy0, besy1, besjn, Functions
@subsubsection besy0
@c ?expressions functions besy0
@cindex besy0
@findex besy0
The `besy0(x)` function returns the Y0th Bessel function of its argument.
@ref{besy0} expects its argument to be in radians.
@node besy1, besyn, besy0, Functions
@subsubsection besy1
@c ?expressions functions besy1
@cindex besy1
@findex besy1
The `besy1(x)` function returns the Y1st Bessel function of its argument.
@ref{besy1} expects its argument to be in radians.
@node besyn, besi0, besy1, Functions
@subsubsection besyn
@c ?expressions functions besyn
@cindex besyn
@findex besyn
The `besyn(n,x)` functions returns the Yn Bessel function of x in radians.
@node besi0, besi1, besyn, Functions
@subsubsection besi0
@c ?expressions functions besi0
@cindex besi0
@findex besi0
The `besi0(x)` function is the modified Bessel function or order 0.
@ref{besi0} expects its argument to be in radians.
@node besi1, besin, besi0, Functions
@subsubsection besi1
@c ?expressions functions besi1
@cindex besi1
@findex besi1
The `besi1(x)` function is the modified Bessel function or order 1.
@ref{besi1} expects its argument to be in radians.
@node besin, cbrt, besi1, Functions
@subsubsection besin
@c ?expressions functions besin
@cindex besin
@findex besin
`besin(n,x)` is the modified Bessel function or order n for integer n and
x in radians.
@node cbrt, conj, besin, Functions
@subsubsection cbrt
@c ?expressions functions cbrt
@cindex cbrt
@findex cbrt
`cbrt(x)` returns the cube root of x. If x is not real, returns NaN.
@cindex ?
`ceil(x)` returns the smallest integer not less than the real part of x.
Outside the domain |x|<2^52 ceil(x) returns NaN.
@node conj, cos, cbrt, Functions
@subsubsection conj
@c ?expressions functions conj
@cindex conj
@findex conj
The `conj(x)` function returns the complex conjugate x.
conj( @{r, i@} ) = @{r, -i@}
@node cos, cosh, conj, Functions
@subsubsection cos
@c ?expressions functions cos
@cindex cos
@findex cos
The `cos(x)` function returns the cosine of its argument. `cos` accepts its
argument in radians or degrees, as selected by @ref{angles}.
@node cosh, EllipticK, cos, Functions
@subsubsection cosh
@c ?expressions functions cosh
@cindex cosh
@findex cosh
The `cosh(x)` function returns the hyperbolic cosine of its argument. @ref{cosh}
expects its argument to be in radians.
@c ?expressions functions EllipticK
@cindex EllipticK
@findex EllipticK
@node EllipticK, EllipticE, cosh, Functions
@subsubsection EllipticK
The `EllipticK(k)` function returns the complete elliptic integral of the
first kind. See `elliptic integrals` for more details.
@c ?expressions functions EllipticE
@cindex EllipticE
@findex EllipticE
@node EllipticE, EllipticPi, EllipticK, Functions
@subsubsection EllipticE
The `EllipticE(k)` function returns the complete elliptic integral of the
second kind. See `elliptic integrals` for more details.
@c ?expressions functions EllipticPi
@cindex EllipticPi
@findex EllipticPi
@node EllipticPi, erf, EllipticE, Functions
@subsubsection EllipticPi
The `EllipticPi(n,k)` function returns the complete elliptic integral of the
third kind. See `elliptic integrals` for more details.
@node erf, erfc, EllipticPi, Functions
@subsubsection erf
@c ?expressions functions erf
@cindex erf
@findex erf
The `erf(x)` function returns the error function of the real part of its
argument. If the argument is a complex value, the imaginary component is
ignored. See @ref{cerf}, @ref{erfc}, @ref{inverf}, and @ref{norm}.
@node erfc, exp, erf, Functions
@subsubsection erfc
@c ?expressions functions erfc
@cindex erfc
@findex erfc
The `erfc(x)` function returns 1.0 - the error function of the real part of
its argument. If the argument is a complex value, the imaginary component is
ignored. See @ref{cerf}, `erf`, @ref{inverf}, and @ref{norm}.
@node exp, gamma, erfc, Functions
@subsubsection exp
@c ?expressions functions exp
@cindex exp
@findex exp
The `exp(x)` function returns `e` raised to the power of x, which can be
an integer, real, or complex value.
@cindex ?
@cindex ?
`floor(x)` returns the largest integer not greater than the real part of x.
Outside the domain |x|<2^52 floor(x) returns NaN.
@node gamma, inverf, exp, Functions
@subsubsection gamma
@c ?expressions functions gamma
The `gamma(x)` function returns the gamma function of the real part of its
argument. For integer n, gamma(n+1) = n!. If the argument is a complex
value, the imaginary component is ignored. For complex arguments see @ref{lnGamma}.
@cindex ?
@node inverf, imag, gamma, Functions
@subsubsection inverf
@c ?expressions functions inverf
@cindex inverf
@findex inverf
The `inverf(x)` function returns the inverse error function of the real part
of its argument. See `erf` and @ref{invnorm}.
@cindex ?
@node imag, invnorm, inverf, Functions
@subsubsection imag
@c ?expressions functions imag
@cindex imag
@findex imag
The `imag(x)` function returns the imaginary part of its argument as a real
number.
@cindex ?
int(x) returns the integer part of its argument, truncated toward zero.
@node invnorm, lambertw, imag, Functions
@subsubsection invnorm
@c ?expressions functions invnorm
@cindex invnorm
@findex invnorm
The `invnorm(x)` function returns the inverse cumulative normal (Gaussian)
distribution function of the real part of its argument. See @ref{norm}.
@cindex ?
@cindex ?
@node lambertw, lgamma, invnorm, Functions
@subsubsection lambertw
@c ?expressions functions lambertw
@cindex lambertw
@findex lambertw
The `lambertw(x)` function returns the value of the principal branch (k=0)
of Lambert's W function, which is defined by the equation (W(x)*exp(W(x))=x.
x must be a real number with x >= -exp(-1).
@node lgamma, lngamma, lambertw, Functions
@subsubsection lgamma
@c ?expressions functions lgamma
@cindex lgamma
@findex lgamma
The `lgamma(x)` function returns the natural logarithm of the gamma function
of the real part of its argument. If the argument is a complex value, the
imaginary component is ignored. For complex values use lnGamma(z).
@node lngamma, log, lgamma, Functions
@subsubsection lngamma
The `lnGamma(x)` function returns the natural logarithm of the gamma function.
This implementation uses a Lanczos approximation valid over the entire complex
plane. The imaginary component of the result is phase-shifted to yield a
continuous surface everywhere except the negative real axis.
@node log, log10, lngamma, Functions
@subsubsection log
@c ?expressions functions log
@cindex log
@findex log
The `log(x)` function returns the natural logarithm (base `e`) of its
argument. See @ref{log10}.
@node log10, norm, log, Functions
@subsubsection log10
@c ?expressions functions log10
@cindex log10
@findex log10
The `log10(x)` function returns the logarithm (base 10) of its argument.
@node norm, rand, log10, Functions
@subsubsection norm
@c ?expressions functions norm
@cindex norm
@findex norm
The `norm(x)` function returns the cumulative normal (Gaussian) distribution
function of the real part of its argument. See @ref{invnorm}, `erf` and @ref{erfc}.
@node rand, real, norm, Functions
@subsubsection rand
@c ?expressions functions rand
@cindex rand
@findex rand
The `rand(x)` function returns a pseudo random number in the interval (0:1).
See `random` for more details.
@node real, sgn, rand, Functions
@subsubsection real
@c ?expressions functions real
@cindex real
@findex real
The `real(x)` function returns the real part of its argument.
@cindex ?
`round(x)` returns the integer nearest to the real part of x.
Outside the domain |x|<2^52 round(x) returns NaN.
@node sgn, Sign, real, Functions
@subsubsection sgn
@c ?expressions functions sgn
@cindex sgn
@findex sgn
The `sgn(x)` function returns 1 if its argument is positive, -1 if its
argument is negative, and 0 if its argument is 0. If the argument is a
complex value, the imaginary component is ignored.
@node Sign, sin, sgn, Functions
@subsubsection Sign
The `Sign(x)` function returns 0 if its argument is zero, otherwise it returns
the complex value Sign(x) = x/|x|.
@node sin, sinh, Sign, Functions
@subsubsection sin
@c ?expressions functions sin
@cindex sin
@findex sin
The `sin(x)` function returns the sine of its argument. `sin` expects its
argument to be in radians or degrees, as selected by @ref{angles}.
@node sinh, sqrt, sin, Functions
@subsubsection sinh
@c ?expressions functions sinh
@cindex sinh
@findex sinh
The `sinh(x)` function returns the hyperbolic sine of its argument. @ref{sinh}
expects its argument to be in radians.
@node sqrt, tan, sinh, Functions
@subsubsection sqrt
@c ?expressions functions sqrt
@cindex sqrt
@findex sqrt
The `sqrt(x)` function returns the square root of its argument. If the
x is a complex value, this always returns the root with positive real
part.
@cindex ?
@node tan, tanh, sqrt, Functions
@subsubsection tan
@c ?expressions functions tan
@cindex tan
@findex tan
The `tan(x)` function returns the tangent of its argument. `tan` expects
its argument to be in radians or degrees, as selected by @ref{angles}.
@node tanh, voigt, tan, Functions
@subsubsection tanh
@c ?expressions functions tanh
@cindex tanh
@findex tanh
The `tanh(x)` function returns the hyperbolic tangent of its argument. @ref{tanh}
expects its argument to be in radians.
@cindex ?
@node voigt, cerf, tanh, Functions
@subsubsection voigt
@c ?expressions functions voigt
@cindex voigt
@findex voigt
The function `voigt(x,y)` returns an approximation to the Voigt/Faddeeva
function used in spectral analysis. The approximation is accurate to
one part in 10^4. If the libcerf library is available, the re_w_of_z()
routine is used to provide a more accurate value.
Note that voigt(x,y) = real(faddeeva( x + y*@{0,1@} )).
@cindex ?
@c ^<!-- INCLUDE_NEXT_TABLE -->
@node cerf, cdawson, voigt, Functions
@subsubsection cerf
@c ?expressions functions cerf
@cindex cerf
@findex cerf
`cerf(z)` is the complex version of the error function erf(x)
Requires external library libcerf.
@node cdawson, faddeeva, cerf, Functions
@subsubsection cdawson
@c ?expressions functions cdawson
@cindex cdawson
@findex cdawson
@cindex Dawson's integral
@c ?Dawson's integral
`cdawson(z)` returns Dawson's Integral evaluated for the complex argument z.
cdawson(z) = sqrt(pi)/2 * exp(-z^2) * erfi(z)
Requires external library libcerf.
@node faddeeva, erfi, cdawson, Functions
@subsubsection faddeeva
@c ?expressions functions faddeeva
@cindex faddeeva
@findex faddeeva
`faddeeva(z)` returns the scaled complex complementary error function
faddeeva(z) = exp(-z^2) * erfc(-i*z)
This corresponds to Eqs 7.1.3 and 7.1.4 of Abramowitz and Stegun.
Requires external library libcerf.
@node erfi, Voigt_Profile, faddeeva, Functions
@subsubsection erfi
@c ?expressions functions erfi
@cindex erfi
@findex erfi
Imaginary error function erfi(x) = -i * erf(ix)
Requires external library libcerf.
@cindex ?
@cindex ?
@node Voigt_Profile, gprintf, erfi, Functions
@subsubsection Voigt Profile
@c ?expressions functions VP
@c ?expressions functions VP_fwhm
@cindex VP
@cindex VP_fwhm
`VP(x,sigma,gamma)` corresponds to the Voigt profile defined by convolution of
a Gaussian G(x;sigma) with a Lorentzian L(x;gamma).
`VP_fwhm(sigma,gamma)` gives the full width at half maximum value of this function.
@c ^<!-- INCLUDE_NEXT_TABLE -->
@c ^<!-- INCLUDE_NEXT_TABLE -->
@node gprintf, sprintf, Voigt_Profile, Functions
@subsubsection gprintf
@c ?expressions functions gprintf
`gprintf("format",x)` applies gnuplot's own format specifiers to the single
variable x and returns the resulting string. If you want standard C-language
format specifiers, you must instead use `sprintf("format",x)`.
See `format specifiers`.
@node sprintf, strlen, gprintf, Functions
@subsubsection sprintf
@c ?expressions functions sprintf
@cindex sprintf
@findex sprintf
`sprintf("format",var1,var2,...)` applies standard C-language format specifiers
to multiple arguments and returns the resulting string. If you want to
use gnuplot's own format specifiers, you must instead call `gprintf()`.
For information on sprintf format specifiers, please see standard C-language
documentation or the unix sprintf man page.
@node strlen, strstrt, sprintf, Functions
@subsubsection strlen
@c ?expressions functions strlen
@cindex strlen
@findex strlen
`strlen("string")` returns the number of characters in a string taking into
account the current encoding. If the current encoding supports multibyte
characters (SJIS UTF8), this may be less than the number of bytes in the string.
If the string contains multibyte UTF8 characters but the current encoding is
set to something other than UTF8, strlen("utf8string") will return a value that
is larger than the actual number of characters.
@node strstrt, substr, strlen, Functions
@subsubsection strstrt
@c ?expressions functions strstrt
@cindex strstrt
@findex strstrt
`strstrt("string","key")` searches for the character string "key" in "string"
and returns the index to the first character of "key". If "key" is not found,
it returns 0. Similar to C library function strstr except that it returns an
index rather than a string pointer. strstrt("hayneedlestack","needle") = 4.
This function is aware of utf8 encoding, so strstrt("αβγ","β") returns 2.
@node substr, split, strstrt, Functions
@subsubsection substr
@c ?expressions functions substr
@cindex substr
@findex substr
@cindex substring
`substr("string",beg,end)` returns the substring consisting of characters
beg through end of the original string. This is exactly equivalent to the
expression "string"[beg:end] except that you do not have the option of
omitting beg or end.
@node split, join, substr, Functions
@subsubsection split
@c ?
`split("string", "sep")` uses the character sequence in "sep" as a
field separator to split the content of "string" into individual fields.
It returns an array of strings, each corresponding to one field of the
original string. The second parameter "sep" is optional. If "sep" is
omitted or if it contains a single space character the fields are split
by any amount of whitespace (space, tab, formfeed, newline, return).
Otherwise the full sequence of characters in "sep" must be matched.
For examples, see `counting_words`.
@node join, strftime, split, Functions
@subsubsection join
@c ?
`join(array, "sep")` concatenates the string elements of an array into a
single string containing fields delimited by the character sequence in "sep".
Non-string array elements generate an empty field.
For examples, see `counting_words`.
@node strftime, strptime, join, Functions
@subsubsection strftime
@c ?expressions functions strftime
@cindex strftime
@findex strftime
`strftime("timeformat",t)` applies the timeformat specifiers to the time t
given in seconds since the year 1970.
See `time_specifiers` and @ref{strptime}.
@node strptime, system, strftime, Functions
@subsubsection strptime
@c ?expressions functions strptime
@cindex strptime
@findex strptime
`strptime("timeformat",s)` reads the time from the string s using the
timeformat specifiers and converts it into seconds since the year 1970.
See `time_specifiers` and @ref{strftime}.
@node system, trim, strptime, Functions
@subsubsection system
@c ?expressions functions system
@cindex system
@cmindex system
`system("command")` executes "command" using the standard shell and returns
the resulting character stream from stdout as string variable.
One optional trailing newline is ignored.
This can be used to import external functions into gnuplot scripts using
'f(x) = real(system(sprintf("somecommand %f", x)))'.
@node trim, word, system, Functions
@subsubsection trim
@cindex trim
@findex trim
@c ?expressions functions trim
`trim(" padded string ")` returns the original string stripped of leading
and trailing whitespace. This is useful for string comparisons of input
data fields that may contain extra whitespace. For example
@example
plot FOO using 1:( trim(strcol(3)) eq "A" ? $2 : NaN )
@end example
@node word, words, trim, Functions
@subsubsection word
@c ?
@cindex word
@findex word
`word("string",n)` returns the nth word in string. For example,
`word("one two three",2)` returns the string "two".
@node words, exists, word, Functions
@subsubsection words
@cindex words
@findex words
`words("string")` returns the number of words in string. For example,
`words(" a b c d")` returns 4.
@c ^<!-- INCLUDE_NEXT_TABLE -->
@cindex ?
@cindex ?
@cindex ?
@c ?expressions functions tm_hour
@cindex tm_hour
The `tm_hour(t)` function interprets its argument as a time, in seconds from
1 Jan 1970. It returns the hour (an integer in the range 0--23) as a real.
@cindex ?
@c ?expressions functions tm_mday
@cindex tm_mday
The `tm_mday(t)` function interprets its argument as a time, in seconds from
1 Jan 1970. It returns the day of the month (an integer in the range 1--31)
as a real.
@cindex ?
@c ?expressions functions tm_min
@cindex tm_min
The `tm_min(t)` function interprets its argument as a time, in seconds from
1 Jan 1970. It returns the minute (an integer in the range 0--59) as a real.
@cindex ?
@c ?expressions functions tm_mon
@cindex tm_mon
The `tm_mon(t)` function interprets its argument as a time, in seconds from
1 Jan 1970. It returns the month (an integer in the range 0--11) as a real.
@cindex ?
@c ?expressions functions tm_sec
@cindex tm_sec
The `tm_sec(t)` function interprets its argument as a time, in seconds from
1 Jan 1970. It returns the second (an integer in the range 0--59) as a real.
@cindex ?
@c ?expressions functions tm_wday
@cindex tm_wday
The `tm_wday(t)` function interprets its argument as a time, in seconds from
1 Jan 1970. It returns the day of the week (Sun..Sat) as an integer (0..6).
@cindex ?
@cindex ?
@c ?expressions functions tm_yday
@cindex tm_yday
The `tm_yday(t)` function interprets its argument as a time, in seconds from
1 Jan 1970. It returns the day of the year (an integer in the range 0--365)
as a real.
@cindex ?
@c ?expressions functions tm_year
@cindex tm_year
The `tm_year(t)` function interprets its argument as a time, in seconds from
1 Jan 1970. It returns the year (an integer) as a real.
@cindex ?
@cindex ?
@c ^<!-- INCLUDE_NEXT_TABLE -->
@cindex ?
@cindex ?
@cindex ?
@node exists, hsv2rgb, words, Functions
@subsubsection exists
@c ?expressions functions exists
@cindex exists
@findex exists
The argument to `exists()` is a string constant or a string variable;
if the string contains the name of a defined variable, the function returns 1.
Otherwise the function returns 0.
@node hsv2rgb, palette, exists, Functions
@subsubsection hsv2rgb
@c ?expressions functions hsv2rgb
@cindex hsv2rgb
@findex hsv2rgb
@cindex hsv
The `hsv2rgb(h,s,v)` function converts HSV (Hue/Saturation/Value) triplet
to an equivalent RGB value.
@cindex ?
@node palette, rgbcolor, hsv2rgb, Functions
@subsubsection palette
@c ?expressions functions palette
@cindex palette
@opindex palette
`palette(z)` returns the 24 bit RGB representation of the palette color
@example
mapped to z given the current extremes of cbrange.
@end example
@node rgbcolor, voxel, palette, Functions
@subsubsection rgbcolor
@c ?expressions functions rgbcolor
@cindex rgbcolor
@findex rgbcolor
@cindex alpha channel
`rgbcolor("name")` returns an integer containing the 32 bit alpha + RGB color
value of a named color or a string of the form "0xAARRGGBB" or "#AARRGGBB".
If the string is not recognized as a color description the function returns 0.
This can be used to read a color name from a data file or to add an alpha
channel to a named color in the upper byte of the returned value.
See @ref{colorspec}.
@cindex ?
@cindex ?
@cindex ?
@node voxel, integer_conversion_functions_(int_floor_ceil_round), rgbcolor, Functions
@subsubsection voxel
@c ?expressions functions voxel
@cindex voxel
@findex voxel
The function voxel(x,y,z) returns the value of the voxel in the currently
active grid that contains the point (x,y,z). It may also be used on the
left side of an assignment statement to set the value of that voxel.
E.g. voxel(x,y,z) = 0.0
See `splot voxel-grids`, @ref{vgrid}.
@node integer_conversion_functions_(int_floor_ceil_round), elliptic_integrals, voxel, Functions
@subsubsection integer conversion functions (int floor ceil round)
@c ?integer conversion
@cindex integer
@cindex precision
Gnuplot integer variables are stored with 64 bits of precision if that is
supported by the platform.
Gnuplot complex and real variables are on most platforms stored in IEEE754
binary64 (double) floating point representation. Their precision is limited
to 53 bits, corresponding to roughly 16 significant digits.
Therefore integers with absolute value larger than 2^53 cannot be uniquely
represented in a floating point variable. I.e. for large N the operation
int(real(N)) may return an integer near but not equal to N.
Furthermore, functions that convert from a floating point value to an integer
by truncation may not yield the expected value if the operation depends on
more than 15 significant digits of precision even if the magnitude is small.
For example int(log10(0.1)) returns 0 rather than -1 because the floating
point representation is equivalent to -0.999999999999999...
See also @ref{overflow}.
@c ?expressions functions int
@cindex int
`int(x)` returns the integer part of its argument, truncated toward zero.
If |x| > 2^63, i.e. too large to represent as an integer, NaN is returned.
If |x| > 2^52 the return value will lie within a range of neighboring integers
that cannot be distinguished due to limited floating point precision.
See `integer conversion`.
@c ?expressions functions floor
@cindex floor
`floor(x)` returns the largest integer not greater than the real part of x.
If |x| > 2^52 the true value cannot be uniquely determined; in this case the
return value is NaN. See `integer conversion`.
@c ?expressions functions ceil
@cindex ceil
`ceil(x)` returns the smallest integer not less than the real part of x.
If |x| > 2^52 the true value cannot be uniquely determined; in this case the
return value is NaN. See `integer conversion`.
@c ?expressions functions round
@cindex round
`round(x)` returns the integer nearest to the real part of x.
If |x| > 2^52 the true value cannot be uniquely determined; in this case the
return value is NaN. See `integer conversion`.
@node elliptic_integrals, Complex_Airy_functions, integer_conversion_functions_(int_floor_ceil_round), Functions
@subsubsection elliptic integrals
@c ?elliptic integrals
@cindex elliptic
@cindex elliptic integrals
@findex elliptic integrals
The `EllipticK(k)` function returns the complete elliptic integral of the first
kind, i.e. the definite integral between 0 and pi/2 of the function
`(1 - k^2*sin^2(θ))^(-0.5)`. The domain of `k` is -1 to 1 (exclusive).
The `EllipticE(k)` function returns the complete elliptic integral of the
second kind, i.e. the definite integral between 0 and pi/2 of the function
`(1 - k^2*sin^2(θ))^0.5`. The domain of `k` is -1 to 1 (inclusive).
The `EllipticPi(n,k)` function returns the complete elliptic integral of the
third kind, i.e. the definite integral between 0 and pi/2 of the function
`(1 - k^2*sin^2(θ))^(-0.5) / (1 - n*sin^2(θ))`. The parameter `n` must be less
than 1, while `k` must lie between -1 and 1 (exclusive). Note that by
definition EllipticPi(0,k) == EllipticK(k) for all possible values of `k`.
Elliptic integral algorithm: B.C.Carlson 1995, Numerical Algorithms 10:13-26.
@node Complex_Airy_functions, Complex_Bessel_functions, elliptic_integrals, Functions
@subsubsection Complex Airy functions
@c ?expressions functions Ai
@cindex Ai
@c ?expressions functions Bi
@cindex Bi
`Ai(z)` and `Bi(z)` are the Airy functions of complex argument z, computed
in terms of the modified Bessel functions K and I.
Supported via an external library containing routines by Donald E. Amos,
Sandia National Laboratories, SAND85-1018 (1985).
@node Complex_Bessel_functions, Expint, Complex_Airy_functions, Functions
@subsubsection Complex Bessel functions
@c ?expressions functions BesselJ
@cindex BesselJ
`BesselJ(nu,z)` is the Bessel function of the first kind J_nu
for real argument nu and complex argument z.
Supported via external library containing routines by Donald E. Amos,
Sandia National Laboratories, SAND85-1018 (1985).
@c ?expressions functions BesselY
@cindex BesselY
`BesselY(nu,z)` is the Bessel function of the second kind Y_nu
for real argument nu and complex argument z.
Supported via external library containing routines by Donald E. Amos,
Sandia National Laboratories, SAND85-1018 (1985).
@c ?expressions functions BesselI
@cindex BesselI
`BesselI(nu,z)` is the modified Bessel function of the first kind I_nu
for real argument nu and complex argument z.
Supported via external library containing routines by Donald E. Amos,
Sandia National Laboratories, SAND85-1018 (1985).
@c ?expressions functions BesselK
@cindex BesselK
`BesselK(nu,z)` is the modified Bessel function of the second kind K_nu
for real argument nu and complex argument z.
Supported via external library containing routines by Donald E. Amos,
Sandia National Laboratories, SAND85-1018 (1985).
@c ?expressions functions BesselH1
@c ?expressions functions BesselH2
@c ?expressions functions Hankel
@cindex BesselH1
@cindex BesselH2
@cindex Hankel
`BesselH1(nu,z)` and `BesselH2(nu,z)` are the Hankel functions of the first and
second kind
@example
H1(nu,z) = J(nu,z) + iY(nu,z)
H2(nu,z) = J(nu,z) - iY(nu,z)
@end example
for real argument nu and complex argument z.
Supported via external library containing routines by Donald E. Amos,
Sandia National Laboratories, SAND85-1018 (1985).
@node Expint, Fresnel_integrals_FresnelC(x)_and_FresnelS(x), Complex_Bessel_functions, Functions
@subsubsection Expint
@c ?expressions functions expint
@cindex expint
`expint(n,z)` returns the exponential integral of order n, where n is an
integer >= 0. This is the integral from 1 to infinity of t^(-n) e^(-tz) dt.
If your copy of gnuplot was built with support for complex functions from
the Amos library, then for n>0 the evaluation uses Amos routine cexint
[Amos 1990 Algorithm 683, ACM Trans Math Software 16:178].
In this case z may be any complex number with -pi < arg(z) <= pi.
expint(0,z) is calculated as exp(-z)/z.
If Amos library support is not present, z is limited to real values z >= 0.
@node Fresnel_integrals_FresnelC(x)_and_FresnelS(x), Gamma, Expint, Functions
@subsubsection Fresnel integrals FresnelC(x) and FresnelS(x)
@c ?expressions functions FresnelC
@c ?expressions functions FresnelS
@cindex FresnelC
@cindex FresnelS
The cosine and sine Fresnel integrals are calculated using their relationship
to the complex error function erf(z). Due to dependence on erf(z),
these functions are only available if libcerf library support is present.
@node Gamma, Igamma, Fresnel_integrals_FresnelC(x)_and_FresnelS(x), Functions
@subsubsection Gamma
@cindex gamma
@findex gamma
`gamma(x)` returns the gamma function of the real part of its argument.
For integer n, gamma(n+1) = n!. If the argument is a complex value,
the imaginary component is ignored. For complex arguments see @ref{lnGamma}.
@node Igamma, Invigamma, Gamma, Functions
@subsubsection Igamma
@c ?expressions functions igamma
@cindex igamma
`igamma(a, z)` returns the lower incomplete gamma function P(a, z),
[Abramowitz and Stegun (6.5.1); NIST DLMF 8.2.4]. If complex function
support is present a and z may be complex values; real(a) > 0;
For the complementary upper incomplete gamma function, see @ref{uigamma}.
One of four algorithms is used depending on a and z.
Case (1) When a is large (>100) and (z-a)/a is small (<0.2) use
Gauss-Legendre quadrature with coefficients from Numerical Recipes 3rd
Edition section 6.2, Press et al (2007).
Case (2) When z > 1 and z > (a+2) use a continued fraction following
Shea (1988) J. Royal Stat. Soc. Series C (Applied Statistics) 37:466-473.
Case (3) When z < 0 and a < 75 and imag(a) == 0 use the series from
Abramowitz & Stegun (6.5.29).
Otherwise (Case 4) use Pearson's series expansion.
Note that convergence is poor in some regions of the full domain.
If the chosen algorithm does not converge to within 1.E-14 the function
returns NaN and prints a warning.
If no complex function support is present the domain is limited to
real arguments a > 0, z >= 0.
@node Invigamma, Ibeta, Igamma, Functions
@subsubsection Invigamma
@c ?expressions functions invigamma
@cindex invigamma
The inverse incomplete gamma function `invigamma(a,p)` returns the value
z such that p = igamma(a,z).
p is limited to (0;1]. a must be a positive real number.
The implementation in gnuplot has relative accuracy that ranges from
1.e-16 for a<1 to 5.e-6 for a = 1.e10. Convergence may fail for a < 0.005.
@node Ibeta, Invibeta, Invigamma, Functions
@subsubsection Ibeta
@c ?expressions functions ibeta
@cindex ibeta
`ibeta(a,b,x)` returns the normalized lower incomplete beta integral of
real arguments a,b > 0, x in [0:1].
If the arguments are complex, the imaginary components are ignored.
The implementation in gnuplot uses code from the Cephes library
[Moshier 1989, "Methods and Programs for Mathematical Functions", Prentice-Hall].
@node Invibeta, LambertW, Ibeta, Functions
@subsubsection Invibeta
@c ?expressions functions invibeta
@cindex invibeta
The inverse incomplete beta function `invibeta(a,b,p)` returns the value
z such that p = ibeta(a,b,z). a, b are limited to positive real values
and p is in the interval [0,1]. Note that as a, b approach zero
invibeta() approaches 1.0 and its relative accuracy is limited by
floating point precision.
@node LambertW, lnGamma, Invibeta, Functions
@subsubsection LambertW
@c ?expressions functions LambertW
@cindex LambertW
@findex LambertW
Lambert W function with complex domain and range.
LambertW( z, k ) returns the kth branch of the function W defined by
the equation W(z) * exp(W(z)) = z.
The complex value is obtained using Halley's method as described by
Corless et al [1996], Adv. Comp. Math 5:329.
The nominal precision is 1.E-13 but convergence can be poor very close to
discontinuities, e.g. branch points.
@node lnGamma, Random_number_generator, LambertW, Functions
@subsubsection lnGamma
@c ?expressions functions lnGamma
@cindex lnGamma
@findex lnGamma
lnGamma(z) returns the natural log of the gamma function with complex domain
and range. Implemented using 14 term approximation following Lanczos [1964],
SIAM JNA 1:86-96. The imaginary component of the result is phase-shifted to
yield a continuous surface everywhere except the negative real axis.
@node Random_number_generator, Special_functions_with_complex_arguments, lnGamma, Functions
@subsubsection Random number generator
@c ?expressions random
@cindex random
@cindex rand
@findex rand
The function `rand()` produces a sequence of pseudo-random numbers between
0 and 1 using an algorithm from P. L'Ecuyer and S. Cote, "Implementing a
random number package with splitting facilities", ACM Transactions on
Mathematical Software, 17:98-111 (1991).
@example
rand(0) returns a pseudo random number in the open interval (0:1)
generated from the current value of two internal
32-bit seeds.
rand(-1) resets both seeds to a standard value.
rand(x) for integer 0 < x < 2^31-1 sets both internal seeds
to x.
rand(@{x,y@}) for integer 0 < x,y < 2^31-1 sets seed1 to x and
seed2 to y.
@end example
@node Special_functions_with_complex_arguments, Synchrotron_function, Random_number_generator, Functions
@subsubsection Special functions with complex arguments
@c ?expressions functions special
@c ?expressions functions complex
@cindex special_functions
@cindex libcerf
@cindex Amos
@cindex libopenspecfun
Some special functions with complex domain are provided through external
libraries. If your copy of gnuplot was not configured to link against these
libraries then it will support only the real domain or will not provide
the function at all.
Functions requiring libcerf (http://apps.jcns.fz-juelich.de/libcerf) depend
on configuration option `--with-libcerf`. This is the default.
See @ref{cerf}, @ref{cdawson}, @ref{faddeeva}, @ref{erfi}, `VP`, and `VP_fwhm`.
Complex Airy, Bessel, and Hankel functions of real order nu and complex
arguments require a library containing routines implemented by Douglas E. Amos,
Sandia National Laboratories, SAND85-1018 (1985).
These routines may be found in netlib (http://netlib.sandia.gov) or in
libopenspecfun (https://github.com/JuliaLang/openspecfun).
The corresponding configuration option is `--with-amos=<library directory>`.
See `Ai`, `Bi`, `BesselJ`, `BesselY`, `BesselI`, `BesselK`, `Hankel`.
The complex exponential integral is provided by netlib or libamos but not by
libopenspecfun. See `expint`.
@node Synchrotron_function, Time_functions, Special_functions_with_complex_arguments, Functions
@subsubsection Synchrotron function
@c ?expressions functions SynchrotronF
@cindex SynchrotronF
The synchrotron function SynchrotronF(x) describes the power distribution
spectrum of synchrotron radiation as a function of x given in units of the
critical photon energy (i.e. critical frequency vc).
Chebyshev coefficients for approximation accurate to 1.E-15 are taken from
MacLead (2000) NuclInstMethPhysRes A443:540-545.
@node Time_functions, uigamma, Synchrotron_function, Functions
@subsubsection Time functions
@noindent --- TIME ---
@c ?expressions functions time
@cindex time
The `time(x)` function returns the current system time. This value can be
converted to a date string with the @ref{strftime} function, or it can be used
in conjunction with `timecolumn` to generate relative time/date plots.
The type of the argument determines what is returned. If the argument is an
integer, time() returns the current time as an integer, in seconds from the
epoch date, 1 Jan 1970. If the argument is real (or complex), the result is
real as well. If the argument is a string, it is assumed to be a format
and it is passed to @ref{strftime} to provide a formatted time string.
See also `time_specifiers` and @ref{timefmt}.
@noindent --- TIMECOLUMN ---
@c ?expressions functions timecolumn
@cindex timecolumn
`timecolumn(N,"timeformat")` reads string data starting at column N as a time/date
value and uses "timeformat" to interpret this as "seconds since the epoch" to
millisecond precision. If no format parameter is given, the format defaults
to the string from @ref{timefmt}. This function is valid only in the `using`
specification of a plot or stats command. See `plot datafile using`.
@noindent --- TM_STRUCTURE ---
@cindex epoch
Gnuplot stores time internally as a 64-bit floating point value representing
seconds since the epoch date 1 Jan 1970. In order to interpret this as a time
or date it is converted to or from a POSIX standard structure `struct_tm`.
Note that fractional seconds, if any, cannot be retrieved via tm_sec().
The components may be accessed individually using the functions
@itemize @bullet
@item
`tm_hour(t)` integer hour in the range 0--23
@item
`tm_mday(t)` integer day of month in the range 1--31
@item
`tm_min(t)` integer minute in the range 0--59
@item
`tm_mon(t)` integer month of year in the range 0--11
@item
`tm_sec(t)` integer second in the range 0--59
@item
`tm_wday(t)` integer day of the week in the range 0 (Sunday)--6(Saturday)
@item
`tm_yday(t)` integer day of the year the range 0--365
@item
`tm_year(t)` integer year
@end itemize
@noindent --- TM_WEEK ---
@c ?expressions functions tm_week
@c ?time_specifiers tm_week
@cindex tm_week
@c ?epidemiological week
@cindex epidemiological week
The `tm_week(t, standard)` function interprets its first argument t as a time
in seconds from 1 Jan 1970. Despite the name of this function it does not
report a field from the POSIX tm structure.
If standard = 0 it returns the week number in the ISO 8601 "week date" system.
This corresponds to gnuplot's %W time format.
If standard = 1 it returns the CDC epidemiological week number ("epi week").
This corresponds to gnuplot's %U time format.
For corresponding inverse functions that convert week dates to calendar time
see `weekdate_iso`, `weekdate_cdc`.
In brief, ISO Week 1 of year YYYY begins on the Monday closest to 1 Jan YYYY.
This may place it in the previous calendar year. For example Tue 30 Dec 2008
has ISO week date 2009-W01-2 (2nd day of week 1 of 2009). Up to three days
at the start of January may come before the Monday of ISO week 1;
these days are assigned to the final week of the previous calendar year.
E.g. Fri 1 Jan 2021 has ISO week date 2020-W53-5.
The US Center for Disease Control (CDC) epidemiological week is a similar
week date convention that differs from the ISO standard by defining a week as
starting on Sunday, rather than on Monday.
@noindent --- WEEKDATE_ISO ---
@c ?expressions functions weekdate_iso
@c ?time_specifiers weekdate_iso
@cindex weekdate_iso
Syntax:
@example
time = weekdate_iso( year, week [, day] )
@end example
This function converts from the year, week, day components of a date in
ISO 8601 "week date" format to the calendar date as a time in seconds since
the epoch date 1 Jan 1970. Note that the nominal year in the week date
system is not necessarily the same as the calendar year. The week is an
integer from 1 to 53. The day parameter is optional. If it is omitted
or equal to 0 the time returned is the start of the week. Otherwise day
is an integer from 1 (Monday) to 7 (Sunday).
See `tm_week` for additional information on an inverse function that converts
from calendar date to week number in the ISO standard convention.
Example:
@example
# Plot data from a file with column 1 containing ISO weeks
# Week cases deaths
# 2020-05 432 1
calendar_date(w) = weekdate_iso( int(w[1:4]), int(w[6:7]) )
set xtics time format "%b\n%Y"
plot FILE using (calendar_date(strcol(1))) : 2 title columnhead
@end example
@noindent --- WEEKDATE_CDC ---
@c ?expressions functions weekdate_cdc
@c ?time_specifiers weekdate_cdc
@cindex weekdate_cdc
@cindex epidemiological week
Syntax:
@example
time = weekdate_cdc( year, week [, day] )
@end example
This function converts from the year, week, day components of a date in
the CDC/MMWR "epi week" format to the calendar date as a time in seconds since
the epoch date 1 Jan 1970. The CDC week date convention differs from the
ISO week date in that it is defined in terms of each week running from
day 1 = Sunday to day 7 = Saturday. If the third parameter is 0 or is
omitted, the time returned is the start of the week.
See `tm_week` and `weekdate_iso`.
@node uigamma, using_specifier_functions, Time_functions, Functions
@subsubsection uigamma
@c ?expressions functions uigamma
@cindex uigamma
@findex uigamma
`uigamma(a, x)` returns the regularized upper incomplete gamma function Q(a, x),
NIST DLMF eq 8.2.4
For the complementary lower incomplete gamma function P(a,x), see `igamma`.
Q(a, x) + P(a, x) = 1.
The current implementation is from the Cephes library (Moshier 2000).
The domain is restricted to real a>0, real x>=0.
@node using_specifier_functions, value, uigamma, Functions
@subsubsection using specifier functions
@c ?
These functions are valid only in the context of data input. Usually this
means use in an expression that provides an input field of the `using`
specifier in a `plot`, `splot`, @ref{fit}, or `stats` command. However the
scope of the functions is actually the full clause of the plot command,
including for example use of `columnhead` in constructing the plot title.
@noindent --- COLUMN ---
@c ?expressions functions column
@cindex column
The `column(x)` function may be used only in the `using` specifier
of a plot, splot, fit, or stats command.
It evaluates to the numerical value of the content of column x.
If the column is expected to hold a string, use instead stringcolumn(x)
or timecolumn(x, "timeformat").
See `plot datafile using`, `stringcolumn`, `timecolumn`.
@noindent --- COLUMNHEAD ---
@c ?expressions functions columnhead
@cindex columnhead
The `columnhead(x)` function may only be used as part of a plot, splot,
or stats command. It evaluates to a string containing the content of
column x in the first line of a data file. This is typically used to
extract the column header for use in a plot title.
See `plot datafile using`.
Example:
@example
set datafile columnheader
plot for [i=2:4] DATA using 1:i title columnhead(i)
@end example
@noindent --- STRINGCOLUMN ---
@c ?expressions functions stringcolumn
@cindex stringcolumn
@c ?expressions functions strcol
@cindex strcol
The `stringcolumn(x)` function may be used only in the `using` specification
of a data plot or @ref{fit} command. It returns the content of column x as a
string. `strcol(x)` is shorthand for `stringcolumn(x)`.
If the string is to be interpreted as a time or date, use instead
timecolumn(x, "timeformat"). See `plot datafile using`.
@noindent --- VALID ---
@c ?expressions functions valid
@cindex valid
The `valid(x)` function may be used only in expressions that are part of a
`using` specification. It can be used to detect explicit NaN values or
unexpected garbage in a field of the input stream, perhaps to substitute
a default value or to prevent further arithmetic operations using NaN.
Both "missing" and NaN (not-a-number) data values are considered to be
invalid, but it is important to note that if the program recognizes that a
field is truly missing or contains a "missing" flag then the input line is
discarded before the expression invoking valid() would be called.
See `plot datafile using`, `missing`.
Example:
@example
# Treat an unrecognized bin value as contributing some constant
# prior expectation to the bin total rather than ignoring it.
plot DATA using 1 : (valid(2) ? $2 : prior) smooth unique
@end example
@node value, Counting_and_extracting_words, using_specifier_functions, Functions
@subsubsection value
@c ?expressions functions value
@cindex value
@findex value
B = value("A") is effectively the same as B = A, where A is the name of a
user-defined variable. This is useful when the name of the variable is itself
held in a string variable. See `user-defined variables`. It also allows you to
read the name of a variable from a data file. If the argument is a numerical
expression, value() returns the value of that expression. If the argument is a
string that does not correspond to a currently defined variable,
value() returns NaN.
@node Counting_and_extracting_words, zeta, value, Functions
@subsubsection Counting and extracting words
@cindex counting_words
@c ?expressions functions word
@c ?expressions functions words
@cindex words
@findex words
@cindex word
@findex word
`word("string",n)` returns the nth word in string. For example,
`word("one two three",2)` returns the string "two".
`words("string")` returns the number of words in string. For example,
`words(" a b c d")` returns 4.
Words must be separated by whitespace; if you need to extract individual
fields from a string that are separated by some other character, use
instead @ref{split}.
The `word` and @ref{words} functions provide limited support for quoted strings,
both single and double quotes can be used:
@example
print words("\"double quotes\" or 'single quotes'") # 3
@end example
A starting quote must either be preceded by a white space, or start the
string. This means that apostrophes in the middle or at the end of words are
considered as parts of the respective word:
@example
print words("Alexis' phone doesn't work") # 4
@end example
Escaping quote characters is not supported. If you want to keep certain quotes,
the respective section must be surrounded by the other kind of quotes:
@example
s = "Keep \"'single quotes'\" or '\"double quotes\"'"
print word(s, 2) # 'single quotes'
print word(s, 4) # "double quotes"
@end example
Note, that in this last example the escaped quotes are necessary only for the
string definition.
@cindex split
@findex split
@cindex split
@findex split
@c ?expressions functions split
`split("string", "sep")` uses the character sequence in "sep" as a
field separator to split the content of "string" into individual fields.
It returns an array of strings, each corresponding to one field of the
original string. The second parameter "sep" is optional. If "sep" is
omitted or if it contains a single space character the fields are split
by any amount of whitespace (space, tab, formfeed, newline, return).
Otherwise the full sequence of characters in "sep" must be matched.
The three examples below each produce an array [ "A", "B", "C", "D" ]
@example
t1 = split( "A B C D" )
t2 = split( "A B C D", " ")
t3 = split( "A;B;C;D", ";")
@end example
However the command
@example
t4 = split( "A;B; C;D", "; " )
@end example
produces an array containing only two strings [ "A;B", "C;D" ] because
the two-character field separator sequence "; " is found only once.
Note: Breaking the string into an array of single characters using an empty
string for sep is not currently implemneted. You can instead accomplish
this using single character substrings: Array[i] = "string"[i:i]
@cindex join
@findex join
@cindex join
@findex join
@c ?expressions functions join
`join(array, "sep")` concatenates the string elements of an array into a
single string containing fields delimited by the character sequence in "sep".
Non-string array elements generate an empty field. The complementary
operation @ref{split} break extracts fields from a string to create an array.
Example:
@example
array A = ["A", "B", , 7, "E"]
print join(A,";")
A;B;;;E
@end example
@cindex trim
@findex trim
@cindex trim
@findex trim
`trim(" padded string ")` returns the original string stripped of leading
and trailing whitespace. This is useful for string comparisons of input
data fields that may contain extra whitespace. For example
@example
plot FOO using 1:( trim(strcol(3)) eq "A" ? $2 : NaN )
@end example
@node zeta, , Counting_and_extracting_words, Functions
@subsubsection zeta
@c ?expressions functions zeta
@cindex zeta
@findex zeta
@cindex Riemann
zeta(s) is the Riemann zeta function with complex domain and range.
This implementation uses the polynomial series described in algorithm 3 of
P. Borwein [2000] Canadian Mathematical Society Conference Proceedings.
The nominal precision is 1.e-16 over the complex plane. However note that
this does not guarantee that non-trivial zeros of the zeta function will
evaluate exactly to 0.
@node operators, summation, Functions, Expressions
@subsection operators
@c ?expressions operators
@cindex operators
The operators in `gnuplot` are the same as the corresponding operators in the
C programming language, except that all operators accept integer, real, and
complex arguments, unless otherwise noted. The ** operator (exponentiation)
is supported, as in FORTRAN.
Operator precedence is the same as in Fortran and C. As in those languages,
parentheses may be used to change the order of operation. Thus -2**2 = -4,
but (-2)**2 = 4.
@menu
* Unary::
* Binary::
* Ternary::
@end menu
@node Unary, Binary, operators, operators
@subsubsection Unary
@c ?expressions operators unary
@c ?operators unary
@cindex unary
The following is a list of all the unary operators:
@example
Symbol Example Explanation
- -a unary minus
+ +a unary plus (no-operation)
~ ~a * one's complement
! !a * logical negation
! a! * factorial
$ $3 * data column in `using` specifier
|| |A| cardinality of array A
@end example
@cindex factorial
@cindex negation
@cindex one's complement
@cindex operator precedence
@cindex cardinality
@c ^<table align="center" border="1" rules="groups" frame="hsides" cellpadding="3">
@c ^<colgroup>
@c ^ <col align="center">
@c ^ <col align="center">
@c ^ <col align="left">
@c ^</colgroup>
@c ^<thead>
@c ^<tr> <th>Symbol</th> <th>Example</th> <th>Explanation</th></tr>
@c ^</thead>
@c ^<tbody>
@c ^<tr> <td><tt>-</tt></td> <td><tt>-a</tt></td> <td>unary minus</td></tr>
@c ^<tr> <td><tt>+</tt></td> <td><tt>+a</tt></td> <td>unary plus (no-operation)</td></tr>
@c ^<tr> <td><tt>~</tt></td> <td><tt>~a</tt></td> <td>* one's complement</td></tr>
@c ^<tr> <td><tt>!</tt></td> <td><tt>!a</tt></td> <td>* logical negation</td></tr>
@c ^<tr> <td><tt>!</tt></td> <td><tt>a!</tt></td> <td>* factorial</td></tr>
@c ^<tr> <td><tt>$</tt></td> <td><tt>$3</tt></td> <td>* data column in `using` specifier</td></tr>
@c ^<tr> <td><tt>|</tt></td> <td><tt>|A|</tt></td> <td>cardinality of array A</td></tr>
@c ^</tbody>
@c ^</table>
(*) Starred explanations indicate that the operator requires an integer
argument.
The factorial operator returns an integer when N! is sufficiently small
(N <= 20 for 64-bit integers). It returns a floating point approximation
for larger values of N.
@cindex cardinality
The cardinality operator |...| returns the number of elements |A| in array A.
It returns the number of data lines |$DATA| when applied to datablock $DATA.
@node Binary, Ternary, Unary, operators
@subsubsection Binary
@c ?expressions operators binary
@c ?operators binary
The following is a list of all the binary operators:
@example
Symbol Example Explanation
** a**b exponentiation
* a*b multiplication
/ a/b division
% a%b * modulo
+ a+b addition
- a-b subtraction
== a==b equality
!= a!=b inequality
< a<b less than
<= a<=b less than or equal to
> a>b greater than
>= a>=b greater than or equal to
<< 0xff<<1 left shift unsigned
>> 0xff>>2 right shift unsigned
& a&b * bitwise AND
^ a^b * bitwise exclusive OR
| a|b * bitwise inclusive OR
&& a&&b * logical AND
|| a||b * logical OR
= a = b assignment
, (a,b) serial evaluation
. A.B string concatenation
eq A eq B string equality
ne A ne B string inequality
@end example
@cindex bitwise operators
@cindex string operators
@cindex modulo
@cindex exponentiation
@c ^<table align="center" border="1" rules="groups" frame="hsides" cellpadding="3">
@c ^<colgroup>
@c ^ <col align="center">
@c ^ <col align="center">
@c ^ <col align="left">
@c ^</colgroup>
@c ^<thead>
@c ^<tr> <th>Symbol</th> <th>Example</th> <th>Explanation</th></tr>
@c ^</thead>
@c ^<tbody>
@c ^<tr> <td><tt>**</tt></td> <td><tt>a**b</tt></td> <td>exponentiation</td></tr>
@c ^<tr> <td><tt>*</tt></td> <td><tt>a*b</tt></td> <td>multiplication</td></tr>
@c ^<tr> <td><tt>/</tt></td> <td><tt>a/b</tt></td> <td>division</td></tr>
@c ^<tr> <td><tt>%</tt></td> <td><tt>a%b</tt></td> <td>* modulo</td></tr>
@c ^<tr> <td><tt>+</tt></td> <td><tt>a+b</tt></td> <td>addition</td></tr>
@c ^<tr> <td><tt>-</tt></td> <td><tt>a-b</tt></td> <td>subtraction</td></tr>
@c ^<tr> <td><tt>==</tt></td> <td><tt>a==b</tt></td> <td>equality</td></tr>
@c ^<tr> <td><tt>!=</tt></td> <td><tt>a!=b</tt></td> <td>inequality</td></tr>
@c ^<tr> <td><tt><</tt></td> <td><tt>a<b</tt></td> <td>less than</td></tr>
@c ^<tr> <td><tt><=</tt></td> <td><tt>a<=b</tt></td> <td>less than or equal to</td></tr>
@c ^<tr> <td><tt>></tt></td> <td><tt>a>b</tt></td> <td>greater than</td></tr>
@c ^<tr> <td><tt>>=</tt></td> <td><tt>a>=b</tt></td> <td>greater than or equal to</td></tr>
@c ^<tr> <td><tt><<</tt></td> <td><tt>0xff<<1</tt></td> <td>left shift unsigned</td></tr>
@c ^<tr> <td><tt>>></tt></td> <td><tt>0xff>>1</tt></td> <td>right shift unsigned</td></tr>
@c ^<tr> <td><tt>&</tt></td> <td><tt>a&b</tt></td> <td>* bitwise AND</td></tr>
@c ^<tr> <td><tt>^</tt></td> <td><tt>a^b</tt></td> <td>* bitwise exclusive OR</td></tr>
@c ^<tr> <td><tt>|</tt></td> <td><tt>a|b</tt></td> <td>* bitwise inclusive OR</td></tr>
@c ^<tr> <td><tt>&&</tt></td> <td><tt>a&&b</tt></td> <td>* logical AND</td></tr>
@c ^<tr> <td><tt>||</tt></td> <td><tt>a||b</tt></td> <td>* logical OR</td></tr>
@c ^<tr> <td><tt>=</tt></td> <td><tt>a = b</tt></td> <td>assignment</td></tr>
@c ^<tr> <td><tt>,</tt></td> <td><tt>(a,b)</tt></td> <td>serial evaluation</td></tr>
@c ^<tr> <td><tt>.</tt></td> <td><tt>a.b</tt></td> <td>string concatenation</td></tr>
@c ^<tr> <td><tt>eq</tt></td> <td><tt>A eq B</tt></td> <td>string equality</td></tr>
@c ^<tr> <td><tt>ne</tt></td> <td><tt>A ne B</tt></td> <td>string inequality</td></tr>
@c ^</tbody>
@c ^</table>
(*) Starred explanations indicate that the operator requires integer
arguments.
Capital letters A and B indicate that the operator requires string arguments.
Logical AND (&&) and OR (||) short-circuit the way they do in C. That is,
the second `&&` operand is not evaluated if the first is false; the second
`||` operand is not evaluated if the first is true.
Serial evaluation occurs only in parentheses and is guaranteed to proceed
in left to right order. The value of the rightmost subexpression is returned.
@node Ternary, , Binary, operators
@subsubsection Ternary
@c ?expressions operators ternary
@c ?operators ternary
@cindex ternary
There is a single ternary operator:
@example
Symbol Example Explanation
?: a?b:c ternary operation
@end example
@c ^<table align="center" border="1" rules="groups" frame="hsides" cellpadding="3">
@c ^<colgroup>
@c ^ <col align="center">
@c ^ <col align="center">
@c ^ <col align="left">
@c ^</colgroup>
@c ^<thead>
@c ^<tr> <th>Symbol</th> <th>Example</th> <th>Explanation</th></tr>
@c ^</thead>
@c ^<tbody>
@c ^<tr> <td><tt>?:</tt></td> <td><tt>a?b:c</tt></td> <td>* ternary operation</td></tr>
@c ^</tbody>
@c ^</table>
The ternary operator behaves as it does in C. The first argument (a), which
must be an integer, is evaluated. If it is true (non-zero), the second
argument (b) is evaluated and returned; otherwise the third argument (c) is
evaluated and returned.
The ternary operator is very useful both in constructing piecewise functions
and in plotting points only when certain conditions are met.
Examples:
Plot a function that is to equal sin(x) for 0 <= x < 1, 1/x for 1 <= x < 2,
and undefined elsewhere:
@example
f(x) = 0<=x && x<1 ? sin(x) : 1<=x && x<2 ? 1/x : 1/0
plot f(x)
@end example
Note that `gnuplot` quietly ignores undefined values when plotting, so the
final branch of the function (1/0) will produce no plottable points.
Note also that f(x) will be plotted as a continuous function across the
discontinuity if a line style is used. To plot it discontinuously, create
separate functions for the two pieces.
For data in a file, plot the average of the data in columns 2 and 3 against
the datum in column 1, but only if the datum in column 4 is non-negative:
@example
plot 'file' using 1:( $4<0 ? 1/0 : ($2+$3)/2 )
@end example
For an explanation of the `using` syntax, please see `plot datafile using`.
@node summation, Gnuplot-defined_variables, operators, Expressions
@subsection summation
@c ?expressions operators summation
@c ?operators summation
@cindex summation
A summation expression has the form
@example
sum [<var> = <start> : <end>] <expression>
@end example
<var> is treated as an integer variable that takes on successive integral
values from <start> to <end>. For each of these, the current value of
<expression> is added to a running total whose final value becomes the value
of the summation expression.
Examples:
@example
print sum [i=1:10] i
55.
# Equivalent to plot 'data' using 1:($2+$3+$4+$5+$6+...)
plot 'data' using 1 : (sum [col=2:MAXCOL] column(col))
@end example
It is not necessary that <expression> contain the variable <var>.
Although <start> and <end> can be specified as variables or expressions,
their value cannot be changed dynamically as a side-effect of carrying
out the summation. If <end> is less than <start> then the value of the
summation is zero.
@node Gnuplot-defined_variables, User-defined_variables_and_functions, summation, Expressions
@subsection Gnuplot-defined variables
@c ?expressions gnuplot-defined
@cindex gnuplot-defined
@c ?gnuplot-defined variables
@cindex GPVAL
@cindex gpval
Gnuplot maintains a number of read-only variables that reflect the current
internal state of the program and the most recent plot. These variables begin
with the prefix "GPVAL_".
Examples include GPVAL_TERM, GPVAL_X_MIN, GPVAL_X_MAX, GPVAL_Y_MIN.
Type `show variables all` to display the complete list and current values.
Values related to axes parameters (ranges, log base) are values used during the
last plot, not those currently `set`.
Example: To calculate the fractional screen coordinates of the point [X,Y]
@example
GRAPH_X = (X - GPVAL_X_MIN) / (GPVAL_X_MAX - GPVAL_X_MIN)
GRAPH_Y = (Y - GPVAL_Y_MIN) / (GPVAL_Y_MAX - GPVAL_Y_MIN)
SCREEN_X = GPVAL_TERM_XMIN + GRAPH_X * (GPVAL_TERM_XMAX - GPVAL_TERM_XMIN)
SCREEN_Y = GPVAL_TERM_YMIN + GRAPH_Y * (GPVAL_TERM_YMAX - GPVAL_TERM_YMIN)
FRAC_X = SCREEN_X * GPVAL_TERM_SCALE / GPVAL_TERM_XSIZE
FRAC_Y = SCREEN_Y * GPVAL_TERM_SCALE / GPVAL_TERM_YSIZE
@end example
@cindex errors
@cindex error state
The read-only variable GPVAL_ERRNO is set to a non-zero value if any gnuplot
command terminates early due to an error. The most recent error message is
stored in the string variable GPVAL_ERRMSG. Both GPVAL_ERRNO and GPVAL_ERRMSG
can be cleared using the command `reset errors`.
Interactive terminals with `mouse` functionality maintain read-only variables
with the prefix "MOUSE_". See `mouse variables` for details.
The @ref{fit} mechanism uses several variables with names that begin "FIT_". It
is safest to avoid using such names. When using `set fit errorvariables`, the
error for each fitted parameter will be stored in a variable named like the
parameter, but with "_err" appended. See the documentation on @ref{fit} and
@ref{fit} for details.
See `user-defined variables`, `reset errors`, `mouse variables`, and @ref{fit}.
@node User-defined_variables_and_functions, arrays, Gnuplot-defined_variables, Expressions
@subsection User-defined variables and functions
@c ?expressions user-defined
@c ?functions user-defined
@c ?user-defined variables
@cindex user-defined
@cindex variables
New user-defined variables and functions of one through twelve variables may
be declared and used anywhere, including on the `plot` command itself.
User-defined function syntax:
@example
<func-name>( <dummy1> @{,<dummy2>@} ... @{,<dummy12>@} ) = <expression>
@end example
where <expression> is defined in terms of <dummy1> through <dummy12>.
This form of function definition is limited to a single line.
More complicated multi-line functions can be defined using the function block
mechanism (new in this version). See `function blocks`.
User-defined variable syntax:
@example
<variable-name> = <constant-expression>
@end example
Examples:
@example
w = 2
q = floor(tan(pi/2 - 0.1))
f(x) = sin(w*x)
sinc(x) = sin(pi*x)/(pi*x)
delta(t) = (t == 0)
ramp(t) = (t > 0) ? t : 0
min(a,b) = (a < b) ? a : b
comb(n,k) = n!/(k!*(n-k)!)
len3d(x,y,z) = sqrt(x*x+y*y+z*z)
plot f(x) = sin(x*a), a = 0.2, f(x), a = 0.4, f(x)
@end example
@example
file = "mydata.inp"
file(n) = sprintf("run_%d.dat",n)
@end example
The final two examples illustrate a user-defined string variable and a
user-defined string function.
@cindex NaN
@cindex pi
Note that the variables `pi` (3.14159...) and @ref{NaN} (IEEE "Not a Number") are
already defined. You can redefine these to something else if you really need
to. The original values can be recovered by setting:
@example
NaN = GPVAL_NaN
pi = GPVAL_pi
@end example
Other variables may be defined under various gnuplot operations like mousing in
interactive terminals or fitting; see `gnuplot-defined variables` for details.
You can check for existence of a given variable V by the exists("V")
expression. For example
@example
a = 10
if (exists("a")) print "a is defined"
if (!exists("b")) print "b is not defined"
@end example
Valid names are the same as in most programming languages: they must begin
with a letter, but subsequent characters may be letters, digits, or "_".
Each function definition is made available as a special string-valued
variable with the prefix 'GPFUN_'.
Example:
@example
set label GPFUN_sinc at graph .05,.95
@end example
See @ref{functions}, @ref{functions}, `gnuplot-defined variables`, @ref{macros},
@ref{value}.
@node arrays, , User-defined_variables_and_functions, Expressions
@subsection arrays
@cindex arrays
@cindex cardinality
Arrays are implemented as indexed lists of user variables. The elements in an
array are not limited to a single type of variable. Arrays must be created
explicitly before being referenced. The size of an array cannot be changed
after creation. Array elements are initially undefined unless they are
provided in the array declaration.
In most places an array element can be used instead of a named user variable.
The cardinality (number of elements) of array A is given by the expression |A|.
Examples:
@example
array A[6]
A[1] = 1
A[2] = 2.0
A[3] = @{3.0, 3.0@}
A[4] = "four"
A[6] = A[2]**3
array B[6] = [ 1, 2.0, A[3], "four", , B[2]**3 ]
array C = split("A B C D E F")
@end example
@example
do for [i=1:6] @{ print A[i], B[i] @}
1 1
2.0 2.0
@{3.0, 3.0@} @{3.0, 3.0@}
four four
<undefined> <undefined>
8.0 8.0
@end example
Note: Arrays and variables share the same namespace. For example, assignment
of a string to a variable named FOO will destroy any previously created array
with name FOO.
The name of an array can be used in a `plot`, `splot`, @ref{fit}, or `stats`
command. This is equivalent to providing a file in which column 1 holds the
array index (from 1 to size), column 2 holds the value of real(A[i]) and
column 3 holds the value of imag(A[i]).
Example:
@example
array A[200]
do for [i=1:200] @{ A[i] = sin(i * pi/100.) @}
plot A title "sin(x) in centiradians"
@end example
When plotting the imaginary component of complex array values, it may be
referenced either as imag(A[$1]) or as $3. These two commands are equivalent
@example
plot A using (real(A[$1])) : (imag(A[$1]))
plot A using 2:3
@end example
@menu
* Array_functions::
* Array_indexing::
@end menu
@node Array_functions, Array_indexing, arrays, arrays
@subsubsection Array functions
@c ?arrays functions
@c ?arrays slice
@cindex slice
@cindex split
@findex split
Starting with gnuplot version 6, an array can be passed to a function or
returned by a function. For example a simple dot-product function acting on
two equal-sized numerical arrays could be defined:
@example
dot(A,B) = (|A| != |B|) ? NaN : sum [i=1:|A|] A[i] * B[i]
@end example
Built-in functions that return an array include the slice operation
array[min:max] and the index retrieval function index(Array,value).
@example
T = split("A B C D E F")
U = T[3:4]
print T
[ "A", "B", "C", "D", "E", "F" ]
print U
[ "C", "D" ]
print index( T, "D" )
4
@end example
Note that T and U in this example are now arrays, whether or not they had been
previously declared.
@node Array_indexing, , Array_functions, arrays
@subsubsection Array indexing
@c ?arrays indexing
@cindex index
Array indices run from 1 to N for an array with N elements.
Element i of array A is accessed by A[i].
The built-in function `index(Array, <value>)` returns an integer i such that
A[i] is equal to <value>, where <value> may be any expression that evaluates
to a number (integer, real, or complex) or a string. The array element must
match in both type and value. A return of 0 indicates that no match was found.
@example
array A = [ 4.0, 4, "4" ]
print index( A, 4 )
2
print index( A, 2.+2. )
1
print index( A, "D4"[2:2] )
3
@end example
@node Fonts, Glossary, Expressions, Gnuplot
@section Fonts
@cindex fonts
Gnuplot does not provide any fonts of its own. It relies on external font
handling, the details of which unfortunately vary from one terminal type to
another. Brief documentation of font mechanisms that apply to more than one
terminal type is given here. For information on font use by other individual
terminals, see the documentation for that terminal.
Although it is possible to include non-alphabetic symbols by temporarily
switching to a special font, e.g. the Adobe Symbol font, the preferred method
is now to choose UTF-8 encoding and treat the symbol like any other character.
Alternatively you can specify the unicode entry point for the desired symbol
as an escape sequence in enhanced text mode.
See @ref{encoding}, `unicode`, @ref{locale}, and `escape sequences`.
@menu
* cairo_(pdfcairo::
* gd_(png::
* postscript__(also_encapsulated_postscript_*.eps)::
@end menu
@node cairo_(pdfcairo, gd_(png, Fonts, Fonts
@subsection cairo (pdfcairo, pngcairo, epscairo, wxt terminals)
@c ?fonts cairo
@cindex fontconfig
@c ?fonts fontconfig
@cindex fonts
@cindex pdf
@tmindex pdf
@cindex png
@tmindex png
@cindex wxt
@tmindex wxt
Some terminals, including all the cairo-based terminals, access fonts via the
fontconfig system library. Please see the
@uref{http://fontconfig.org/fontconfig-user.html,fontconfig user manual.
}
It is usually sufficient in gnuplot to request a font by a generic name and
size, letting fontconfig substitute a similar font if necessary. The following
will probably all work:
@example
set term pdfcairo font "sans,12"
set term pdfcairo font "Times,12"
set term pdfcairo font "Times-New-Roman,12"
@end example
@node gd_(png, postscript__(also_encapsulated_postscript_*.eps), cairo_(pdfcairo, Fonts
@subsection gd (png, gif, jpeg, sixel terminals)
@cindex gd
@c ?fonts gd
@cindex fonts
@cindex png
@tmindex png
@cindex jpeg
@cindex gif
@cindex sixel
Font handling for the png, gif, jpeg, and sixelgd terminals is done by the
libgd library. At a minimum it provides five basic fonts named `tiny`,
`small`, `medium`, `large`, and `giant` that cannot be scaled or rotated.
Use one of these keywords instead of the `font` keyword. E.g.
@example
set term png tiny
@end example
On many systems libgd can also use generic font handling provided by the
fontconfig tools (see `fontconfig`).
On most systems without fontconfig, libgd provides access to Adobe fonts
(*.pfa *.pfb) and to TrueType fonts (*.ttf). You must give the name of the
font file, not the name of the font inside it, in the form "<face> @{,<size>@}".
<face> is either the full pathname to the font file, or the first part of a
filename in one of the directories listed in the GDFONTPATH environmental
variable. That is, 'set term png font "Face"' will look for a font file named
either <somedirectory>/Face.ttf or <somedirectory>/Face.pfa.
For example, if GDFONTPATH contains `/usr/local/fonts/ttf:/usr/local/fonts/pfa`
then the following pairs of commands are equivalent
@example
set term png font "arial"
set term png font "/usr/local/fonts/ttf/arial.ttf"
set term png font "Helvetica"
set term png font "/usr/local/fonts/pfa/Helvetica.pfa"
@end example
To request a default font size at the same time:
@example
set term png font "arial,11"
@end example
If no specific font is requested in the "set term" command, gnuplot checks
the environmental variable GNUPLOT_DEFAULT_GDFONT.
@node postscript__(also_encapsulated_postscript_*.eps), , gd_(png, Fonts
@subsection postscript (also encapsulated postscript *.eps)
@c ?fonts postscript
@cindex fonts
@cindex postscript
@cindex eps
PostScript font handling is done by the printer or viewing program.
Gnuplot can create valid PostScript or encapsulated PostScript (*.eps) even if
no fonts at all are installed on your computer. Gnuplot simply refers to the
font by name in the output file, and assumes that the printer or viewing
program will know how to find or approximate a font by that name.
All PostScript printers or viewers should know about the standard set of Adobe
fonts `Times-Roman`, `Helvetica`, `Courier`, and `Symbol`. It is likely that
many additional fonts are also available, but the specific set depends on your
system or printer configuration. Gnuplot does not know or care about this;
the output *.ps or *.eps files that it creates will simply refer to whatever
font names you request.
Thus
@example
set term postscript eps font "Times-Roman,12"
@end example
will produce output that is suitable for all printers and viewers.
On the other hand
@example
set term postscript eps font "Garamond-Premier-Pro-Italic"
@end example
will produce a valid PostScript output file, but since it refers to a
specialized font only some printers or viewers will be able to display the
exact font that was requested. Most will substitute a different font.
However, it is possible to embed a specific font in the output file so that
all printers will be able to use it. This requires that the a suitable font
description file is available on your system. Note that some font files require
specific licensing if they are to be embedded in this way.
See `postscript fontfile` for more detailed description and examples.
@node Glossary, inline_data_and_datablocks, Fonts, Gnuplot
@section Glossary
@cindex glossary
@cindex terminal
@opindex terminal
@cindex screen
@cindex record
@cindex block
As `gnuplot` has evolved over more than 30 years, the meaning of certain words
used in commands and in the documentation may have diverged from current common
usage. This section explains how some of these terms are used in `gnuplot`.
The term "terminal" refers to an output mode, not to the thing you are typing
on. For example, the command `set terminal pdf` means that subsequent plotting
commands will produce pdf ouput. Usually you would want to accompany this with
a `set output "filename"` command to control where the pdf output is written.
A "page" or "screen" or "canvas" is the entire area addressable by `gnuplot`.
On a desktop it is a full window; on a plotter, it is a single sheet of paper.
When discussing data files, the term "record" denotes a single line of text in
the file, that is, the characters between newline or end-of-record characters.
A "point" is the datum extracted from a single record.
A "block" of data is a set of consecutive records delimited by blank lines.
A line, when referred to in the context of a data file, is a subset of a block.
Note that the term "data block" may also be used to refer to a named block
of inline data (see `datablocks`).
@node inline_data_and_datablocks, iteration, Glossary, Gnuplot
@section inline data and datablocks
@c ?inline data
@cindex inline
@c ?data inline
@cindex datablocks
@c ?data datablocks
There are two mechanisms for embedding data into a stream of gnuplot commands.
If the special filename '-' appears in a plot command, then the lines
immediately following the plot command are interpreted as inline data.
See @ref{special-filenames}. Data provided in this way can only be used once, by
the plot command it follows.
The second mechanism defines a named data block as a here-document. The named
data is persistent and may be referred to by more than one plot command.
Example:
@example
$Mydata << EOD
11 22 33 first line of data
44 55 66 second line of data
# comments work just as in a data file
77 88 99
EOD
stats $Mydata using 1:3
plot $Mydata using 1:3 with points, $Mydata using 1:2 with impulses
@end example
Data block names must begin with a $ character, which distinguishes them from
other types of persistent variables. The end-of-data delimiter (EOD in the
example) may be any sequence of alphanumeric characters.
For a parallel mechanism that stores executable commands rather than data in
a named block, see `function blocks`.
The storage associated with named data blocks can be released using `undefine`
command. `undefine $*` frees all named data and function blocks at once.
@node iteration, linetypes, inline_data_and_datablocks, Gnuplot
@section iteration
@cindex iteration
@cindex iterate
gnuplot supports command iteration and block-structured if/else/while/do
constructs. See @ref{if}, `while`, and `do`.
Simple iteration is possible inside `plot` or `set` commands.
See `plot for`. General iteration spanning multiple
commands is possible using a block construct as shown below.
For a related new feature, see the @ref{summation} expression type.
Here is an example using several of these new syntax features:
@example
set multiplot layout 2,2
fourier(k, x) = sin(3./2*k)/k * 2./3*cos(k*x)
do for [power = 0:3] @{
TERMS = 10**power
set title sprintf("%g term Fourier series",TERMS)
plot 0.5 + sum [k=1:TERMS] fourier(k,x) notitle
@}
unset multiplot
@end example
@cindex iteration-specifier
Iteration is controlled by an iteration specifier with syntax
@example
for [<var> in "string of N elements"]
@end example
or
@example
for [<var> = <start> : <end> @{ : <increment> @}]
@end example
In the first case <var> is a string variable that successively evaluates to
single-word substrings 1 to N of the string in the iteration specifier.
In the second case <start>, <end>, and <increment> are integers or integer
expressions.
@cindex scope
The scope of the iteration variable is private to that iteration. See `scope`.
You cannot permanently change the value of the iteration variable inside the
iterated clause. If the iteration variable has a value prior to iteration,
that value will be retained or restored at the end of the iteration.
For example, the following commands will print 1 2 3 4 5 6 7 8 9 10 A.
@example
i = "A"
do for [i=1:10] @{ print i; i=10; @}
print i
@end example
@node linetypes, layers, iteration, Gnuplot
@section linetypes, colors, and styles
@cindex linetypes
@cindex colors
In very old gnuplot versions, each terminal type provided a set of distinct
"linetypes" that could differ in color, in thickness, in dot/dash pattern, or
in some combination of color and dot/dash. These colors and patterns were not
guaranteed to be consistent across different terminal types although most
used the color sequence red/green/blue/magenta/cyan/yellow. You can select
this old behaviour via the command `set colorsequence classic`, but by default
gnuplot now uses a terminal-independent sequence of 8 colors.
You can further customize the sequence of linetype properties interactively or
in an initialization file. See `set linetype`. Several sample initialization
files are provided in the distribution package.
The current linetype properties for a particular terminal can be previewed by
issuing the `test` command after setting the terminal type.
Successive functions or datafiles plotted by a single command will be assigned
successive linetypes in the current default sequence. You can override this
for any individual function, datafile, or plot element by giving explicit line
properties in the plot command.
Examples:
@example
plot "foo", "bar" # plot two files using linetypes 1, 2
plot sin(x) linetype 4 # use linetype color 4
@end example
In general, colors can be specified using named colors, rgb (red, green, blue)
components, hsv (hue, saturation, value) components, or a coordinate along the
current pm3d palette. The keyword `linecolor` may be abbreviated to `lc`.
Examples:
@example
plot sin(x) lc rgb "violet" # use one of gnuplot's named colors
plot sin(x) lc rgb "#FF00FF" # explicit RGB triple in hexadecimal
plot sin(x) lc palette cb -45 # whatever color corresponds to -45
# in the current cbrange of the palette
plot sin(x) lc palette frac 0.3 # fractional value along the palette
@end example
See @ref{colorspec}, @ref{colornames}, `hsv`, @ref{palette}, @ref{cbrange}.
See also @ref{monochrome}.
Linetypes also have an associated dot-dash pattern although not all terminal
types are capable of using it. You can specify the dot-dash pattern
independent of the line color. See @ref{dashtype}.
@menu
* colorspec::
* dashtype::
* linestyles_vs_linetypes::
* special_linetypes::
@end menu
@node colorspec, dashtype, linetypes, linetypes
@subsection colorspec
@cindex colorspec
@cindex colors
@cindex lc
@cindex linecolor
@cindex tc
@cindex textcolor
@cindex fillcolor
Many commands allow you to specify a linetype with an explicit color.
Syntax:
@example
... @{linecolor | lc@} @{"colorname" | <colorspec> | <n>@}
... @{textcolor | tc@} @{<colorspec> | @{linetype | lt@} <n>@}
... @{fillcolor | fc@} @{<colorspec> | linetype <n> | linestyle <n>@}
@end example
where <colorspec> has one of the following forms:
@example
rgbcolor "colorname" # e.g. "blue"
rgbcolor "0xRRGGBB" # string containing hexadecimal constant
rgbcolor "0xAARRGGBB" # string containing hexadecimal constant
rgbcolor "#RRGGBB" # string containing hexadecimal in x11 format
rgbcolor "#AARRGGBB" # string containing hexadecimal in x11 format
rgbcolor <integer val> # integer value representing AARRGGBB
rgbcolor variable # integer value is read from input file
palette frac <val> # <val> runs from 0 to 1
palette cb <value> # <val> lies within cbrange
palette z
palette <colormap> # use named colormap rather than current palette
variable # color index is read from input file
background or bgnd # background color
black
@end example
The "<n>" is the linetype number the color of which is used, see `test`.
"colorname" refers to one of the color names built in to gnuplot. For a list
of the available names, see @ref{colornames}.
Hexadecimal constants can be given in quotes as "#RRGGBB" or "0xRRGGBB", where
RRGGBB represents the red, green, and blue components of the color and must be
between 00 and FF. For example, magenta = full-scale red + full-scale blue
could be represented by "0xFF00FF", which is the hexadecimal representation of
(255 << 16) + (0 << 8) + (255).
"#AARRGGBB" represents an RGB color with an alpha channel (transparency)
value in the high bits. An alpha value of 0 represents a fully opaque color;
i.e., "#00RRGGBB" is the same as "#RRGGBB". An alpha value of 255 (FF)
represents full transparency.
For a callable function that converts any of these forms to a 32bit
integer representation of the color, see `expressions functions rgbcolor`.
The color palette is a linear gradient of colors that smoothly maps a
single numerical value onto a particular color. Two such mappings are always
in effect. `palette frac` maps a fractional value between 0 and 1 onto the
full range of the color palette. `palette cb` maps the range of the color
axis onto the same palette. See @ref{cbrange}. See also `set colorbox`.
You can use either of these to select a constant color from the current
palette.
"palette z" maps the z value of each plot segment or plot element into the
cbrange mapping of the palette. This allows smoothly-varying color along a
3d line or surface. It also allows coloring 2D plots by palette values read
from an extra column of data (not all 2D plot styles allow an extra column).
@cindex bgnd
@cindex black
There are two special color specifiers: `background` (short form `bgnd`)
for background color and `black`.
@menu
* background_color::
* linecolor_variable::
* palette_::
* rgbcolor_variable::
@end menu
@node background_color, linecolor_variable, colorspec, colorspec
@subsubsection background color
@cindex background
@cindex bgnd
Most terminals allow you to set an explicit background color for the plot.
The special linetype `background` (short form `bgnd`) will draw in this color,
and is also recognized as a color name.
Examples:
@example
# This will erase a section of the canvas by writing over it in the
# background color
set term wxt background rgb "gray75"
set object 1 rectangle from x0,y0 to x1,y1 fillstyle solid fillcolor bgnd
# Draw an "invisible" line at y=0, erasing whatever was underneath
plot 0 lt background
@end example
@node linecolor_variable, palette_, background_color, colorspec
@subsubsection linecolor variable
@c ?linecolor variable
@c ?linestyle variable
@c ?lc variable
@c ?ls variable
@c ?textcolor variable
@c ?tc variable
@c ?variable linecolor
`lc variable` tells the program to use the value read from one column of the
input data as a linetype index, and use the color belonging to that linetype.
This requires a corresponding additional column in the `using` specifier.
`ls variable` does the same except the value read from the input data stream
is interpreted as the index of a linestyle rather than a linetype.
Text colors can be set similarly using `tc variable`.
Examples:
@example
# Use the third column of data to assign colors to individual points
plot 'data' using 1:2:3 with points lc variable
@end example
@example
# A single data file may contain multiple sets of data, separated by two
# blank lines. Each data set is assigned as index value (see @ref{index})
# that can be retrieved via the `using` specifier `column(-2)`.
# See `pseudocolumns`. This example uses to value in column -2 to
# draw each data set in a different line color.
plot 'data' using 1:2:(column(-2)) with lines lc variable
@end example
@node palette_, rgbcolor_variable, linecolor_variable, colorspec
@subsubsection palette
@c ?colorspec palette
Syntax
@example
... @{lc|fc|tc@} palette @{z@}
... @{lc|fc|tc@} palette frac <fraction>
... @{lc|fc|tc@} palette cb <fixed z-value>
... fc palette <colormap>
@end example
The palette defines a range of colors with gray values between 0 and 1.
`palette frac <fraction>` selects the color with gray value <fraction>.
`palette cb <z-value>` selects the single color whose fractional gray value
is (z - cbmin) / (cbmax - cbmin).
@ref{palette} and `palette z` both map the z coordinate of the plot element being
colored onto the current palette. If z is outside cbrange it is by default
mapped to palette fraction 0 or palette fraction 1. If the option
`set pm3d noclipcb` is set, then quadrangles in a pm3d plot whose z values
are out of range will not be drawn at all.
`fillcolor palette <colormap>` maps the z coordinate of a plot element onto
a previously saved named colormap instead of using the current palette.
See @ref{colormap}.
If the colormap has a separate range associated with it, that range is used
to map z values analogous to the use of cbrange to map the standard palette.
If there is no separate range for this colormap then cbrange is used.
@node rgbcolor_variable, , palette_, colorspec
@subsubsection rgbcolor variable
@c ?rgbcolor variable
@c ?lc rgbcolor variable
@c ?tc rgbcolor variable
@c ?variable rgbcolor
@c ?variable textcolor
You can assign a separate color for each data point, line segment, or label in
your plot. `lc rgbcolor variable` tells the program to read RGB color
information for each line in the data file. This requires a corresponding
additional column in the `using` specifier. The extra column is interpreted as
a 24-bit packed RGB triple. If the value is provided directly in the data file
it is easiest to give it as a hexadecimal value (see `rgbcolor`).
Alternatively, the `using` specifier can contain an expression that evaluates
to a 24-bit RGB color as in the example below.
Text colors are similarly set using `tc rgbcolor variable`.
Example:
@example
# Place colored points in 3D at the x,y,z coordinates corresponding to
# their red, green, and blue components
rgb(r,g,b) = 65536 * int(r) + 256 * int(g) + int(b)
splot "data" using 1:2:3:(rgb($1,$2,$3)) with points lc rgb variable
@end example
@node dashtype, linestyles_vs_linetypes, colorspec, linetypes
@subsection dashtype
@cindex dashtype
@opindex dashtype
@cindex dashtype
@opindex dashtype
The dash pattern (@ref{dashtype}) is a separate property associated with each line,
analogous to `linecolor` or `linewidth`. It is not necessary to place the
current terminal in a special mode just to draw dashed lines.
I.e. the old command `set term <termname> @{solid|dashed@}` is now ignored.
All lines have the property `dashtype solid` unless you specify otherwise.
You can change the default for a particular linetype using the command
`set linetype` so that it affects all subsequent commands, or you can include
the desired dashtype as part of the `plot` or other command.
Syntax:
@example
dashtype N # predefined dashtype invoked by number
dashtype "pattern" # string containing a combination of the characters
# dot (.) hyphen (-) underscore(_) and space.
dashtype (s1,e1,s2,e2,s3,e3,s4,e4) # dash pattern specified by 1 to 4
# numerical pairs <solid length>, <emptyspace length>
@end example
Example:
@example
# Two functions using linetype 1 but distinguished by dashtype
plot f1(x) with lines lt 1 dt solid, f2(x) with lines lt 1 dt 3
@end example
Some terminals support user-defined dash patterns in addition to whatever
set of predefined dash patterns they offer.
Examples:
@example
plot f(x) dt 3 # use terminal-specific dash pattern 3
plot f(x) dt ".. " # construct a dash pattern on the spot
plot f(x) dt (2,5,2,15) # numerical representation of the same pattern
set dashtype 11 (2,4,4,7) # define new dashtype to be called by index
plot f(x) dt 11 # plot using our new dashtype
@end example
If you specify a dash pattern using a string the program will convert this to
a sequence of <solid>,<empty> pairs. Dot "." becomes (2,5), dash "-" becomes
(10,10), underscore "_" becomes (20,10), and each space character " " adds 10
to the previous <empty> value. The command @ref{dashtype} will show both the
original string and the converted numerical sequence.
@node linestyles_vs_linetypes, special_linetypes, dashtype, linetypes
@subsection linestyles vs linetypes
@c ?linestyles vs linetypes
A `linestyle` is a temporary association of properties linecolor, linewidth,
dashtype, and pointtype. It is defined using the command `set style line`.
Once you have defined a linestyle, you can use it in a plot command to control
the appearance of one or more plot elements. In other words, it is just like
a linetype except for its lifetime. Whereas `linetypes` are permanent (they
last until you explicitly redefine them), `linestyles` last until the next
reset of the graphics state.
Examples:
@example
# define a new line style with terminal-independent color cyan,
# linewidth 3, and associated point type 6 (a circle with a dot in it).
set style line 5 lt rgb "cyan" lw 3 pt 6
plot sin(x) with linespoints ls 5 # user-defined line style 5
@end example
@node special_linetypes, , linestyles_vs_linetypes, linetypes
@subsection special linetypes
@c ?linetypes special linetypes
@cindex special_linetypes
@cindex nodraw
@cindex bgnd
@cindex background
@cindex black
A few special (non-numerical) linetypes are recognized.
`lt black` specifies a solid black line.
`lt background` or `lt bgnd` specifies a solid line with the background color
of the current terminal. See `background`.
`lt nodraw` skips drawing the line altogether. This is useful in conjunction
with plot style @ref{linespoints}. It allows you to suppress the line component
of the plot while retaining point properties that are available only in this
plot style. For example
@example
plot f(x) with linespoints lt nodraw pointinterval -3
@end example
will draw only every third point and will isolate it by placing a small
circle of background color underneath it. See @ref{linespoints}.
`lt nodraw` may also be used to suppress a particular set of lines that would
otherwise be drawn automatically. For example you could suppress certain
contour levels in a contour plot by setting their linetype to `nodraw`.
@node layers, mouse_input, linetypes, Gnuplot
@section layers
@cindex layers
@cindex behind
@cindex front
@cindex back
A gnuplot plot is built up by drawing its various components in a fixed order.
This order can be modified by assigning some components to a specific layer
using the keywords `behind`, `back`, or `front`. For example, to replace the
background color of the plot area you could define a colored rectangle with the
attribute `behind`.
@example
set object 1 rectangle from graph 0,0 to graph 1,1 fc rgb "gray" behind
@end example
The order of drawing is
@example
behind
back
the plot itself
the plot legend (`key`)
front
@end example
Within each layer elements are drawn in the order
@example
grid, axis, and border elements
pixmaps in numerical order
objects (rectangles, circles, ellipses, polygons) in numerical order
labels in numerical order
arrows in numerical order
@end example
In the case of multiple plots on a single page (multiplot mode) this order
applies separately to each component plot, not to the multiplot as a whole.
An exception to this is that several TeX-based terminals (e.g. pslatex,
cairolatex) accumulate all text elements in one output stream and graphics
in a separate output stream; the text and graphics are then combined to
yield the final figure. In general this leaves each text element either
completely behind or completely in front of the graphics.
@node mouse_input, Persist, layers, Gnuplot
@section mouse input
@c ?mouse input
Many terminals allow interaction with the current plot using the mouse. Some
also support the definition of hotkeys to activate pre-defined functions by
hitting a single key while the mouse focus is in the active plot window.
It is even possible to combine mouse input with `batch` command scripts, by
invoking the command `pause mouse` and then using the mouse variables returned
by mouse clicking as parameters for subsequent scripted actions.
See `bind` and `mouse variables`. See also the command `set mouse`.
@menu
* bind::
* Mouse_variables::
@end menu
@node bind, Mouse_variables, mouse_input, mouse_input
@subsection bind
@c ?commands bind
@cindex hotkey
@cindex hotkeys
@cindex bind
@opindex bind
Syntax:
@example
bind @{allwindows@} [<key-sequence>] ["<gnuplot commands>"]
bind <key-sequence> ""
reset bind
@end example
The `bind` allows defining or redefining a hotkey, i.e. a sequence of gnuplot
commands which will be executed when a certain key or key sequence is pressed
while the driver's window has the input focus. Note that `bind` is only
available if gnuplot was compiled with `mouse` support and it is used by all
mouse-capable terminals. A user-specified binding supersedes any builtin
bindings, except that <space> and 'q' cannot normally be rebound. For an
exception, see `bind space`.
Mouse button bindings are only active in 2D plots.
You get the list of all hotkeys by typing `show bind` or `bind` or by typing
the hotkey 'h' in the graph window.
Key bindings are restored to their default state by `reset bind`.
Note that multikey-bindings with modifiers must be given in quotes.
Normally hotkeys are only recognized when the currently active plot window
has focus. `bind allwindows <key> ...` (short form: `bind all <key> ...`)
causes the binding for <key> to apply to all gnuplot plot windows, active
or not. In this case gnuplot variable MOUSE_KEY_WINDOW is set to the ID
of the originating window, and may be used by the bound command.
Examples:
- set bindings:
@example
bind a "replot"
bind "ctrl-a" "plot x*x"
bind "ctrl-alt-a" 'print "great"'
bind Home "set view 60,30; replot"
bind all Home 'print "This is window ",MOUSE_KEY_WINDOW'
@end example
- show bindings:
@example
bind "ctrl-a" # shows the binding for ctrl-a
bind # shows all bindings
show bind # show all bindings
@end example
- remove bindings:
@example
bind "ctrl-alt-a" "" # removes binding for ctrl-alt-a
(note that builtins cannot be removed)
reset bind # installs default (builtin) bindings
@end example
- bind a key to toggle something:
@example
v=0
bind "ctrl-r" "v=v+1;if(v%2)set term x11 noraise; else set term x11 raise"
@end example
Modifiers (ctrl / alt) are case insensitive, keys not:
@example
ctrl-alt-a == CtRl-alT-a
ctrl-alt-a != ctrl-alt-A
@end example
List of modifiers (alt == meta):
@example
ctrl, alt, shift (only valid for Button1 Button2 Button3)
@end example
List of supported special keys:
@example
"BackSpace", "Tab", "Linefeed", "Clear", "Return", "Pause", "Scroll_Lock",
"Sys_Req", "Escape", "Delete", "Home", "Left", "Up", "Right", "Down",
"PageUp", "PageDown", "End", "Begin",
@end example
@example
"KP_Space", "KP_Tab", "KP_Enter", "KP_F1", "KP_F2", "KP_F3", "KP_F4",
"KP_Home", "KP_Left", "KP_Up", "KP_Right", "KP_Down", "KP_PageUp",
"KP_PageDown", "KP_End", "KP_Begin", "KP_Insert", "KP_Delete", "KP_Equal",
"KP_Multiply", "KP_Add", "KP_Separator", "KP_Subtract", "KP_Decimal",
"KP_Divide",
@end example
@example
"KP_1" - "KP_9", "F1" - "F12"
@end example
The following are window events rather than actual keys
@example
"Button1" "Button2" "Button3" "Close"
@end example
See also help for `mouse`.
@menu
* bind_space::
@end menu
@node bind_space, , bind, bind
@subsubsection bind space
@c ?commands bind space
@c ?bind space
If gnuplot was built with configuration option --enable-raise-console, then
typing <space> in the plot window raises gnuplot's command window. Maybe.
In practice this is highly system-dependent. This hotkey can be changed to
ctrl-space by starting gnuplot as 'gnuplot -ctrlq', or by setting the
XResource 'gnuplot*ctrlq'.
@node Mouse_variables, , bind, mouse_input
@subsection Mouse variables
@c ?mouse variables
When `mousing` is active, clicking in the active window will set several user
variables that can be accessed from the gnuplot command line. The coordinates
of the mouse at the time of the click are stored in MOUSE_X MOUSE_Y MOUSE_X2
and MOUSE_Y2. The mouse button clicked, and any meta-keys active at that time,
are stored in MOUSE_BUTTON MOUSE_SHIFT MOUSE_ALT and MOUSE_CTRL. These
variables are set to undefined at the start of every plot, and only become
defined in the event of a mouse click in the active plot window. To determine
from a script if the mouse has been clicked in the active plot window, it is
sufficient to test for any one of these variables being defined.
@example
plot 'something'
pause mouse
if (exists("MOUSE_BUTTON")) call 'something_else'; \
else print "No mouse click."
@end example
It is also possible to track keystrokes in the plot window using the mousing
code.
@example
plot 'something'
pause mouse keypress
print "Keystroke ", MOUSE_KEY, " at ", MOUSE_X, " ", MOUSE_Y
@end example
When `pause mouse keypress` is terminated by a keypress, then MOUSE_KEY will
contain the ascii character value of the key that was pressed. MOUSE_CHAR will
contain the character itself as a string variable. If the pause command is
terminated abnormally (e.g. by ctrl-C or by externally closing the plot window)
then MOUSE_KEY will equal -1.
Note that after a zoom by mouse, you can read the new ranges as GPVAL_X_MIN,
GPVAL_X_MAX, GPVAL_Y_MIN, and GPVAL_Y_MAX, see `gnuplot-defined variables`.
@node Persist, Plotting, mouse_input, Gnuplot
@section Persist
@cindex persist
Many gnuplot terminals (aqua, pm, qt, x11, windows, wxt, ...) open separate
display windows on the screen into which plots are drawn. The `persist` option
tells gnuplot to leave these windows open when the main program exits.
It has no effect on non-interactive terminal output.
For example if you issue the command
@example
gnuplot -persist -e 'plot sinh(x)'
@end example
gnuplot will open a display window, draw the plot into it, and then exit,
leaving the display window containing the plot on the screen.
You can also specify `persist` or `nopersist` when you set a new terminal.
@example
set term qt persist size 700,500
@end example
Depending on the terminal type, some mousing operations may still be possible
in the persistent window. However operations like zoom/unzoom that require
redrawing the plot are not possible because the main program has exited.
If you want to leave a plot window open and fully mouseable after creating
the plot, for example when running gnuplot from a script file rather than
interactively, see `pause mouse close`.
@node Plotting, Plugins, Persist, Gnuplot
@section Plotting
@cindex plotting
There are four `gnuplot` commands which actually create a plot: `plot`,
`splot`, @ref{replot}, and @ref{refresh}. Other commands control the layout, style,
and content of the plot that will eventually be created.
`plot` generates 2D plots. `splot` generates 3D plots (actually 2D projections,
of course). @ref{replot} reexecutes the previous `plot` or `splot` command.
@ref{refresh} is similar to @ref{replot} but it reuses any previously stored data
rather than rereading data from a file or input stream.
@cindex multiplot
@opindex multiplot
@cindex inset
@cindex subfigures
Each time you issue one of these four commands it will redraw the screen or
generate a new page of output containing all of the currently defined axes,
labels, titles, and all of the various functions or data sources listed in the
original plot command. If instead you need to place several complete plots next
to each other on the same page, e.g. to make a panel of sub-figures or to inset
a small plot inside a larger plot, use the command @ref{multiplot} to suppress
generation of a new page for each plot command.
Much of the general information about plotting can be found in the discussion
of `plot`; information specific to 3D can be found in the `splot` section.
`plot` operates in either rectangular or polar coordinates -- see `set polar`.
`splot` operates in Cartesian coordinates, but will accept azimuthal or
cylindrical coordinates on input. See @ref{mapping}.
@cindex axes
`plot` also lets you use each of the four borders -- x (bottom), x2 (top), y
(left) and y2 (right) -- as an independent axis. The @ref{axes} option lets you
choose which pair of axes a given function or data set is plotted against. A
full complement of `set` commands exists to give you complete control over
the scales and labeling of each axis. Some commands have the name of an
axis built into their names, such as @ref{xlabel}. Other commands have one
or more axis names as options, such as `set logscale xy`. Commands and
options controlling the z axis have no effect on 2D graphs.
`splot` can plot surfaces and contours in addition to points and/or lines.
See @ref{isosamples} for information about defining the grid for a 3D function.
See @ref{datafile} for information about the requisite file structure for 3D
data. For contours see `set contour`, @ref{cntrlabel}, and @ref{cntrparam}.
In `splot`, control over the scales and labels of the axes are the same as
with `plot` except that there is also a z axis and labeling the x2 and y2 axes
is possible only for pseudo-2D plots created using `set view map`.
@node Plugins, Scope_of_variables, Plotting, Gnuplot
@section Plugins
@cindex plugins
The set of functions available for plotting or for evaluating expressions
can be extended through a plugin mechanism that imports executable functions
from a shared library. For example, gnuplot versions through 5.4 did not
provide a built-in implementation of the upper incomplete gamma function
Q(a,x).
You could define an approximation directly in gnuplot like this:
@example
Q(a,x) = 1. - igamma(a,x)
@end example
However this has inherently limited precision as igamma(a,x) approaches 1.
If you need a more accurate implementation, it would be better to provide one
via a plugin (see below). Once imported, the function can be used just as any
other built-in or user-defined function in gnuplot.
See @ref{import}.
The gnuplot distribution includes source code and instructions for creating
a plugin library in the directory demo/plugin. You can modify the simple
example file `demo_plugin.c` by replacing one or more of the toy example
functions with an implementation of the function you are interested in.
This could include invocation of functions from an external mathematical
library.
The demo/plugin directory also contains source for a plugin that implements
Q(a,x). As noted above, this plugin allows earlier versions of gnuplot to
provide the same function @ref{uigamma} as version 6.
@example
import Q(a,x) from "uigamma_plugin"
uigamma(a,x) = ((x<1 || x<a) ? 1.0-igamma(a,x) : Q(a,x))
@end example
@node Scope_of_variables, Start-up_(initialization), Plugins, Gnuplot
@section Scope of variables
@cindex scope
@c ?variables local
@cindex local
@cmindex local
@cindex global
Gnuplot variables are global except in the special cases listed below.
There is a single persistent list of active variables indexed by name.
Assignment to a variable creates or replaces an entry in that list.
The only way to remove a variable from that list is the `undefine` command.
Exception 1: The scope of the variable used in an iteration specifier is
private to that iteration. You cannot permanently change the value of the
iteration variable inside the iterated clause.
If the iteration variable has a value prior to iteration, that value will
be retained or restored at the end of the iteration.
For example, the following commands will print 1 2 3 4 5 6 7 8 9 10 A.
@example
i = "A"
do for [i=1:10] @{ print i; i=10; @}
print i
@end example
Exception 2: The parameter names used in defining a function are only
placeholders for the actual values that will be provided when the function
is called. For example, any current or future values of x and y are not
relevant to the definition shown here, but A must exist as a global variable
when the function is later evaluated:
@example
func(x,y) = A + (x+y)/2.
@end example
Exception 3: Variables declared with the `local` command.
The `local` qualifier (new in version 6) allows optional declaration of a
variable or array whose scope is limited to the execution of the code block
in which it is found. This includes `load` and @ref{call} operations,
evaluation of a function block, and the code in curly brackets that follows
an @ref{if}, `else`, `do for`, or `while` condition.
If the name of a local variable duplicates the name of a global variable,
the global variable is shadowed until exit from the local scope.
EXPERIMENTAL: As currently implemented the scope of a local variable
extends into functions called from the code block it was declared in;
this includes @ref{call}, `load`, and function block invocation.
This will probably change in the future so that the scope is strictly
confined to the declaring code block.
@node Start-up_(initialization), String_constants, Scope_of_variables, Gnuplot
@section Start-up (initialization)
@cindex startup
@cindex start
@cindex start-up
@cindex initialization
@cindex .gnuplot
@cindex gnuplotrc
When gnuplot is run, it first looks for a system-wide initialization file
`gnuplotrc`. The location of this file is determined when the program is built
and is reported by @ref{loadpath}. The program then looks in the user's HOME
directory for a file called `.gnuplot` on Unix-like systems or `GNUPLOT.INI` on
other systems. (OS/2 will look for it in the directory named in
the environment variable `GNUPLOT`; Windows will use `APPDATA`).
On Unix-like systems gnuplot additionally checks for the file
$XDG_CONFIG_HOME/gnuplot/gnuplotrc.
@node String_constants, Substitution_and_Command_line_macros, Start-up_(initialization), Gnuplot
@section String constants, string variables, and string functions
@cindex string
@cindex strings
In addition to string constants, most gnuplot commands also accept a string
variable, a string expression, or a function that returns a string.
For example, the following four methods of creating a plot all result in the
same plot title:
@example
four = "4"
graph4 = "Title for plot #4"
graph(n) = sprintf("Title for plot #%d",n)
@end example
@example
plot 'data.4' title "Title for plot #4"
plot 'data.4' title graph4
plot 'data.4' title "Title for plot #".four
plot 'data.4' title graph(4)
@end example
Since integers are promoted to strings when operated on by the string
concatenation operator ('.' character), the following method also works:
@example
N = 4
plot 'data.'.N title "Title for plot #".N
@end example
In general, elements on the command line will only be evaluated as possible
string variables if they are not otherwise recognizable as part of the normal
gnuplot syntax. So the following sequence of commands is legal, although
probably should be avoided so as not to cause confusion:
@example
plot = "my_datafile.dat"
title = "My Title"
plot plot title title
@end example
@menu
* substrings::
* string_operators::
* string_functions::
* string_encoding::
@end menu
@node substrings, string_operators, String_constants, String_constants
@subsection substrings
@c ?string substring
@cindex substrings
Substrings can be specified by appending a range specifier to any string,
string variable, or string-valued function. The range specifier has the
form [begin:end], where begin is the index of the first character of the
substring and end is the index of the last character of the substring.
The first character has index 1. The begin or end fields may be empty, or
contain '*', to indicate the true start or end of the original string.
Thus str[:] and str[*:*] both describe the full string str.
Example:
@example
eos = strlen(file)
if (file[eos-3:*] eq ".dat") @{
set output file[1:eos-4] . ".png"
plot file
@}
@end example
There is also an equivalent function `substr( string, begin, end )`.
@node string_operators, string_functions, substrings, String_constants
@subsection string operators
@c ?string operators
Three binary operators require string operands: the string concatenation
operator ".", the string equality operator "eq" and the string inequality
operator "ne". The following example will print TRUE.
@example
if ("A"."B" eq "AB") print "TRUE"
@end example
@node string_functions, string_encoding, string_operators, String_constants
@subsection string functions
@c ?string functions
Gnuplot provides several built-in functions that operate on strings.
General formatting functions: see @ref{gprintf} @ref{sprintf}.
Time formatting functions: see @ref{strftime} @ref{strptime}.
String manipulation: see @ref{split}, `substr` @ref{strstrt} @ref{trim} `word` @ref{words}.
@node string_encoding, , string_functions, String_constants
@subsection string encoding
@c ?string encoding
@cindex utf8
Gnuplot's built-in string manipulation functions are sensitive to utf-8
encoding (see @ref{encoding}). For example
@example
set encoding utf8
utf8string = "αβγ"
strlen(utf8string) returns 3 (number of characters, not number of bytes)
utf8string[2:2] evaluates to "β"
strstrt(utf8string,"β") evaluates to 2
@end example
@node Substitution_and_Command_line_macros, Syntax, String_constants, Gnuplot
@section Substitution and Command line macros
@cindex substitution
When a command line to gnuplot is first read, i.e. before it is interpreted
or executed, two forms of lexical substitution are performed. These are
triggered by the presence of text in backquotes (ascii character 96) or
preceded by @@ (ascii character 64).
@menu
* Substitution_of_system_commands_in_backquotes::
* Substitution_of_string_variables_as_macros::
* String_variables::
@end menu
@node Substitution_of_system_commands_in_backquotes, Substitution_of_string_variables_as_macros, Substitution_and_Command_line_macros, Substitution_and_Command_line_macros
@subsection Substitution of system commands in backquotes
@c ?substitution backquotes
@cindex backquotes
@c ?shell commands
Command-line substitution is specified by a system command enclosed in
backquotes. This command is spawned and the output it produces replaces
the backquoted text on the command line. Exit status of the system command
is returned in variables GPVAL_SYSTEM_ERRNO and GPVAL_SYSTEM_ERRMSG.
Note: Internal carriage-return ('\r') and newline ('\n') characters are not
stripped from the substituted string.
Command-line substitution can be used anywhere on the `gnuplot` command
line except inside strings delimited by single quotes.
For example, these will generate labels with the current time and userid:
@example
set label "generated on `date +%Y-%m-%d` by `whoami`" at 1,1
set timestamp "generated on %Y-%m-%d by `whoami`"
@end example
This creates an array containing the names of files in the current directory:
@example
FILES = split( "`ls -1`" )
@end example
@node Substitution_of_string_variables_as_macros, String_variables, Substitution_of_system_commands_in_backquotes, Substitution_and_Command_line_macros
@subsection Substitution of string variables as macros
@c ?substitution macros
@cindex macros
@opindex macros
@cindex exists
@findex exists
The character @@ is used to trigger substitution of the current value of a
string variable into the command line. The text in the string variable may
contain any number of lexical elements. This allows string variables to be
used as command line macros. Only string constants may be expanded using this
mechanism, not string-valued expressions.
For example:
@example
style1 = "lines lt 4 lw 2"
style2 = "points lt 3 pt 5 ps 2"
range1 = "using 1:3"
range2 = "using 1:5"
plot "foo" @@range1 with @@style1, "bar" @@range2 with @@style2
@end example
The line containing @@ symbols is expanded on input, so that by the time it is
executed the effect is identical to having typed in full
@example
plot "foo" using 1:3 with lines lt 4 lw 2, \
"bar" using 1:5 with points lt 3 pt 5 ps 2
@end example
The function exists() may be useful in connection with macro evaluation.
The following example checks that C can safely be expanded as the name of
a user-defined variable:
@example
C = "pi"
if (exists(C)) print C," = ", @@C
@end example
Macro expansion does not occur inside either single or double quotes.
However macro expansion does occur inside backquotes.
Macro expansion is handled as the very first thing the interpreter does when
looking at a new line of commands and is only done once. Therefore, code like
the following will execute correctly:
@example
A = "c=1"
@@A
@end example
but this line will not, since the macro is defined on the same line
and will not be expanded in time
@example
A = "c=1"; @@A # will not expand to c=1
@end example
Macro expansion inside a bracketed iteration occurs before the loop is
executed; i.e. @@A will always act as the original value of A even if A itself
is reassigned inside the loop.
For execution of complete commands the @ref{evaluate} command may also be handy.
@node String_variables, , Substitution_of_string_variables_as_macros, Substitution_and_Command_line_macros
@subsection String variables, macros, and command line substitution
@cindex mixing_macros_backquotes
@c ?substitution mixing_macros_backquotes
The interaction of string variables, backquotes and macro substitution is
somewhat complicated. Backquotes do not block macro substitution, so
@example
filename = "mydata.inp"
lines = ` wc --lines @@filename | sed "s/ .*//" `
@end example
results in the number of lines in mydata.inp being stored in the integer
variable lines. And double quotes do not block backquote substitution, so
@example
mycomputer = "`uname -n`"
@end example
results in the string returned by the system command `uname -n` being stored
in the string variable mycomputer.
However, macro substitution is not performed inside double quotes, so you
cannot define a system command as a macro and then use both macro and backquote
substitution at the same time.
@example
machine_id = "uname -n"
mycomputer = "`@@machine_id`" # doesn't work!!
@end example
This fails because the double quotes prevent @@machine_id from being interpreted
as a macro. To store a system command as a macro and execute it later you must
instead include the backquotes as part of the macro itself. This is
accomplished by defining the macro as shown below. Notice that the sprintf
format nests all three types of quotes.
@example
machine_id = sprintf('"`uname -n`"')
mycomputer = @@machine_id
@end example
@node Syntax, Time/Date_data, Substitution_and_Command_line_macros, Gnuplot
@section Syntax
@cindex syntax
@cindex specify
@cindex punctuation
Options and any accompanying parameters are separated by spaces whereas lists
and coordinates are separated by commas. Ranges are separated by colons and
enclosed in brackets [], text and file names are enclosed in quotes, and a
few miscellaneous things are enclosed in parentheses.
Commas are used to separate coordinates on the `set` commands `arrow`,
`key`, and `label`; the list of variables being fitted (the list after the
`via` keyword on the @ref{fit} command); lists of discrete contours or the loop
parameters which specify them on the @ref{cntrparam} command; the arguments
of the `set` commands @ref{dgrid3d}, @ref{dummy}, @ref{isosamples}, @ref{offsets}, @ref{origin},
@ref{samples}, @ref{size}, `time`, and @ref{view}; lists of tics or the loop parameters
which specify them; the offsets for titles and axis labels; parametric
functions to be used to calculate the x, y, and z coordinates on the `plot`,
@ref{replot} and `splot` commands; and the complete sets of keywords specifying
individual plots (data sets or functions) on the `plot`, @ref{replot} and `splot`
commands.
Parentheses are used to delimit sets of explicit tics (as opposed to loop
parameters) and to indicate computations in `using` specifiers of the @ref{fit},
`plot`, @ref{replot} and `splot` commands.
(Parentheses and commas are also used as usual in function notation.)
Square brackets are used to delimit ranges given in `set`, `plot`
or `splot` commands.
Colons are used to separate extrema in `range` specifications (whether they
are given on `set`, `plot` or `splot` commands) and to separate entries in
the `using` specifier of the `plot`, @ref{replot}, `splot` and @ref{fit} commands.
Semicolons are used to separate commands given on a single command line.
Curly braces are used in the syntax for enhanced text mode and to delimit
blocks in if/then/else statements. They are also used to denote complex
numbers: @{3,2@} = 3 + 2i.
@menu
* quote_marks::
@end menu
@node quote_marks, , Syntax, Syntax
@subsection quote marks
@cindex quotes
@c ?syntax quotes
Gnuplot uses three forms of quote marks for delimiting text strings,
double-quote (ascii 34), single-quote (ascii 39), and backquote (ascii 96).
Filenames may be entered with either single- or double-quotes. In this
manual the command examples generally single-quote filenames and double-quote
other string tokens for clarity.
String constants and text strings used for labels, titles, or other plot
elements may be enclosed in either single quotes or double quotes. Further
processing of the quoted text depends on the choice of quote marks.
Backslash processing of special characters like \n (newline) and
\345 (octal character code) is performed only for double-quoted strings.
In single-quoted strings, backslashes are just ordinary characters. To get
a single-quote (ascii 39) in a single-quoted string, it must be doubled.
Thus the strings "d\" s' b\\" and 'd" s'' b\' are completely equivalent.
Text justification is the same for each line of a multi-line string.
Thus the center-justified string
@example
"This is the first line of text.\nThis is the second line."
@end example
will produce
@example
This is the first line of text.
This is the second line.
@end example
but
@example
'This is the first line of text.\nThis is the second line.'
@end example
will produce
@example
This is the first line of text.\nThis is the second line.
@end example
Enhanced text processing is performed for both double-quoted text and
single-quoted text. See `enhanced text`.
Back-quotes are used to enclose system commands for substitution into the
command line. See `substitution`.
@node Time/Date_data, Watchpoints_, Syntax, Gnuplot
@section Time/Date data
@cindex time/date
`gnuplot` supports the use of time and/or date information as input data.
This feature is activated by the commands `set xdata time`, `set ydata time`,
etc.
Internally all times and dates are converted to the number of seconds from
the year 1970. The command @ref{timefmt} defines the default format for all
inputs: data files, ranges, tics, label positions -- anything that accepts a
time data value defaults to receiving it in this format. Only one default
format can be in effect at a given time. Thus if both x and y data in a file
are time/date, by default they are interpreted in the same format. However
this default can be replaced when reading any particular file or column of
input using the `timecolumn` function in the corresponding `using` specifier.
The conversion to and from seconds assumes Universal Time (which is the same
as Greenwich Standard Time). There is no provision for changing the time
zone or for daylight savings. If all your data refer to the same time zone
(and are all either daylight or standard) you don't need to worry about these
things. But if the absolute time is crucial for your application, you'll
need to convert to UT yourself.
Commands like @ref{xrange} will re-interpret the integer according to
@ref{timefmt}. If you change @ref{timefmt}, and then `show` the quantity again, it
will be displayed in the new @ref{timefmt}. For that matter, if you reset the
data type flag for that axis (e.g. @ref{xdata}), the quantity will be shown
in its numerical form.
The commands `set format` or `set tics format` define the format that will be
used for tic labels, whether or not input for the specified axis is time/date.
If time/date information is to be plotted from a file, the `using` option
_must_ be used on the `plot` or `splot` command. These commands simply use
white space to separate columns, but white space may be embedded within the
time/date string. If you use tabs as a separator, some trial-and-error may
be necessary to discover how your system treats them.
The `time` function can be used to get the current system time. This value
can be converted to a date string with the @ref{strftime} function, or it can be
used in conjunction with `timecolumn` to generate relative time/date plots.
The type of the argument determines what is returned. If the argument is an
integer, `time` returns the current time as an integer, in seconds from
1 Jan 1970. If the argument is real (or complex), the result is real as well.
The precision of the fractional (sub-second) part depends on your operating
system. If the argument is a string, it is assumed to be a format string,
and it is passed to @ref{strftime} to provide a formatted time/date string.
The following example demonstrates time/date plotting.
Suppose the file "data" contains records like
@example
03/21/95 10:00 6.02e23
@end example
This file can be plotted by
@example
set xdata time
set timefmt "%m/%d/%y"
set xrange ["03/21/95":"03/22/95"]
set format x "%m/%d"
set timefmt "%m/%d/%y %H:%M"
plot "data" using 1:3
@end example
which will produce xtic labels that look like "03/21".
Gnuplot tracks time to millisecond precision. Time formats have been
modified to match this.
Example: print the current time to msec precision
@example
print strftime("%H:%M:%.3S %d-%b-%Y",time(0.0))
18:15:04.253 16-Apr-2011
@end example
See `time_specifiers`, `set xtics time`, `set mxtics time`.
@node Watchpoints_, , Time/Date_data, Gnuplot
@section Watchpoints
@cindex watchpoints
@opindex watchpoints
@cindex watch
Support for watchpoints is present only if your copy of gnuplot was built
with configuration option --enable-watchpoints. This feature is EXPERIMENTAL
[details may change in a subsequent release version].
Syntax:
@example
plot FOO watch @{x|y|z|F(x,y)@} = <value>
plot FOO watch mouse
@end example
@example
set style watchpoints nolabels
set style watchpoints label <label-properties>
@end example
@example
unset style watchpoints # return to default style
@end example
@example
show watchpoints # summarizes all watches from previous plot command
@end example
A watchpoint is a target value for the x, y, or z coordinate or for a function
f(x,y). Each watchpoint is attached to a single plot within a `plot` command.
Watchpoints are tracked only for styles `with lines` and @ref{linespoints}.
Every component line segment of that plot is checked against all watchpoints
attached the plot to see whether one or more of the watchpoint targets is
satisfied at a point along that line segment. A list of points that satisfy the
the target condition ("hits") is accumulated as the plot is drawn.
For example, if there is a watchpoint with a target y=100, each line segment
is checked to see if the y coordinates of the two endpoints bracket the target
y value. If so then some point [x,y] on the line segment satisfies the target
condition y = 100 exactly. This target point is then found by linear
interpolation or by iterative bisection.
Watchpoints within a single plot command are numbered successively.
More than one watchpoint per plot component may be specified.
Example:
@example
plot DATA using 1:2 smooth cnormal watch y=0.25 watch y=0.5 watch y=0.75
@end example
Watchpoint hits for each target in the previous plot command are stored in
named arrays WATCH_n. You can also display a summary of all watchpoint hits
from the previous plot command; see @ref{watchpoints}.
@example
gnuplot> show watchpoints
Plot title: "DATA using 1:2 smooth cnormal"
Watch 1 target y = 0.25 (1 hits)
hit 1 x 49.7 y 0.25
Watch 2 target y = 0.5 (1 hits)
hit 1 x 63.1 y 0.5
Watch 3 target y = 0.75 (1 hits)
hit 1 x 67.8 y 0.75
@end example
Smoothing: Line segments are checked as they are drawn. For unsmoothed data
plots this means a hit found by interpolation will lie exactly on a line
segment connecting two data points. If a data plot is smoothed, hits will
lie on a line segment from the smoothed curve. Depending on the quality
of the smoothed fit, this may or may not be more accurate than the hit from
the unsmoothed data.
Accuracy: If the line segment was generated from a function plot, the exact
value of x such that f(x) = y is found by iterative bisection.
Otherwise the coordinates [x,y] are approximated by linear interpolation
along the line segment.
@menu
* watch_mouse::
* watch_labels::
@end menu
@node watch_mouse, watch_labels, Watchpoints_, Watchpoints_
@subsection watch mouse
@c ?watchpoints mouse
@c ?watch mouse
Using the current mouse x coordinate as a watch target generates a label
that moves along the line of the plot tracking the horizontal position of
the mouse. This allows simultaneous readout of the y values of multiple
plot lines in the same graph. The appearance of the point indicating the
current position and of the label can be modified by `set style watchpoint`
and `set style textbox`
Example:
@example
set style watchpoint labels point pt 6 ps 2 boxstyle 1
set style textbox 1 lw 0.5 opaque
plot for [i=1:N] "file.dat" using 1:(column(i)) watch mouse
@end example
@node watch_labels, , watch_mouse, Watchpoints_
@subsection watch labels
@c ?watchpoint labels
@c ?watch labels
By default, labels are always generated for the target "watch mouse".
You can turn labels on for other watch targets using the command
@ref{labels}. The label text is "x : y", where x and
y are the coordinates of the point, formatted using the current settings
for the corresponding axes.
Example:
@example
set y2tics format "%.2f°"
set style watchpoint labels point pt 6
plot FOO axes x1y2 watch mouse
@end example
D watchpoints 2
@node Plotting_styles, Commands, Gnuplot, Top
@chapter Plotting styles
@c ?plotting styles
@cindex plot styles
Many plotting styles are available in gnuplot.
They are listed alphabetically below.
The commands `set style data` and `set style function` change the
default plotting style for subsequent `plot` and `splot` commands.
You can also specify the plot style explicitly as part of
the `plot` or `splot` command. If you want to mix plot styles within a
single plot, you must specify the plot style for each component.
Example:
@example
plot 'data' with boxes, sin(x) with lines
@end example
Each plot style has its own expected set of data entries in a data file.
For example, by default the `lines` style expects either a single column of
y values (with implicit x ordering) or a pair of columns with x in the first
and y in the second. For more information on how to fine-tune how columns in a
file are interpreted as plot data, see `using`.
@menu
* arrows::
* Bee_swarm_plots::
* boxerrorbars::
* boxes::
* boxplot::
* boxxyerror::
* candlesticks::
* circles::
* contourfill::
* dots::
* ellipses::
* filledcurves::
* financebars::
* fillsteps::
* fsteps::
* histeps::
* heatmaps::
* histograms::
* hsteps::
* image::
* impulses::
* labels::
* lines::
* linespoints::
* masking::
* parallelaxes::
* Polar_plots::
* points::
* polygons::
* rgbalpha::
* rgbimage::
* sectors::
* spiderplot::
* steps::
* surface::
* vectors::
* xerrorbars::
* xyerrorbars::
* xerrorlines::
* xyerrorlines::
* yerrorbars::
* yerrorlines::
* 3D_plots::
* Fence_plots::
* isosurface::
* Zerrorfill::
* Animation::
@end menu
@node arrows, Bee_swarm_plots, Plotting_styles, Plotting_styles
@section arrows
@c ?plotting styles arrows
@c ?style arrows
@c ?with arrows
@cindex arrows
@c ^figure_vectors
The 2D `arrows` style draws an arrow with specified length and orientation
angle at each point (x,y). Additional input columns may be used to provide
variable (per-datapoint) color information or arrow style.
It is identical to the 2D style @ref{vectors} except that each arrow head
is positioned using length + angle rather than delta_x + delta_y.
See @ref{vectors}.
@example
4 columns: x y length angle
@end example
The keywords `with arrows` may be followed by inline arrow style properties,
a reference to a predefined arrow style, or `arrowstyle variable` to load the
index of the desired arrow style for each arrow from a separate column.
`length` > 0 is interpreted in x-axis coordinates.
-1 < `length` < 0 is interpreted in horizontal graph coordinates; i.e. |length|
is a fraction of the total graph width.
The program will adjust for differences in x and y scaling or plot aspect ratio
so that the visual length is independent of the orientation angle.
`angle` is always specified in degrees.
@menu
* arrowstyle_variable::
@end menu
@node arrowstyle_variable, , arrows, arrows
@subsection arrowstyle variable
@c ?arrowstyle variable
@c ?variable arrowstyle
For plot styles `with arrows` and @ref{vectors}, you can provide an extra
column of input data that provides an integer arrow style corresponding to
style previously defined using `set style arrow`.
Example:
@example
set style arrow 1 head nofilled linecolor "blue" linewidth 0.5
set style arrow 2 head filled linecolor "red" linewidth 1.0
# column 5 is expected to contain either 1 or 2,
# determining which of the two previous defined styles to use
plot DATA using 1:2:3:4:5 with arrows arrowstyle variable
@end example
@node Bee_swarm_plots, boxerrorbars, arrows, Plotting_styles
@section Bee swarm plots
@cindex beeswarm
@c ?bee swarm
@cindex jitter
@opindex jitter
"Bee swarm" plots result from applying jitter to separate overlapping points.
A typical use is to compare the distribution of y values exhibited by two or
more categories of points, where the category determines the x coordinate.
See the @ref{jitter} command for how to control the overlap criteria and the
displacement pattern used for jittering. The plots in the figure were created
by the same plot command but different jitter settings.
@example
set jitter
plot $data using 1:2:1 with points lc variable
@end example
@node boxerrorbars, boxes, Bee_swarm_plots, Plotting_styles
@section boxerrorbars
@c ?plotting styles boxerrorbars
@c ?style boxerrorbars
@c ?with boxerrorbars
@cindex boxerrorbars
The @ref{boxerrorbars} style is only relevant to 2D data plotting. It is a
combination of the @ref{boxes} and @ref{yerrorbars} styles. It requires 3, 4, or 5
columns of data.
An additional (4th, 5th or 6th) input column may be used to provide variable
(per-datapoint) color information (see `linecolor` and `rgbcolor variable`).
@example
3 columns: x y ydelta
4 columns: x y ydelta xdelta (xdelta <= 0 means use boxwidth)
5 columns: x y ylow yhigh xdelta (xdelta <= 0 means use boxwidth)
@end example
The boxwidth will come from the fourth column if the y errors are given as
"ydelta" or from the fifth column if they are in the form of "ylow yhigh".
If xdelta is zero or negative, the width of the box is controlled by the
value previously given for boxwidth. See @ref{boxwidth}.
A vertical error bar is drawn to represent the y error in the same way as
for the @ref{yerrorbars} style, either from y-ydelta to y+ydelta or from
ylow to yhigh, depending on how many data columns are provided.
The line style used for the error bar may be controlled using `set bars`.
Otherwise the error bar will match the border of the box.
DEPRECATED: Old versions of gnuplot treated `boxwidth = -2.0` as a special
case for four-column data with y errors in the form "ylow yhigh".
In this case boxwidth was adjusted to leave no gap between adjacent boxes.
This treatment is retained for backward-compatibility but may be removed
in a future version.
@node boxes, boxplot, boxerrorbars, Plotting_styles
@section boxes
@c ?plotting styles boxes
@c ?style boxes
@c ?with boxes
@cindex boxes
In 2D plots the @ref{boxes} style draws a rectangle centered about the given
x coordinate that extends from the x axis, i.e. from y=0 not from the graph
border, to the given y coordinate. The width of the box can be provided in
an additional input column or controlled by @ref{boxwidth}. Otherwise each
box extends to touch the adjacent boxes.
In 3D plots the @ref{boxes} style draws a box centered at the given [x,y]
coordinate that extends from the plane at z=0 to the given z coordinate.
The width of the box on x can be provided in a separate input column or via
@ref{boxwidth}. The depth of the box on y is controlled by @ref{boxdepth}.
Boxes do not automatically expand to touch each other.
@menu
* 2D_boxes::
* 3D_boxes::
@end menu
@node 2D_boxes, 3D_boxes, boxes, boxes
@subsection 2D boxes
@c ?style boxes 2D
@c ?boxes 2D
@ref{boxes} uses 2 or 3 columns of basic data. Additional input columns
may be used to provide information such as variable line or fill color.
See `rgbcolor variable`.
@example
2 columns: x y
3 columns: x y x_width
@end example
The width of the box is obtained in one of three ways. If the input data has a
third column, this will be used to set the box width. Otherwise if a width has
been set using the @ref{boxwidth} command, this will be used. If neither of
these is available, the width of each box will be calculated so that it touches
the adjacent boxes.
The box interiors are drawn using the current fillstyle.
Alternatively a fillstyle may be specified in the plot command.
See `set style fill`.
If no fillcolor is given in the plot command, the current line color is used.
Examples:
To plot a data file with solid filled boxes with a small vertical space
separating them (bargraph):
@example
set boxwidth 0.9 relative
set style fill solid 1.0
plot 'file.dat' with boxes
@end example
To plot a sine and a cosine curve in pattern-filled boxes style
with explicit fill color:
@example
set style fill pattern
plot sin(x) with boxes fc 'blue', cos(x) with boxes fc 'gold'
@end example
The sin plot will use pattern 0; the cos plot will use pattern 1.
Any additional plots would cycle through the patterns supported by the
terminal driver.
@node 3D_boxes, , 2D_boxes, boxes
@subsection 3D boxes
@c ?style boxes 3D
@c ?boxes 3D
@ref{boxes} requires at least 3 columns of input data. Additional
input columns may be used to provide information such as box width or
fill color.
@example
3 columns: x y z
4 columns: x y z [x_width or color]
5 columns: x y z x_width color
@end example
The last column is used as a color only if the splot command specifies a
variable color mode. Examples
@example
splot 'blue_boxes.dat' using 1:2:3 fc "blue"
splot 'rgb_boxes.dat' using 1:2:3:4 fc rgb variable
splot 'category_boxes.dat' using 1:2:3:4:5 lc variable
@end example
In the first example all boxes are blue and have the width previously set
by @ref{boxwidth}. In the second example the box width is still taken from
@ref{boxwidth} because the 4th column is interpreted as a 24-bit RGB color.
The third example command reads box width from column 4 and interprets the
value in column 5 as an integer linetype from which the color is derived.
By default boxes have no thickness; they consist of a single rectangle parallel
to the xz plane at the specified y coordinate. You can change this to a true
box with four sides and a top by setting a non-zero extent on y.
See @ref{boxdepth}.
3D boxes are processed as pm3d quadrangles rather than as surfaces. Because of
this the front/back order of drawing is not affected by @ref{hidden3d}.
See `set pm3d`. In gnuplot version 6 the edges of the box are colored by
the border color of the plot's fill style; this is a change from version 5.
For best results use a combination of `set pm3d depthorder base` and
@ref{lighting}.
@node boxplot, boxxyerror, boxes, Plotting_styles
@section boxplot
@c ?plotting styles boxplot
@c ?style boxplot
@c ?with boxplot
@cindex boxplot
Boxplots are a common way to represent a statistical distribution of values.
Gnuplot boxplots are always vertical, showing a distribution of values along y.
Quartile boundaries are determined such that 1/4 of the points have a y value
equal or less than the first quartile boundary, 1/2 of the points have y value
equal or less than the second quartile (median) value, etc. A box is drawn
around the region between the first and third quartiles with a horizontal line
at the median value. Whiskers extend from the box to user-specified limits.
Points that lie outside these limits (outliers) are drawn individually.
The width of the boxplot can be controlled either by @ref{boxwidth} or by
providing it in a third field of the `using` specifier in the plot command.
Syntax
@example
2 columns: x-position y-value
3 columns: x-position y-value boxwidth
4 columns: first-x-position y-value boxwidth category
@end example
The horizontal position of a boxplot is usually given as a constant value
in the first field (x-position) of the `using` specifier in the plot command.
You can place an identifying label at this position under the boxplot by adding
an `xticlabel` specifier in the plot command (two or three column syntax) or
by providing it as a string in a separate data column (four column syntax).
Both examples below should produce a plot with layout similar to the one
in the boxplot example figure.
Examples
@example
#
# Compare distribution of y-values from two different files.
set border 2 # left-hand border only
set xtics nomirror scale 0 # no tickmarks; only labels
set ytics rangelimited nomirror
plot 'dataset_A' using (1.):2:xticlabel('A') with boxplot, \
'dataset_B' using (2.):2:xticlabel('B') with boxplot
#
# Compare y-values from two categories of data in the same file.
# Each line contains a category string ("A" or "B") in column 1 and
# a data value in column 2. Labels auto-generated from category string.
start_x = 1.0
boxwidth = 0.5
plot 'mixeddata' using (start_x):2:(boxwidth):1 with boxplot
@end example
By default a single boxplot is produced from all y values found in the column
specified by the second field of the using specification.
If a fourth field is given in the `using` specification the content of that
input column will be used as a string that identifies a discrete category.
A separate boxplot will be drawn for each category found in the input.
The horizontal separation between these boxplots is 1.0 by default;, it can be
changed by `set style boxplot separation`. By default the category identifier
is shown as a tic label below each boxplot. Note that if category column
contains numerical values they are nevertheless treated as strings and thus
do not usually correspond to the x coordinate of the boxplot.
The order of data points in the input file is not important. If there are
multiple blocks of data in the input file separated by two blank lines,
individual blocks may be selected with the @ref{index} keyword or by using the
the data block number (`column(-2)`) as a level value in the fourth column.
See `pseudocolumns`, @ref{index}.
By default the whiskers extend vertically from the ends of the box to the most
distant point whose y value lies within 1.5 times the interquartile range.
By default outliers are drawn as circles (point type 7). The width of bars at
the end of the whiskers may be controlled using `set bars` or @ref{errorbars}.
Multiple outliers with the same y value are displaced horizontally by one
character width. This spacing can be controlled by @ref{jitter}.
These default properties may be changed using the @ref{boxplot} command.
See @ref{boxplot}, `bars`, @ref{boxwidth}, `fillstyle`, @ref{candlesticks}.
@node boxxyerror, candlesticks, boxplot, Plotting_styles
@section boxxyerror
@c ?plotting styles boxxyerror
@c ?style boxxyerror
@c ?with boxxyerror
@cindex boxxyerror
The @ref{boxxyerror} plot style is only relevant to 2D data plotting.
It is similar to the @ref{xyerrorbars} style except that it draws rectangular areas
rather than crosses. It uses either 4 or 6 basic columns of input data.
An additional (5th or 7th) input column may be used to provide variable
(per-datapoint) color information (see `linecolor` and `rgbcolor variable`).
@example
4 columns: x y xdelta ydelta
6 columns: x y xlow xhigh ylow yhigh
@end example
The box width and height are determined from the x and y errors in the same
way as they are for the @ref{xyerrorbars} style---either from xlow to xhigh and
from ylow to yhigh, or from x-xdelta to x+xdelta and from y-ydelta to
y+ydelta, depending on how many data columns are provided.
The 6 column form of the command provides a convenient way to plot rectangles
with arbitrary x and y bounds.
The interior of the boxes is drawn according to the current fillstyle.
See `set style fill` and @ref{boxes} for details. Alternatively a new fillstyle
may be specified in the plot command.
@node candlesticks, circles, boxxyerror, Plotting_styles
@section candlesticks
@c ?plotting styles candlesticks
@c ?style candlesticks
@c ?with candlesticks
@cindex candlesticks
The @ref{candlesticks} style can be used for 2D data plotting of financial
data or for generating box-and-whisker plots of statistical data.
The symbol is a rectangular box, centered horizontally at the x
coordinate and limited vertically by the opening and closing prices. A
vertical line segment at the x coordinate extends up from the top of the
rectangle to the high price and another down to the low. The vertical line
will be unchanged if the low and high prices are interchanged.
Five columns of basic data are required:
@example
financial data: date open low high close
whisker plot: x box_min whisker_min whisker_high box_high
@end example
The width of the rectangle can be controlled by the @ref{boxwidth} command.
For backwards compatibility with earlier gnuplot versions, when the
boxwidth parameter has not been set then the width of the candlestick
rectangle is taken from `set errorbars <width>`.
Alternatively, an explicit width for each box-and-whiskers grouping may be
specified in an optional 6th column of data. The width must be given in the
same units as the x coordinate.
An additional (6th, or 7th if the 6th column is used for width data)
input column may be used to provide variable (per-datapoint) color
information (see `linecolor` and `rgbcolor variable`).
By default the vertical line segments have no crossbars at the top and
bottom. If you want crossbars, which are typically used for box-and-whisker
plots, then add the keyword `whiskerbars` to the plot command. By default
these whiskerbars extend the full horizontal width of the candlestick, but
you can modify this by specifying a fraction of the full width.
The usual convention for financial data is that the rectangle is empty
if (open < close) and solid fill if (close < open). This is the behavior you
will get if the current fillstyle is set to "empty". See `fillstyle`.
If you set the fillstyle to solid or pattern, then this will be used for
all boxes independent of open and close values.
See also @ref{errorbars} and @ref{financebars}. See also the
@uref{http://www.gnuplot.info/demo/candlesticks.html,candlestick
}
and
@uref{http://www.gnuplot.info/demo/finance.html,finance
}
demos.
Note: To place additional symbols or lines on a box-and-whisker plot requires
additional plot components. The first example below uses a second component
that squashes the candlestick onto a single line placed at the median value.
@example
# Data columns:X Min 1stQuartile Median 3rdQuartile Max
set errorbars 4.0
set style fill empty
plot 'stat.dat' using 1:3:2:6:5 with candlesticks title 'Quartiles', \
'' using 1:4:4:4:4 with candlesticks lt -1 notitle
@end example
@example
# Plot with crossbars on the whiskers, crossbars are 50% of full width
plot 'stat.dat' using 1:3:2:6:5 with candlesticks whiskerbars 0.5
@end example
See @ref{boxwidth}, @ref{errorbars}, `set style fill`, and @ref{boxplot}.
@node circles, contourfill, candlesticks, Plotting_styles
@section circles
@c ?plotting styles circles
@c ?style circles
@c ?with circles
@cindex circles
The @ref{circles} style plots a circle with an explicit radius at each data point.
The radius is always interpreted in the units of the plot's horizontal axis
(x or x2). The scale on y and the aspect ratio of the plot are both ignored.
If the radius is not given in a separate column for each point it is taken from
`set style circle`. In this case the radius may use graph or screen coordinates.
Many combinations of per-point and previously set properties are possible.
For 2D plots these include
@example
using x:y
using x:y:radius
using x:y:color
using x:y:radius:color
using x:y:radius:arc_begin:arc_end
using x:y:radius:arc_begin:arc_end:color
@end example
By default a full circle will be drawn.
The result is similar to using a `points` plot with variable size points and
pointtype 7, except that the circles scale with the x axis range.
It is possible to instead plot arc segments by specifying a start and end angle
(in degrees) in columns 4 and 5.
A per-circle color may be provided in the last column of the using specifier.
In this case the plot command must include a corresponding variable color
term such as `lc variable` or `fillcolor rgb variable`.
See `set style circle`, `set object circle`, and `set style fill`.
For 3D plots the using specifier must contain
@example
splot DATA using x:y:z:radius:color
@end example
where the variable color column is optional.
Examples:
@example
# draws circles whose area is proportional to the value in column 3
set style fill transparent solid 0.2 noborder
plot 'data' using 1:2:(sqrt($3)) with circles, \
'data' using 1:2 with linespoints
@end example
@example
# draws Pac-men instead of circles
plot 'data' using 1:2:(10):(40):(320) with circles
@end example
@cindex piechart
@example
# draw a pie chart with inline data
set xrange [-15:15]
set style fill transparent solid 0.9 noborder
plot '-' using 1:2:3:4:5:6 with circles lc var
0 0 5 0 30 1
0 0 5 30 70 2
0 0 5 70 120 3
0 0 5 120 230 4
0 0 5 230 360 5
e
@end example
@node contourfill, dots, circles, Plotting_styles
@section contourfill
@c ?plotting styles contourfill
@c ?style contourfill
@c ?with contourfill
@cindex contourfill
@opindex contourfill
Syntax:
@example
splot f(x,y) with contourfill @{at base@} @{fillstyle <style>@}
@end example
Contourfill is a 3D plotting style used to color a pm3d surface in slices
along the z axis. It can be used in 2D projection (`set view map`) to create
2D contour plots with solid color between contour lines.
The slice boundaries and the assigned colors are both controlled using
@ref{contourfill}. See also `pm3d`, `zclip`.
This style can be combined with `set contours` to superimpose contour
lines that bound the slices. Care must be taken that the slice boundaries
from @ref{contourfill} match the contour boundaries from @ref{cntrparam}.
@example
# slice boundaries determined by ztics
# coloring set by palette mapping the slice midpoint z value
set pm3d border retrace
set contourfill ztics
set ztics -20, 5, 20
set contour
set cntrparam cubic levels increment -20, 5, 20
set cntrlabel onecolor
set view map
splot g(x,y) with contourfill, g(x,y) with lines nosurface
@end example
@node dots, ellipses, contourfill, Plotting_styles
@section dots
@c ?plotting styles dots
@c ?style dots
@c ?with dots
@cindex dots
The @ref{dots} style plots a tiny dot at each point; this is useful for scatter
plots with many points. Either 1 or 2 columns of input data are required in
2D. Three columns are required in 3D.
For some terminals (post, pdf) the size of the dot can be controlled by
changing the linewidth.
@example
1 column y # x is row number
2 columns: x y
3 columns: x y z # 3D only (splot)
@end example
@node ellipses, filledcurves, dots, Plotting_styles
@section ellipses
@c ?plotting styles ellipses
@c ?style ellipses
@c ?with ellipses
@cindex ellipses
Syntax:
@example
plot <data> with ellipses @{units [xx|xy|yy]@}
@end example
The @ref{ellipses} style plots an ellipse at each data point. This style is
only relevant for 2D plotting. Each ellipse is described in terms of its
center, major and minor diameters, and the angle between its major diameter
and the x axis.
@example
2 columns: x y
3 columns: x y diam (used for both major and minor axes)
4 columns: x y major_diam minor_diam
5 columns: x y major_diam minor_diam angle
@end example
If only two input columns are present, they are taken as the coordinates of
the centers, and the ellipses will be drawn with the default extent
(see `set style ellipse`). The orientation of the ellipse, which is
defined as the angle between the major diameter and the plot's x axis,
is taken from the default ellipse style (see `set style ellipse`).
If three input columns are provided, the third column is used for both
diameters. The orientation angle defaults to zero.
If four columns are present, they are interpreted as x, y, major diameter,
minor diameter. Note that these are diameters, not radii.
If either diameter is negative, both diameters will be taken from the
default set by `set style ellipse`.
An optional 5th column may specify the orientation angle in degrees.
The ellipses will also be drawn with their default extent if either of the
supplied diameters in the 3-4-5 column form is negative.
In all of the above cases, optional variable color data may be given in an
additional last (3th, 4th, 5th or 6th) column. See @ref{colorspec}.
`units keyword:` If `units xy` is included in the plot specification,
the major diameter is interpreted in the units of the plot's horizontal axis
(x or x2) while the minor diameter in that of the vertical axis (y or y2).
If the x and y axis scales are not equal, the major/minor diameter ratio will
no longer be correct after rotation.
`units xx` interprets both diameters in units of the x axis.
`units yy` interprets both diameters in units of the y axis.
In the latter two cases the ellipses will have the correct aspect ratio even
if the plot is resized. If `units` is omitted from the plot command,
the setting from `set style ellipse` will be used.
Example (draws ellipses, cycling through the available line types):
@example
plot 'data' using 1:2:3:4:(0):0 with ellipses
@end example
See also `set object ellipse`, `set style ellipse` and `fillstyle`.
@node filledcurves, financebars, ellipses, Plotting_styles
@section filledcurves
@c ?plotting styles filledcurves
@c ?style filledcurves
@c ?with filledcurves
@cindex filledcurves
The @ref{filledcurves} style is available in both 2D and (since version 6.1) 3D.
The 2D style has three variants. The first two variants require either a
single function or two columns (x,y) of input data.
Syntax for 2D:
@example
plot f(x) with filledcurves [option]
plot DATA using 1:2 with filledcurves [option]
plot DATA using 1:2:3 with filledcurves [option]
@end example
where the option can be one of the following
@example
closed
@{above|below@} x1 x2 y r=<a> xy=<x>,<y>
between
@end example
The first variant, `closed`, treats the curve itself as a closed polygon.
This is the default if there are two columns of input data.
@example
filledcurves closed ... just filled closed curve,
@end example
The second variant is to fill the area between the curve and a given axis,
a horizontal or vertical line, or a point. This can be further restricted
to filling the area above or below the specified line.
@example
filledcurves x1 ... x1 axis,
filledcurves x2 ... x2 axis, etc for y1 and y2 axes,
filledcurves y=42 ... line at y=42, i.e. parallel to x axis,
filledcurves xy=10,20 ... point 10,20 of x1,y1 axes (arc-like shape).
filledcurves above r=1.5 the area of a polar plot outside radius 1.5
@end example
The third variant fills the area between two curves sampled at the same set of
x coordinates. It requires three columns of input data (x, y1, y2).
This is the default if there are three or more columns of input data.
If you have a y value in column 2 and an associated error value in column 3
the three column variant can be used in combination with a solid line to show
the area of uncertainty on either side of that line.
See also the similar 3D plot style `zerrorfill`.
@example
plot $DAT using 1:($2-$3):($2+$3) with filledcurves, \
$DAT using 1:2 smooth mcs with lines
@end example
@menu
* above/below::
* 3D_waterfall_plots::
* fill_properties::
@end menu
@node above/below, 3D_waterfall_plots, filledcurves, filledcurves
@subsection above/below
@c ?filledcurves above
@c ?filledcurves below
The `above` and `below` options apply both to commands of the form
@example
plot f(x) with filledcurves @{above|below@} @{y|r@}=<val>
@end example
and to commands of the form
@example
plot DATA with filledcurves using 1:2:3 with filledcurves @{above|below@}
@end example
In either case the option limits the filled area to one side of the bounding
line or curve.
Zooming a filled curve drawn from a datafile may produce empty or incorrect
areas because gnuplot is clipping points and lines, and not areas.
If the values <x>, <y>, or <a> are outside the drawing boundary they are
moved to the graph boundary. Then the actual fill area in the case
of option xy=<x>,<y> will depend on xrange and yrange.
@node 3D_waterfall_plots, fill_properties, above/below, filledcurves
@subsection 3D waterfall plots
@c ?filledcurves 3D
@c ?filledcurves waterfall
@cindex waterfallplots
@example
set style fill solid border lc "black"
splot for [scan=N:1:-1] DATA index scan \
using x:y:z with filledcurves fc background
@end example
In gnuplot 6.1 the 3D @ref{filledcurves} plot style is designed to display a
set of two-dimensional curves that are incrementally displaced along an
orthogonal axis. Normally x or y is a fixed value for each curve so that
the lines either represent z=f(x) at sequential y values or z=f(y) at
sequential x values. This is convenient for drawing waterfall plots.
In order to ensure that foreground curves occlude more distant ones it is
important to order the sequence of curves from back to front.
See also `fenceplots`.
D waterfallplot 1
@node fill_properties, , 3D_waterfall_plots, filledcurves
@subsection fill properties
@c ?filledcurves border
@cindex border
@opindex border
Plotting @ref{filledcurves} can be further customized by giving a fillstyle
(solid/transparent/pattern) or a fillcolor. If no fillstyle (`fs`)
is given in the plot command then the current default fill style is used.
See `set style fill`. If no fillcolor (`fc`) is given in the plot command,
the current line color is used.
The @{@{no@}border@} property of the fillstyle is honored by filledcurves mode
`closed`, the default. It is ignored by all other filledcurves modes.
Example:
@example
plot 'data' with filledcurves fc "cyan" fs solid 0.5 border lc "blue"
@end example
@node financebars, fillsteps, filledcurves, Plotting_styles
@section financebars
@c ?plotting styles financebars
@c ?style financebars
@c ?with financebars
@cindex financebars
The @ref{financebars} style is only relevant for 2D data plotting of financial
data. It requires 1 x coordinate (usually a date) and 4 y values (prices).
@example
5 columns: date open low high close
@end example
An additional (6th) input column may be used to provide variable
(per-record) color information (see `linecolor` and `rgbcolor variable`).
The symbol is a vertical line segment, located horizontally at the x
coordinate and limited vertically by the high and low prices. A horizontal
tic on the left marks the opening price and one on the right marks the
closing price. The length of these tics may be changed by @ref{errorbars}.
The symbol will be unchanged if the high and low prices are interchanged.
See @ref{errorbars} and @ref{candlesticks}, and also the
@uref{http://www.gnuplot.info/demo/finance.html,finance demo.
}
@node fillsteps, fsteps, financebars, Plotting_styles
@section fillsteps
@c ?style fillsteps
@c ?with fillsteps
@cindex fillsteps
@example
plot <data> with fillsteps @{above|below@} @{y=<baseline>@}
@end example
The @ref{fillsteps} style is only relevant to 2D plotting.
It is exactly like the style @ref{steps} except that the area between
the curve and the baseline (default y=0) is filled in the current fill style.
The options `above` and `below` fill only the portion to one side of the
baseline. Note that in moving from one data point to the next, both @ref{steps}
and @ref{fillsteps} first trace the change in x coordinate and then the change
in y coordinate. See @ref{steps}.
@example
1 column: y # implicit x from line number (column 0)
2 columns: x y
@end example
@node fsteps, histeps, fillsteps, Plotting_styles
@section fsteps
@c ?plotting styles fsteps
@c ?style fsteps
@c ?with fsteps
@cindex fsteps
The @ref{fsteps} style is only relevant to 2D plotting. It connects consecutive
points with two line segments: the first from (x1,y1) to (x1,y2) and the
second from (x1,y2) to (x2,y2). The input column requires are the same as for
plot styles `lines` and `points`. The difference between @ref{fsteps} and @ref{steps}
is that @ref{fsteps} traces first the change in y and then the change in x.
@ref{steps} traces first the change in x and then the change in y.
See also
@uref{http://www.gnuplot.info/demo/steps.html,steps demo.
}
@example
1 column: y # implicit x from line number (column 0)
2 columns: x y
@end example
@node histeps, heatmaps, fsteps, Plotting_styles
@section histeps
@c ?plotting styles histeps
@c ?style histeps
@c ?with histeps
@cindex histeps
The @ref{histeps} style is only relevant to 2D plotting. It is intended for
plotting histograms. Y-values are assumed to be centered at the x-values;
the point at x1 is represented as a horizontal line from ((x0+x1)/2,y1) to
((x1+x2)/2,y1). The lines representing the end points are extended so that
the step is centered on at x. Adjacent points are connected by a vertical
line at their average x, that is, from ((x1+x2)/2,y1) to ((x1+x2)/2,y2).
The input column requires are the same as for plot styles `lines` and `points`.
If @ref{autoscale} is in effect, it selects the xrange from the data rather than
the steps, so the end points will appear only half as wide as the others.
See also
@uref{http://www.gnuplot.info/demo/steps.html,steps demo.
}
@example
1 column: y # implicit x from line number (column 0)
2 columns: x y
@end example
@node heatmaps, histograms, histeps, Plotting_styles
@section heatmaps
@cindex heatmaps
Several of gnuplot's plot styles can be used to create heat maps. The choice
of which style to use is dictated by the type of data.
Pixel-based heat maps all have the property that each pixel in the map
corresponds exactly to one original data value.
The pixel-based image styles require a regular rectangular grid of data values;
see `with image`. However it is possible to handle missing grid values
(see `sparse`) and it is also possible to mask out only a portion of the grid
for display (see @ref{masking}).
Unless there are a large number of grid elements, it is usually good to
render each rectangular element separately (`with image pixels`) so that
smoothing or lossy compression is not applied to the resulting "image".
A polar equivalent to image pixel-based heat maps can be generated using 2D
plot style @ref{sectors}. Each input point corresponds to exactly one annular
sector of a polar grid, equivalent to a pixel. Unlike the polar grid surface
option described below, any number of individual grid sectors may be provided.
This plot style can be used in either polar or cartesian coordinate plots
to place polar sectors anywhere on the graph. The figure here shows two halves
of a polar heat map displaced across the origin by +/- Δx on a cartesian
coordinate plot. See @ref{sectors}.
If the data points do not constitute a regular rectangular grid, they can often
be used to fit a gridded surface by interpolation or by splines. Alternatively
a point-density function can be mapped onto a gridded plane or smooth surface.
See @ref{dgrid3d}. The gridded surface can then be plotted as a pm3d surface
(see @ref{masking} example). In this case the points on the heat map do not retain
a one-to-one correspondence with the input data. I.e. the validity of the heat
map represenation is only as good as the gridded approximation.
The demo collection has examples of generating 2D heatmaps from a set of points
@uref{http://www.gnuplot.info/demo/heatmap_points.html,heatmap_points.dem
}
If your copy of gnuplot was built with the --enable-polar-grid option,
polar coordinate data points can be used to generate a 2D polar heat map in
which each "pixel" corresponded to a pre-determined range of theta and r.
See `set polar grid` and `with surface`. This process is exactly analogous
to the use of @ref{dgrid3d} and `with pm3d` except that it operates in
2D polar coordinate space.
@node histograms, hsteps, heatmaps, Plotting_styles
@section histograms
@c ?style histograms
@c ?with histograms
@c ?set style histogram
@c ?plotting styles histograms
@cindex histograms
The @ref{histograms} style is only relevant to 2D plotting. It produces a bar
chart from a sequence of parallel data columns. Each element of the `plot`
command must specify a single input data source (e.g. one column of the input
file), possibly with associated tic values or key titles.
Four styles of histogram layout are currently supported.
@example
set style histogram clustered @{gap <gapsize>@}
set style histogram errorbars @{gap <gapsize>@} @{<linewidth>@}
set style histogram rowstacked
set style histogram columnstacked
set style histogram @{title font "name,size" tc <colorspec>@}
@end example
The default style corresponds to `set style histogram clustered gap 2`.
In this style, each set of parallel data values is collected into a group of
boxes clustered at the x-axis coordinate corresponding to their sequential
position (row #) in the selected datafile columns. Thus if <n> datacolumns are
selected, the first cluster is centered about x=1, and contains <n> boxes whose
heights are taken from the first entry in the corresponding <n> data columns.
This is followed by a gap and then a second cluster of boxes centered about x=2
corresponding to the second entry in the respective data columns, and so on.
The default gap width of 2 indicates that the empty space between clusters is
equivalent to the width of 2 boxes. All boxes derived from any one column
are given the same fill color and/or pattern; however see the subsection
`histograms colors`.
Each cluster of boxes is derived from a single row of the input data file.
It is common in such input files that the first element of each row is a
label. Labels from this column may be placed along the x-axis underneath
the appropriate cluster of boxes with the `xticlabels` option to `using`.
The @ref{errorbars} style is very similar to the `clustered` style, except that it
requires additional columns of input for each entry. The first column holds
the height (y value) of that box, exactly as for the `clustered` style.
@example
2 columns: y yerr bar extends from y-yerr to y+err
3 columns: y ymin ymax bar extends from ymin to ymax
@end example
The appearance of the error bars is controlled by the current value of
@ref{errorbars} and by the optional <linewidth> specification.
Two styles of stacked histogram are supported, chosen by the command
`set style histogram @{rowstacked|columnstacked@}`. In these styles the data
values from the selected columns are collected into stacks of boxes.
Positive values stack upwards from y=0; negative values stack downwards.
Mixed positive and negative values will produce both an upward stack and a
downward stack. The default stacking mode is `rowstacked`.
The `rowstacked` style places a box resting on the x-axis for each
data value in the first selected column; the first data value results in
a box a x=1, the second at x=2, and so on. Boxes corresponding to the
second and subsequent data columns are layered on top of these, resulting
in a stack of boxes at x=1 representing the first data value from each
column, a stack of boxes at x=2 representing the second data value from
each column, and so on. All boxes derived from any one column are given the
same fill color and/or pattern (see `set style fill`).
The `columnstacked` style is similar, except that each stack of boxes is
built up from a single data column. Each data value from the first specified
data column yields a box in the stack at x=1, each data value from the second
specified data column yields a box in the stack at x=2, and so on.
In this style the color of each box is taken from the row number, rather than
the column number, of the corresponding data field.
Box widths may be modified using the @ref{boxwidth} command.
Box fill styles may be set using the `set style fill` command.
Histograms always use the x1 axis, but may use either y1 or y2.
If a plot contains both histograms and other plot styles, the non-histogram
plot elements may use either the x1 or the x2 axis.
One additional style option `set style histogram nokeyseparators`
is relevant only to plots that contain multiple histograms.
See @ref{newhistogram} for additional discussion of this case.
Examples:
Suppose that the input file contains data values in columns 2, 4, 6, ...
and error estimates in columns 3, 5, 7, ... This example plots the values
in columns 2 and 4 as a histogram of clustered boxes (the default style).
Because we use iteration in the plot command, any number of data columns can
be handled in a single command. See `plot for`.
@example
set boxwidth 0.9 relative
set style data histograms
set style histogram cluster
set style fill solid 1.0 border lt -1
plot for [COL=2:4:2] 'file.dat' using COL
@end example
This will produce a plot with clusters of two boxes (vertical bars) centered
at each integral value on the x axis. If the first column of the input file
contains labels, they may be placed along the x-axis using the variant command
@example
plot for [COL=2:4:2] 'file.dat' using COL:xticlabels(1)
@end example
If the file contains both magnitude and range information for each value,
then error bars can be added to the plot. The following commands will add
error bars extending from (y-<error>) to (y+<error>), capped by horizontal bar
ends drawn the same width as the box itself. The error bars and bar ends are
drawn with linewidth 2, using the border linetype from the current fill style.
@example
set errorbars fullwidth
set style fill solid 1 border lt -1
set style histogram errorbars gap 2 lw 2
plot for [COL=2:4:2] 'file.dat' using COL:COL+1
@end example
This shows how to plot the same data as a rowstacked histogram. Just to be
different, the plot command in this example lists the separate columns
individually rather than using iteration.
@example
set style histogram rowstacked
plot 'file.dat' using 2, '' using 4:xtic(1)
@end example
This will produce a plot in which each vertical bar corresponds to one row of
data. Each vertical bar contains a stack of two segments, corresponding in
height to the values found in columns 2 and 4 of the datafile.
Finally, the commands
@example
set style histogram columnstacked
plot 'file.dat' using 2, '' using 4
@end example
will produce two vertical stacks, one for each column of data. The stack at
x=1 will contain a box for each entry in column 2 of the datafile. The stack
at x=2 will contain a box for each parallel entry in column 4 of the datafile.
Because this interchanges gnuplot's usual interpretation of input rows and
columns, the specification of key titles and x-axis tic labels must also be
modified accordingly. See the comments given below.
@example
set style histogram columnstacked
plot '' u 5:key(1) # uses first column to generate key titles
plot '' u 5 title columnhead # uses first row to generate xtic labels
@end example
Note that the two examples just given present exactly the same data values,
but in different formats.
@menu
* newhistogram::
* automated_iteration_over_multiple_columns::
* histogram_color_assignments::
@end menu
@node newhistogram, automated_iteration_over_multiple_columns, histograms, histograms
@subsection newhistogram
@cindex newhistogram
@c ?with histograms newhistogram
@c ?histograms newhistogram
@c ?styles histograms newhistogram
@c ?plotting styles histograms newhistogram
Syntax:
@example
newhistogram @{"<title>" @{font "name,size"@} @{tc <colorspec>@}@}
@{lt <linetype>@} @{fs <fillstyle>@} @{at <x-coord>@}
@end example
More than one set of histograms can appear in a single plot. In this case you
can force a gap between them, and a separate label for each set, by using the
@ref{newhistogram} command.
For example
@example
set style histogram cluster
plot newhistogram "Set A", 'a' using 1, '' using 2, '' using 3, \
newhistogram "Set B", 'b' using 1, '' using 2, '' using 3
@end example
The labels "Set A" and "Set B" will appear beneath the respective sets of
histograms, under the overall x axis label.
The newhistogram command can also be used to force histogram coloring to
begin with a specific color (linetype). By default colors will continue to
increment successively even across histogram boundaries. Here is an example
using the same coloring for multiple histograms
@example
plot newhistogram "Set A" lt 4, 'a' using 1, '' using 2, '' using 3, \
newhistogram "Set B" lt 4, 'b' using 1, '' using 2, '' using 3
@end example
Similarly you can force the next histogram to begin with a specified fillstyle.
If the fillstyle is set to `pattern`, then the pattern used for filling will
be incremented automatically.
Starting a new histogram will normally add a blank entry to the key, so that
titles from this set of histogram components will be separated from those of
the previous histogram. This blank line may be undesirable if the components
have no individual titles. It can be suppressed by modifying the style with
`set style histogram nokeyseparators`.
The `at <x-coord>` option sets the x coordinate position of the following
histogram to <x-coord>. For example
@example
set style histogram cluster
set style data histogram
set style fill solid 1.0 border -1
set xtic 1 offset character 0,0.3
plot newhistogram "Set A", \
'file.dat' u 1 t 1, '' u 2 t 2, \
newhistogram "Set B" at 8, \
'file.dat' u 2 t 2, '' u 2 t 2
@end example
will position the second histogram to start at x=8.
@node automated_iteration_over_multiple_columns, histogram_color_assignments, newhistogram, histograms
@subsection automated iteration over multiple columns
@cindex automated
@c ?with histograms automated
@c ?histograms automated
@c ?styles histograms automated
@c ?plotting styles histograms automated
If you want to create a histogram from many columns of data in a single file,
it is very convenient to use the plot iteration feature. See `plot for`.
For example, to create stacked histograms of the data in columns 3 through 8
@example
set style histogram columnstacked
plot for [i=3:8] "datafile" using i title columnhead
@end example
@node histogram_color_assignments, , automated_iteration_over_multiple_columns, histograms
@subsection histogram color assignments
@c ?with histograms colors
@c ?histograms colors
@c ?styles histograms colors
@c ?plotting styles histograms colors
The program assigns a color to each component box in a histogram
automatically such that equivalent data values maintain a consistent
color wherever they appear in the rows or columns of the histogram.
The colors are taken from successive linetypes, starting either with
the next unused linetype or an initial linetype provided in a
@ref{newhistogram} element.
In some cases this mechanism fails due to data sources that are not
truly parallel (i.e. some files contain incomplete data). In other
cases there may be additional properties of the data that could be
visualized by, say, varying the intensity or saturation of their base
color. As an alternative to the automatic color assignment, you can
provide an explicit color value for each data value in a second `using`
column via the `linecolor variable` or `rgb variable` mechanism.
See @ref{colorspec}. Depending on the layout of your data, the color category
might correspond to a row header or a column header or a data column.
Note that you will probably have to customize the key sample colors
to match (see `keyentry`).
Example: Suppose file_001.dat through file_008.dat contain one column with
a category identifier A, B, C, ... and a second column with a data value.
Not all of the files contain a line for every category, so they are not
truly parallel. The program would be wrong to assign the same color to the
value from line N in each file. Instead we assign a color based on the
category in column 1.
@example
file(i) = sprintf("file_%03d.dat",i)
array Category = ["A", "B", "C", "D", "E", "F"]
color(c) = index(Category, strcol(c))
set style data histogram
plot for [i=1:8] file(i) using 2:(color(1)) linecolor variable
@end example
A more complete example including generation of a custom key is in the
demo collection
@uref{http://www.gnuplot.info/demo/histogram_colors.html,histogram_colors.dem
}
D histogram_colors 1
@node hsteps, image, histograms, Plotting_styles
@section hsteps
@c ?plotting styles hsteps
@c ?style hsteps
@c ?with hsteps
@cindex hsteps
The 2D plotting style @ref{hsteps} renders a horizontal line segment ("step")
for each data point. The step may extend to the left, to the right, or to
both sides of the point's x-coordinate.
Additional keywords control the lines connecting adjacent steps and option
area fill between the step and a baseline y value.
Syntax:
@example
plot <data> with hsteps
@{forward|backward@}
@{baseline|pillars|link|nolink@}
@{@{above|below@} y=<baseline>@}
@{offset <y-offset>@}
@end example
@example
2 columns: x y
3 columns: x y width
@end example
This plot style requires 2 or 3 columns of data. Additional input columns can
be used to provide variable line or fill colors (see `rgbcolor variable`).
The x values of the input data are assumed to be monotonic.
If the width of each step is not explicitly given through a third input
column, each segment’s width is calculated so that it abuts the adjacent
horizontal segments. A negative value in column 3 will be treated as a
request for a full-width step.
The `forward` and `backward` keywords can be used to specify the direction
in which the horizontal segment extends from the given x coordinate.
If neither is specified, the horizontal segment extends on both sides
of the given x-value halfway to the x-value of the next adjacent point.
However, for the first and last points, where there are no corresponding outer
adjacent points, the horizontal segments are extrapolated using distances to
the adjacent inner points (see @ref{histeps}, @ref{boxes}).
The default (`baseline`) and `pillar` variants employ a baseline y value.
If not provided in the plot command, the baseline is taken to be y=0.
If the plot command uses a fill style, the baseline also serves to
delimit one boundary of the fill area.
Four style variants are possible.
`baseline` (default): If there is no gap along x between adjacent steps,
they are connected by a vertical line segment between them. This produces
a curve like the @ref{steps}, @ref{histeps}, or @ref{fsteps} styles. If there is a gap
between steps, usually because the width is less than the point spacing,
the connecting line drops to the baseline and continues along it before
rising again. This produces a sequence of rectangular pulses.
@example
set xzeroaxis
plot $data using 1:2 with hsteps
plot $data using 1:2:(0.5) with hsteps
@end example
`pillar`: At each end of each step a vertical line is drawn to the baseline.
Note that no horizontal line segments are drawn at the baseline.
@example
plot $data using 1:2 with hsteps pillar
plot $data using 1:2:(0.5) with hsteps pillar
plot $data using 1:2:(0.5) \
with hsteps pillar above fc "blue", \
$data using 1:2:(0.5) \
with hsteps pillar below fc "red"
@end example
`nolink`: No connecting line is drawn between adjacent steps.
Baseline and fill properties are not relevant to this variant.
@example
plot $data using 1:2 with hsteps nolink, \
$data using 1:2 with hsteps nolink forward, \
$data using 1:2 with hsteps nolink backward, \
$data using 1:2 with points pt "|"
@end example
@ref{link}: Adjacent steps steps are connected by a single straight line segment.
Depending on the step widths, this line may be diagonal rather than vertical.
Example: The @ref{link} variant can be superimposed onto the `pillar` variant to
produce a stacked histogram plot in which category boundaries are connected.
@example
set style line 11 lw 2 lc "gray" dt "."
set style line 12 lw 2 lc variable
plot $data using 1:3:(0.5) ls 11 with hsteps link, \
$data using 1:3:(0.5):1 ls 12 with hsteps pillar fs solid 0.7 border, \
$data using 1:4:(0.5) ls 11 with hsteps link, \
$data using 1:4:(0.5):1 ls 12 with hsteps pillar fs transparent pattern 1 border
@end example
@menu
* offset::
* missing_data::
@end menu
@node offset, missing_data, hsteps, hsteps
@subsection offset
@c ?with hsteps offset
@c ?hsteps offset
The offset value modifies any of the @ref{hsteps} variants by adding an
increment to the y value of both the data point itself (column 2) and the
baseline of the plot it appears in. An example of use is to draw a logic
circuit timing chart in which pulse waveforms are aligned vertically.
In general the offset can be used to stack plots from multiple data sets
that share a common range of y values.
@example
# bit(k,char) is a function that returns 0 or 1
# for the state of bit k in an ASCII character
set style fill solid 0.2 border
plot for [k=1:8] STR using 1:(bit(k,STR[$1])):(0.5) \
with hsteps fillcolor "black" offset k
@end example
@node missing_data, , offset, hsteps
@subsection missing data
@c ?with hsteps missing-data
@c ?hsteps missing-data
In the hsteps style, empty lines, NaN values, and missing data have distinct
meanings. If an empty line is present in the data, the data series is reset
at that point. This is analogous to a blank line causing a break to start a
new curve in the case of `with lines`. If an x-value contains NaN, it is
processed in the same manner as an empty line. If the x-value is valid but
the y-value contains NaN, no horizontal line is drawn for that particular data
point but the x-value is still used if needed to estimate the step width.
@node image, impulses, hsteps, Plotting_styles
@section image
@c ?plotting styles image
@c ?style image
@c ?with image
@cindex image
@cindex rgbimage
@cindex rgbalpha
The `image`, @ref{rgbimage}, and @ref{rgbalpha} plotting styles all project a
uniformly sampled grid of data values onto a plane in either 2D or 3D.
The input data may be an actual bitmapped image, perhaps converted from a
standard format such as PNG, or a simple array of numerical values.
These plot styles are often used to produce heatmaps.
For 2D heatmaps in polar coordinates, see `set polar grid`.
This figure illustrates generation of a heat map from an array of scalar values.
The current palette is used to map each value onto the color assigned to the
corresponding pixel. See also `sparse`.
@example
plot '-' matrix with image
5 4 3 1 0
2 2 0 0 1
0 0 0 1 0
0 1 2 4 3
e
e
@end example
Each pixel (data point) of the input 2D image will become a rectangle or
parallelepiped in the plot. The coordinates of each data point will determine
the center of the parallelepiped. That is, an M x N set of data will form an
image with M x N pixels. This is different from the pm3d plotting style, where
an M x N set of data will form a surface of (M-1) x (N-1) elements. The scan
directions for a binary image data grid can be further controlled by additional
keywords. See `binary keywords flipx`, `keywords center`, and `keywords rotate`.
Image data can be scaled to fill a particular rectangle within a 2D plot
coordinate system by specifying the x and y extent of each pixel.
See `binary keywords dx` and `dy`. To generate the figure at the right,
the same input image was placed multiple times, each with a specified dx, dy,
and origin. The input PNG image of a building is 50x128 pixels. The tall
building was drawn by mapping this using `dx=0.5 dy=1.5`. The short building
used a mapping `dx=0.5 dy=0.35`.
The `image` style handles input pixels containing a grayscale or color palette
value. Thus 2D plots (`plot` command) require 3 columns of data (x,y,value),
while 3D plots (`splot` command) require 4 columns of data (x,y,z,value).
The @ref{rgbimage} style handles input pixels that are described by three separate
values for the red, green, and blue components. Thus 5D data (x,y,r,g,b) is
needed for `plot` and 6D data (x,y,z,r,g,b) for `splot`. The individual red,
green, and blue components are assumed to lie in the range [0:255].
This matches the convention used in PNG and JPEG files (see @ref{filetype}).
However some data files use an alternative convention in which RGB components
are floating point values in the range [0:1]. To use the @ref{rgbimage} style with
such data, first use the command `set rgbmax 1.0`.
@cindex alpha channel
The @ref{rgbalpha} style handles input pixels that contain alpha channel
(transparency) information in addition to the red, green, and blue components.
Thus 6D data (x,y,r,g,b,a) is needed for `plot` and 7D data (x,y,z,r,g,b,a)
for `splot`. The r, g, b, and alpha components are assumed to lie in the range
[0:255]. To plot data for which RGBA components are floating point values in
the range [0:1], first use the command `set rgbmax 1.0`.
If only a single data column is provided for the color components of either
rgbimage or rgbalpha plots, it is interpreted as containing 32 bit packed ARGB
data using the convention that alpha=0 means opaque and alpha=255 means fully
transparent. Note that this is backwards from the alpha convention if alpha
is supplied in a separate column, but matches the ARGB packing convention for
individual commands to set color. See @ref{colorspec}.
@menu
* transparency::
* image_pixels::
@end menu
@node transparency, image_pixels, image, image
@subsection transparency
@c ?image transparency
@cindex transparency
@c ?alpha channel
The @ref{rgbalpha} plotting style assumes that each pixel of input data contains
an alpha value in the range [0:255]. A pixel with alpha = 0 is purely
transparent and does not alter the underlying contents of the plot. A pixel
with alpha = 255 is purely opaque. All terminal types can handle these two
extreme cases. A pixel with 0 < alpha < 255 is partially transparent.
Terminal types that do not support partial transparency will round this value
to 0 or 255.
D argb_hexdata 2
@node image_pixels, , transparency, image
@subsection image pixels
@c ?plotting styles image pixels
@c ?style image pixels
@c ?with image pixels
@c ?image pixels
@cindex pixels
@cindex heatmaps
Some terminals use device- or library-specific optimizations to render image
data within a rectangular 2D area. This sometimes produces undesirable output,
e.g. inter-pixel smoothing, bad clipping or missing edges. An example of this
is the smoothing applied by web browsers when rendering svg images.
The `pixels` keyword tells gnuplot to use generic code to render the image
pixel-by-pixel. This rendering mode is slower and may result in larger output
files, but should produce a consistent rendered view on all terminals.
It may in particular be preferable for heatmaps with a small number of pixels.
Example:
@example
plot 'data' with image pixels
@end example
@node impulses, labels, image, Plotting_styles
@section impulses
@c ?plotting styles impulses
@c ?style impulses
@c ?with impulses
@cindex impulses
The @ref{impulses} style displays a vertical line from y=0 to the y value of each
point (2D) or from z=0 to the z value of each point (3D). Note that the y or z
values may be negative. Data from additional columns can be used to control
the color of each impulse. To use this style effectively in 3D plots, it is
useful to choose thick lines (linewidth > 1). This approximates a 3D bar chart.
@example
1 column: y
2 columns: x y # line from [x,0] to [x,y] (2D)
3 columns: x y z # line from [x,y,0] to [x,y,z] (3D)
@end example
@node labels, lines, impulses, Plotting_styles
@section labels
@c ?plotting styles labels
@c ?style labels
@c ?with labels
@cindex labels
The @ref{labels} style reads coordinates and text from a data file and places
the text string at the corresponding 2D or 3D position. 3 or 4 input columns
of basic data are required. Additional input columns may be used to provide
properties that vary point by point such as text rotation angle (keywords
`rotate variable`) or color (see `textcolor variable`).
@example
3 columns: x y string # 2D version
4 columns: x y z string # 3D version
@end example
The font, color, rotation angle and other properties of the printed text
may be specified as additional command options (see `set label`). The example
below generates a 2D plot with text labels constructed from the city whose
name is taken from column 1 of the input file, and whose geographic coordinates
are in columns 4 and 5. The font size is calculated from the value in column 3,
in this case the population.
@example
CityName(String,Size) = sprintf("@{/=%d %s@}", Scale(Size), String)
plot 'cities.dat' using 5:4:(CityName(stringcolumn(1),$3)) with labels
@end example
If we did not want to adjust the font size to a different size for each city
name, the command would be much simpler:
@example
plot 'cities.dat' using 5:4:1 with labels font "Times,8"
@end example
If the labels are marked as @ref{hypertext} then the text only appears if the
mouse is hovering over the corresponding anchor point. See @ref{hypertext}.
In this case you must enable the label's `point` attribute so that there is
a point to act as the hypertext anchor:
@example
plot 'cities.dat' using 5:4:1 with labels hypertext point pt 7
@end example
The @ref{labels} style can also be used in place of the `points` style when the
set of predefined point symbols is not suitable or not sufficiently flexible.
For example, here we define a set of chosen single-character symbols and assign
one of them to each point in a plot based on the value in data column 3:
@example
set encoding utf8
symbol(z) = "∙□+⊙♠♣♡♢"[int(z):int(z)]
splot 'file' using 1:2:(symbol($3)) with labels
@end example
This example shows use of labels with variable rotation angle in column 4 and
textcolor ("tc") in column 5. Note that variable color is always taken from
the last column in the `using` specifier.
@example
plot $Data using 1:2:3:4:5 with labels tc variable rotate variable
@end example
@node lines, linespoints, labels, Plotting_styles
@section lines
@c ?plotting styles lines
@c ?style lines
@c ?with lines
@cindex lines
The `lines` style connects adjacent points with straight line segments.
It may be used in either 2D or 3D plots. The basic form requires 1, 2, or 3
columns of input data.
Additional input columns may be used to provide information such as
variable line color (see `rgbcolor variable`).
2D form (no "using" spec)
@example
1 column: y # implicit x from row number
2 columns: x y
@end example
3D form (no "using" spec)
@example
1 column: z # implicit x from row, y from index
3 columns: x y z
@end example
See also `linetypes`, `linewidth`, and `linestyle`.
@node linespoints, masking, lines, Plotting_styles
@section linespoints
@c ?plotting styles linespoints
@c ?style linespoints
@c ?with linespoints
@c ?style lp
@c ?with lp
@cindex linespoints
@cindex lp
@cindex pointinterval
@cindex pointnumber
The @ref{linespoints} style (short form `lp`) connects adjacent points with
straight line segments and then goes back to draw a small symbol at each point.
Points are drawn with the default size determined by @ref{pointsize} unless a
specific point size is given in the plot command or a variable point size is
provided in an additional column of input data. Additional input columns may
also be used to provide information such as variable line color.
See `lines` and `points`.
Two keywords control whether or not every point in the plot is marked with a
symbol, `pointinterval` (short form `pi`) and `pointnumber` (short form `pn`).
`pi N` or `pi -N` tells gnuplot to only place a symbol on every Nth point.
A negative value for N will erase the portion of line segment that passes
underneath the symbol. The size of the erased portion is controlled by
@ref{pointintervalbox}.
`pn N` or `pn -N` tells gnuplot to label only N of the data points, evenly
spaced over the data set. As with `pi`, a negative value for N will erase the
portion of line segment that passes underneath the symbol.
@node masking, parallelaxes, linespoints, Plotting_styles
@section masking
@c ?plotting styles mask
@c ?plot with mask
@c ?with mask
@cindex masking
The plotting style `with mask` is used to define a masking region that
can be applied to pm3d surfaces or to images specified later in the same
`plot` or `splot` command. Input data is interpreted as a stream of [x,y]
or [x,y,z] coordinates defining the vertices of one or more polygons.
As in plotting style @ref{polygons}, polygons are separated by a blank line.
If the mask is part of a 3D (splot) command then a column of z values is
required on input but is currently not used for anything.
If a mask definition is present in the plot command, then any subsequent image
or pm3d surface in the same command can be masked by adding the keyword `mask`.
If no mask has been defined, this keyword is ignored.
This example illustrates using the convex hull circumscribing a set of points
to mask the corresponding region of a pm3d surface.
@c ^<p align="center"><picture>
@c ^ <source srcset="figure_mask.webp" type="image/webp">
@c ^ <img src="figure_mask.png" alt="figure_mask">
@c ^ </picture><p>
@example
set table $HULL
plot $POINTS using 1:2 convexhull
unset table
@end example
@example
set view map
set multiplot layout 1,2
splot $POINTS using 1:2:3 with pm3d, \
$POINTS using 1:2:(0) nogrid with points
splot $HULL using 1:2:(0) with mask, \
$POINTS using 1:2:3 mask with pm3d
unset multiplot
@end example
The `splot` command for the first panel renders the unmasked surface created by
dgrid3d from the original points and then the points themselves, in that order.
The `splot` command for the second panel renders the masked surface. Note that
definition of the mask must come first (plot `with mask`), followed by the pm3d
surface it applies to (plot style `with pm3d` modified by the `mask` keyword).
A more complete version of this example is in the demo collection
@uref{http://www.gnuplot.info/demo/mask_pm3d.html,mask_pm3d.dem
}
Although it is not shown here, a single mask can include multiple polygonal
regions.
The masking commands are EXPERIMENTAL. Details may change in a future release.
@node parallelaxes, Polar_plots, masking, Plotting_styles
@section parallelaxes
@c ?plotting styles parallelaxes
@c ?plot with parallelaxes
@c ?with parallelaxes
@cindex parallelaxes
@cindex parallel
Parallel axis plots can highlight correlation in a multidimensional data set.
Individual columns of input data are each associated with a separately scaled
vertical axis. If all columns are drawn from a single file then each line on
the plot represents values from a single row of data in that file.
It is common to use some discrete categorization to assign line colors,
allowing visual exploration of the correlation between this categorization and
the axis dimensions.
Syntax:
@example
set style data parallelaxes
plot $DATA using col1@{:varcol1@} @{at <xpos>@} @{<line properties@}, \
$DATA using col2, ...
@end example
The `at` keyword allows explicit placement of the parallel vertical axes
along the x axis as in the example below. If no explicit x coordinate is
provide axis N will be placed at x=N.
@example
array xpos[5] = [1, 5, 6, 7, 11, 12]
plot for [col=1:5] $DATA using col with parallelaxes at xpos[col]
@end example
By default gnuplot will automatically determine the range and scale of the
individual axes from the input data, but the usual `set axis range` commands
can be used to customize this. See @ref{paxis}.
@node Polar_plots, points, parallelaxes, Plotting_styles
@section Polar plots
@cindex polar
@opindex polar
Polar plots are generated by changing the current coordinate system to
polar before issuing a plot command. The option `set polar` tells gnuplot to
interpret input 2D coordinates as <angle>,<radius> rather than <x>,<y>.
Many, but not all, of the 2D plotting styles work in polar mode.
The figure shows a combination of plot styles `lines` and @ref{filledcurves}.
See `set polar`, @ref{rrange}, `set size square`, @ref{theta}, @ref{ttics}.
@c ?polar heatmap
Polar heatmaps can be generated using plot style `with surface` together with
`set polar grid`.
@example
set size square
set angle degrees
set rtics
set grid polar
set palette cubehelix negative gamma 0.8
set polar grid gauss kdensity scale 35
set polar grid theta [0:190]
plot DATA with surface, DATA with points pt 7
@end example
@node points, polygons, Polar_plots, Plotting_styles
@section points
@c ?plotting styles points
@c ?style points
@c ?with points
@cindex points
@c ?point type
@cindex pointtype
The `points` style displays a small symbol at each point. The command @ref{pointsize} may be used to change the default size of all points. The point type
defaults to that of the linetype. See `linetypes`. If no `using` spec is found
in the plot command, input data columns are interpreted implicitly in the order
`x y pointsize pointtype color` as described below.
The first 8 point types are shared by all terminals. Individual terminals may
provide a much larger number of distinct point types. Use the `test` command
to show what is provided by the current terminal settings.
Alternatively any single printable character may be given instead of a
numerical point type, as in the example below. You may use any unicode
character as the pointtype (assumes utf8 support). See `escape sequences`.
Longer strings may be plotted using plot style @ref{labels} rather than `points`.
@example
plot f(x) with points pt "#"
plot d(x) with points pt "\U+2299"
@end example
@menu
* variable_point_properties::
@end menu
@node variable_point_properties, , points, points
@subsection variable point properties
@c ?points variable
@c ?with points variable
@cindex variable
@cindex variable
@c ?pointtype variable
@c ?pointsize variable
Plot styles that contain a point symbol optionally accept additional data
columns in the `using` specifier to control the appearance of that point.
This is indicated by modifying the keywords `pointtype`, @ref{pointsize}, or
`linecolor` in the plot command with the additional keyword `variable`
rather than providing a number.
Plot style @ref{labels} also accepts a variable text rotation angle.
Example:
@example
# Input data provides [x,y] in columns 1:2
# point size is given in column 5
# RGB color is given as hexadecimal value in column 4
# all points use pointtype 7
plot DATA using 1:2:5:4 with points lc rgb variable ps variable pt 7
@end example
If more than one variable property is specified, columns are interpreted in
the order below regardless of the order of keywords in the plot command.
@example
textrotation : pointsize : pointtype : color
@end example
Thus in the example above "lc rgb variable" appears first in the plot command
but the color is taken from the final column (4) given by `using`.
Variable color is always taken from the last additional column.
There are several methods of specifying variable color. See @ref{colorspec}.
Note: for information on user-defined program variables, see `variables`.
@node polygons, rgbalpha, points, Plotting_styles
@section polygons
@c ?plotting styles polygons
@c ?style polygons
@c ?with polygons
@cindex polygons
2D plots:
@example
plot DATA @{using 1:2@} with polygons
@end example
@ref{polygons} is treated as `plot with filledcurves closed` except that
each polygon's border is rendered as a closed curve even if its first and last
points are not the same. The border line type is taken from the fill style.
The input data file may contain multiple polygons separated by single blank
lines. Each polygon can be assigned a separate fill color by providing a third
using specifier and the keywords `fc variable` (value is interpreted as a
linetype) or `fc rgb variable` (value is interpreted as a 24-bit RGB color).
Only the color value from the first vertex of the polygon is used.
3D plots:
@example
splot DATA @{using x:y:z@} with polygons
@{fillstyle <fillstyle spec>@}
@{fillcolor <colorspec>@}
@end example
@ref{polygons} uses pm3d to render individual triangles, quadrangles,
and larger polygons in 3D. These may be facets of a 3D surface or isolated
shapes. The code assumes that the vertices lie in a plane.
Vertices defining individual polygons are read from successive records of the
input file. A blank line separates one polygon from the next.
The fill style and color may be specified in the splot command, otherwise the
global fillstyle from `set style fill` is used. Due to limitations in the
pm3d code, a single border line style from @ref{border} is applied to all
3D polygons. This restriction may be removed in a later gnuplot version,
which will impose a distinction between the linecolor and fillcolor properties.
Each polygon may be assigned a separate fill color by providing a fourth using
specifier and the keywords `fc variable` (value is interpreted as a linetype)
or `fc rgb variable` (value is interpreted as a 24-bit RGB color).
Only the color value from the first vertex of the polygon is used.
pm3d sort order and lighting are applied to the faces. It is probably always
desirable to use `set pm3d depthorder`.
@example
set xyplane at 0
set view equal xyz
unset border
unset tics
set pm3d depth
set pm3d border lc "black" lw 1.5
splot 'icosahedron.dat' with polygons \
fs transparent solid 0.8 fc bgnd
@end example
@node rgbalpha, rgbimage, polygons, Plotting_styles
@section rgbalpha
@c ?plotting styles rgbalpha
@c ?style rgbalpha
@c ?with rgbalpha
See `image`.
@node rgbimage, sectors, rgbalpha, Plotting_styles
@section rgbimage
@c ?plotting styles rgbimage
@c ?style rgbimage
@c ?with rgbimage
See `image`.
@node sectors, spiderplot, rgbimage, Plotting_styles
@section sectors
@c ?plotting styles sectors
@c ?with sectors
@cindex sectors
@cindex windrose
The 2D plotting style @ref{sectors} renders one annular segment ("sector")
for each line of input data. The shape of each sector is described by four
required data values. An additional pair of data values can be included to
specify the origin of the annulus this sector is taken from.
A per-sector color may be provided in an additional column.
The plot style itself can be used in either cartesian or polar mode
(`set polar`). The units and interpretation for the azimuth and the
sector angle are controlled using @ref{angles} and @ref{theta}.
Columns 1 and 2 specify the azimuth (theta) and radius (r) of one corner
of the sector.
Columns 3 and 4 specify the angular and radial extents of the sector
("sector_angle" and "annular_width").
Columns 5 and 6, if present, specify the coordinates of the center of the
annulus (default [0,0]). The interpretation is [x,y] in cartesian mode
and [theta,r] in polar mode.
Syntax:
@example
plot DATA @{using specifier@} @{units xy | units xx | units yy@}
@end example
using specifier
@example
4 columns: azimuth radius sector_angle annular_width
5 columns: azimuth radius sector_angle annular_width color
6 columnd: azimuth radius sector_angle annular_width center_x center_y
7 columns: azimuth radius sector_angle annular_width center_x center_y color
@end example
Note that if the x and y axis scales are not equal, the envelope of the full
annulus in x/y coordinates will appear as an ellipse rather than a circle.
The annulus envelope and thus the apparent sector annular width can be adjusted
to correct for unequal axis scales using the same mechanism as for ellipses.
Adding `units xx` to the command line causes the sector to be rendered as if
the current x axis scale applied equally to both x and y.
Similarly `units yy` causes the sector to be rendered as if the current
y axis scale applied equally to both x and y.
See @ref{isotropic}, `set style ellipse`.
Plotting with sectors can provide polar coordinate equivalents for the
cartesian plot styles @ref{boxes} (see wind rose figure), @ref{boxxyerror} and
`image pixels` (see example in @ref{heatmaps}). Because sector plots are
compatible with cartesian mode plot layout, multiple plots can be placed
at different places on a single graph, which would not be possible for
other polar mode plot styles.
An example of using sectors to create a wind rose in shown here.
Other applications include polar heatmaps, dial charts, pie/donut charts,
and annular error boxes for data points in polar coordinates.
Worked examples for all of these are given in the
@uref{http://www.gnuplot.info/demo/sectors.html,sectors demo.
}
@node spiderplot, steps, sectors, Plotting_styles
@section spiderplot
@c ?plotting styles spiderplot
@c ?with spiderplot
@cindex spiderplot
@opindex spiderplot
@c ?radar chart
Spider plots are essentially parallel axis plots in which the axes are arranged
radially rather than vertically. Such plots are sometimes called `radar charts`.
In gnuplot this requires working within a coordinate system established by the
command @ref{spiderplot}, analogous to `set polar` except that the angular
coordinate is determined implicitly by the parallel axis number. The appearance,
labelling, and tic placement of the axes is controlled by @ref{paxis}.
Further style choices are controlled using @ref{spiderplot}, `set grid`,
and the individual components of the plot command.
Because each spider plot corresponds to a row of data rather than a column,
it would make no sense to generate key entry titles in the normal way.
Instead, if a plot component contains a title the text is used to label the
corresponding axis. This overrides any previous `set paxis n label "Foo"`.
To place a title in the key, you can either use a separate `keyentry` command
or extract text from a column in the input file with the `key(column)`
using specifier. See `keyentry`, `using key`.
In this figure a spiderplot with 5 axes is used to compare multiple entities
that are each characterized by five scores. Each line (row) in $DATA
generates a new polygon on the plot.
@example
$DATA << EOD
A B C D E F
George 15 75 20 43 90 50
Harriet 40 40 40 60 30 50
EOD
set spiderplot
set style spiderplot fs transparent solid 0.2 border
set for [p=1:5] paxis p range [0:100]
set for [p=2:5] paxis p tics format ""
set paxis 1 tics font ",9"
set for [p=1:5] paxis p label sprintf("Score %d",p)
set grid spiderplot
plot for [i=1:5] $DATA using i:key(1)
@end example
@menu
* newspiderplot::
@end menu
@node newspiderplot, , spiderplot, spiderplot
@subsection newspiderplot
@cindex newspiderplot
@c ?spiderplot newspiderplot
Normally the sequential elements of a plot command @ref{spiderplot} each
correspond to one vertex of a single polygon. In order to describe multiple
polygons in the same plot command, they must be separated by @ref{newspiderplot}.
Example:
@example
# One polygon with 10 vertices
plot for [i=1:5] 'A' using i, for [j=1:5] 'B' using j
# Two polygons with 5 vertices
plot for [i=1:5] 'A' using i, newspiderplot, for [j=1:5] 'B' using j
@end example
@node steps, surface, spiderplot, Plotting_styles
@section steps
@c ?plotting styles steps
@c ?style steps
@c ?with steps
@cindex steps
The @ref{steps} style is only relevant to 2D plotting. It connects consecutive
points with two line segments: the first from (x1,y1) to (x2,y1) and the
second from (x2,y1) to (x2,y2). The input column requires are the same as for
plot styles `lines` and `points`. The difference between @ref{fsteps} and @ref{steps}
is that @ref{fsteps} traces first the change in y and then the change in x.
@ref{steps} traces first the change in x and then the change in y. To fill the
area between the curve and the baseline at y=0, use @ref{fillsteps}.
See also
@uref{http://www.gnuplot.info/demo/steps.html,steps demo.
}
@example
1 column: y # implicit x from line number (column 0)
2 columns: x y
@end example
@node surface, vectors, steps, Plotting_styles
@section surface
@c ?plotting styles surface
@c ?style surface
@c ?with surface
The plot style `with surface` has two uses.
In 3D plots, `with surface` always produces a surface.
If a 3D data set is recognizable as a mesh (grid) then by default the program
implicitly treats the plot style `with lines` as requesting a gridded surface,
making `with lines` a synonym for `with surface`. However the command
`set surface explicit` suppresses this treatment, in which case `with surface`
and `with lines` become distinct styles that may be used in the same plot.
If you have points in 3D that are not recognized as a grid, you may be able
to fit a suitable grid first. See @ref{dgrid3d}.
In 2D polar mode plots, `with surface` is used to produce a solid fill gridded
represention of the data. Generation of the surface is controlled using the
command `set polar grid`.
@node vectors, xerrorbars, surface, Plotting_styles
@section vectors
@c ?plotting styles vectors
@c ?style vectors
@c ?with vectors
@cindex vectors
The 2D @ref{vectors} style draws a vector from (x,y) to (x+xdelta,y+ydelta).
The 3D @ref{vectors} style is similar, but requires six columns of basic data.
In both cases, an additional input column (5th in 2D, 7th in 3D) may be used
to provide variable (per-datapoint) color information.
(see `linecolor` and `rgbcolor variable`).
A small arrowhead is drawn at the end of each vector.
@example
4 columns: x y xdelta ydelta
6 columns: x y z xdelta ydelta zdelta
@end example
The keywords "with vectors" may be followed by inline arrow style properties,
by reference to a predefined arrow style, or by a request to read the index
of the desired arrow style for each vector from a separate input column.
See the first three examples below.
Examples:
@example
plot ... using 1:2:3:4 with vectors filled heads
plot ... using 1:2:3:4 with vectors arrowstyle 3
plot ... using 1:2:3:4:5 with vectors arrowstyle variable
splot 'file.dat' using 1:2:3:(1):(1):(1) with vectors filled head lw 2
@end example
Notes: You cannot mix the `arrowstyle` keyword with other line style
qualifiers in the plot command. An additional column of color values is
required if the arrow style includes `lc variable` or `lc rgb variable`.
splot with vectors is supported only for `set mapping cartesian`.
`set clip one` and `set clip two` affect vectors drawn in 2D.
See `set clip` and `arrowstyle`.
See also the 2D plot style `with arrows` that is identical to @ref{vectors}
except that each arrow is specified using x:y:length:angle.
@node xerrorbars, xyerrorbars, vectors, Plotting_styles
@section xerrorbars
@c ?plotting styles xerrorbars
@c ?style xerrorbars
@c ?with xerrorbars
@cindex xerrorbars
The @ref{xerrorbars} style is only relevant to 2D data plots. @ref{xerrorbars} is
like `points`, except that a horizontal error bar is also drawn. At each point
(x,y), a line is drawn from (xlow,y) to (xhigh,y) or from (x-xdelta,y) to
(x+xdelta,y), depending on how many data columns are provided. The appearance
of the tic mark at the ends of the bar is controlled by @ref{errorbars}.
The clearance between the point and the error bars is controlled by
@ref{pointintervalbox}. To have the error bars pass directly through the
point with no interruption, use @ref{pointintervalbox}.
The basic style requires either 3 or 4 columns:
@example
3 columns: x y xdelta
4 columns: x y xlow xhigh
@end example
An additional input column (4th or 5th) may be used to provide variable color.
This style does not permit variable point properties.
@node xyerrorbars, xerrorlines, xerrorbars, Plotting_styles
@section xyerrorbars
@c ?plotting styles xyerrorbars
@c ?style xyerrorbars
@c ?with xyerrorbars
@cindex xyerrorbars
The @ref{xyerrorbars} style is only relevant to 2D data plots. @ref{xyerrorbars} is
like `points`, except that horizontal and vertical error bars are also drawn.
At each point (x,y), lines are drawn from (x,y-ydelta) to (x,y+ydelta) and
from (x-xdelta,y) to (x+xdelta,y) or from (x,ylow) to (x,yhigh) and from
(xlow,y) to (xhigh,y), depending upon the number of data columns provided.
The appearance of the tic mark at the ends of the bar is controlled by
@ref{errorbars}. The clearance between the point and the error bars is
controlled by @ref{pointintervalbox}. To have the error bars pass directly
through the point with no interruption, use @ref{pointintervalbox}.
Either 4 or 6 input columns are required.
@example
4 columns: x y xdelta ydelta
6 columns: x y xlow xhigh ylow yhigh
@end example
If data are provided in an unsupported mixed form, the `using` specifier of the
`plot` command should be used to set up the appropriate form. For example,
if the data are of the form (x,y,xdelta,ylow,yhigh), then you can use
@example
plot 'data' using 1:2:($1-$3):($1+$3):4:5 with xyerrorbars
@end example
An additional input column (5th or 7th) may be used to provide variable color.
This style does not permit variable point properties.
@node xerrorlines, xyerrorlines, xyerrorbars, Plotting_styles
@section xerrorlines
@c ?plotting styles xerrorlines
@c ?style xerrorlines
@c ?with xerrorlines
@cindex xerrorlines
The @ref{xerrorlines} style is only relevant to 2D data plots.
@ref{xerrorlines} is like @ref{linespoints}, except that a horizontal error line is
also drawn. At each point (x,y), a line is drawn from (xlow,y) to (xhigh,y)
or from (x-xdelta,y) to (x+xdelta,y), depending on how many data columns are
provided. The appearance of the tic mark at the ends of the bar is controlled
by @ref{errorbars}. The basic style requires either 3 or 4 columns:
@example
3 columns: x y xdelta
4 columns: x y xlow xhigh
@end example
An additional input column (4th or 5th) may be used to provide variable color.
This style does not permit variable point properties.
@node xyerrorlines, yerrorbars, xerrorlines, Plotting_styles
@section xyerrorlines
@c ?plotting styles xyerrorlines
@c ?style xyerrorlines
@c ?with xyerrorlines
@cindex xyerrorlines
The @ref{xyerrorlines} style is only relevant to 2D data plots.
@ref{xyerrorlines} is like @ref{linespoints}, except that horizontal and vertical
error bars are also drawn. At each point (x,y), lines are drawn from
(x,y-ydelta) to (x,y+ydelta) and from (x-xdelta,y) to (x+xdelta,y) or from
(x,ylow) to (x,yhigh) and from (xlow,y) to (xhigh,y), depending upon the
number of data columns provided. The appearance of the tic mark at the ends
of the bar is controlled by @ref{errorbars}.
Either 4 or 6 input columns are required.
@example
4 columns: x y xdelta ydelta
6 columns: x y xlow xhigh ylow yhigh
@end example
If data are provided in an unsupported mixed form, the `using` specifier of the
`plot` command should be used to set up the appropriate form. For example,
if the data are of the form (x,y,xdelta,ylow,yhigh), then you can use
@example
plot 'data' using 1:2:($1-$3):($1+$3):4:5 with xyerrorlines
@end example
An additional input column (5th or 7th) may be used to provide variable color.
This style does not permit variable point properties.
@node yerrorbars, yerrorlines, xyerrorlines, Plotting_styles
@section yerrorbars
@c ?plotting styles yerrorbars
@c ?plotting styles errorbars
@c ?style yerrorbars
@c ?with yerrorbars
@c ?style errorbars
@c ?with errorbars
@cindex yerrorbars
@cindex errorbars
@opindex errorbars
The @ref{yerrorbars} (or @ref{errorbars}) style is only relevant to 2D data plots.
@ref{yerrorbars} is like `points`, except that a vertical error bar is also drawn.
At each point (x,y), a line is drawn from (x,y-ydelta) to (x,y+ydelta) or
from (x,ylow) to (x,yhigh), depending on how many data columns are provided.
The appearance of the tic mark at the ends of the bar is controlled by
@ref{errorbars}. The clearance between the point and the error bars is
controlled by @ref{pointintervalbox}. To have the error bars pass directly
through the point with no interruption, use @ref{pointintervalbox}.
@example
2 columns: [implicit x] y ydelta
3 columns: x y ydelta
4 columns: x y ylow yhigh
@end example
Additional input columns may be used to provide information such as variable
point size, point type, or color.
See also
@uref{http://www.gnuplot.info/demo/mgr.html,errorbar demo.
}
@node yerrorlines, 3D_plots, yerrorbars, Plotting_styles
@section yerrorlines
@c ?plotting styles yerrorlines
@c ?plotting styles errorlines
@c ?style yerrorlines
@c ?with yerrorlines
@c ?style errorlines
@c ?with errorlines
@cindex yerrorlines
@cindex errorlines
The @ref{yerrorlines} (or `errorlines`) style is only relevant to 2D data
plots. @ref{yerrorlines} is like @ref{linespoints}, except that a vertical error line
is also drawn. At each point (x,y), a line is drawn from (x,y-ydelta) to
(x,y+ydelta) or from (x,ylow) to (x,yhigh), depending on how many data columns
are provided. The appearance of the tic mark at the ends of the bar is
controlled by @ref{errorbars}. Either 3 or 4 input columns are required.
@example
3 columns: x y ydelta
4 columns: x y ylow yhigh
@end example
Additional input columns may be used to provide information such as variable
point size, point type, or color.
See also
@uref{http://www.gnuplot.info/demo/mgr.html,errorbar demo.
}
@node 3D_plots, Fence_plots, yerrorlines, Plotting_styles
@section 3D plots
@c ?3D plots
@c ?plotting styles 3D plots
@cindex 3D
3D plots are generated using the command `splot` rather than `plot`.
Many of the 2D plot styles (points, images, impulse, labels, vectors) can also
be used in 3D by providing an extra column of data containing z coordinate.
Some plot types (pm3d coloring, surfaces, contours) must be generated using the
`splot` command even if only a 2D projection is wanted.
@menu
* surface_plots::
* 2D_projection_(set_view_map)::
* PM3D_plots::
@end menu
@node surface_plots, 2D_projection_(set_view_map), 3D_plots, 3D_plots
@subsection surface plots
@c ?surface plots
@cindex surface
@opindex surface
The styles `splot with lines` and `splot with surface` both generate a surface
made from a grid of lines. Solid surfaces can be generated using the style
`splot with pm3d`. Usually the surface is displayed at some convenient viewing
angle, such that it clearly represents a 3D surface. See @ref{view}.
In this case the X, Y, and Z axes are all visible in the plot.
The illusion of 3D is enhanced by choosing hidden line removal. See @ref{hidden3d}.
The `splot` command can also calculate and draw contour lines corresponding
to constant Z values. These contour lines may be drawn onto the surface
itself, or projected onto the XY plane. See `set contour`.
@node 2D_projection_(set_view_map), PM3D_plots, surface_plots, 3D_plots
@subsection 2D projection (set view map)
@c ?2D projection (set view map)
An important special case of the `splot` command is to map the Z coordinate
onto a 2D surface by projecting the plot along the Z axis onto the xy plane.
See `set view map`. This plot mode is useful for contour plots and heat maps.
This figure shows contours plotted once with plot style `lines` and once with
style @ref{labels}.
@node PM3D_plots, , 2D_projection_(set_view_map), 3D_plots
@subsection PM3D plots
@c ?PM3D PLOTS
3D surfaces can also be drawn using solid pm3d quadrangles rather than
lines. In this case there is no hidden surface removal, but if the component
facets are drawn back-to-front then a similar effect is achieved.
See `set pm3d depthorder`. While pm3d surfaces are by default colored using a
smooth color palette (see @ref{palette}), it is also possible to specify a
solid color surface or to specify distinct solid colors for the top and bottom
surfaces as in the figure shown here. See @ref{fillcolor}.
Unlike the line-trimming in hidden3d mode, pm3d surfaces can be smoothly
clipped to the current zrange. See @ref{clipping}.
@node Fence_plots, isosurface, 3D_plots, Plotting_styles
@section Fence plots
@cindex fenceplots
@cindex zerrorfill
Fence plots combine several 2D plots by aligning their Y coordinates and
separating them from each other by a displacement along X. Filling the area
between a base value and each plot's series of Z values enhances the visual
impact of the alignment on Y and comparison on Z. There are several ways
such plots can be created in gnuplot. The simplest is to use the 5 column
variant of the `zerrorfill` style. Suppose there are separate curves z = Fi(y)
indexed by i. A fence plot is generated by `splot with zerrorfill` using
input columns
@example
i y z_base z_base Fi(y)
@end example
@node isosurface, Zerrorfill, Fence_plots, Plotting_styles
@section isosurface
@c ?plotting styles isosurface
@c ?style isosurface
@c ?with isosurface
@cindex isosurface
@opindex isosurface
This 3D plot style requires a populated voxel grid (see @ref{vgrid}, @ref{vfill}).
Linear interpolation of voxel grid values is used to estimate fractional grid
coordinates corresponding to the requested isolevel. These points are then
used to generate a tessellated surface. The facets making up the surface are
rendered as pm3d polygons, so the surface coloring, transparency, and border
properties are controlled by `set pm3d`. In general the surface is easier to
interpret visually if facets are given a thin border that is darker than the
fill color. By default the tessellation uses a mixture of quadrangles and
triangles. To use triangle only, see @ref{isosurface}.
Example:
@example
set style fill solid 0.3
set pm3d depthorder border lc "blue" lw 0.2
splot $helix with isosurface level 10 fc "cyan"
@end example
@node Zerrorfill, Animation, isosurface, Plotting_styles
@section Zerrorfill
@c ?plotting styles zerrorfill
@c ?style zerrorfill
@c ?with zerrorfill
@cindex zerrorfill
Syntax:
@example
splot DATA using 1:2:3:4[:5] with zerrorfill @{fc|fillcolor <colorspec>@}
@{lt|linetype <n>@} @{<line properties>@}
@end example
The `zerrorfill` plot style is similar to one variant of the 2D plot style
@ref{filledcurves}. It fills the area between two functions or data lines that
are sampled at the same x and y points. It requires 4 or 5 input columns:
@example
4 columns: x y z zdelta
5 columns: x y z zlow zhigh
@end example
The area between zlow and zhigh is filled and then a line is drawn through the
z values. By default both the line and the fill area use the same color, but
you can change this in the splot command. The fill area properties are also
affected by the global fill style; see `set style fill`.
If there are multiple curves in the splot command each new curve may occlude
all previous curves. To get proper depth sorting so that curves can only be
occluded by curves closer to the viewer, it is best to order the curves from
back to front. Alternatively you can use `set pm3d depthorder base` to sort
them automatically, but unfortunately this causes all the filled areas to be
drawn after all of the corresponding lines of z values. In order to see both
the lines and the depth-sorted fill areas you probably will need to make the
fill areas partially transparent.
The fill area in the first two examples below is the same.
@example
splot 'data' using 1:2:3:4 with zerrorfill fillcolor "grey" lt black
splot 'data' using 1:2:3:($3-$4):($3+$4) with zerrorfill
splot '+' using 1:(const):(func1($1)):(func2($1)) with zerrorfill
splot for [k=1:5] datafile[k] with zerrorfill lt black fc lt (k+1)
@end example
This plot style can also be used to create fence plots. See `fenceplots`.
See also `waterfallplots`.
@node Animation, , Zerrorfill, Plotting_styles
@section Animation
@cindex animation
Any of gnuplot's interactive terminals (qt win wxt x11 aqua) can be used
to display an animation by plotting successive frames from the command line
or from a script.
Several non-mousing terminals also support some form of animation.
See `term sixelgd`, `term kittycairo`.
Two terminals can save an animation to a file for later playback locally
or by embedding it a web page. See `term gif animate`, `term webp`.
@c ^ <p align="center">
@c ^ <picture>
@c ^ <source srcset="figure_spinning_d20.webp" type="image/webp">
@c ^ <img src="figure_static_d20.png">
@c ^ </picture>
Example:
@example
unset border; unset tics; unset key; set view equal xyz
set pm3d border linecolor "black"
@end example
@example
set term webp animate delay 50
set output 'spinning_d20.webp'
do for [ang=1:360:2] @{
set view 60, ang
splot 'icosahedron.dat' with polygons fc "gold"
@}
unset output
@end example
@node Commands, Terminal_types, Plotting_styles, Top
@chapter Commands
@cindex commands
This section lists the commands acceptable to `gnuplot` in alphabetical
order. Printed versions of this document contain all commands; the text
available interactively may not be complete. Indeed, on some systems there may
be no commands at all listed under this heading.
Note that in most cases unambiguous abbreviations for command names and their
options are permissible, i.e., "`p f(x) w li`" instead of "`plot f(x) with
lines`".
In the syntax descriptions, braces (@{@}) denote optional arguments and a
vertical bar (|) separates mutually exclusive choices.
@menu
* Break::
* cd::
* call::
* clear::
* Continue::
* Do::
* evaluate::
* exit::
* fit::
* function_blocks::
* help::
* history::
* if::
* for::
* import::
* load::
* local::
* lower::
* pause::
* plot::
* print::
* printerr::
* pwd::
* quit::
* raise::
* refresh::
* remultiplot::
* replot::
* reread::
* reset::
* return::
* save::
* set-show::
* shell::
* show::
* splot::
* stats_(Statistical_Summary)::
* system_::
* test::
* toggle::
* undefine::
* unset::
* update::
* vclear::
* vfill::
* warn::
* While::
@end menu
@node Break, cd, Commands, Commands
@section Break
@c ?commands break
@cindex break
The `break` command is only meaningful inside the bracketed iteration clause
of a `do` or `while` statement. It causes the remaining statements inside the
bracketed clause to be skipped and iteration is terminated. Execution resumes
at the statement following the closing bracket. See also `continue`.
@node cd, call, Break, Commands
@section cd
@c ?commands cd
@cindex cd
@cmindex cd
The `cd` command changes the working directory.
Syntax:
@example
cd '<directory-name>'
@end example
The directory name must be enclosed in quotes.
Examples:
@example
cd 'subdir'
cd ".."
@end example
It is recommended that Windows users use single-quotes, because backslash [\]
has special significance inside double-quotes and has to be escaped.
For example,
@example
cd "c:\newdata"
@end example
fails, but
@example
cd 'c:\newdata'
cd "c:\\newdata"
@end example
work as expected.
@node call, clear, cd, Commands
@section call
@c ?commands call
@cindex call
@cmindex call
The @ref{call} command is identical to the `load` command with one exception:
the name of the file being loaded may be followed by up to nine parameters.
@example
call "inputfile" <param-1> <param-2> <param-3> ... <param-9>
@end example
Gnuplot now provides a set of string variables ARG0, ARG1, ..., ARG9 and an
integer variable ARGC. When a @ref{call} command is executed ARG0 is set to the
name of the input file, ARGC is set to the number of parameters present, and
ARG1 to ARG9 are loaded from the parameters that follow it on the command line.
Any existing contents of the ARG variables are saved and restored across a
@ref{call} command.
Because the parameters ARG1 ... ARG9 are stored in ordinary string variables
they may be dereferenced by macro expansion. However in many cases it is
more natural to use them as you would any other variable.
In parallel with the string representation of parameters ARG1 ... ARG9,
the parameters themselves are stored in an array ARGV[9]. See `ARGV`.
DEPRECATED: Versions prior to 5.0 performed macro-like substitution of the
special tokens $0, $1, ... $9 with the literal contents of <param-1> ...
That older mechanism is no longer supported.
EXPERIMENTAL: Function blocks (new in this version) provide a more flexible
alternative to @ref{call}. See `function blocks`.
@menu
* ARGV[_]::
* Example::
@end menu
@node ARGV[_], Example, call, call
@subsection ARGV[ ]
@cindex argv
@cindex ARGV
@c ?call argv
@c ?call ARGV
When a gnuplot script is entered via the @ref{call} command any parameters passed
by the caller are available via two mechanisms. Each parameter is stored as a
string in variables ARG1, ARG2, ... ARG9. Each parameter is also stored as one
element of the array ARGV[9]. Numerical values are stored as complex variables.
All other values are stored as strings. ARGC holds the number of parameters.
Thus after a call
@example
call 'routine_1.gp' 1 pi "title"
@end example
The three arguments are available inside routine_1.gp as follows
@example
ARGC = 3
ARG1 = "1" ARGV[1] = 1.0
ARG2 = "3.14159" ARGV[2] = 3.14159265358979...
ARG3 = "title" ARGV[3] = "title"
@end example
In this example ARGV[1] and ARGV[2] have the full precision of a floating point
variable. ARG2 lost precision in being stored as a string using format "%g".
ARGC and a corresponding array ARGV[ARGC] are also available to code inside a
function block call. However invocation of a function block does not create
string variables ARG1,... .
@node Example, , ARGV[_], call
@subsection Example
@c ?call example
@c ?commands call example
@example
Call site
MYFILE = "script1.gp"
FUNC = "sin(x)"
call MYFILE FUNC 1.23 "This is a plot title"
Upon entry to the called script
ARG0 holds "script1.gp"
ARG1 holds the string "sin(x)"
ARG2 holds the string "1.23"
ARG3 holds the string "This is a plot title"
ARGC is 3
The script itself can now execute
plot @@ARG1 with lines title ARG3
print ARG2 * 4.56, @@ARG2 * 4.56
print "This plot produced by script ", ARG0
@end example
Notice that because ARG1 is a string it must be dereferenced as a macro,
but ARG2 may be dereferenced either as a macro (yielding a numerical constant)
or a variable (yielding that same numerical value after auto-promotion of the
string "1.23" to a real).
The same result could be obtained directly from a shell script by invoking
gnuplot with the `-c` command line option:
@example
gnuplot -persist -c "script1.gp" "sin(x)" 1.23 "This is a plot title"
@end example
@node clear, Continue, call, Commands
@section clear
@c ?commands clear
@cindex clear
@cmindex clear
@cindex inset
@cindex inset
The @ref{clear} command erases the current screen or output device as specified
by @ref{terminal} and @ref{output}. This usually generates a formfeed on
hardcopy devices.
For some terminals @ref{clear} erases only the portion of the plotting surface
defined by @ref{size}, so for these it can be used in conjunction with @ref{multiplot} to create an inset.
Example:
@example
set multiplot
plot sin(x)
set origin 0.5,0.5
set size 0.4,0.4
clear
plot cos(x)
unset multiplot
@end example
Please see @ref{multiplot}, @ref{size}, and @ref{origin} for details.
@node Continue, Do, clear, Commands
@section Continue
@c ?commands continue
@cindex continue
The `continue` command is only meaningful inside the bracketed iteration clause
of a `do` or `while` statement. It causes the remaining statements inside the
bracketed clause to be skipped. Execution resumes at the start of the next
iteration (if any remain in the loop condition). See also `break`.
@node Do, evaluate, Continue, Commands
@section Do
@c ?commands do
@cindex do
Syntax:
@example
do for <iteration-spec> @{
<commands>
<commands>
@}
@end example
Execute a sequence of commands multiple times. The commands must be enclosed
in curly brackets, and the opening "@{" must be on the same line as the `do`
keyword. This command cannot be used with old-style (un-bracketed) if/else
statements. See @ref{if}. For examples of iteration specifiers, see @ref{iteration}.
Example:
@example
set multiplot layout 2,2
do for [name in "A B C D"] @{
filename = name . ".dat"
set title sprintf("Condition %s",name)
plot filename title name
@}
unset multiplot
@end example
See also `while`, `continue`, `break`.
@node evaluate, exit, Do, Commands
@section evaluate
@c ?commands evaluate
@cindex evaluate
@cmindex evaluate
The @ref{evaluate} command executes gnuplot commands contained in a string
or in a function block. Newline characters are not allowed within the string.
@example
evaluate "commands in a string constant"
evaluate string_valued_function( ... arguments ... )
evaluate $functionblock( ... arguments ... )
@end example
This is especially useful for a repetition of similar commands.
Example:
@example
set_label(x, y, text) \
= sprintf("set label '%s' at %f, %f point pt 5", text, x, y)
eval set_label(1., 1., 'one/one')
eval set_label(2., 1., 'two/one')
eval set_label(1., 2., 'one/two')
@end example
Please see `function blocks` and @ref{macros} for other mechanisms
that construct or execute strings containing gnuplot commands.
@node exit, fit, evaluate, Commands
@section exit
@c ?commands exit
@cindex exit
@cmindex exit
@example
exit
exit message "error message text"
exit status <integer error code>
@end example
The commands @ref{exit} and @ref{quit}, as well as the END-OF-FILE character (usually
Ctrl-D) terminate input from the current input stream: terminal session, pipe,
or file input (pipe). If input streams are nested (inherited `load` scripts),
then reading will continue in the parent stream. When the top level stream is
closed, the program itself will exit.
The command `exit gnuplot` will immediately and unconditionally cause gnuplot
to exit even if the input stream is multiply nested. In this case any open
output files may not be completed cleanly. Example of use:
@example
bind "ctrl-x" "unset output; exit gnuplot"
@end example
The command `exit error "error message"` simulates a program error.
In interactive mode it prints the error message and returns to the command
line, breaking out of all nested loops or calls. In non-interactive mode
the program will exit.
When gnuplot exits to the controlling shell, the return value is not usually
informative. This variant of the command allows you to return a specific value.
@example
exit status <value>
@end example
See help for `batch/interactive` for more details.
@node fit, function_blocks, exit, Commands
@section fit
@c ?commands fit
@cindex fit
@cmindex fit
@cindex least-squares
@cindex Marquardt
The @ref{fit} command fits a user-supplied real-valued expression to a set of
data points, using the nonlinear least-squares Marquardt-Levenberg
algorithm. There can be up to 12 independent variables, there is always 1
dependent variable, and any number of parameters can be fitted.
Optionally, error estimates can be input for weighting the data points.
The basic use of @ref{fit} is best explained by a simple example where a set of
measured x and y values read from a file are used to be modeled by a
function y = f(x).
@example
f(x) = a + b*x + c*x**2
fit f(x) 'measured.dat' using 1:2 via a,b,c
plot 'measured.dat' u 1:2, f(x)
@end example
Syntax:
@example
fit @{<ranges>@} <expression>
'<datafile>' @{datafile-modifiers@}
@{@{unitweights@} | @{y|xy|z@}error | errors <var1>@{,<var2>,...@}@}
via '<parameter file>' | <var1>@{,<var2>,...@}
@end example
Ranges may be specified to filter the data used in fitting.
Out-of-range data points are ignored. The syntax is
@example
[@{dummy_variable=@}@{<min>@}@{:<max>@}],
@end example
analogous to `plot`; see @ref{ranges}.
<expression> can be any valid `gnuplot` expression, although the most common is
a previously user-defined function of the form f(x) or f(x,y). It must be
real-valued.
The names of the independent variables are set by the @ref{dummy} command,
or in the <ranges> part of the command (see below); by default, the first
two are called x and y.
Furthermore, the expression should depend on one or more variables whose
value is to be determined by the fitting procedure.
<datafile> is treated as in the `plot` command. All the @ref{datafile}
modifiers (`using`, @ref{every},...) except @ref{smooth} are applicable to @ref{fit}.
See @ref{datafile}.
The datafile contents can be interpreted flexibly by providing a `using`
qualifier as with plot commands. For example to generate the independent
variable x as the sum of columns 2 and 3, while taking z from column 6 and
requesting equal weights:
@example
fit ... using ($2+$3):6
@end example
In the absence of a `using` specification, the fit implicitly assumes
there is only a single independent variable. If the file itself, or the
using specification, contains only a single column of data, the line
number is taken as the independent variable.
If a `using` specification is given, there can be up to 12 independent
variables (and more if specially configured at compile time).
The `unitweights` option, which is the default, causes all data points to be
weighted equally. This can be changed by using the `errors` keyword to read
error estimates of one or more of the variables from the data file. These
error estimates are interpreted as the standard deviation s of the
corresponding variable value and used to compute a weight for the datum as
1/s**2.
In case of error estimates of the independent variables, these weights are
further multiplied by fitting function derivatives according to the
"effective variance method" (Jay Orear, Am. J. Phys., Vol. 50, 1982).
The `errors` keyword is to be followed by a comma-separated list of one or
more variable names for which errors are to be input; the dependent variable
z must always be among them, while independent variables are optional.
For each variable in this list, an additional column will be read from the
file, containing that variable's error estimate. Again, flexible
interpretation is possible by providing the `using` qualifier.
Note that the number of independent variables is thus implicitly given by the
total number of columns in the `using` qualifier, minus 1 (for the dependent
variable), minus the number of variables in the `errors` qualifier.
As an example, if one has 2 independent variables, and errors for the
first independent variable and the dependent variable, one uses
the `errors x,z` qualifier, and a `using` qualifier with 5 columns,
which are interpreted as x:y:z:sx:sz (where x and y are the independent
variables, z the dependent variable, and sx and sz the standard
deviations of x and z).
A few shorthands for the `errors` qualifier are available:
`yerrors` (for fits with 1 column of independent variable), and
`zerrors` (for the general case) are all equivalent to `errors z`,
indicating that there is a single extra column with errors of the
dependent variable.
`xyerrors`, for the case of 1 independent variable, indicates that there
are two extra columns, with errors of both the independent and the
dependent variable. In this case the errors on x and y are treated by
Orear's effective variance method.
Note that `yerror` and `xyerror` are similar in both form and interpretation
to the @ref{yerrorlines} and @ref{xyerrorlines} 2D plot styles.
With the command `set fit v4` the fit command syntax is compatible with
`gnuplot` version 4. In this case there must be two more `using`
qualifiers (z and s) than there are independent variables, unless there is
only one variable. `gnuplot` then uses the following formats, depending on
the number of columns given in the `using` specification:
@example
z # 1 independent variable (line number)
x:z # 1 independent variable (1st column)
x:z:s # 1 independent variable (3 columns total)
x:y:z:s # 2 independent variables (4 columns total)
x1:x2:x3:z:s # 3 independent variables (5 columns total)
x1:x2:x3:...:xN:z:s # N independent variables (N+2 columns total)
@end example
Please beware that this means that you have to supply z-errors s in a fit with
two or more independent variables. If you want unit weights you need to supply
them explicitly by using e.g. then format x:y:z:(1).
The dummy variable names may be changed when specifying a range as noted above.
The first range corresponds to the first `using` spec, and so on. A range may
also be given for z (the dependent variable), in which case data points for
which f(x,...) is out of the z range will not contribute to the residual being
minimized.
Multiple datasets may be simultaneously fit with functions of one
independent variable by making y a 'pseudo-variable', e.g., the dataline
number, and fitting as two independent variables. See @ref{multi-branch}.
The `via` qualifier specifies which parameters are to be optimized, either
directly, or by referencing a parameter file.
Examples:
@example
f(x) = a*x**2 + b*x + c
g(x,y) = a*x**2 + b*y**2 + c*x*y
set fit limit 1e-6
fit f(x) 'measured.dat' via 'start.par'
fit f(x) 'measured.dat' using 3:($7-5) via 'start.par'
fit f(x) './data/trash.dat' using 1:2:3 yerror via a, b, c
fit g(x,y) 'surface.dat' using 1:2:3 via a, b, c
fit a0 + a1*x/(1 + a2*x/(1 + a3*x)) 'measured.dat' via a0,a1,a2,a3
fit a*x + b*y 'surface.dat' using 1:2:3 via a,b
fit [*:*][yaks=*:*] a*x+b*yaks 'surface.dat' u 1:2:3 via a,b
@end example
@example
fit [][][t=*:*] a*x + b*y + c*t 'foo.dat' using 1:2:3:4 via a,b,c
@end example
@example
set dummy x1, x2, x3, x4, x5
h(x1,x2,x3,x4,s5) = a*x1 + b*x2 + c*x3 + d*x4 + e*x5
fit h(x1,x2,x3,x4,x5) 'foo.dat' using 1:2:3:4:5:6 via a,b,c,d,e
@end example
After each iteration step, detailed information about the current state
of the fit is written to the display. The same information about the
initial and final states is written to a log file, "fit.log". This file
is always appended to, so as to not lose any previous fit history; it
should be deleted or renamed as desired. By using the command
`set fit logfile`, the name of the log file can be changed.
If activated by using `set fit errorvariables`, the error for each fitted
parameter will be stored in a variable named like the parameter, but with
"_err" appended. Thus the errors can be used as input for further
computations.
If `set fit prescale` is activated, fit parameters are prescaled by
their initial values. This helps the Marquardt-Levenberg routine
converge more quickly and reliably in cases where parameters differ
in size by several orders of magnitude.
The fit may be interrupted by pressing Ctrl-C (Ctrl-Break in wgnuplot).
After the current iteration completes, you have the option to
(1) stop the fit and accept the current parameter values,
(2) continue the fit,
(3) execute a `gnuplot` command as specified by `set fit script` or the
environment variable `FIT_SCRIPT`. The default is @ref{replot}, so if you
had previously plotted both the data and the fitting function in one graph,
you can display the current state of the fit.
Once @ref{fit} has finished, the @ref{fit} command may be used to store final
values in a file for subsequent use as a parameter file. See @ref{fit}
for details.
@menu
* adjustable_parameters::
* short_introduction::
* error_estimates::
* control::
* error_recovery::
* multi-branch::
* starting_values::
* time_data::
* tips::
@end menu
@node adjustable_parameters, short_introduction, fit, fit
@subsection adjustable parameters
@c ?commands fit parameters
@c ?fit parameters
@c ?commands fit adjustable_parameters
@c ?fit adjustable_parameters
@cindex fit_parameters
There are two ways that `via` can specify the parameters to be adjusted,
either directly on the command line or indirectly, by referencing a
parameter file. The two use different means to set initial values.
Adjustable parameters can be specified by a comma-separated list of variable
names after the `via` keyword. Any variable that is not already defined
is created with an initial value of 1.0. However, the fit is more likely
to converge rapidly if the variables have been previously declared with more
appropriate starting values.
In a parameter file, each parameter to be varied and a corresponding initial
value are specified, one per line, in the form
@example
varname = value
@end example
Comments, marked by '#', and blank lines are permissible. The
special form
@example
varname = value # FIXED
@end example
means that the variable is treated as a 'fixed parameter', initialized by the
parameter file, but not adjusted by @ref{fit}. For clarity, it may be useful to
designate variables as fixed parameters so that their values are reported by
@ref{fit}. The keyword `# FIXED` has to appear in exactly this form.
@node short_introduction, error_estimates, adjustable_parameters, fit
@subsection short introduction
@c ?commands fit beginners_guide
@c ?fit beginners_guide
@c ?fit guide
@cindex fitting
@ref{fit} is used to find a set of parameters that 'best' fits your data to your
user-defined function. The fit is judged on the basis of the sum of the
squared differences or 'residuals' (SSR) between the input data points and
the function values, evaluated at the same places. This quantity is often
called 'chisquare' (i.e., the Greek letter chi, to the power of 2). The
algorithm attempts to minimize SSR, or more precisely the weighted sum of
squared residuals (WSSR), for which the residuals are weighted by the input
data errors before being squared; see `fit error_estimates` for details.
That's why it is called 'least-squares fitting'. Let's look at an example
to see what is meant by 'non-linear', but first we had better go over some
terms. Here it is convenient to use z as the dependent variable for
user-defined functions of either one independent variable, z=f(x), or two
independent variables, z=f(x,y). A parameter is a user-defined variable
that @ref{fit} will adjust, i.e., an unknown quantity in the function
declaration. Linearity/non-linearity refers to the relationship of the
dependent variable, z, to the parameters which @ref{fit} is adjusting, not of
z to the independent variables, x and/or y. (To be technical, the
second @{and higher@} derivatives of the fitting function with respect to
the parameters are zero for a linear least-squares problem).
For linear least-squares the user-defined function will be a sum of simple
functions, not involving any parameters, each multiplied by one parameter.
Nonlinear least-squares handles more complicated functions in which parameters
can be used in a large number of ways. An example that illustrates the
difference between linear and nonlinear least-squares is the Fourier series.
One member may be written as
@example
z=a*sin(c*x) + b*cos(c*x).
@end example
If a and b are the unknown parameters and c is constant, then estimating
values of the parameters is a linear least-squares problem. However, if
c is an unknown parameter, the problem is nonlinear.
In the linear case, parameter values can be determined by comparatively
simple linear algebra, in one direct step. However the linear special case
is also solved along with more general nonlinear problems by the iterative
procedure that `gnuplot` uses. @ref{fit} attempts to find the minimum by doing
a search. Each step (iteration) calculates WSSR with a new set of parameter
values. The Marquardt-Levenberg algorithm selects the parameter values for
the next iteration. The process continues until a preset criterion is met,
either (1) the fit has "converged" (the relative change in WSSR is less than
a certain limit, see `set fit limit`), or (2) it reaches a preset iteration
count limit (see `set fit maxiter`). The fit may also be interrupted
and subsequently halted from the keyboard (see @ref{fit}). The user variable
FIT_CONVERGED contains 1 if the previous fit command terminated due to
convergence; it contains 0 if the previous fit terminated for any other
reason. FIT_NITER contains the number of iterations that were done during the last fit.
Often the function to be fitted will be based on a model (or theory) that
attempts to describe or predict the behaviour of the data. Then @ref{fit} can
be used to find values for the free parameters of the model, to determine
how well the data fits the model, and to estimate an error range for each
parameter. See `fit error_estimates`.
Alternatively, in curve-fitting, functions are selected independent of
a model (on the basis of experience as to which are likely to describe
the trend of the data with the desired resolution and a minimum number
of parameters*functions.) The @ref{fit} solution then provides an analytic
representation of the curve.
However, if all you really want is a smooth curve through your data points,
the @ref{smooth} option to `plot` may be what you've been looking for rather
than @ref{fit}.
@node error_estimates, control, short_introduction, fit
@subsection error estimates
@c ?commands fit error_estimates
@c ?fit error_estimates
@c ?fit errors
In @ref{fit}, the term "error" is used in two different contexts, data error
estimates and parameter error estimates.
Data error estimates are used to calculate the relative weight of each data
point when determining the weighted sum of squared residuals, WSSR or
chisquare. They can affect the parameter estimates, since they determine
how much influence the deviation of each data point from the fitted function
has on the final values. Some of the @ref{fit} output information, including
the parameter error estimates, is more meaningful if accurate data error
estimates have been provided.
The `statistical overview` describes some of the @ref{fit} output and gives some
background for the 'practical guidelines'.
@menu
* statistical_overview::
* practical_guidelines::
@end menu
@node statistical_overview, practical_guidelines, error_estimates, error_estimates
@subsubsection statistical overview
@c ?commands fit error statistical_overview
@cindex statistical_overview
The theory of non-linear least-squares is generally described in terms
of a normal distribution of errors, that is, the input data is assumed to be
a sample from a population having a given mean and a Gaussian (normal)
distribution about the mean with a given standard deviation. For a sample of
sufficiently large size, and knowing the population standard deviation, one
can use the statistics of the chisquare distribution to describe a "goodness
of fit" by looking at the variable often called "chisquare". Here, it is
sufficient to say that a reduced chisquare (chisquare/degrees of freedom,
where degrees of freedom is the number of datapoints less the number of
parameters being fitted) of 1.0 is an indication that the weighted sum of
squared deviations between the fitted function and the data points is the
same as that expected for a random sample from a population characterized by
the function with the current value of the parameters and the given standard
deviations.
If the standard deviation for the population is not constant, as in counting
statistics where variance = counts, then each point should be individually
weighted when comparing the observed sum of deviations and the expected sum
of deviations.
At the conclusion @ref{fit} reports 'stdfit', the standard deviation of the fit,
which is the rms of the residuals, and the variance of the residuals, also
called 'reduced chisquare' when the data points are weighted. The number of
degrees of freedom (the number of data points minus the number of fitted
parameters) is used in these estimates because the parameters used in
calculating the residuals of the datapoints were obtained from the same data.
If the data points have weights, `gnuplot` calculates the so-called p-value,
i.e. one minus the cumulative distribution function of the
chisquare-distribution for the number of degrees of freedom and the resulting
chisquare, see `fit practical_guidelines`.
These values are exported to the variables
@example
FIT_NDF = Number of degrees of freedom
FIT_WSSR = Weighted sum-of-squares residual
FIT_STDFIT = sqrt(WSSR/NDF)
FIT_P = p-value
@end example
To estimate confidence levels for the parameters, one can use the minimum
chisquare obtained from the fit and chisquare statistics to determine the
value of chisquare corresponding to the desired confidence level, but
considerably more calculation is required to determine the combinations of
parameters which produce such values.
Rather than determine confidence intervals, @ref{fit} reports parameter error
estimates which are readily obtained from the variance-covariance matrix
after the final iteration. By convention, these estimates are called
"standard errors" or "asymptotic standard errors", since they are calculated
in the same way as the standard errors (standard deviation of each parameter)
of a linear least-squares problem, even though the statistical conditions for
designating the quantity calculated to be a standard deviation are not
generally valid for a nonlinear least-squares problem. The asymptotic
standard errors are generally over-optimistic and should not be used for
determining confidence levels, but are useful for qualitative purposes.
The final solution also produces a correlation matrix indicating correlation of
parameters in the region of the solution; The main diagonal elements,
autocorrelation, are always 1; if all parameters were independent, the
off-diagonal elements would be nearly 0. Two variables which completely
compensate each other would have an off-diagonal element of unit magnitude,
with a sign depending on whether the relation is proportional or inversely
proportional. The smaller the magnitudes of the off-diagonal elements, the
closer the estimates of the standard deviation of each parameter would be to
the asymptotic standard error.
@node practical_guidelines, , statistical_overview, error_estimates
@subsubsection practical guidelines
@c ?commands fit error practical_guidelines
@c ?fit practical_guidelines
@c ?fit guidelines
If you have a basis for assigning weights to each data point, doing so lets
you make use of additional knowledge about your measurements, e.g., take into
account that some points may be more reliable than others. That may affect
the final values of the parameters.
Weighting the data provides a basis for interpreting the additional @ref{fit}
output after the last iteration. Even if you weight each point equally,
estimating an average standard deviation rather than using a weight of 1
makes WSSR a dimensionless variable, as chisquare is by definition.
Each fit iteration will display information which can be used to evaluate
the progress of the fit. (An '*' indicates that it did not find a smaller
WSSR and is trying again.) The 'sum of squares of residuals', also called
'chisquare', is the WSSR between the data and your fitted function; @ref{fit}
has minimized that. At this stage, with weighted data, chisquare is expected
to approach the number of degrees of freedom (data points minus parameters).
The WSSR can be used to calculate the reduced chisquare (WSSR/ndf) or stdfit,
the standard deviation of the fit, sqrt(WSSR/ndf). Both of these are
reported for the final WSSR.
If the data are unweighted, stdfit is the rms value of the deviation of the
data from the fitted function, in user units.
If you supplied valid data errors, the number of data points is large enough,
and the model is correct, the reduced chisquare should be about unity. (For
details, look up the 'chi-squared distribution' in your favorite statistics
reference.) If so, there are additional tests, beyond the scope of this
overview, for determining how well the model fits the data.
A reduced chisquare much larger than 1.0 may be due to incorrect data error
estimates, data errors not normally distributed, systematic measurement
errors, 'outliers', or an incorrect model function. A plot of the residuals,
e.g., `plot 'datafile' using 1:($2-f($1))`, may help to show any systematic
trends. Plotting both the data points and the function may help to suggest
another model.
Similarly, a reduced chisquare less than 1.0 indicates WSSR is less than that
expected for a random sample from the function with normally distributed
errors. The data error estimates may be too large, the statistical
assumptions may not be justified, or the model function may be too general,
fitting fluctuations in a particular sample in addition to the underlying
trends. In the latter case, a simpler function may be more appropriate.
The p-value of the fit is one minus the cumulative distribution function of
the chisquare-distribution for the number of degrees of freedom and the
resulting chisquare. This can serve as a measure of the goodness-of-fit.
The range of the p-value is between zero and one. A very small or large
p-value indicates that the model does not describe the data and its errors
well. As described above, this might indicate a problem with the data, its
errors or the model, or a combination thereof. A small p-value might
indicate that the errors have been underestimated and the errors of the
final parameters should thus be scaled. See also `set fit errorscaling`.
You'll have to get used to both @ref{fit} and the kind of problems you apply it
to before you can relate the standard errors to some more practical estimates
of parameter uncertainties or evaluate the significance of the correlation
matrix.
Note that @ref{fit}, in common with most nonlinear least-squares implementations,
minimizes the weighted sum of squared distances (y-f(x))**2. It does not
provide any means to account for "errors" in the values of x, only in y.
Also, any "outliers" (data points outside the normal distribution of the model)
will have an exaggerated effect on the solution.
@node control, error_recovery, error_estimates, fit
@subsection control
@c ?commands fit control
@c ?fit control
@cindex FIT_LOG
@cindex FIT_SCRIPT
There are two environment variables that can be defined to affect @ref{fit}.
The environment variables must be defined before `gnuplot` is executed;
how to do so depends on your operating system.
@example
FIT_LOG
@end example
changes the name (and/or path) of the file to which the fit log will be
written. The default is to write "fit.log" in the current working directory.
This can be overwritten at run time using the command `set fit logfile`.
@example
FIT_SCRIPT
@end example
specifies a command that may be executed after an user interrupt. The default
is @ref{replot}, but a `plot` or `load` command may be useful to display a plot
customized to highlight the progress of the fit.
This can be changed at run time using `set fit script`.
For many other run time adjustments to way fit works, see @ref{fit}.
@node error_recovery, multi-branch, control, fit
@subsection error recovery
@c ?commands fit error_recovery
@c ?fit error_recovery
Starting with gnuplot version 6, the @ref{fit} command always returns to the
next command input line regardless of the success or failure of fitting.
This allows scripted recovery from fit errors. The variable FIT_ERROR is
set to 0 on success, non-zero on error. This example plots however many
of five data sets can be successfully fit. Failure for data set 2 would
not prevent fitting data sets 3 through 5.
@example
do for [i=1:5] @{
DATA = sprintf("Data_%05d.dat", i)
fit f(x) DATA via a,b,c
if (FIT_ERROR || !FIT_CONVERGED) @{
print "Fit failed for ", DATA
continue
@}
set output sprintf("dataset_%05.png", i)
plot DATA, f(x)
unset output
@}
@end example
@node multi-branch, starting_values, error_recovery, fit
@subsection multi-branch
@c ?commands fit multi-branch
@c ?fit multi-branch
@cindex multi-branch
@cindex branch
In multi-branch fitting, multiple data sets can be simultaneously fit with
functions of one independent variable having common parameters by minimizing
the total WSSR. The function and parameters (branch) for each data set are
selected by using a 'pseudo-variable', e.g., either the dataline number (a
'column' index of -1) or the datafile index (-2), as the second independent
variable.
Example: Given two exponential decays of the form, z=f(x), each describing
a different data set but having a common decay time, estimate the values of
the parameters. If the datafile has the format x:z:s, then
@example
f(x,y) = (y==0) ? a*exp(-x/tau) : b*exp(-x/tau)
fit f(x,y) 'datafile' using 1:-2:2:3 via a, b, tau
@end example
For a more complicated example, see the file "hexa.fnc" used by the
"fit.dem" demo.
Appropriate weighting may be required since unit weights may cause one
branch to predominate if there is a difference in the scale of the dependent
variable. Fitting each branch separately, using the multi-branch solution
as initial values, may give an indication as to the relative effect of each
branch on the joint solution.
@node starting_values, time_data, multi-branch, fit
@subsection starting values
@c ?commands fit starting_values
@c ?fit starting_values
@cindex starting_values
Nonlinear fitting is not guaranteed to converge to the global optimum (the
solution with the smallest sum of squared residuals, SSR), and can get stuck
at a local minimum. The routine has no way to determine that; it is up to
you to judge whether this has happened.
@ref{fit} may, and often will get "lost" if started far from a solution, where
SSR is large and changing slowly as the parameters are varied, or it may
reach a numerically unstable region (e.g., too large a number causing a
floating point overflow) which results in an "undefined value" message
or `gnuplot` halting.
To improve the chances of finding the global optimum, you should set the
starting values at least roughly in the vicinity of the solution, e.g.,
within an order of magnitude, if possible. The closer your starting values
are to the solution, the less chance of stopping at a false minimum. One way
to find starting values is to plot data and the fitting function on the same
graph and change parameter values and @ref{replot} until reasonable similarity
is reached. The same plot is also useful to check whether the fit found a
false minimum.
Of course finding a nice-looking fit does not prove there is no "better" fit
(in either a statistical sense, characterized by an improved goodness-of-fit
criterion, or a physical sense, with a solution more consistent with the
model.) Depending on the problem, it may be desirable to @ref{fit} with various
sets of starting values, covering a reasonable range for each parameter.
@node time_data, tips, starting_values, fit
@subsection time data
@c ?commands fit time_data
@c ?fit time_data
In fitting time data it is important to remember that gnuplot represents
time as seconds since 1 January 1970. For example if you wanted to fit a
quadratic model for the time dependence of something measured over the course
of one day in 2023, you might expect that it could be done using
@example
T(x) = a + b*x + c*x*x
set xdata time
fit T(x) 'hits.dat' using 1:3 via a,b,c
@end example
This will probably fail, because internally the x values corresponding to
that one day will have a range something like [1.67746e+09 : 1.67754e+09].
The fractional change in x across the measured data will be only about
1.e-05 and to guarantee convergence you would probably need many
decimal places of accuracy in the initial parameter estimates.
One solution is to recast the problem as change in time since the start
of measurement.
@example
set xdata time # data format "27-02-2023 12:00:00 measurement"
timefmt = "%d-%m-%Y %H:%M:%S"
set timefmt timefmt
t0 = strptime( timefmt, "27-02-2023 00:00:00" )
fit T(x) 'temperature.dat' using ($1-t0):3 via a,b,c
@end example
This shifts the range of the data to [0 : 86400], which is more tractable.
Another possibility in this case is to ignore the date in column 1 and use
relative time formats (tH/tM/tS) applied to column 2.
@example
set timefmt "%tH:%tM:%tS"
fit T(x) 'temperature.dat' using 2:3 via a,b,c
@end example
@node tips, , time_data, fit
@subsection tips
@c ?commands fit tips
@c ?fit tips
@cindex tips
Here are some tips to keep in mind to get the most out of @ref{fit}. They're not
very organized, so you'll have to read them several times until their essence
has sunk in.
The two forms of the `via` argument to @ref{fit} serve two largely distinct
purposes. The `via "file"` form is best used for (possibly unattended) batch
operation, where you supply the starting parameter values in a file.
The `via var1, var2, ...` form is best used interactively, where the command
history mechanism may be used to edit the list of parameters to be fitted or
to supply new startup values for the next try. This is particularly useful
for hard problems, where a direct fit to all parameters at once won't work
without good starting values. To find such, you can iterate several times,
fitting only some of the parameters, until the values are close enough to the
goal that the final fit to all parameters at once will work.
Make sure that there is no mutual dependency among parameters of the function
you are fitting. For example, don't try to fit a*exp(x+b), because
a*exp(x+b)=a*exp(b)*exp(x). Instead, fit either a*exp(x) or exp(x+b).
A technical issue: The larger the ratio of the largest and the
smallest absolute parameter values, the slower the fit will converge.
If the ratio is close to or above the inverse of the machine floating
point precision, it may take next to forever to converge, or refuse
to converge at all. You will either have to adapt your function to avoid
this, e.g., replace 'parameter' by '1e9*parameter' in the function
definition, and divide the starting value by 1e9 or use `set fit prescale`
which does this internally according to the parameter starting values.
If you can write your function as a linear combination of simple functions
weighted by the parameters to be fitted, by all means do so. That helps a
lot, because the problem is no longer nonlinear and should converge with only
a small number of iterations, perhaps just one.
Some prescriptions for analysing data, given in practical experimentation
courses, may have you first fit some functions to your data, perhaps in a
multi-step process of accounting for several aspects of the underlying
theory one by one, and then extract the information you really wanted from
the fitting parameters of those functions. With @ref{fit}, this may often be
done in one step by writing the model function directly in terms of the
desired parameters. Transforming data can also quite often be avoided,
though sometimes at the cost of a more difficult fit problem. If you think
this contradicts the previous paragraph about simplifying the fit function,
you are correct.
A "singular matrix" message indicates that this implementation of the
Marquardt-Levenberg algorithm can't calculate parameter values for the next
iteration. Try different starting values, writing the function in another
form, or a simpler function.
Finally, a nice quote from the manual of another fitting package (fudgit),
that kind of summarizes all these issues: "Nonlinear fitting is an art!"
@node function_blocks, help, fit, Commands
@section function blocks
@c ?commands function
@c ?function blocks
@cindex functionblocks
The `function` command signals the definition of a here-document containing
a named block of gnuplot code that can be called as a function.
As with data blocks, the name of a function block must begin with a '$'.
Up to nine named parameters may be specified as part of the definition.
These names may be used inside the function block as local variables.
See `local` and `scope`.
Once the function block is defined, you can invoke it by name anywhere that
a normal function could be used. If the return value is not relevant, the
function block may be invoked by an "evaluate" command rather than as part
of an assignment expression.
Example:
@example
function $sinc(arg) << EOF
if (arg == 0) @{ return 1.0 @}
return sin(arg) / arg
EOF
@end example
@example
gnuplot> plot $sinc(x) with lines title "sinc(x) as a function block"
@end example
It is not necessary to specify a list of named arguments to a function block
at the time it is declared. The number and values of arguments to the function
passed from the command line can be be accessed from inside the function block
as an integer variable ARGC and a corresponding array ARGV[ARGC]. See `ARGV`.
This allows defining a function block that can operate on a variable number
of arguments. Unlike loading a file via a @ref{call} statement, arguments are
not repackaged as string variables (e.g. ARG1).
Example:
@example
function $max << EOF
local max = real("-Inf")
if (ARGC == 0) @{ return NaN @}
do for [i=1:ARGC] @{
if (max < ARGV[i]) @{
max = ARGV[i]
@}
@}
return max
EOF
gnuplot> foo = $max( f(A), 2.0, C, Array[3] )
gnuplot> baz = $max( foo, 100. )
@end example
The primary motivation for function block support is to allow definition of
complicated functions directly in gnuplot. Execution is of course slower
than if the same function were coded in C or Fortran, but this is acceptable
for many purposes. If execution speed matters then the function can be
implemented later as a plugin instead (see `plugins`).
A second use for function blocks is to allow execution of gnuplot commands in
a context they otherwise could not appear. Suppose for example you want to
plot data from two csv files, but one file uses comma-separated fields while
the other uses semicolon-separated fields. Normally this property would have
been set by a previous @ref{datafile} command and would have to match all
files used by the plot command. However we can define a function block to
invoke as a definition immediately before each file is referenced in the plot.
@example
function $set_csv(char) << EOF
set datafile separator char
EOF
plot tmp=$set_csv(",") FILE1, tmp=$set_csv(";") FILE2
@end example
Limitations:
@itemize @bullet
@item
Data blocks and function blocks cannot be defined inside a function block.
@item
Pseudofile '-' cannot be used to read data inside a function block.
@item
These commands cannot be executed inside a function block:
@example
@ref{reset}, @ref{shell}, `!<shell command>`.
@end example
@item
A `plot`, @ref{replot}, `splot`, @ref{refresh}, `stats`, @ref{vfill}, or @ref{fit} command
is accepted in a function block only if none of those commands is already
in progress. E.g. you cannot use `stats` in a function block called by a
`plot` command, you cannot invoke `plot` from inside a @ref{fit} command, etc.
@end itemize
A non-trivial example of using function blocks to implement and plot
a 15-term Lanczos approximation for the complex lngamma function is
provided in the demo collection as
@uref{http://www.gnuplot.info/demo_6.0/function_block.html,function_block.dem
}
The function block implementation is slower by a factor of roughly 25 compared
to the built-in lnGamma function using the same algorithm coded directly in C.
Nevertheless it is still fast enough for 3D interactive rotation.
Use of function blocks is EXPERIMENTAL.
Details may change before inclusion in a release version.
@node help, history, function_blocks, Commands
@section help
@c ?commands help
@cindex help
@cmindex help
The @ref{help} command displays built-in help. To specify information on a
particular topic use the syntax:
@example
help @{<topic>@}
@end example
If <topic> is not specified, a short message is printed about `gnuplot`.
After help for the requested topic is given, a menu of subtopics is given;
help for a subtopic may be requested by typing its name, extending the help
request. After that subtopic has been printed, the request may be extended
again or you may go back one level to the previous topic. Eventually, the
`gnuplot` command line will return.
If a question mark (?) is given as the topic, the list of topics currently
available is printed on the screen.
@node history, if, help, Commands
@section history
@c ?commands history
@cindex history
@cmindex history
The @ref{history} command prints or saves previous commands in the history list,
or reexecutes a previous entry in the list. To modify the behavior of this
command or the location of the saved history file, see @ref{history}.
Input lines with @ref{history} as their first command are not stored in the
command history.
Examples:
@example
history # show the complete history
history 5 # show last 5 entries in the history
history quiet 5 # show last 5 entries without entry numbers
history "hist.gp" # write the complete history to file hist.gp
history "hist.gp" append # append the complete history to file hist.gp
history 10 "hist.gp" # write last 10 commands to file hist.gp
history 10 "|head -5 >>diary.gp" # write 5 history commands using pipe
history ?load # show all history entries starting with "load"
history ?"set c" # like above, several words enclosed in quotes
hist !"set xr" # like above, several words enclosed in quotes
hist !55 # reexecute the command at history entry 55
@end example
@node if, for, history, Commands
@section if
@c ?commands if
@cindex if
@cmindex if
Syntax:
@example
if (<condition>) @{ <commands>;
<commands>
<commands>
@} else if (<condition>) @{
<commands>
@} else @{
<commands>
@}
@end example
This version of gnuplot supports block-structured if/else statements. If the
keyword @ref{if} or `else` is immediately followed by an opening "@{", then
conditional execution applies to all statements, possibly on multiple input
lines, until a matching "@}" terminates the block. If commands may be nested.
Prior to gnuplot version 5 the scope of if/else commands was limited to a
single input line. Now a multi-line clause may be enclosed in curly brackets.
The old syntax is still honored but cannot be used inside a bracketed clause.
Old syntax:
@example
if (<condition>) <command-line> [; else if (<condition>) ...; else ...]
@end example
If no opening "@{" follows the @ref{if} keyword, the command(s) in <command-line>
will be executed if <condition> is true (non-zero) or skipped if <condition> is
false (zero). Either case will consume commands on the input line until the
end of the line or an occurrence of `else`. Note that use of `;` to allow
multiple commands on the same line will _not_ end the conditionalized commands.
@node for, import, if, Commands
@section for
@cindex for
@cmindex for
The `plot`, `splot`, `set` and @ref{unset} commands may optionally contain an
iteration clause. This has the effect of executing the basic command
multiple times, each time re-evaluating any expressions that make use of the
iteration control variable. Iteration of arbitrary command sequences can be
requested using the `do` command.
Two forms of iteration clause are currently supported:
@example
for [intvar = start:end@{:increment@}]
for [stringvar in "A B C D"]
@end example
Examples:
@example
plot for [filename in "A.dat B.dat C.dat"] filename using 1:2 with lines
plot for [basename in "A B C"] basename.".dat" using 1:2 with lines
set for [i = 1:10] style line i lc rgb "blue"
unset for [tag = 100:200] label tag
@end example
Nested iteration is supported:
@example
set for [i=1:9] for [j=1:9] label i*10+j sprintf("%d",i*10+j) at i,j
@end example
See additional documentation for @ref{iteration}, `do`.
@node import, load, for, Commands
@section import
@c ?commands import
@cindex import
@cmindex import
@cindex plugins
The @ref{import} command associates a user-defined function name with a function
exported by an external shared object. This constitutes a plugin mechanism
that extends the set of functions available in gnuplot.
Syntax:
@example
import func(x[,y,z,...]) from "sharedobj[:symbol]"
@end example
Examples:
@example
# make the function myfun, exported by "mylib.so" or "mylib.dll"
# available for plotting or numerical calculation in gnuplot
import myfun(x) from "mylib"
import myfun(x) from "mylib:myfun" # same as above
@end example
@example
# make the function theirfun, defined in "theirlib.so" or "theirlib.dll"
# available under a different name
import myfun(x,y,z) from "theirlib:theirfun"
@end example
The program extends the name given for the shared object by either ".so" or
".dll" depending on the operating system, and searches for it first as a full
path name and then as a path relative to the current directory. The operating
system itself may also search any directories in LD_LIBRARY_PATH or
DYLD_LIBRARY_PATH. See `plugins`.
@node load, local, import, Commands
@section load
@c ?commands load
@cindex load
@cmindex load
The `load` command executes each line of the specified input file as if it
had been typed in interactively. Files created by the @ref{save} command can
later be `load`ed. Any text file containing valid gnuplot commands can be
executed by a `load` command. Files being loaded may themselves contain
`load` or @ref{call} commands. To pass arguments to a loaded file, see @ref{call}.
Syntax:
@example
load "<input-file>"
load $datablock
@end example
The name of the input file must be enclosed in quotes.
The special filename "-" may be used to `load` commands from standard input.
This allows a `gnuplot` command file to accept some commands from standard
input. Please see help for `batch/interactive` for more details.
On systems that support a popen function, the load file can be read from
a pipe by starting the file name with a '<'.
Examples:
@example
load 'work.gnu'
load "func.dat"
load "< loadfile_generator.sh"
@end example
The `load` command is performed implicitly on any file names given as
arguments to `gnuplot`. These are loaded in the order specified, and
then `gnuplot` exits.
EXPERIMENTAL: It is also possible to execute commands from lines of text
stored internally. See `function blocks`. A function block may be defined
in-line or in an external file. Once the function block has been defined
the commands may be executed repeatedly using @ref{evaluate} on the internal
copy rather than reloading the file.
@node local, lower, load, Commands
@section local
@cindex local
@cmindex local
@c ?commands local
Syntax:
@example
local foo = <expression>
local array foo[size]
@end example
The `local` keyword introduces declaration of a variable whose scope
is limited to the execution of the code block in which it is declared.
Declaration is optional, but without it all variables are global.
If the name of a local variable duplicates the name of a global variable,
the global variable is shadowed until exit from the local scope.
See `scope`.
Local declarations may be used to prevent a global variable from being
unintentionally overwritten by a @ref{call} or `load` statement. They are
particularly useful inside a function block. The `local` command is also
valid inside the code block in curly brackets following an @ref{if}, `else`,
`do for`, or `while` statement.
Example: Suppose you want to write a script "plot_all_data.gp" containing
commands that plot a bunch of data sets. You want to call this convenience
script from the command line or from other scripts without worrying that it
trashes any variables with names "file" or "files" or "dataset" or "outfile".
The variable "file" is inherently local because it is an iteration variable
(see `scope`) but the other three names need keyword `local` to protect them.
plot_all_data.gp:
@example
local files = system("ls -1 *.dat")
do for [file in files] @{
local dataset = file[1:strstrt(file,".dat")-1]
local outfile = dataset . ".png"
set output outfile
plot file with lines title dataset
@}
unset output
@end example
@node lower, pause, local, Commands
@section lower
See @ref{raise}.
@node pause, plot, lower, Commands
@section pause
@c ?commands pause
@cindex pause
@cmindex pause
@c ?pause mouse
The `pause` command displays any text associated with the command and then
waits a specified amount of time or until the carriage return is pressed.
`pause` is especially useful in conjunction with `load` files.
Syntax:
@example
pause <time> @{"<string>"@}
pause mouse @{<endcondition>@}@{, <endcondition>@} @{"<string>"@}
pause mouse close
@end example
<time> may be any constant or floating-point expression. `pause -1` will wait
until a carriage return is hit, zero (0) won't pause at all, and a positive
number will wait the specified number of seconds.
If the current terminal supports `mousing`, then `pause mouse` will terminate
on either a mouse click or on ctrl-C. For all other terminals, or if mousing
is not active, `pause mouse` is equivalent to `pause -1`.
If one or more end conditions are given after `pause mouse`, then any one of
the conditions will terminate the pause. The possible end conditions are
`keypress`, `button1`, `button2`, `button3`, `close`, and `any`.
If the pause terminates on a keypress, then the ascii value of the key pressed
is returned in MOUSE_KEY. The character itself is returned as a one character
string in MOUSE_CHAR. Hotkeys (bind command) are disabled if keypress is one of
the end conditions. Zooming is disabled if button3 is one of the end
conditions.
In all cases the coordinates of the mouse are returned in variables MOUSE_X,
MOUSE_Y, MOUSE_X2, MOUSE_Y2. See `mouse variables`.
Note: Since `pause` communicates with the operating system rather than the
graphics, it may behave differently with different device drivers (depending
upon how text and graphics are mixed).
Examples:
@example
pause -1 # Wait until a carriage return is hit
pause 3 # Wait three seconds
pause -1 "Hit return to continue"
pause 10 "Isn't this pretty? It's a cubic spline."
pause mouse "Click any mouse button on selected data point"
pause mouse keypress "Type a letter from A-F in the active window"
pause mouse button1,keypress
pause mouse any "Any key or button will terminate"
@end example
The variant "pause mouse key" will resume after any keypress in the active
plot window. If you want to wait for a particular key to be pressed, you can
use a loop such as:
@example
print "I will resume after you hit the Tab key in the plot window"
plot <something>
pause mouse key
while (MOUSE_KEY != 9) @{
pause mouse key
@}
@end example
@menu
* pause_mouse_close::
* pseudo-mousing_during_pause::
@end menu
@node pause_mouse_close, pseudo-mousing_during_pause, pause, pause
@subsection pause mouse close
@c ?commands pause mouse close
@c ?pause mouse close
@c ?pause close
The command `pause mouse close` is a specific example of pausing to wait for
an external event. In this case the program waits for a "close" event from
the plot window. Exactly how to generate such an event varies with your
desktop environment and configuration, but usually you can close the plot
window by clicking on some widget on the window border or by typing
a hot-key sequence such as <alt><F4> or <ctrl>q. If you are unsure whether
a suitable widget or hot-key is available to the user, you may also want to
define a hot-key sequence using gnuplot's own mechanism. See `bind`.
The command sequence below may be useful when running gnuplot from a script
rather than from the command line.
@example
plot <...whatever...>
bind all "alt-End" "exit gnuplot"
pause mouse close
@end example
@node pseudo-mousing_during_pause, , pause_mouse_close, pause
@subsection pseudo-mousing during pause
@c ?commands pause pseudo-mousing
@cindex pseudo-mousing
Some terminals use the same window for text entry and graphical display,
including terminal types `dumb`, `sixel`, `kitty`, and `domterm`. These
terminals do not currently support mousing per se, but during a `pause mouse`
command they interpret keystrokes in the same way that a mousing terminal
would. E.g. left/right/up/down arrow keys change the view angle of 3D plots
and perform incremental pan/zoom for 2D plots, `l` toggles log-scale axes,
`a` autoscales the current plot, `h` displays a list of key bindings.
A carriage return terminates the `pause` and restores normal command line
processing.
@node plot, print, pause, Commands
@section plot
@c ?commands plot
@cindex plot
@cmindex plot
`plot` and `splot` are the primary commands for drawing plots with `gnuplot`.
They offer many different graphical representations for functions and data.
`plot` is used to draw 2D functions and data.
`splot` draws 2D projections of 3D surfaces and data.
Syntax:
@example
plot @{<ranges>@} <plot-element> @{, <plot-element>, <plot-element>@}
@end example
Each plot element consists of a definition, a function, or a data source
together with optional properties or modifiers:
@example
plot-element:
@{<iteration>@}
<definition> | @{sampling-range@} <function> | <data source>
| keyentry
@{axes <axes>@} @{<title-spec>@}
@{with <style>@}
@end example
The graphical representation of each plot element is determined by the keyword
`with`, e.g. `with lines` or @ref{boxplot}. See `plotting styles`.
The data to be plotted is either generated by a function (two functions if in
parametric mode), read from a data file, read from a named data block that
was defined previously, or extracted from an array. Multiple datafiles,
data blocks, arrays, and/or functions may be plotted in a single plot command
separated by commas.
Many additional keywords are specific to data plots.
See @ref{datafile}.
Also see `data`, `inline data`, @ref{functions}.
A plot-element that contains the definition of a function or variable does not
create any visible output, see third example below.
Examples:
@example
plot sin(x)
plot sin(x), cos(x)
plot f(x) = sin(x*a), a = .2, f(x), a = .4, f(x)
plot "datafile.1" with lines, "datafile.2" with points
plot [t=1:10] [-pi:pi*2] tan(t), \
"data.1" using (tan($2)):($3/$4) smooth csplines \
axes x1y2 notitle with lines 5
plot for [datafile in "spinach.dat broccoli.dat"] datafile
@end example
See also `show plot`.
@menu
* axes::
* binary::
* data::
* functions::
* parametric::
* ranges::
* sampling::
* for_loops_in_plot_command::
* title::
* with::
@end menu
@node axes, binary, plot, plot
@subsection axes
@c ?commands plot axes
@c ?plot axes
@cindex axes
There are four possible sets of axes available; the keyword <axes> is used to
select the axes for which a particular line should be scaled. `x1y1` refers
to the axes on the bottom and left; `x2y2` to those on the top and right;
`x1y2` to those on the bottom and right; and `x2y1` to those on the top and
left. Ranges specified on the `plot` command apply only to the first set of
axes (bottom left).
@node binary, data, axes, plot
@subsection binary
@cindex binary
@c ?data binary
@c ?datafile binary
@c ?plot datafile binary
BINARY DATA FILES:
It is necessary to provide the keyword @ref{binary} after the filename.
Adequate details of the file format must be given on the command line or
extracted from the file itself for a supported binary @ref{filetype}.
In particular, there are two structures for binary files, binary matrix
format and binary general format.
The @ref{matrix} format contains a two dimensional array of 32 bit IEEE
float values plus an additional column and row of coordinate values. In the
`using` specifier of a plot command, column 1 refers to the matrix row
coordinate, column 2 refers to the matrix column coordinate, and column 3
refers to the value stored in the array at those coordinates.
The @ref{general} format contains an arbitrary number of columns for which
information must be specified at the command line. For example, `array`,
@ref{record}, `format` and `using` can indicate the size, format and dimension
of data. There are a variety of useful commands for skipping file headers
and changing endianess. There are a set of commands for positioning and
translating data since often coordinates are not part of the file when uniform
sampling is inherent in the data. Unlike reading from a text or matrix binary
file, general binary does not treat the generated columns as 1, 2 or 3 in the
`using` list. Instead column 1 refers to column 1 of the file, or as specified
in the `format` list.
There are global default settings for the various binary options which may
be set using the same syntax as the options when used as part of the `(s)plot
<filename> binary ...` command. This syntax is `set datafile binary ...`.
The general rule is that common command-line specified parameters override
file-extracted parameters which override default parameters.
@ref{matrix} is the default binary format when no keywords specific to
@ref{general} are given, i.e., `array`, @ref{record}, `format`, @ref{filetype}.
General binary data can be entered at the command line via the special file
name '-'. However, this is intended for use through a pipe where programs
can exchange binary data, not for keyboards. There is no "end of record"
character for binary data. Gnuplot continues reading from a pipe until it
has read the number of points declared in the `array` qualifier.
See @ref{matrix} or @ref{general} for more details.
The @ref{index} keyword is not supported, since the file format allows only one
surface per file. The @ref{every} and `using` specifiers are supported.
`using` operates as if the data were read in the above triplet form.
@uref{http://www.gnuplot.info/demo/binary.html,Binary File Splot Demo.
}
@menu
* general::
* array::
* record::
* skip::
* format::
* blank::
* endian::
* filetype::
* keywords::
@end menu
@node general, array, binary, binary
@subsubsection general
@c ?commands plot binary general
@c ?commands splot binary general
@c ?plot binary general
@c ?splot binary general
@c ?datafile binary general
@c ?data binary general
@c ?binary general
The @ref{binary} keyword appearing alone indicates a binary data file that
contains both coordinate information describing a non-uniform grid and
the value of each grid point (see @ref{matrix}). Binary data in any other
format requires additional keywords to describe the layout of the data.
Unfortunately the syntax of these required additional keywords is convoluted.
Nevertheless the general binary mode is particularly useful for application
programs sending large amounts of data to gnuplot.
Syntax:
@example
plot '<file_name>' @{binary <binary list>@} ...
splot '<file_name>' @{binary <binary list>@} ...
@end example
General binary format is activated by keywords in <binary list> pertaining
to information about file structure, i.e., `array`, @ref{record}, `format` or
@ref{filetype}. Otherwise, non-uniform matrix binary format is assumed.
(See @ref{matrix} for more details.)
Gnuplot knows how to read a few standard binary file types that are fully
self-describing, e.g. PNG images. Type @ref{binary} at the
command line for a list. Apart from these, you can think of binary data
files as conceptually the same as text data. Each point has columns of
information which are selected via the `using` specification. If no `format`
string is specified, gnuplot will read in a number of binary values equal
to the largest column given in the `<using list>`. For example, `using 1:3`
will result in three columns being read, of which the second will be ignored.
Certain plot types have an associated default using specification.
For example, `with image` has a default of `using 1`, while @ref{rgbimage}
has a default of `using 1:2:3`.
@node array, record, general, binary
@subsubsection array
@c ?binary array
@c ?binary general array
Describes the sampling array dimensions associated with the binary file.
The coordinates will be generated by gnuplot. A number must be specified
for each dimension of the array. For example, `array=(10,20)` means the
underlying sampling structure is two-dimensional with 10 points along the
first (x) dimension and 20 points along the second (y) dimension.
A negative number indicates that data should be read until the end of file.
If there is only one dimension, the parentheses may be omitted.
A colon can be used to separate the dimensions for multiple records.
For example, `array=25:35` indicates there are two one-dimensional records in
the file.
@node record, skip, array, binary
@subsubsection record
@c ?binary record
@c ?binary general record
The @ref{record} keyword provides array dimensions describing how data in
a binary file are to be arranged into an array. A number must be specified
for each dimension of the array. For example, `record=(10,20)` means the
underlying structure is two-dimensional with 10 points along the first (x)
dimension and 20 points along the second (y) dimension. A negative number
indicates that data should be read until the end of file.
If there is only one dimension, the parentheses may be omitted.
A colon can be used to separate the dimensions for multiple records.
E.g. `record=25:35` describes a file containing two one-dimensional records.
This keyword serves the same function as `array` and has the same syntax.
However, `array` causes gnuplot to generate coordinate information while
@ref{record} does not. Use @ref{record} when the coordinates are to be read from
columns of the binary data file records.
@node skip, format, record, binary
@subsubsection skip
@c ?binary skip
This keyword allows you to skip sections of a binary file. For instance, if the
file contains a 1024 byte header before the start of the data region you would
probably want to use
@example
plot '<file_name>' binary skip=1024 ...
@end example
If there are multiple records in the file, you may specify a leading offset for
each. For example, to skip 512 bytes before the 1st record and 256 bytes before
the second and third records
@example
plot '<file_name> binary record=356:356:356 skip=512:256:256 ...
@end example
@node format, blank, skip, binary
@subsubsection format
@c ?binary format
@c ?binary general format
The default binary format is a float. For more flexibility, the format can
include details about variable sizes. For example, `format="%uchar%int%float"`
associates an unsigned character with the first using column, an int with the
second column and a float with the third column. If the number of size
specifications is less than the greatest column number, the size is implicitly
taken to be similar to the last given variable size.
Furthermore, similar to the `using` specification, the format can include
discarded columns via the `*` character and have implicit repetition via a
numerical repeat-field. For example, `format="%*2int%3float"` causes gnuplot
to discard two ints before reading three floats. To list variable sizes, type
`show datafile binary datasizes`. There are a group of names that are machine
dependent along with their sizes in bytes for the particular compilation.
There is also a group of names which attempt to be machine independent.
@node blank, endian, format, binary
@subsubsection blank
@c ?binary blank
@c ?binary general blank
Some plot styles expect a blank line to separate groups of data points read
from a text input file. For instance the vertices of one polygon in an input
text data stream are separated from those of the next polygon by a blank line.
Since there are no actual blank lines in a binary file, this option allows
a special record in a general binary file to be interpreted as if it were a
blank line. The only option currently supported is `blank=NaN`, which
means that a value of NaN in the first field of a record causes the entire
record to be treated as if it were a blank line.
Example:
@example
plot DATA binary format="%2float" blank=NAN using 1:2 with polygons
@end example
@node endian, filetype, blank, binary
@subsubsection endian
@c ?binary endian
Often the endianess of binary data in the file does not agree with the
endianess used by the platform on which gnuplot is running. Several words can
direct gnuplot how to arrange bytes. For example `endian=little` means treat
the binary file as having byte significance from least to greatest. The options
are
@example
little: least significant to greatest significance
big: greatest significance to least significance
default: assume file endianess is the same as compiler
swap (swab): Interchange the significance. (If things
don't look right, try this.)
@end example
Gnuplot can support "middle" ("pdp") endian if it is compiled with that option.
@node filetype, keywords, endian, binary
@subsubsection filetype
@c ?binary filetype
@cindex filetype
For some standard binary file formats gnuplot can extract all the necessary
information from the file in question. As an example, "format=edf" will read
ESRF Header File format files. For a list of the currently supported file
formats, type `show datafile binary filetypes`.
There is a special file type called `auto` for which gnuplot will check if the
binary file's extension is a quasi-standard extension for a supported format.
Command line keywords may be used to override settings extracted from the file.
The settings from the file override any defaults. See @ref{binary}.
@noindent --- AVS ---
@c ?binary filetype avs
@c ?filetype avs
@cindex avs
`avs` is one of the automatically recognized binary file types for images.
AVS is an extremely simple format, suitable mostly for streaming between
applications. It consists of 2 longs (xwidth, ywidth) followed by a stream
of pixels, each with four bytes of information alpha/red/green/blue.
@noindent --- EDF ---
@c ?binary filetype edf
@c ?filetype edf
@cindex edf
@c ?filetype ehf
@cindex ehf
`edf` is one of the automatically recognized binary file types for images.
EDF stands for ESRF Data Format, and it supports both edf and ehf formats
(the latter means ESRF Header Format). More information on specifications
can be found at
@example
http://www.edfplus.info/specs
@end example
@noindent --- PNG ---
@c ?binary filetype png
@c ?binary filetype gif
@c ?binary filetype jpeg
@c ?filetype png
@c ?filetype gif
@c ?filetype jpeg
If gnuplot was configured to use the libgd library for png/gif/jpeg output,
then it can also be used to read these same image types as binary files.
You can use an explicit command
@example
plot 'file.png' binary filetype=png
@end example
Or the file type will be recognized automatically from the extension if you
have previously requested
@example
set datafile binary filetype=auto
@end example
@node keywords, , filetype, binary
@subsubsection keywords
@c ?binary keywords
The following keywords apply only when generating coordinates from binary
data files. That is, the control mapping the individual elements of a binary
array, matrix, or image to specific x/y/z positions.
@noindent --- SCAN ---
@c ?binary keywords scan
@cindex scan
A great deal of confusion can arise concerning the relationship between how
gnuplot scans a binary file and the dimensions seen on the plot. To lessen
the confusion, conceptually think of gnuplot _always_ scanning the binary file
point/line/plane or fast/medium/slow. Then this keyword is used to tell
gnuplot how to map this scanning convention to the Cartesian convention shown
in plots, i.e., x/y/z. The qualifier for scan is a two or three letter code
representing where point is assigned (first letter), line is assigned (second
letter), and plane is assigned (third letter). For example, `scan=yx` means
the fastest, point-by-point, increment should be mapped along the Cartesian
y dimension and the middle, line-by-line, increment should be mapped along the
x dimension.
When the plotting mode is `plot`, the qualifier code can include the two
letters x and y. For `splot`, it can include the three letters x, y and z.
There is nothing restricting the inherent mapping from point/line/plane to
apply only to Cartesian coordinates. For this reason there are cylindrical
coordinate synonyms for the qualifier codes where t (theta), r and z are
analogous to the x, y and z of Cartesian coordinates.
@noindent --- TRANSPOSE ---
@c ?binary keywords transpose
@cindex transpose
Shorthand notation for `scan=yx` or `scan=yxz`. I.e. it affects the assignment
of pixels to scan lines during input. To instead transpose an image when it is
displayed try
@example
plot 'imagefile' binary filetype=auto flipx rotate=90deg with rgbimage
@end example
@noindent --- DX, DY, DZ ---
@c ?binary keywords dx
@c ?binary keywords dy
@cindex dx
@cindex dy
When gnuplot generates coordinates, it uses the spacing described by these
keywords. For example `dx=10 dy=20` would mean space samples along the
x dimension by 10 and space samples along the y dimension by 20. `dy` cannot
appear if `dx` does not appear. Similarly, `dz` cannot appear if `dy` does not
appear. If the underlying dimensions are greater than the keywords specified,
the spacing of the highest dimension given is extended to the other dimensions.
For example, if an image is being read from a file and only `dx=3.5` is given
gnuplot uses a delta x and delta y of 3.5.
The following keywords also apply only when generating coordinates. However
they may also be used with matrix binary files.
@noindent --- FLIPX, FLIPY, FLIPZ ---
@c ?binary keywords flipx
@cindex flipx
@cindex flipy
@cindex flipz
Sometimes the scanning directions in a binary datafile are not consistent with
that assumed by gnuplot. These keywords can flip the scanning direction along
dimensions x, y, z.
@noindent --- ORIGIN ---
@c ?binary keywords origin
@c ?binary origin
When gnuplot generates coordinates based upon transposition and flip, it
attempts to always position the lower left point in the array at the origin,
i.e., the data lies in the first quadrant of a Cartesian system after transpose
and flip.
To position the array somewhere else on the graph, the @ref{origin} keyword directs
gnuplot to position the lower left point of the array at a point specified by a
tuple. The tuple should be a double for `plot` and a triple for `splot`.
For example, `origin=(100,100):(100,200)` is for two records in the file and
intended for plotting in two dimensions. A second example, `origin=(0,0,3.5)`,
is for plotting in three dimensions.
@noindent --- CENTER ---
@c ?binary keywords center
@c ?keywords center
@cindex center
Similar to @ref{origin}, this keyword will position the array such that its center
lies at the point given by the tuple. For example, `center=(0,0)`. Center
does not apply when the size of the array is `Inf`.
@noindent --- ROTATE ---
@c ?binary keywords rotate
@c ?keywords rotate
@cindex rotate
The transpose and flip commands provide some flexibility in generating and
orienting coordinates. However, for full degrees of freedom, it is possible to
apply a rotational vector described by a rotational angle in two dimensions.
The `rotate` keyword applies to the two-dimensional plane, whether it be `plot`
or `splot`. The rotation is done with respect to the positive angle of the
Cartesian plane.
The angle can be expressed in radians, radians as a multiple of pi, or degrees.
For example, `rotate=1.5708`, `rotate=0.5pi` and `rotate=90deg` are equivalent.
If @ref{origin} is specified, the rotation is done about the lower left sample
point before translation. Otherwise, the rotation is done about the array
`center`.
@noindent --- PERPENDICULAR ---
@c ?binary keywords perpendicular
@cindex perpendicular
For `splot`, the concept of a rotational vector is implemented by a triple
representing the vector to be oriented normal to the two-dimensional x-y plane.
Naturally, the default is (0,0,1). Thus specifying both rotate and
perpendicular together can orient data myriad ways in three-space.
The two-dimensional rotation is done first, followed by the three-dimensional
rotation. That is, if R' is the rotational 2 x 2 matrix described by an angle,
and P is the 3 x 3 matrix projecting (0,0,1) to (xp,yp,zp), let R be
constructed from R' at the upper left sub-matrix, 1 at element 3,3 and zeros
elsewhere. Then the matrix formula for translating data is v' = P R v, where v
is the 3 x 1 vector of data extracted from the data file. In cases where the
data of the file is inherently not three-dimensional, logical rules are used to
place the data in three-space. (E.g., usually setting the z-dimension value to
zero and placing 2D data in the x-y plane.)
@node data, functions, binary, plot
@subsection data
@c ?commands plot datafile
@c ?plot datafile
@cindex data-file
@cindex datafile
@opindex datafile
@cindex data
@cindex file
Data provided in a file can be plotted by giving the name of the file
(enclosed in single or double quotes) on the `plot` command line.
Data may also come from an input stream that is not a file.
See @ref{special-filenames}, @ref{piped-data}, `datablocks`.
Syntax:
@example
plot '<file_name>' @{binary <binary list>@}
@{@{nonuniform|sparse@} matrix@}
@{index <index list> | index "<name>"@}
@{every <every list>@}
@{skip <number-of-lines>@}
@{using <using list>@}
@{convexhull@} @{concavehull@}
@{smooth <option>@}
@{bins <options>@}
@{mask@}
@{volatile@} @{zsort@} @{noautoscale@}
@end example
The modifiers @ref{binary}, @ref{index}, @ref{every}, @ref{skip}, `using`, @ref{smooth}, `bins`,
`mask`, `convexhull`, `concavehull`, and `zsort` are discussed separately.
In brief
@itemize @bullet
@item
`skip N` tells the program to ignore N lines at the start of the input file
@item
@ref{binary} indicates that the file contains binary data rather than text
@item
@ref{index} selects which data sets in a multi-data-set file are to be plotted
@item
@ref{every} specifies which points within a single data set are to be plotted
@item
`using` specifies which columns in the file are to be used in which order
@item
@ref{smooth} performs simple filtering, interpolation, or curve-fitting of the
data prior to plotting
@item
`convexhull` either alone or in combination with @ref{smooth} replaces the
points in the input data set with a new set of points that constitute the
vertices of a bounding polygon.
@item
`bins` sorts individual input points into equal-sized intervals along x and
plots a single accumulated value per interval
@item
`mask` filters the data through a previously defined mask to plot only a
selected subset of pixels in an image or a selected region of a pm3d surface.
@item
@ref{volatile} indicates that the content of the file may not be available to
reread later and therefore it should be retained internally for re-use.
@end itemize
`splot` has a similar syntax but does not support `bins` and supports only a
few @ref{smooth} options.
The `noautoscale` keyword means that the points making up this plot will be
ignored when automatically determining axis range limits.
TEXT DATA FILES:
Each non-empty line in a data file describes one data point, except that
records beginning with `#` will be treated as comments and ignored.
Depending on the plot style and options selected, from one to eight values
are read from each line and associated with a single data point.
See `using`.
The individual records on a single line of data must be separated by white
space (one or more blanks or tabs) or a special field separator character
which is specified by the @ref{datafile} command. A single field may itself
contain white space characters if the entire field is enclosed in a pair of
double quotes, or if a field separator other than white space is in effect.
Whitespace inside a pair of double quotes is ignored when counting columns,
so the following datafile line has three columns:
@example
1.0 "second column" 3.0
@end example
Data may be written in exponential format with the exponent preceded by the
letter e or E. The fortran exponential specifiers d, D, q, and Q may also
be used if the command `set datafile fortran` is in effect.
Blank records in a data file are significant.
Single blank records designate discontinuities in a `plot`; no line will join
points separated by a blank records (if they are plotted with a line style).
Two blank records in a row indicate a break between separate data sets.
See @ref{index}.
If autoscaling has been enabled (@ref{autoscale}), the axes are automatically
extended to include all datapoints, with a whole number of tic marks if tics
are being drawn. This has two consequences: i) For `splot`, the corner of
the surface may not coincide with the corner of the base. In this case, no
vertical line is drawn. ii) When plotting data with the same x range on a
dual-axis graph, the x coordinates may not coincide if the x2tics are not
being drawn. This is because the x axis has been autoextended to a whole
number of tics, but the x2 axis has not. The following example illustrates
the problem:
@example
reset; plot '-', '-' axes x2y1
1 1
19 19
e
1 1
19 19
e
@end example
To avoid this, you can use the @ref{noextend} modifier of the @ref{autoscale}
or `set [axis]range` commands. This turns off extension of the axis range to
include the next tic mark.
Label coordinates and text can also be read from a data file (see @ref{labels}).
@menu
* columnheaders::
* csv_files::
* every::
* example_datafile::
* filters::
* index::
* skip_::
* smooth::
* special-filenames::
* piped-data::
* using::
* volatile::
@end menu
@node columnheaders, csv_files, data, data
@subsubsection columnheaders
@c ?commands plot datafile columnheaders
@c ?data-file columnheaders
@c ?datafile columnheaders
@cindex columnheaders
Extra lines at the start of a data file may be explicitly ignored using the
@ref{skip} keyword in the plot command. A single additional line containing text
column headers may be present. It is skipped automatically if the plot command
refers explicitly to column headers, e.g. by using them for titles.
Otherwise you may need to skip it explicitly either by adding one to the skip
count or by setting the attribute @ref{columnheaders}.
See @ref{skip}, `columnhead`, `autotitle columnheader`, @ref{datafile}.
@node csv_files, every, columnheaders, data
@subsubsection csv files
@c ?csv files
@c ?datafile csv
Syntax:
@example
set datafile separator @{whitespace | tab | comma | "chars"@}
@end example
"csv" is short for "comma-separated values". The term "csv file" is loosely
applied to files in which data fields are delimited by a specific character,
not necessarily a comma. To read data from a csv file you must tell gnuplot
what the field-delimiting character is. For instance to read from a file
using semicolon as a field delimiter:
@example
set datafile separator ";"
@end example
See `set datafile separator`. This applies only to files used for input.
To create a csv file on output, use the corresponding `separator` option to
@ref{table}.
@node every, example_datafile, csv_files, data
@subsubsection every
@c ?commands plot datafile every
@c ?plot datafile every
@c ?plot every
@c ?data-file every
@c ?datafile every
@cindex every
The @ref{every} keyword allows a periodic sampling of a data set to be plotted.
For ordinary files a "point" single record (line); a "block" of data is a set
of consecutive records with blank lines before and after the block.
For matrix data a "block" and "point" correspond to "row" and "column".
See @ref{every}.
Syntax:
@example
plot 'file' every @{<point_incr>@}
@{:@{<block_incr>@}
@{:@{<start_point>@}
@{:@{<start_block>@}
@{:@{<end_point>@}
@{:<end_block>@}@}@}@}@}
@end example
The data points to be plotted are selected according to a loop from
<`start_point`> to <`end_point`> with increment <`point_incr`> and the
blocks according to a loop from <`start_block`> to <`end_block`> with
increment <`block_incr`>.
The first datum in each block is numbered '0', as is the first block in the
file.
Note that records containing unplottable information are counted.
Any of the numbers can be omitted; the increments default to unity, the start
values to the first point or block, and the end values to the last point or
block. ':' at the end of the @ref{every} option is not permitted.
If @ref{every} is not specified, all points in all lines are plotted.
Examples:
@example
every :::3::3 # selects just the fourth block ('0' is first)
every :::::9 # selects the first 10 blocks
every 2:2 # selects every other point in every other block
every ::5::15 # selects points 5 through 15 in each block
@end example
See
@uref{http://www.gnuplot.info/demo/simple.html,simple plot demos (simple.dem)
}
,
@uref{http://www.gnuplot.info/demo/surface1.html,Non-parametric splot demos
}
, and
@uref{http://www.gnuplot.info/demo/surface2.html,Parametric splot demos
}
.
@node example_datafile, filters, every, data
@subsubsection example datafile
@c ?commands plot datafile example
@c ?plot datafile example
@c ?plot example
@c ?datafile example
@c ?data-file example
@cindex example
This example plots the data in the file "population.dat" and a theoretical
curve:
@example
pop(x) = 103*exp((1965-x)/10)
set xrange [1960:1990]
plot 'population.dat', pop(x)
@end example
The file "population.dat" might contain:
@example
# Gnu population in Antarctica since 1965
1965 103
1970 55
1975 34
1980 24
1985 10
@end example
@cindex skip
Binary examples:
@example
# Selects two float values (second one implicit) with a float value
# discarded between them for an indefinite length of 1D data.
plot '<file_name>' binary format="%float%*float" using 1:2 with lines
@end example
@example
# The data file header contains all details necessary for creating
# coordinates from an EDF file.
plot '<file_name>' binary filetype=edf with image
plot '<file_name>.edf' binary filetype=auto with image
@end example
@example
# Selects three unsigned characters for components of a raw RGB image
# and flips the y-dimension so that typical image orientation (start
# at top left corner) translates to the Cartesian plane. Pixel
# spacing is given and there are two images in the file. One of them
# is translated via origin.
plot '<file_name>' binary array=(512,1024):(1024,512) format='%uchar' \
dx=2:1 dy=1:2 origin=(0,0):(1024,1024) flipy u 1:2:3 w rgbimage
@end example
@example
# Four separate records in which the coordinates are part of the
# data file. The file was created with a endianess different from
# the system on which gnuplot is running.
splot '<file_name>' binary record=30:30:29:26 endian=swap u 1:2:3
@end example
@example
# Same input file, but this time we skip the 1st and 3rd records
splot '<file_name>' binary record=30:26 skip=360:348 endian=swap u 1:2:3
@end example
See also @ref{matrix}.
@node filters, index, example_datafile, data
@subsubsection filters
@c ?commands plot datafile filters
@c ?plot datafile filters
@c ?plot filters
@c ?data-file filters
@c ?datafile filters
@cindex filters
Filter operations are applied immediately after reading input data, before
applying any smoothing or style-specific processing options.
In general the purpose of a filter is to replace the original full set of
input points with a selected subset of points, possibly modified, regrouped,
or reordered,
The filters currently supported are `bins`, `convexhull`, `concavehull`,
`mask`, `sharpen`, and `zsort`.
@noindent --- BINS ---
@c ?commands plot datafile filters bins
@c ?plot datafile filters bins
@c ?plot filters bins
@c ?data-file filters bins
@c ?datafile filters bins
@c ?filters bins
@cindex bins
Syntax:
@example
plot 'DATA' using <XCOL> @{:<YCOL>@} bins@{=<NBINS>@}
@{binrange [<LOW>:<HIGH>]@} @{binwidth=<width>@}
@{binvalue=@{sum|avg@}@}
@end example
The `bins` option to a `plot` command first assigns the original data to
equal width bins on x and then plots a single value per bin. The default
number of bins is controlled by @ref{samples}, but this can be changed by
giving an explicit number of bins in the command.
If no binrange is given, the range is taken from the extremes of the x
values found in 'DATA'.
Given the range and the number of bins, bin width is calculated automatically
and points are assigned to bins 0 to NBINS-1
@example
BINWIDTH = (HIGH - LOW) / (NBINS-1)
xmin = LOW - BINWIDTH/2
xmax = HIGH + BINWIDTH/2
first bin holds points with (xmin <= x < xmin + BINWIDTH)
last bin holds points with (xmax-BINWIDTH <= x < xman)
each point is assigned to bin i = floor(NBINS * (x-xmin)/(xmax-xmin))
@end example
Alternatively you can provide a fixed bin width, in which case nbins is
calculated as the smallest number of bins that will span the range.
On output bins are plotted or tabulated by midpoint. E.g. if the program
calculates bin width as shown above, the x coordinate output for the first bin
is x=LOW (not x=xmin).
If only a single column is given in the using clause then each data point
contributes a count of 1 to the accumulation of total counts in the bin for
that x coordinate value. If a second column is given then the value in that
column is added to the accumulation for the bin. Thus the following two plot
commands are equivalent:
@example
plot 'DATA" using N bins=20
set samples 20
plot 'DATA' using (column(N)):(1)
@end example
By default the y value plotted for each bin is the sum of the y values over all
points in that bin. This corresponds to option `binvalue=sum`.
The alternative `binvalue=avg` plots the mean y value for points in that bin.
For related processing options see `smooth frequency` and `smooth kdensity`.
@noindent --- CONVEXHULL ---
@c ?commands plot datafile filters convexhull
@c ?commands plot datafile convexhull
@c ?plot datafile filters convexhull
@c ?datafile filters convexhull
@c ?plot filters convexhull
@c ?filters convexhull
@c ?plot convexhull
@cindex convexhull
Convexhull is not a plot style. It can appear either alone as a filter
keyword or in combination with `smooth path` and/or `expand <increment>`.
@example
plot FOO using x:y convexhull
plot FOO using x:y convexhull smooth path
plot FOO using x:y convexhull expand <increment> @{smooth path@}
@end example
The points in FOO are replaced by a subset of the original points that
constitute the unique bounding convex polygon, the convex hull.
The vertices of this polygon are output in clockwise order to form a closed
curve. The first and last points of the generated curve are equal, making it
suitable for plotting with styles `lines`, @ref{polygons}, or @ref{filledcurves}.
The convex hull may also be useful as a mask to selectively render the region
of an image or a pm3d surface that contains all the original data points.
See @ref{masking}.
If the keyword @ref{smooth} is present, the vertices are then used as guide
points to generate a smooth closed curve (see `smooth path`). By default
this smoothed curve runs through the bounding points.
The optional `expand` keyword and increment shift the edge segments of
the hull away from the interior by an incremental distance.
The displaced segments are then connected using miter joins; this means
that each vertex of the original hull is replaced by two vertices, since
there is now a gap between the to adjoining edges.
@noindent --- CONCAVEHULL ---
@c ?commands plot datafile filters concavehull
@c ?commands plot datafile concavehull
@c ?plot datafile filters concavehull
@c ?datafile filters concavehull
@c ?plot filters concavehull
@c ?filters concavehull
@cindex concavehull
Present only if your copy of gnuplot was configured --enable-chi-shapes.
Concavehull is not a plot style. It is a filter that finds a bounding
polygon, a "hull", of the input data points and replaces the original points
with an ordered subset of points that lie along the perimeter of this polygon.
Unlike the convex hull, which is uniquely defined for any set of points, more
than one concave hull is possible. Various schemes for selecting a concave
hull exist; gnuplot generates hulls that are χ-shapes as defined by
Duckham et al. (2008) Patttern Recognition 41:3224-3236.
For a given set of points, a χ-shape is generated by iterative removal of
triangles from the Delaunay triangulation. Each iteration removes a single
triangle subject to the criteria: (1) A triangle is only eligible for
removal if this would not reduce the connectivity of the bounded shape to
contact at a single point; (2) one edge of the triangle is the longest segment
of the current perimeter; (3) this edge is longer than a pre-selected
characteristic length parameter that fully determines the χ-shape.
In gnuplot this characteristic length parameter is taken from user variable
`chi_length`. Iteration stops when there are no remaining eligible triangles.
If `chi_length` is large, no triangles are removed and the χ-shape is the
original perimeter, i.e. the convex hull. As `chi_length` is reduced,
more and more triangles are removed and the resulting shape becomes
increasingly less convex. Too-small values of `chi_length` are undesirable.
Appropriate choice of `chi_length` depends strongly on the density and
distribution of the input data points. If no value for `chi_length` has
been set by the user, gnuplot will choose one automatically but there is
no guarantee that this value is suitable for your data. For the data used
in the figures shown here gnuplot would choose chi_length=22.6 by default,
which is 0.6 of the length of the longest edge in the convex hull.
You can change the fraction of the longest edge used as a default with the
command `set chi_shape fraction <value>`
The value of `chi_length` used in the current plot, whether provided by the
user or chosen by the program, is saved to variable GPVAL_CHI_LENGTH.
The optional `expand` keyword and increment shift each edge segment of the
hull away from the interior by a fixed distance. This creates a new set of
points describing a closed curve that lies outside all of the original points.
It can be combined with `smooth path`.
@noindent --- MASK ---
@c ?commands plot datafile filters mask
@c ?plot datafile filters mask
@c ?plot filters mask
@c ?data-file filters mask
@c ?datafile filters mask
@c ?filters mask
@cindex mask
@example
plot FOO using 1:2:3 mask with @{pm3d|image@}
@end example
Once a mask has been defined, you can use it as a filter to select a
subset of points from an image or pm3d plot.
See @ref{masking}.
@noindent --- SHARPEN ---
@c ?plot filters sharpen
@c ?filters sharpen
@cindex sharpen
The `sharpen` filter applies only to function plots. It looks for extrema in
the function being plotted, which may not lie exactly at any of the x values
sampled to generate the component line segments making up the graph.
The true local extrema are found by bisection and added to the set of sampled
points. This reduces but does not entirely eliminate truncation of sharp
peaks due to coarse sampling.
Example:
@example
set samples 150
set xrange [-8:8]
plot abs(sqrt(sin(x))) sharpen
@end example
Without the "sharpen" keyword, the resulting graph shows a continuous curve
with minima at intervals of pi that should reach zero but are artefactually
truncated to apparent minimal y values between 0.02 and 0.20.
Adding the "sharpen" keyword produces instead a correct representation of
the function with periodic sharp minima that reach y=0.
D sharpen 1
@noindent --- ZSORT ---
@c ?commands plot datafile filters zsort
@c ?plot datafile filters zsort
@c ?plot filters zsort
@c ?data-file zsort
@c ?datafile zsort
@c ?filters zsort
@cindex zsort
@example
plot FOO using x:y:z:color zsort with points lc palette
@end example
Input data is sorted immediately after input, prior to applying any
smoothing options. Note that some smoothing options will re-sort the data,
in which case `zsort` has no effect on the plot.
If z is not auto-scaled, points with z value out of range are flagged
but not deleted.
The intended use is to filter presentation of 2D scatter plots with a
huge number of points so that the distribution of high-scoring points
remains evident. Sorting the points on z guarantees that points with
a high z-value will not be obscured by points with lower z-values.
@node index, skip_, filters, data
@subsubsection index
@c ?commands plot datafile index
@c ?plot datafile index
@c ?plot index
@c ?data-file index
@c ?datafile index
@cindex index
The @ref{index} keyword allows you to select specific data sets in a multi-data-set
file for plotting. For array indexing please see @ref{arrays}.
Syntax:
@example
plot 'file' index @{ <m>@{:<n>@{:<p>@}@} | "<name>" @}
@end example
Data sets are separated by pairs of blank records. `index <m>` selects only
set <m>; `index <m>:<n>` selects sets in the range <m> to <n>; and `index
<m>:<n>:<p>` selects indices <m>, <m>+<p>, <m>+2<p>, etc., but stopping at
<n>. Following C indexing, the index 0 is assigned to the first data set in
the file. Specifying too large an index results in an error message.
If <p> is specified but <n> is left blank then every <p>-th dataset is read
until the end of the file. If @ref{index} is not specified, the entire file is
plotted as a single data set.
Example:
@example
plot 'file' index 4:5
@end example
For each point in the file, the index value of the data set it appears in is
available via the pseudo-column `column(-2)`. This leads to an alternative way
of distinguishing individual data sets within a file as shown below. This is
more awkward than the @ref{index} command if all you are doing is selecting one
data set for plotting, but is very useful if you want to assign different
properties to each data set. See `pseudocolumns`, `lc variable`.
Example:
@example
plot 'file' using 1:(column(-2)==4 ? $2 : NaN) # very awkward
plot 'file' using 1:2:(column(-2)) linecolor variable # very useful!
@end example
`index '<name>'` selects the data set with name '<name>'. Names are assigned
to data sets in comment lines. The comment character and leading white space
are removed from the comment line. If the resulting line starts with <name>,
the following data set is now named <name> and can be selected.
Example:
@example
plot 'file' index 'Population'
@end example
Please note that every comment that starts with <name> will name the following
data set. To avoid problems it may be useful to choose a naming scheme like
'== Population ==' or '[Population]'.
@c ^ <p>See also web page
@uref{http://www.gnuplot.info/demo/multimsh.html, splot with indices demo.
}</p>
@node skip_, smooth, index, data
@subsubsection skip
@c ?plot datafile skip
@c ?data-file skip
@c ?datafile skip
@cindex skip
The @ref{skip} keyword tells the program to skip lines at the start of a text
(i.e. not binary) data file. The lines that are skipped do not count toward
the line count used in processing the @ref{every} keyword. Note that `skip N`
skips lines only at the start of the file, whereas `every ::N` skips lines at
the start of every block of data in the file. See also @ref{skip} for a
similar option that applies to binary data files.
@node smooth, special-filenames, skip_, data
@subsubsection smooth
@c ?commands plot datafile smooth
@c ?plot datafile smooth
@c ?plot smooth
@c ?data-file smooth
@c ?datafile smooth
@cindex smooth
@cindex splines
`gnuplot` includes a few routines for interpolation and other operations
applied to data as it is input; these are grouped under the @ref{smooth} option.
More sophisticated data processing may be performed by preprocessing the data
externally or by using @ref{fit} with an appropriate model.
See also the discussion of @ref{filters}.
Syntax:
@example
smooth @{unique | frequency | fnormal | cumulative | cnormal
| csplines | acsplines | mcsplines bezier | sbezier
| path
| kdensity @{bandwidth@} @{period@}
| unwrap@}
@end example
The `unique`, `frequency`, `fnormal`, `cumulative` and `cnormal` options
sort the data on x and then plot some aspect of the distribution of x values.
The spline and Bezier options determine coefficients describing a continuous
curve between the endpoints of the data. This curve is then plotted in the same
manner as a function, that is, by finding its value at uniform intervals along
the abscissa (see @ref{samples}) and connecting these points with straight line
segments. If the data set is interrupted by blank lines or undefined values a
separate continuous curve is fit for each uninterrupted subset of the data.
Adjacent separately fit segments may be separated by a gap or discontinuity.
`unwrap` manipulates the data to avoid jumps of more than pi by adding or
subtracting multiples of 2*pi.
If @ref{autoscale} is in effect, axis ranges will be computed for the final curve
rather than for the original data.
If @ref{autoscale} is not in effect, and a spline curve is being generated,
sampling of the spline fit is done across the intersection of the x range
covered by the input data and the fixed abscissa range defined by @ref{xrange}.
If too few points are available to apply the requested smoothing operation
an error message is produced.
The @ref{smooth} options have no effect on function plots. Only `smooth path`
is possible in polar coordinate mode.
Smoothing in 3D plots (splot) is currently limited to generating a natural
cubic spline to pass through a set of 3D points. In the general case
the splines are generated along a trajectory (`smooth path`). For a 2D
projection of 3D data `smooth csplines` acts as it does in 2D.
Either keyword is accepted in an `splot` command.
@example
splot $DATA using 1:2:3 smooth path with lines
@end example
@noindent --- ACSPLINES ---
@c ?commands plot datafile smooth acsplines
@c ?plot datafile smooth acsplines
@c ?data-file smooth acsplines
@c ?datafile smooth acsplines
@c ?plot smooth acsplines
@c ?plot acsplines
@c ?splot smooth acsplines
@c ?splot acsplines
@c ?smooth acsplines
@cindex acsplines
The `smooth acsplines` option approximates the data with a natural smoothing
spline. After the data are made monotonic in x (see `smooth unique`), a curve
is piecewise constructed from segments of cubic polynomials whose coefficients
are found by fitting to the individual data points weighted by the value,
if any, given in the third column of the using spec. The default is equivalent
to
@example
plot 'data-file' using 1:2:(1.0) smooth acsplines
@end example
Qualitatively, the absolute magnitude of the weights determines the number
of segments used to construct the curve. If the weights are large, the
effect of each datum is large and the curve approaches that produced by
connecting consecutive points with natural cubic splines. If the weights are
small, the curve is composed of fewer segments and thus is smoother; the
limiting case is the single segment produced by a weighted linear least
squares fit to all the data. The smoothing weight can be expressed in terms
of errors as a statistical weight for a point divided by a "smoothing factor"
for the curve so that (standard) errors in the file can be used as smoothing
weights.
Example:
@example
sw(x,S)=1/(x*x*S)
plot 'data_file' using 1:2:(sw($3,100)) smooth acsplines
splot 'data_file' using 1:2:3:(sw($4,100)) smooth acsplines
@end example
`splot ... smooth acsplines with lines` fits splines to the x, y, and z
coordinates of successive data points. Unlike the 2D case, the points are not
sorted first so it is possible to fit splines to a trajectory containing loops.
Caution: In the general 3D case there are many more spline terms fitted, so the
weight value must be larger to achieve a comparable effect. Also note that
fractional path length is used as the implicit control variable and therefore
the intervals being weighted do not match the projections onto a single axis.
@noindent --- BEZIER ---
@c ?commands plot datafile smooth bezier
@c ?plot datafile smooth bezier
@c ?plot smooth bezier
@c ?data-file smooth bezier
@c ?datafile smooth bezier
@c ?plot bezier
@c ?smooth bezier
@cindex bezier
The `smooth bezier` option approximates the data with a Bezier curve of degree n
(the number of data points) that connects the endpoints.
@noindent --- BINS ---
@c ?data-file smooth bins
@c ?datafile smooth bins
@c ?smooth bins
`smooth bins` is the same as `bins`.
See `bins`.
@noindent --- CSPLINES ---
@c ?commands plot datafile smooth csplines
@c ?plot datafile smooth csplines
@c ?plot smooth csplines
@c ?data-file smooth csplines
@c ?datafile smooth csplines
@c ?plot csplines
@c ?smooth csplines
@cindex csplines
@c ?splot smooth csplines
The `smooth csplines` option connects consecutive points by natural cubic
splines after rendering the data monotonic on x (see `smooth unique`).
The smoothed curve always passes through the data points, so closely-spaced
points may generate local bumps and excursions in the smoothed curve.
`splot ... smooth csplines with lines` fits splines to the x, y, and z
coordinates of successive data points. Unlike 2D csplines, the points are not
sorted first so it is possible to fit splines to a trajectory containing loops.
In the general case three separate sets of spline coefficients are generated,
each treating one coordinate x, y, or z as a function of a shared implicit
trajectory path parameter. This is equivalent to the 2D `plot ... smooth path`
option.
In the special case that the curve lies in the xz, yz, or xy plane then only a
single set of spline coefficients is generated. This allows you to generate a
stack of smoothed curves in 3D where each one replicates the spline fit you
would have obtained from a 2D plot of the coordinates in projection.
@noindent --- MCSPLINES ---
@c ?commands plot datafile smooth mcsplines
@c ?plot datafile smooth mcsplines
@c ?plot smooth mcsplines
@c ?data-file smooth mcsplines
@c ?datafile smooth mcsplines
@c ?plot mcsplines
@c ?smooth mcsplines
@cindex mcsplines
The `smooth mcsplines` option connects consecutive points by cubic splines
constrained such that the smoothed function preserves the monotonicity and
convexity of the original data points. This reduces the effect of outliers.
FN Fritsch & RE Carlson (1980) "Monotone Piecewise Cubic Interpolation",
SIAM Journal on Numerical Analysis 17: 238–246.
@noindent --- PATH ---
@c ?plot datafile smooth path
@c ?plot smooth path
@c ?smooth path
@c ?datafile smooth path
@cindex path
The `smooth path` option generates cubic splines to fit points in the order
they are presented in the input data; i.e. they are not first sorted on x.
This generates a smooth spline through a closed curve or along a trajectory
that contains loops. This smoothing mode is supported for both 2D and 3D
plot commands. A separate curve is created for each set of points in the
input file, where a blank line separates the sets.
Plotting `smooth path with filledcurves closed` will guarantee that each set
of points creates a closed curve. Plotting `smooth path with lines` will
generate a closed curve if the first and last points in the set overlap,
otherwise it will create an open-ended smooth path. See
@uref{http://www.gnuplot.info/demo_6.0/smooth_path.html,smooth_path.dem
}
@noindent --- SBEZIER ---
@c ?commands plot datafile smooth sbezier
@c ?plot datafile smooth sbezier
@c ?plot smooth sbezier
@c ?data-file smooth sbezier
@c ?datafile smooth sbezier
@c ?plot sbezier
@c ?smooth sbezier
@cindex sbezier
The `smooth sbezier` option first renders the data monotonic (`unique`) and
then applies the `bezier` algorithm.
@noindent --- UNIQUE ---
@c ?commands plot datafile smooth unique
@c ?plot datafile smooth unique
@c ?plot smooth unique
@c ?data-file smooth unique
@c ?datafile smooth unique
@c ?plot unique
@c ?smooth unique
@cindex unique
The `smooth unique` option makes the data monotonic in x; points with the same
x-value are replaced by a single point having the average y-value. The
resulting points are then connected by straight line segments.
@noindent --- UNWRAP ---
@c ?commands plot datafile smooth unwrap
@c ?plot datafile smooth unwrap
@c ?plot smooth unwrap
@c ?data-file smooth unwrap
@c ?datafile smooth unwrap
@c ?plot unwrap
@c ?smooth unwrap
@cindex unwrap
The `smooth unwrap` option modifies the input data so that any two successive
points will not differ by more than pi; a point whose y value is outside this
range will be incremented or decremented by multiples of 2pi until it falls
within pi of the previous point. This operation is useful for making wrapped
phase measurements continuous over time.
@noindent --- FREQUENCY ---
@c ?commands plot datafile smooth frequency
@c ?plot datafile smooth frequency
@c ?plot smooth frequency
@c ?data-file smooth frequency
@c ?datafile smooth frequency
@c ?plot frequency
@c ?smooth frequency
@cindex frequency
@cindex histogram
The `smooth frequency` option makes the data monotonic in x; points with the
same x-value are replaced by a single point having the summed y-values.
To plot a histogram of the number of data values in equal size bins,
set the y-value to 1.0 so that the sum is a count of occurrences in that bin.
This is done implicitly if only a single column is provided.
Example:
@example
binwidth = <something> # set width of x values in each bin
bin(val) = binwidth * floor(val/binwidth)
plot "datafile" using (bin(column(1))):(1.0) smooth frequency
plot "datafile" using (bin(column(1))) smooth frequency # same result
@end example
See also
@uref{http://www.gnuplot.info/demo/smooth.html,smooth.dem
}
@noindent --- FNORMAL ---
@c ?commands plot datafile smooth fnormal
@c ?plot datafile smooth fnormal
@c ?plot smooth fnormal
@c ?data-file smooth fnormal
@c ?datafile smooth fnormal
@c ?plot fnormal
@c ?smooth fnormal
@cindex fnormal
The `smooth fnormal` option work just like the `frequency` option, but produces
a normalized histogram. It makes the data monotonic in x and normalises the
y-values so they all sum to 1. Points with the same x-value are replaced by a
single point containing the sumed y-values. To plot a histogram of the number
of data values in equal size bins, set the y-value to 1.0 so that the sum is a
count of occurrences in that bin. This is done implicitly if only a single
column is provided.
See also
@uref{http://www.gnuplot.info/demo/smooth.html,smooth.dem
}
@noindent --- CUMULATIVE ---
@c ?commands plot datafile smooth cumulative
@c ?plot datafile smooth cumulative
@c ?plot smooth cumulative
@c ?data-file smooth cumulative
@c ?datafile smooth cumulative
@c ?plot cumulative
@c ?smooth cumulative
@cindex cumulative
The `smooth cumulative` option makes the data monotonic in x; points with the
same x-value are replaced by a single point containing the cumulative sum of
y-values of all data points with lower x-values (i.e. to the left of the
current data point). This can be used to obtain a cumulative distribution
function from data.
See also
@uref{http://www.gnuplot.info/demo/smooth.html,smooth.dem
}
@noindent --- CNORMAL ---
@c ?commands plot datafile smooth cnormal
@c ?plot datafile smooth cnormal
@c ?plot smooth cnormal
@c ?data-file smooth cnormal
@c ?datafile smooth cnormal
@c ?plot cnormal
@c ?smooth cnormal
@cindex cnormal
The `smooth cnormal` option makes the data monotonic in x and normalises the
y-values onto the range [0:1]. Points with the same x-value are replaced by
a single point containing the cumulative sum of y-values of all data points
with lower x-values (i.e. to the left of the current data point) divided by
the total sum of all y-values. This can be used to obtain a normalised
cumulative distribution function from data (useful when comparing sets of
samples with differing numbers of members).
See also
@uref{http://www.gnuplot.info/demo/smooth.html,smooth.dem
}
@noindent --- KDENSITY ---
@c ?commands plot datafile smooth kdensity
@c ?plot datafile smooth kdensity
@c ?plot smooth kdensity
@c ?data-file smooth kdensity
@c ?datafile smooth kdensity
@c ?plot kdensity
@c ?smooth kdensity period
@c ?smooth kdensity
@cindex kdensity
The `smooth kdensity` option generates and plots a kernel density estimate
using Gaussian kernels for the distribution from which a set of values was
drawn. Values are taken from the first data column, optional weights are
taken from the second column. A Gaussian is placed at the location of each
point and the sum of all these Gaussians is plotted as a function.
To obtain a normalized histogram, each weight should be 1/number-of-points.
Bandwidth:
By default gnuplot calculates and uses the bandwidth which would be optimal
for normally distributed data values.
@example
default_bandwidth = sigma * (4/3N) ** (0.2)
@end example
This will usually be a very conservative, i.e. broad bandwidth.
Alternatively, you can provide an explicit bandwidth.
@example
plot $DATA smooth kdensity bandwidth <value> with boxes
@end example
The bandwidth used in the previous plot is stored in GPVAL_KDENSITY_BANDWIDTH.
Period:
For periodic data individual Gaussian components should be treated as repeating
at intervals of one period. One example is data measured as a function of
angle, where the period is 2pi. Another example is data indexed by day-of-year
and measured over multiple years, where the period is 365.
In such cases the period should be provided in the plot command:
@example
plot $ANGULAR_DAT smooth kdensity period 2*pi with lines
@end example
@node special-filenames, piped-data, smooth, data
@subsubsection special-filenames
@cindex special-filenames
@cindex special_filenames
@cindex pseudofiles
@c ?commands plot datafile special-filenames
@c ?plot datafile special-filenames
@c ?plot special-filenames
@c ?datafile special-filenames
@c ?data special-filenames
@c ?special-filenames ++
@c ?special-filenames +
@cindex '-'
@cindex '+'
@cindex '++'
There are a few filenames that have a special meaning: '', '-', '+' and '++'.
The empty filename '' tells gnuplot to re-use the previous input file in the
same plot command. So to plot two columns from the same input file:
@example
plot 'filename' using 1:2, '' using 1:3
@end example
The filename can also be reused over subsequent plot commands, however @ref{save}
then only records the name in a comment.
The special filenames '+' and '++' are a mechanism to allow the full range of
`using` specifiers and plot styles with inline functions. Normally a function
plot can only have a single y (or z) value associated with each sampled point.
The pseudo-file '+' treats the sampled points as column 1, and allows
additional column values to be specified via a `using` specification, just as
for a true input file. The number of samples is controlled via @ref{samples}
or by giving an explicit sampling interval in the range specifier.
Samples are generated over the range given by @ref{trange} if it has been set,
otherwise over the full range of @ref{xrange}.
Note: The use of trange is a change from some earlier gnuplot versions.
It allows the sampling range to differ from the x axis range.
@example
plot '+' using ($1):(sin($1)):(sin($1)**2) with filledcurves
@end example
An independent sampling range can be provided immediately before the '+'. As
in normal function plots, a name can be assigned to the independent variable.
If given for the first plot element, the sampling range specifier has to be
preceded by the `sample` keyword (see also @ref{sampling}).
@example
plot sample [beta=0:2*pi] '+' using (sin(beta)):(cos(beta)) with lines
@end example
Here is an example where the sampling interval (1.5) is given as part of the
sampling range. Samples will be generated at -3, -1.5, 0, 1.5, ..., 24.
@example
plot $MYDATA, [t=-3:25:1.5] '+' using (t):(f(t))
@end example
The pseudo-file '++' returns 2 columns of data forming a regular grid of [u,v]
coordinates with the number of points along u controlled by @ref{samples} and
the number of points along v controlled by @ref{isosamples}. You must set
urange and vrange before plotting '++'. However the x and y ranges can be
autoscaled or can be explicitly set to different values than urange and vrange.
Examples:
@example
splot '++' using 1:2:(sin($1)*sin($2)) with pm3d
plot '++' using 1:2:(sin($1)*sin($2)) with image
@end example
The special filename `'-'` specifies that the data are inline; i.e., they
follow the command. Only the data follow the command; `plot` options like
filters, titles, and line styles remain on the `plot` command line. This is
similar to << in unix shell script. The data are entered as though they
were being read from a file, one data point per record.
The letter "e" at the start of the first column terminates data entry.
`'-'` is intended for situations where it is useful to have data and commands
together, e.g. when both are piped to `gnuplot` from another application.
Some of the demos, for example, might use this feature. While
`plot` options such as @ref{index} and @ref{every} are recognized, their use forces
you to enter data that won't be used. For all but the simplest cases it is
probably easier to first define a datablock and then read from it rather than
from `'-'`. See `datablocks`.
If you use `'-'` with @ref{replot}, you may need to enter the data more than once.
See @ref{replot}, @ref{refresh}. Here again it may be better to use a datablock.
A blank filename ('') specifies that the previous filename should be reused.
This can be useful with things like
@example
plot 'a/very/long/filename' using 1:2, '' using 1:3, '' using 1:4
@end example
If you use both `'-'` and `''` on the same `plot` command, you'll need to
provide two sets of inline data. It will not reuse the first one.
@node piped-data, using, special-filenames, data
@subsubsection piped-data
@c ?commands plot datafile piped-data
@c ?plot datafile piped-data
@c ?datafile piped-data
@c ?data piped-data
@c ?plot piped-data
@cindex piped-data
@cindex pipes
@cindex pipes
On systems with a popen function, the datafile can be piped through a shell
command by starting the file name with a '<'. For example,
@example
pop(x) = 103*exp(-x/10)
plot "< awk '@{print $1-1965, $2@}' population.dat", pop(x)
@end example
would plot the same information as the first population example but with
years since 1965 as the x axis. If you want to execute this example, you
have to delete all comments from the data file above or substitute the
following command for the first part of the command above (the part up to
the comma):
@example
plot "< awk '$0 !~ /^#/ @{print $1-1965, $2@}' population.dat"
@end example
While this approach is most flexible, it is possible to achieve simple
filtering with the `using` keyword.
On systems with an fdopen() function, data can be read from an arbitrary file
descriptor attached to either a file or pipe. To read from file descriptor
`n` use `'<&n'`. This allows you to easily pipe in several data files in a
single call from a POSIX shell:
@example
$ gnuplot -p -e "plot '<&3', '<&4'" 3<data-3 4<data-4
$ ./gnuplot 5< <(myprogram -with -options)
gnuplot> plot '<&5'
@end example
@node using, volatile, piped-data, data
@subsubsection using
@c ?commands plot datafile using
@c ?plot datafile using
@c ?plot using
@c ?data-file using
@c ?datafile using
@cindex using
The most common datafile modifier is `using`. It tells the program which
columns of data in the input file are to be plotted.
Syntax:
@example
plot 'file' using <entry> @{:<entry> @{:<entry> ...@}@} @{'format'@}
@end example
Each <entry> may be a simple column number that selects the value from one
field of the input file, a string that matches a column label in the first
line of a data set, an expression enclosed in parentheses, or a special
function not enclosed in parentheses such as xticlabels(2).
If the entry is an expression in parentheses, then the function column(N) may
be used to indicate the value in column N. That is, column(1) refers to the
first item read, column(2) to the second, and so on. The special symbols
$1, $2, ... are shorthand for column(1), column(2) ...
The special symbol $# evaluates to the total number of columns in the current
line of input, so column($#) or stringcolumn($#) always returns the content of
the final column even if the number of columns is unknown or different lines
in the file contain different numbers of columns.
The function `valid(N)` tests whether column N contains a valid number.
It returns 0 if the column value is missing, uninterpretable, or NaN.
@cindex column
@cindex columnheader
If each column of data in the input file contains a label in the first row
rather than a data value, this label can be used to identify the column on
input and/or in the plot legend. The column() function can be used to select
an input column by label rather than by column number. For example,
if the data file contains
@example
Height Weight Age
val1 val1 val1
... ... ...
@end example
then the following plot commands are all equivalent
@example
plot 'datafile' using 3:1, '' using 3:2
plot 'datafile' using (column("Age")):(column(1)), \
'' using (column("Age")):(column(2))
plot 'datafile' using "Age":"Height", '' using "Age":"Weight"
@end example
The full string must match. Comparison is case-sensitive.
To use column labels in the plot legend, use `set key autotitle columnhead`
or use function `columnhead(N)` when specifying an individual title.
In addition to the actual columns 1...N in the input data file, gnuplot
presents data from several "pseudo-columns" that hold bookkeeping information.
E.g. $0 or column(0) returns the sequence number of this data record within a
dataset. Please see `pseudocolumns`.
An empty <entry> will default to its order in the list of entries.
For example, `using ::4` is interpreted as `using 1:2:4`.
If the `using` list has only a single entry, that <entry> will be used for y
and the data point number (pseudo-column $0) is used for x; for example,
"`plot 'file' using 1`" is identical to "`plot 'file' using 0:1`".
If the `using` list has two entries, these will be used for x and y.
See @ref{style} and @ref{fit} for details about plotting styles that make use of
data from additional columns of input.
@noindent --- FORMAT ---
@c ?using format
@c ?plot using format
If a format is specified, it is used to read in each datafile record using the
C library 'scanf' function. Otherwise the record is interpreted as consisting
of columns (fields) of data separated by whitespace (spaces and/or tabs),
but see `datafile separator`.
'scanf' itself accepts several numerical specifications but `gnuplot` requires
all inputs to be double-precision floating-point variables, so "%lf" is
essentially the only permissible specifier. The format string must contain at
least one such input specifier and no more than seven of them.
'scanf' expects to see white space -- a blank, tab ("\t"), newline ("\n"),
or formfeed ("\f") -- between numbers; anything else in the input stream must
be explicitly skipped.
Note that the use of "\t", "\n", or "\f" requires use of double-quotes
rather than single-quotes.
@noindent --- USING_EXAMPLES ---
@c ?commands plot datafile using examples
@c ?plot datafile using examples
@c ?datafile using examples
@c ?using examples
This creates a plot of the sum of the 2nd and 3rd data against the first:
The format string specifies comma- rather than space-separated columns.
The same result could be achieved by specifying `set datafile separator comma`.
@example
plot 'file' using 1:($2+$3) '%lf,%lf,%lf'
@end example
In this example the data are read from the file "MyData" using a more
complicated format:
@example
plot 'MyData' using "%*lf%lf%*20[^\n]%lf"
@end example
The meaning of this format is:
@example
%*lf ignore a number
%lf read a double-precision number (x by default)
%*20[^\n] ignore 20 non-newline characters
%lf read a double-precision number (y by default)
@end example
@cindex filter
@cindex NaN
One trick is to use the ternary `?:` operator to filter data:
@example
plot 'file' using 1:($3>10 ? $2 : 1/0)
@end example
which plots the datum in column two against that in column one provided
the datum in column three exceeds ten. `1/0` is undefined; `gnuplot`
quietly ignores undefined points, so unsuitable points are suppressed.
Or you can use the pre-defined variable NaN to achieve the same result.
In fact, you can use a constant expression for the column number, provided it
doesn't start with an opening parenthesis; constructs like `using
0+(complicated expression)` can be used. The crucial point is that the
expression is evaluated once if it doesn't start with a left parenthesis, or
once for each data point read if it does.
If timeseries data are being used, the time can span multiple columns. The
starting column should be specified. Note that the spaces within the time
must be included when calculating starting columns for other data. E.g., if
the first element on a line is a time with an embedded space, the y value
should be specified as column three.
It should be noted that (a) `plot 'file'`, (b) `plot 'file' using 1:2`, and
(c) `plot 'file' using ($1):($2)` can be subtly different. See `missing`.
It is often possible to plot a file with lots of lines of garbage at
the top simply by specifying
@example
plot 'file' using 1:2
@end example
However, if you want to leave text in your data files, it is safer to put the
comment character (#) in the first column of the text lines.
@noindent --- PSEUDOCOLUMNS ---
@cindex pseudocolumns
@c ?commands plot datafile using pseudocolumns
@c ?plot datafile using pseudocolumns
@c ?datafile using pseudocolumns
@c ?using pseudocolumns
Expressions in the `using` clause of a plot statement can refer to additional
bookkeeping values in addition to the actual data values contained in the input
file. These are contained in "pseudocolumns".
@example
column(0) The sequential order of each point within a data set.
The counter starts at 0, increments on each non-blank,
non-comment line, and is reset by two sequential blank
records. For data in non-uniform matrix format, column(0)
is the linear order of each matrix element.
The shorthand form $0 is available.
column(-1) This counter starts at 0, increments on a single blank line,
and is reset by two sequential blank lines.
This corresponds to the data line in array or grid data.
It can also be used to distinguish separate line segments
or polygons within a data set.
column(-2) Starts at 0 and increments on two sequential blank lines.
This is the index number of the current data set within a
file that contains multiple data sets. See @ref{index}.
column($#) The special symbol $# evaluates to the total number of
columns available, so column($#) refers to the last
(rightmost) field in the current input line.
column($# - 1) would refer to the last-but-one column, etc.
@end example
@noindent --- ARRAYS ---
@c ?using arrays
@c ?plot using arrays
When the data source being plotted is an array or array-valued function,
the "columns" in a `using` specification are interpreted as below.
See @ref{arrays} for more detail.
@example
column 1 the array index
column 2 the real component of a numerical array entry
or the string value of a string array entry
column 3 the imaginary part of a numerical array entry
@end example
@noindent --- KEY ---
@c ?using key
@c ?plot using key
The layout of certain plot styles (column-stacked histograms, spider plots)
is such that it would make no sense to generate plot titles from a data column
header. Also it would make no sense to generate axis tic labels from the
content of a data column (e.g. `using 2:3:xticlabels(1)`). These plots styles
instead use the form `using 2:3:key(1)` to generate plot titles for the key
from the text content of a data column, usually a first column of row headers.
See the example given for @ref{spiderplot}.
@noindent --- XTICLABELS ---
@cindex xticlabels
@c ?using xticlabels
@c ?plot using xticlabels
Axis tick labels can be generated via a string function, usually taking a data
column as an argument. The simplest form uses the data column itself as a
string. That is, xticlabels(N) is shorthand for xticlabels(stringcolumn(N)).
This example uses the contents of column 3 as x-axis tick labels.
@example
plot 'datafile' using <xcol>:<ycol>:xticlabels(3) with <plotstyle>
@end example
Axis tick labels may be generated for any of the plot axes: x x2 y y2 z.
The `ticlabels(<labelcol>)` specifiers must come after all of the data
coordinate specifiers in the `using` portion of the command.
For each data point which has a valid set of X,Y[,Z] coordinates,
the string value given to xticlabels() is added to the list of xtic labels
at the same X coordinate as the point it belongs to. `xticlabels()`
may be shortened to `xtic()` and so on.
Example:
@example
splot "data" using 2:4:6:xtic(1):ytic(3):ztic(6)
@end example
In this example the x and y axis tic labels are taken from different columns
than the x and y coordinate values. The z axis tics, however, are generated
from the z coordinate of the corresponding point.
Example:
@example
plot "data" using 1:2:xtic( $3 > 10. ? "A" : "B" )
@end example
This example shows the use of a string-valued function to generate x-axis
tick labels. Each point in the data file generates a tick mark on x labeled
either "A" or "B" depending on the value in column 3.
@noindent --- X2TICLABELS ---
@c ?using x2ticlabels
@c ?plot using x2ticlabels
See `plot using xticlabels`.
@noindent --- YTICLABELS ---
@c ?using yticlabels
@c ?plot using yticlabels
See `plot using xticlabels`.
@noindent --- Y2TICLABELS ---
@c ?using y2ticlabels
@c ?plot using y2ticlabels
See `plot using xticlabels`.
@noindent --- ZTICLABELS ---
@c ?using zticlabels
@c ?plot using zticlabels
See `plot using xticlabels`.
@node volatile, , using, data
@subsubsection volatile
@c ?datafile volatile
@c ?data volatile
@c ?plot datafile volatile
@c ?plot volatile
@cindex volatile
The @ref{volatile} keyword in a plot command indicates that the data previously
read from the input stream or file may not be available for re-reading.
This tells the program to use @ref{refresh} rather than @ref{replot} commands whenever
possible. See @ref{refresh}.
@node functions, parametric, data, plot
@subsection functions
@c ?commands plot functions
@c ?plot functions
@cindex functions
Built-in or user-defined functions can be displayed by the `plot` and `splot`
commands in addition to, or instead of, data read from a file. The requested
function is evaluated by sampling at regular intervals spanning the independent
axis range[s]. See @ref{samples} and @ref{isosamples}.
Example:
@example
approx(ang) = ang - ang**3 / (3*2)
plot sin(x) title "sin(x)", approx(x) title "approximation"
@end example
To set a default plot style for functions, see `set style function`.
For information on built-in functions, see @ref{functions}.
For information on defining your own functions, see `user-defined`.
@node parametric, ranges, functions, plot
@subsection parametric
@c ?commands plot parametric
@c ?commands splot parametric
@c ?plot parametric
@c ?splot parametric
When in parametric mode (@ref{parametric}) mathematical expressions must be
given in pairs for `plot` and in triplets for `splot`.
Examples:
@example
plot sin(t),t**2
splot cos(u)*cos(v),cos(u)*sin(v),sin(u)
@end example
Data files are plotted as before, except any preceding parametric function
must be fully specified before a data file is given as a plot. In other
words, the x parametric function (`sin(t)` above) and the y parametric
function (`t**2` above) must not be interrupted with any modifiers or data
functions; doing so will generate a syntax error stating that the parametric
function is not fully specified.
Other modifiers, such as `with` and @ref{title}, may be specified only after the
parametric function has been completed:
@example
plot sin(t),t**2 title 'Parametric example' with linespoints
@end example
See also
@uref{http://www.gnuplot.info/demo/param.html,Parametric Mode Demos.
}
@node ranges, sampling, parametric, plot
@subsection ranges
@c ?commands plot ranges
@c ?commands splot ranges
@c ?plot ranges
@c ?splot ranges
@cindex ranges
This section describes only the optional axis ranges that may appear as the
very first items in a `plot` or `splot` command. If present, these ranges
override any range limits established by a previous `set range` statement.
For optional ranges elsewhere in a `plot` command that limit sampling of an
individual plot component, see @ref{sampling}.
Syntax:
@example
[@{<dummy-var>=@}@{@{<min>@}:@{<max>@}@}]
[@{@{<min>@}:@{<max>@}@}]
@end example
The first form applies to the independent variable (@ref{xrange} or @ref{trange}, if
in parametric mode). The second form applies to dependent variables.
<dummy-var> optionally establishes a new name for the independent variable.
(The default name may be changed with @ref{dummy}.)
In non-parametric mode, ranges must be given in the order
@example
plot [<xrange>][<yrange>][<x2range>][<y2range>] ...
@end example
In parametric mode, ranges must be given in the order
@example
plot [<trange>][<xrange>][<yrange>][<x2range>][<y2range>] ...
@end example
The following `plot` command shows setting @ref{trange} to [-pi:pi], @ref{xrange}
to [-1.3:1.3] and @ref{yrange} to [-1:1] for the duration of the graph:
@example
plot [-pi:pi] [-1.3:1.3] [-1:1] sin(t),t**2
@end example
`*` can be used to allow autoscaling of either of min and max.
Use an empty range `[]` as a placeholder if necessary.
Ranges specified on the `plot` or `splot` command line affect only that one
graph; use the @ref{xrange}, @ref{yrange}, etc., commands to change the
default ranges for future graphs.
The use of on-the-fly range specifiers in a plot command may not yield
the expected result for linked axes (see @ref{link}).
For time data you must provide the range in quotes, using the same format
used to read time from the datafile. See @ref{timefmt}.
Examples:
This uses the current ranges:
@example
plot cos(x)
@end example
This sets the x range only:
@example
plot [-10:30] sin(pi*x)/(pi*x)
@end example
This is the same, but uses t as the dummy-variable:
@example
plot [t = -10 :30] sin(pi*t)/(pi*t)
@end example
This sets both the x and y ranges:
@example
plot [-pi:pi] [-3:3] tan(x), 1/x
@end example
This sets only the y range:
@example
plot [ ] [-2:sin(5)*-8] sin(x)**besj0(x)
@end example
This sets xmax and ymin only:
@example
plot [:200] [-pi:] $mydata using 1:2
@end example
This sets the x range for a timeseries:
@example
set timefmt "%d/%m/%y %H:%M"
plot ["1/6/93 12:00":"5/6/93 12:00"] 'timedata.dat'
@end example
@node sampling, for_loops_in_plot_command, ranges, plot
@subsection sampling
@cindex sampling
@c ?commands plot sample
@c ?plot sample
@c ?plot sampling
@cindex sample
@menu
* 1D_sampling_(x_or_t_axis)::
* 2D_sampling_(u_and_v_axes)::
@end menu
@node 1D_sampling_(x_or_t_axis), 2D_sampling_(u_and_v_axes), sampling, sampling
@subsubsection 1D sampling (x or t axis)
@c ?sampling 1D
@c ?plot sampling 1D
By default, computed functions are sampled over the entire range of the plot
as set by a prior @ref{xrange} command, by an x-axis range specifier at the
very start of the plot command, or by autoscaling the xrange to span data seen
in all the elements of this plot. Points generated by the pseudo-file "+"
are sampled over the current range of the t axis, which may or may not be
the same as the range of the x axis.
Individual plot components can be assigned a more restricted sampling range.
Examples:
This establishes a total range on x running from 0 to 1000 and then plots
data from a file and two functions each spanning a portion of the total range:
@example
set xrange [0:1000]
plot 'datafile', [0:200] func1(x), [200:500] func2(x)
@end example
This is similar except that the total range is established by the contents
of the data file. In this case the sampled functions may or may not be
entirely contained in the plot:
@example
set autoscale x
plot 'datafile', [0:200] func1(x), [200:500] func2(x)
@end example
The plot command below is ambiguous. The initial range [0:10] will be
interpreted as applying to the entire plot, overriding the previous xrange
command, rather than applying solely to the sampling of the first function
as was probably the intent:
@example
set xrange [0:50]
plot [0:10] f(x), [10:20] g(x), [20:30] h(x)
@end example
To remove the ambiguity in the previous example, insert the keyword `sample`
to indicate that [0:10] is a sampling range applied to a single plot component
rather than a global x-axis range that would apply to the entire plot.
@example
plot sample [0:10] f(x), [10:20] g(x), [20:30] h(x)
@end example
This example shows one way of tracing out a helix in a 3D plot
@example
set xrange [-2:2]; set yrange [-2:2]
splot sample [h=1:10] '+' using (cos(h)):(sin(h)):(h)
@end example
@node 2D_sampling_(u_and_v_axes), , 1D_sampling_(x_or_t_axis), sampling
@subsubsection 2D sampling (u and v axes)
@c ?sampling 2D
@c ?plot sampling 2D
Computed functions or data generated for the pseudo-file '++' use samples
generated along the u and v axes. See `special-filenames ++`.
2D sampling can be used in either `plot` or `splot` commands.
Example of 2D sampling in a 2D `plot` command. These commands generated the
plot shown for plotstyle @ref{vectors}. See @ref{vectors}.
@example
set urange [ -2.0 : 2.0 ]
set vrange [ -2.0 : 2.0 ]
plot '++' using ($1):($2):($2*0.4):(-$1*0.4) with vectors
@end example
Example of 2D sampling in a 3D `splot` command. These commands are similar to
the ones used in `sampling.dem`. Note that the two surfaces are sampled over
u and v ranges smaller than the full x and y ranges of the resulting plot.
@example
set title "3D sampling range distinct from plot x/y range"
set xrange [1:100]
set yrange [1:100]
splot sample [u=30:70][v=0:50] '++' using 1:2:(u*v) lt 3, \
[u=40:80][v=30:60] '++' using (u):(v):(u*sqrt(v)) lt 4
@end example
The range specifiers for sampling on u and v can include an explicit sampling
interval to control the number and spacing of samples:
@example
splot sample [u=30:70:1][v=0:50:5] '++' using 1:2:(func($1,$2))
@end example
@node for_loops_in_plot_command, title, sampling, plot
@subsection for loops in plot command
@c ?commands plot for
@c ?commands splot for
@c ?plot for
@c ?splot for
@c ?for loops
@cindex iteration
If many similar files or functions are to be plotted together, it may be
convenient to do so by iterating over a shared plot command.
Syntax:
@example
plot for [<variable> = <start> : <end> @{:<increment>@}]
plot for [<variable> in "string of words"]
@end example
The scope of an iteration ends at the next comma or the end of the command,
whichever comes first. An exception to this is that definitions are grouped
with the following plot item even if there is an intervening comma.
Note that iteration does not work for plots in parametric mode.
Example:
@example
plot for [j=1:3] sin(j*x)
@end example
Example:
@example
plot for [dataset in "apples bananas"] dataset."dat" title dataset
@end example
In this example iteration is used both to generate a file name and a
corresponding title.
Example:
@example
file(n) = sprintf("dataset_%d.dat",n)
splot for [i=1:10] file(i) title sprintf("dataset %d",i)
@end example
This example defines a string-valued function that generates file names,
and plots ten such files together. The iteration variable ('i' in this
example) is treated as an integer, and may be used more than once.
Example:
@example
set key left
plot for [n=1:4] x**n sprintf("%d",n)
@end example
This example plots a family of functions.
Example:
@example
list = "apple banana cabbage daikon eggplant"
item(n) = word(list,n)
plot for [i=1:words(list)] item[i].".dat" title item(i)
list = "new stuff"
replot
@end example
This example steps through a list and plots once per item.
Because the items are retrieved dynamically, you can change the list
and then replot.
Example:
@example
list = "apple banana cabbage daikon eggplant"
plot for [i in list] i.".dat" title i
list = "new stuff"
replot
@end example
This example does exactly the same thing as the previous example, but uses
the string iterator form of the command rather than an integer iterator.
If an iteration is to continue until all available data is consumed, use the
symbol * instead of an integer <end>. This can be used to process all columns
in a line, all datasets (separated by 2 blank lines) in a file, or all files
matching a template.
Examples:
@example
plot for [file in "A.dat B.dat"] for [column=2:*] file using 1:column
splot for [i=0:*] 'datafile' index i using 1:2:3 with lines
plot for [i=1:*] file=sprintf("File_%03d.dat",i) file using 2 title file
@end example
Caveat:
You can nest iterations where one is open-ended, as in the first example above.
However nesting an open-ended iteration inside another open-ended iteration is
probably not useful, since both will terminate at the same time when no data is
found. The program will issue a warning if this happens.
@node title, with, for_loops_in_plot_command, plot
@subsection title
@c ?commands plot title
@c ?commands splot title
@c ?plot title
@c ?splot title
@cindex columnheader
By default each plot is listed in the key by the corresponding function or file
name. You can give an explicit plot title instead using the @ref{title} option.
Syntax:
@example
title <text> | notitle [<ignored text>]
title columnheader | title columnheader(N)
@{at @{beginning|end@}@} @{@{no@}enhanced@}
@end example
where <text> is a quoted string or an expression that evaluates to a string.
The quotes will not be shown in the key.
There is also an option that will interpret the first entry in a column of
input data (i.e. the column header) as a text field, and use it as the key
title. See `datastrings`. This can be made the default by specifying
`set key autotitle columnhead`.
The line title and sample can be omitted from the key by using the keyword
`notitle`. A null title (`title ''`) is equivalent to `notitle`. If only
the sample is wanted, use one or more blanks (`title ' '`). If `notitle`
is followed by a string this string is ignored.
If `key autotitles` is set (which is the default) and neither @ref{title} nor
`notitle` are specified the line title is the function name or the file name as
it appears on the `plot` command. If it is a file name, any datafile modifiers
specified will be included in the default title.
The layout of the key itself (position, title justification, etc.) can be
controlled using `set key`.
The `at` keyword allows you to place the plot title somewhere outside the
auto-generated key box. The title can be placed immediately before or after the
line in the graph itself by using `at @{beginning|end@}`. This option may be
useful when plotting `with lines` but makes little sense for most other styles.
To place the plot title at an arbitrary location on the page, use the form
`at <x-position>,<y-position>`. By default the position is interpreted in
screen coordinates; e.g. `at 0.5, 0.5` is always the middle of the screen
regardless of plot axis scales or borders. The format of titles placed in
this way is still affected by key options. See `set key`.
Examples:
This plots y=x with the title 'x':
@example
plot x
@end example
This plots x squared with title "x^2" and file "data.1" with title
"measured data":
@example
plot x**2 title "x^2", 'data.1' t "measured data"
@end example
Plot multiple columns of data, each of which contains its own title on the
first line of the file. Place the titles after the corresponding lines rather
than in a separate key:
@example
unset key
set offset 0, graph 0.1
plot for [i=1:4] 'data' using i with lines title columnhead at end
@end example
Create a single key area for two separate plots:
@example
set key Left reverse
set multiplot layout 2,2
plot sin(x) with points pt 6 title "Left plot is sin(x)" at 0.5, 0.30
plot cos(x) with points pt 7 title "Right plot is cos(x)" at 0.5, 0.27
unset multiplot
@end example
@node with, , title, plot
@subsection with
@c ?commands plot with
@c ?commands splot with
@c ?commands plot style
@c ?commands splot style
@c ?plot with
@c ?plot style
@c ?splot with
@c ?splot style
@cindex style
@opindex style
@cindex with
Functions and data may be displayed in one of a large number of styles.
The `with` keyword provides the means of selection.
Syntax:
@example
with <style> @{ @{linestyle | ls <line_style>@}
| @{@{linetype | lt <line_type>@}
@{linewidth | lw <line_width>@}
@{linecolor | lc <colorspec>@}
@{pointtype | pt <point_type>@}
@{pointsize | ps <point_size>@}
@{arrowstyle | as <arrowstyle_index>@}
@{fill | fs <fillstyle>@} @{fillcolor | fc <colorspec>@}
@{nohidden3d@} @{nocontours@} @{nosurface@}
@{palette@}@}
@}
@end example
where <style> is one of
@example
lines dots steps vectors yerrorlines
points impulses fsteps xerrorbar xyerrorbars
linespoints labels histeps xerrorlines xyerrorlines
financebars surface arrows yerrorbar parallelaxes
@end example
or
@example
boxes boxplot ellipses histograms rgbalpha
boxerrorbars candlesticks filledcurves image rgbimage
boxxyerror circles fillsteps pm3d polygons
isosurface zerrorfill
@end example
or
@example
table mask
@end example
The first group of styles have associated line, point, and text properties.
The second group of styles also have fill properties. See `fillstyle`. Some
styles have further sub-styles. See `plotting styles` for details of each.
Two special styles produce no immediate plot. See @ref{table} and `with mask`.
The @ref{table} style produces tabular output to a text file or data block.
A plot component whose style is `with mask` defines a set of polygonal regions
that can be used to mask subsequent plot elements.
A default style may be chosen by `set style function` and `set style data`.
By default, each function and data file will use a different line type and
point type, up to the maximum number of available types. All terminal
drivers support at least six different point types, and re-use them, in
order, if more are required. To see the complete set of line and point
types available for the current terminal, type `test`.
If you wish to choose the line or point type for a single plot, <line_type>
and <point_type> may be specified. These are positive integer constants (or
expressions) that specify the line type and point type to be used for the
plot. Use `test` to display the types available for your terminal.
You may also scale the line width and point size for a plot by using
<line_width> and <point_size>, which are specified relative to the default
values for each terminal. The pointsize may also be altered
globally---see @ref{pointsize} for details. But note that both <point_size>
as set here and as set by @ref{pointsize} multiply the default point
size; their effects are not cumulative. That is,
`set pointsize 2; plot x with points ps 3` will use points three times the
default size, not six.
It is also possible to specify `pointsize variable` either as part of a
line style or for an individual plot. In this case one extra column of input
is required, i.e. 3 columns for a 2D plot and 4 columns for a 3D splot. The
size of each individual point is determined by multiplying the global
pointsize by the value read from the data file.
If you have defined specific line type/width and point type/size combinations
with `set style line`, one of these may be selected by setting <line_style> to
the index of the desired style.
Both 2D and 3D plots (`plot` and `splot` commands) can use colors from a
smooth palette set previously with the command @ref{palette}. The color value
corresponds to the z-value of the point itself or to a separate color
coordinate provided in an optional additional `using` column.
Color values may be treated either as a fraction of the palette range
(`palette frac`) or as a coordinate value mapped onto the colorbox range
(@ref{palette} or `palette z`). See @ref{colorspec}, @ref{palette}, `linetypes`.
The keyword `nohidden3d` applies only to plots made with the `splot` command.
Normally the global option @ref{hidden3d} applies to all plots in the graph.
You can attach the `nohidden3d` option to any individual plots that you want
to exclude from the hidden3d processing. The individual elements other than
surfaces (i.e. lines, dots, labels, ...) of a plot marked `nohidden3d` will all
be drawn, even if they would normally be obscured by other plot elements.
Similarly, the keyword `nocontours` will turn off contouring for an individual
plot even if the global property `set contour` is active.
Similarly, the keyword `nosurface` will turn off the 3D surface for an
individual plot even if the global property `set surface` is active.
The keywords may be abbreviated as indicated.
Note that the `linewidth`, @ref{pointsize} and @ref{palette} options are not supported
by all terminals.
Examples:
This plots sin(x) with impulses:
@example
plot sin(x) with impulses
@end example
This plots x with points, x**2 with the default:
@example
plot x w points, x**2
@end example
This plots tan(x) with the default function style, file "data.1" with lines:
@example
plot tan(x), 'data.1' with l
@end example
This plots "leastsq.dat" with impulses:
@example
plot 'leastsq.dat' w i
@end example
This plots the data file "population" with boxes:
@example
plot 'population' with boxes
@end example
This plots "exper.dat" with errorbars and lines connecting the points
(errorbars require three or four columns):
@example
plot 'exper.dat' w lines, 'exper.dat' notitle w errorbars
@end example
Another way to plot "exper.dat" with errorlines (errorbars require three
or four columns):
@example
plot 'exper.dat' w errorlines
@end example
This plots sin(x) and cos(x) with linespoints, using the same line type but
different point types:
@example
plot sin(x) with linesp lt 1 pt 3, cos(x) with linesp lt 1 pt 4
@end example
This plots file "data" with points of type 3 and twice usual size:
@example
plot 'data' with points pointtype 3 pointsize 2
@end example
This plots file "data" with variable pointsize read from column 4
@example
plot 'data' using 1:2:4 with points pt 5 pointsize variable
@end example
This plots two data sets with lines differing only by weight:
@example
plot 'd1' t "good" w l lt 2 lw 3, 'd2' t "bad" w l lt 2 lw 1
@end example
This plots filled curve of x*x and a color stripe:
@example
plot x*x with filledcurve closed, 40 with filledcurve y=10
@end example
This plots x*x and a color box:
@example
plot x*x, (x>=-5 && x<=5 ? 40 : 1/0) with filledcurve y=10 lt 8
@end example
This plots a surface with color lines:
@example
splot x*x-y*y with line palette
@end example
This plots two color surfaces at different altitudes:
@example
splot x*x-y*y with pm3d, x*x+y*y with pm3d at t
@end example
@node print, printerr, plot, Commands
@section print
@c ?commands print
@cindex print
@cmindex print
Syntax:
@example
print <expression> @{, <expression>, ...@}
@end example
The `print` command prints the value of one or more expressions.
Output is to the screen unless it has been redirected using the
`set print` command. See `expressions`. See also @ref{printerr}.
An <expression> may be any valid gnuplot expression, including numeric
or string constants, a function returning a number or string, an array,
or the name of a variable. It is also possible to print a datablock.
The sprintf and gprintf functions can be used in conjunction with `print`
for additional flexibility in formatting the output.
You can use iteration within a print command to include multiple values
on a single line of output.
Examples:
@example
print 123 + 456
print sinh(pi/2)
print "rms of residuals (FIT_STDFIT) is ", FIT_STDFIT
print sprintf("rms of residuals is %.3f after fit", FIT_STDFIT)
print "Array A: ", A
print "Individual elements of array A: ", for [i=1:|A|] A[i]
print $DATA
@end example
@node printerr, pwd, print, Commands
@section printerr
@c ?commands printerr
@cindex printerr
@cmindex printerr
@ref{printerr} is the same as `print` except that output is always sent to stderr
even while redirection from a prior `set print` command remains in effect.
Use the `warn` command instead if you want the output to include the current
filename (or function block name) and line number.
@node pwd, quit, printerr, Commands
@section pwd
@c ?commands pwd
@cindex pwd
@cmindex pwd
The @ref{pwd} command prints the name of the working directory to the screen.
Note that if you wish to store the current directory into a string variable
or use it in string expressions, then you can use variable GPVAL_PWD, see
`show variables all`.
@node quit, raise, pwd, Commands
@section quit
@c ?commands quit
@cindex quit
@cmindex quit
@ref{quit} is a synonym for the @ref{exit} command. See @ref{exit}.
@node raise, refresh, quit, Commands
@section raise
@c ?commands raise
@c ?commands lower
@cindex raise
@cmindex raise
@cindex lower
@cmindex lower
Syntax:
@example
raise @{plot_window_id@}
lower @{plot_window_id@}
@end example
The @ref{raise} and @ref{lower} commands function for only a few terminal types and
may depend also on your window manager and display preference settings.
@example
set term wxt 123 # create first plot window
plot $FOO
lower # lower the only plot window that exists so far
set term wxt 456 # create 2nd plot window may occlude the first one
plot $BAZ
raise 123 # raise first plot window
@end example
These commands are known to be unreliable.
@node refresh, remultiplot, raise, Commands
@section refresh
@c ?commands refresh
@cindex refresh
@cmindex refresh
The @ref{refresh} command is similar to @ref{replot}, with two major differences.
@ref{refresh} reformats and redraws the current plot using the data already read
in. This means that you can use @ref{refresh} for plots with inline data
(pseudo-device '-') and for plots from datafiles whose contents are volatile.
You cannot use the @ref{refresh} command to add new data to an existing plot.
Mousing operations, in particular zoom and unzoom, will use @ref{refresh} rather
than @ref{replot} if appropriate. Example:
@example
plot 'datafile' volatile with lines, '-' with labels
100 200 "Special point"
e
# Various mousing operations go here
set title "Zoomed in view"
set term post
set output 'zoom.ps'
refresh
@end example
@node remultiplot, replot, refresh, Commands
@section remultiplot
@c ?commands remultiplot
@cindex remultiplot
@cmindex remultiplot
@ref{remultiplot} replays a sequence of commands that were previously stored into
the datablock named $GPVAL_LAST_MULTIPLOT during generation of the previous
multiplot. See `new multiplots`.
EXPERIMENTAL: @ref{remultiplot} is invoked implicitly from @ref{replot} if the
immediately preceding plot command was part of a completed multiplot.
@ref{remultiplot} is also invoked by hot keys and mouse operations pan/zoom etc.
while a multiplot is displayed.
@node replot, reread, remultiplot, Commands
@section replot
@c ?commands replot
@cindex replot
@cmindex replot
The @ref{replot} command without arguments repeats the last `plot` or `splot`
command. This can be useful for viewing a plot with different `set` options,
or when generating the same plot for several devices.
Arguments specified after a @ref{replot} command will be added onto the last
`plot` or `splot` command (with an implied ',' separator) before it is
repeated. @ref{replot} accepts the same arguments as the `plot` and `splot`
commands except that ranges cannot be specified. Thus you can use @ref{replot}
to plot a function against the second axes if the previous command was `plot`
but not if it was `splot`.
Note:
@example
plot '-' ; ... ; replot
@end example
is not recommended, because it will require that you type in the data all
over again. In most cases you can use the @ref{refresh} command instead, which
will redraw the plot using the data previously read in.
See also `command-line-editing` for ways to edit the last `plot` (`splot`)
command.
See also `show plot` to show the whole current plotting command, and the
possibility to copy it into the @ref{history}.
In previous gnuplot versions, a complete multiplot could not be redrawn.
The @ref{replot} command reproduced only the final component plot of the full set.
In gnuplot version 6 the commands used to generate a multiplot are stored into
a datablock $GPVAL_LAST_MULTIPLOT. They can be replayed to regenerate the
entire multiplot using the new command @ref{remultiplot}.
EXPERIMENTAL (details may change in a subsequent gnuplot version):
If the previously drawn plot was part of a multiplot, the @ref{replot} command
is now automatically treated as @ref{remultiplot}. Several caveats apply.
See `new multiplots`, @ref{remultiplot}.
@node reread, reset, replot, Commands
@section reread
@c ?commands reread
@cindex reread
@cmindex reread
[DEPRECATED in version 5.4]
This command is deprecated in favor of explicit iteration.
See `iterate`.
The @ref{reread} command causes execution from the current `gnuplot` input file,
as specified by a `load` command, to immediately restart from the beginning
of the file. This essentially implements an endless loop of commands from the
beginning of the file to the @ref{reread} command.
@ref{reread} has no effect when reading commands from stdin.
@node reset, return, reread, Commands
@section reset
@c ?commands reset
@cindex reset
@cmindex reset
@example
reset @{bind | errors | session@}
@end example
The @ref{reset} command causes all graph-related options that can be set with the
`set` command to return to their default values. This command can be used to
restore the default settings after executing a loaded command file, or to
return to a defined state after lots of settings have been changed.
The following are _not_ affected by @ref{reset}:
@example
`set term` @ref{output} @ref{loadpath} `set linetype` @ref{fit}
@ref{encoding} @ref{decimalsign} @ref{locale} @ref{psdir}
@ref{overflow} @ref{multiplot}
@end example
Note that @ref{reset} does not necessarily return settings to the state they
were in at program entry, because the default values may have been altered by
commands in the initialization files gnuplotrc, $HOME/.gnuplot, or
$XDG_CONFIG_HOME/gnuplot/gnuplotrc. However, these commands can be
re-executed by using the variant command `reset session`.
@c ?reset session
@cindex session
`reset session` deletes any user-defined variables and functions, restores
default settings, and then re-executes the system-wide gnuplotrc initialization
file and any private $HOME/.gnuplot or $XDG_CONFIG_HOME/gnuplot/gnuplotrc
preferences file. See `initialization`.
@c ?reset errors
@cindex error state
`reset errors` clears only the error state variables GPVAL_ERRNO and
GPVAL_ERRMSG.
@c ?reset bind
@cindex bind
@opindex bind
`reset bind` restores all hotkey bindings to their default state.
@node return, save, reset, Commands
@section return
@c ?commands return
@cindex return
@cmindex return
Syntax:
@example
return <expression>
@end example
The @ref{return} command acts the same way as the @ref{exit} and @ref{quit} commands in
that it terminates execution of the current code block or input stream.
The return value is meaningful only in the context of executing code in a
function block. See `function blocks`.
Example:
@example
function $myfun << EOF
local result = 0
if (error-condition) @{ return -1 @}
... body of function ...
return result
EOF
@end example
@node save, set-show, return, Commands
@section save
@c ?commands save
@c ?save set
@cindex save
@cmindex save
@c ?save fit
Syntax:
@example
save @{functions | variables | terminal | set | fit | datablocks@}
'<filename>' @{append@}
@end example
If no option is specified, `gnuplot` saves functions, user variables,
`set` options and the most recent `plot` or `splot` command.
The current status of `set term` and @ref{output} is written as a comment.
Saved files are written in text format and may be read by the
`load` command.
@ref{terminal} will write out just the @ref{terminal} status, without
the comment marker in front of it. This is mainly useful for
switching the @ref{terminal} setting for a short while, and getting back
to the previously set terminal, afterwards, by loading the saved
@ref{terminal} status. Note that for a single gnuplot session you may
rather use the other method of saving and restoring current terminal
by the commands `set term push` and `set term pop`, see `set term`.
`save variables` writes all user variables but not datablocks and
not internal variables GPVAL_* GPFUN_* MOUSE_* ARG*.
@ref{fit} saves only the variables used in the most recent @ref{fit} command.
The saved file may be used as a parameter file to initialize future fit
commands using the `via` keyword.
The filename must be enclosed in quotes.
The special filename "-" may be used to @ref{save} commands to standard output.
On systems which support a popen function (Unix), the output of save can be
piped through an external program by starting the file name with a '|'.
This provides a consistent interface to `gnuplot`'s internal settings to
programs which communicate with `gnuplot` through a pipe. Please see
help for `batch/interactive` for more details.
Examples:
@example
save 'work.gnu'
save functions 'func.dat'
save var 'state.dat'; save datablocks 'state.dat' append
save set 'options.dat'
save term 'myterm.gnu'
save '-'
save '|grep title >t.gp'
@end example
@node set-show, shell, save, Commands
@section set-show
@c ?commands set
@c ?commands show
@cindex set
@cindex show
@cmindex show
@c ?show all
The `set` command can be used to set _lots_ of options. No new graph is
drawn, however, until a `plot`, `splot`, or @ref{replot} command is given.
For most options the corresponding `show` command reports the current setting.
A few `show` commands like @ref{palette} and @ref{colornames} are documented
separately.
Options changed using `set` can be returned to the default state by giving the
corresponding @ref{unset} command. See also the @ref{reset} command, which returns
all settable parameters to default values.
@cindex iteration
The `set` and @ref{unset} commands may optionally contain an iteration clause.
See `plot for`.
@menu
* angles::
* arrow::
* autoscale::
* bind_::
* bmargin::
* border::
* boxwidth::
* boxdepth::
* chi_shapes::
* color::
* colormap::
* colorsequence::
* clabel::
* clip::
* cntrlabel::
* cntrparam::
* color_box::
* colornames::
* contour::
* cornerpoles::
* contourfill_::
* dashtype_::
* datafile::
* decimalsign::
* dgrid3d::
* dummy::
* encoding::
* errorbars::
* fit_::
* fontpath::
* format__::
* grid::
* hidden3d::
* history_::
* isosamples::
* isosurface_::
* isotropic::
* jitter::
* key_::
* label::
* linetype::
* link::
* lmargin::
* loadpath::
* locale::
* logscale::
* macros::
* mapping::
* margin::
* micro::
* minussign::
* monochrome::
* mouse::
* mttics::
* multiplot::
* mx2tics::
* mxtics::
* my2tics::
* mytics::
* mztics::
* nonlinear::
* object::
* offsets::
* origin::
* output::
* overflow::
* palette__::
* parametric_::
* paxis::
* pixmap::
* pm3d::
* pointintervalbox::
* pointsize::
* polar::
* print_::
* psdir::
* raxis::
* rgbmax::
* rlabel::
* rmargin::
* rrange::
* rtics::
* samples::
* size::
* spiderplot_::
* style::
* surface_::
* table::
* terminal::
* termoption::
* theta::
* tics::
* ticslevel::
* ticscale::
* timestamp::
* timefmt::
* title_::
* tmargin::
* trange::
* ttics::
* urange::
* version::
* vgrid::
* view::
* vrange::
* vxrange::
* vyrange::
* vzrange::
* walls::
* watchpoints::
* x2data::
* x2dtics::
* x2label::
* x2mtics::
* x2range::
* x2tics::
* x2zeroaxis::
* xdata::
* xdtics::
* xlabel::
* xmtics::
* xrange::
* xtics::
* xyplane::
* xzeroaxis::
* y2data::
* y2dtics::
* y2label::
* y2mtics::
* y2range::
* y2tics::
* y2zeroaxis::
* ydata::
* ydtics::
* ylabel::
* ymtics::
* yrange::
* ytics::
* yzeroaxis::
* zdata::
* zdtics::
* zzeroaxis::
* cbdata::
* cbdtics::
* zero::
* zeroaxis::
* zlabel::
* zmtics::
* zrange::
* ztics::
* cblabel::
* cbmtics::
* cbrange::
* cbtics::
@end menu
@node angles, arrow, set-show, set-show
@subsection angles
@c ?commands set angles
@c ?commands show angles
@c ?set angles
@c ?show angles
@cindex angles
@opindex angles
@c ?commands set angles degrees
@c ?set angles degrees
@c ?angles degrees
@cindex degrees
By default, `gnuplot` assumes the independent variable in polar graphs is in
units of radians. If `set angles degrees` is specified before `set polar`,
then the default range is [0:360] and the independent variable has units of
degrees. This is particularly useful for plots of data files. The angle
setting also applies to 3D mapping as set via the @ref{mapping} command.
Syntax:
@example
set angles @{degrees | radians@}
show angles
@end example
The angle specified in `set grid polar` is also read and displayed in the
units specified by @ref{angles}.
@ref{angles} also affects the arguments of the machine-defined functions
sin(x), cos(x) and tan(x), and the outputs of asin(x), acos(x), atan(x),
atan2(x), and arg(x). It has no effect on the arguments of hyperbolic
functions or Bessel functions. However, the output arguments of inverse
hyperbolic functions of complex arguments are affected; if these functions
are used, `set angles radians` must be in effect to maintain consistency
between input and output arguments.
@example
x=@{1.0,0.1@}
set angles radians
y=sinh(x)
print y #prints @{1.16933, 0.154051@}
print asinh(y) #prints @{1.0, 0.1@}
@end example
but
@example
set angles degrees
y=sinh(x)
print y #prints @{1.16933, 0.154051@}
print asinh(y) #prints @{57.29578, 5.729578@}
@end example
See also
@uref{http://www.gnuplot.info/demo/poldat.html,poldat.dem: polar plot using angles demo.
}
@node arrow, autoscale, angles, set-show
@subsection arrow
@c ?commands set arrow
@c ?commands unset arrow
@c ?commands show arrow
@c ?set arrow
@c ?unset arrow
@c ?show arrow
@cindex arrow
@opindex arrow
@cindex noarrow
Arbitrary arrows can be placed on a plot using the `set arrow` command.
Syntax:
@example
set arrow @{<tag>@} from <position> to <position>
set arrow @{<tag>@} from <position> rto <position>
set arrow @{<tag>@} from <position> length <coord> angle <ang>
set arrow <tag> arrowstyle | as <arrow_style>
set arrow <tag> @{nohead | head | backhead | heads@}
@{size <headlength>,<headangle>@{,<backangle>@}@} @{fixed@}
@{filled | empty | nofilled | noborder@}
@{front | back@}
@{linestyle | ls <line_style>@}
@{linetype | lt <line_type>@}
@{linewidth | lw <line_width>@}
@{linecolor | lc <colorspec>@}
@{dashtype | dt <dashtype>@}
@end example
@example
unset arrow @{<tag>@}
show arrow @{<tag>@}
@end example
<tag> is an integer that identifies the arrow. If no tag is given, the
lowest unused tag value is assigned automatically. The tag can be used to
delete or change a specific arrow. To change any attribute of an existing
arrow, use `set arrow` with the appropriate tag and specify the attributes
to be changed.
The position of the first end point of the arrow is always specified by "from".
The other end point can be specified using any of three different mechanisms.
The <position>s are specified by either x,y or x,y,z, and may be preceded by
`first`, `second`, `graph`, `screen`, or `character` to select the coordinate
system. Unspecified coordinates default to 0. See `coordinates` for details.
A coordinate system specifier does not carry over from the first endpoint
description the second.
1) "to <position>" specifies the absolute coordinates of the other end.
2) "rto <position>" specifies an offset to the "from" position. For linear
axes, `graph` and `screen` coordinates, the distance between the start and the
end point corresponds to the given relative coordinate. For logarithmic axes,
the relative given coordinate corresponds to the factor of the coordinate
between start and end point. Thus, a negative relative value or zero are
not allowed for logarithmic axes.
3) "length <coordinate> angle <angle>" specifies the orientation of the arrow
in the plane of the graph. Again any of the coordinate systems can
be used to specify the length. The angle is always in degrees.
Other characteristics of the arrow can either be specified as a pre-defined
arrow style or by providing them in `set arrow` command. For a detailed
explanation of arrow characteristics, see `arrowstyle`.
Examples:
To set an arrow pointing from the origin to (1,2) with user-defined linestyle 5,
use:
@example
set arrow to 1,2 ls 5
@end example
To set an arrow from bottom left of plotting area to (-5,5,3), and tag the
arrow number 3, use:
@example
set arrow 3 from graph 0,0 to -5,5,3
@end example
To change the preceding arrow to end at 1,1,1, without an arrow head and
double its width, use:
@example
set arrow 3 to 1,1,1 nohead lw 2
@end example
To draw a vertical line from the bottom to the top of the graph at x=3, use:
@example
set arrow from 3, graph 0 to 3, graph 1 nohead
@end example
To draw a vertical arrow with T-shape ends, use:
@example
set arrow 3 from 0,-5 to 0,5 heads size screen 0.1,90
@end example
To draw an arrow relatively to the start point, where the relative distances
are given in graph coordinates, use:
@example
set arrow from 0,-5 rto graph 0.1,0.1
@end example
To draw an arrow with relative end point in logarithmic x axis, use:
@example
set logscale x
set arrow from 100,-5 rto 10,10
@end example
This draws an arrow from 100,-5 to 1000,5. For the logarithmic x axis, the
relative coordinate 10 means "factor 10" while for the linear y axis, the
relative coordinate 10 means "difference 10".
To delete arrow number 2, use:
@example
unset arrow 2
@end example
To delete all arrows, use:
@example
unset arrow
@end example
To show all arrows (in tag order), use:
@example
show arrow
@end example
@uref{http://www.gnuplot.info/demo/arrowstyle.html,arrows demos.
}
@node autoscale, bind_, arrow, set-show
@subsection autoscale
@c ?commands set autoscale
@c ?commands unset autoscale
@c ?commands show autoscale
@c ?set autoscale
@c ?unset autoscale
@c ?show autoscale
@cindex autoscale
@opindex autoscale
@cindex noautoscale
Autoscaling may be set individually on the x, y or z axis or globally on all
axes. The default is to autoscale all axes. If you want to autoscale based on
a subset of the plots in the figure, you can mark the ones to be omitted with
the flag `noautoscale` in the plot command. See @ref{datafile}.
Syntax:
@example
set autoscale @{<axis>@{|min|max|fixmin|fixmax|fix@} | fix | keepfix@}
set autoscale noextend
unset autoscale @{<axis>@}
show autoscale
@end example
where <axis> is `x`, `y`, `z`, `cb`, `x2`, `y2`, `xy`, or `paxis <p>`.
Appending `min` or `max` to the axis name tells `gnuplot` to autoscale only
the minimum or maximum of that axis.
If no axis name is given, all axes are autoscaled.
Autoscaling the independent axes (x for `plot` and x,y for `splot`) adjusts
the axis range to match the data being plotted. If the plot contains only
functions (no input data), autoscaling these axes has no effect.
Autoscaling the dependent axis (y for a `plot` and z for `splot`) adjusts the
axis range to match the data or function being plotted.
Adjustment of the axis range includes extending it to the next tic mark;
i.e. unless the extreme data coordinate exactly matches a tic mark, there
will be some blank space between the data and the plot border.
Addition of this extra space can be suppressed by @ref{noextend}.
It can be further increased by the command `set offset`.
Please see @ref{xrange} and @ref{offsets} for additional information.
The behavior of autoscaling remains consistent in parametric mode, (see
@ref{parametric}). However, there are more dependent variables and hence more
control over x, y, and z axis scales. In parametric mode, the independent or
dummy variable is t for `plot`s and u,v for `splot`s. @ref{autoscale} in
parametric mode, then, controls all ranges (t, u, v, x, y, and z) and allows
x, y, and z to be fully autoscaled.
When tics are displayed on second axes but no plot has been specified for
those axes, x2range and y2range are inherited from xrange and yrange. This
is done _before_ applying offsets or autoextending the ranges to a whole
number of tics, which can cause unexpected results. To prevent this you can
explicitly link the secondary axis range to the primary axis range.
See @ref{link}.
@menu
* noextend::
* examples::
* polar_mode::
@end menu
@node noextend, examples, autoscale, autoscale
@subsubsection noextend
@c ?set autoscale noextend
@c ?set autoscale keepfix
@c ?set autoscale fix
@c ?autoscale noextend
@cindex noextend
@cindex keepfix
@cindex fix
@example
set autoscale noextend
@end example
By default autoscaling sets the axis range limits to the nearest tic label
position that includes all the plot data. Keywords `fixmin`, `fixmax`, `fix`
or @ref{noextend} tell gnuplot to disable extension of the axis range to the next
tic mark position. In this case the axis range limit exactly matches the
coordinate of the most extreme data point. @ref{noextend} is a
synonym for `set autoscale fix`. Range extension for a single axis can be
disabled by appending the @ref{noextend} keyword to the corresponding range
command, e.g.
@example
set yrange [0:*] noextend
@end example
`set autoscale keepfix` autoscales all axes while leaving the fix settings
unchanged.
@node examples, polar_mode, noextend, autoscale
@subsubsection examples
@c ?autoscale examples
@c ?set autoscale examples
Examples:
This sets autoscaling of the y axis (other axes are not affected):
@example
set autoscale y
@end example
This sets autoscaling only for the minimum of the y axis (the maximum of the
y axis and the other axes are not affected):
@example
set autoscale ymin
@end example
This disables extension of the x2 axis tics to the next tic mark,
thus keeping the exact range as found in the plotted data and functions:
@example
set autoscale x2fixmin
set autoscale x2fixmax
@end example
This sets autoscaling of the x and y axes:
@example
set autoscale xy
@end example
This sets autoscaling of the x, y, z, x2 and y2 axes:
@example
set autoscale
@end example
This disables autoscaling of the x, y, z, x2 and y2 axes:
@example
unset autoscale
@end example
This disables autoscaling of the z axis only:
@example
unset autoscale z
@end example
@node polar_mode, , examples, autoscale
@subsubsection polar mode
@c ?commands set autoscale polar
@c ?set autoscale polar
When in polar mode (`set polar`), the xrange and the yrange may be left
in autoscale mode. If @ref{rrange} is used to limit the extent of the polar
axis, then xrange and yrange will adjust to match this automatically.
However, explicit xrange and yrange commands can later be used to make
further adjustments. See @ref{rrange}.
See also
@uref{http://www.gnuplot.info/demo/poldat.html,polar demos.
}
@node bind_, bmargin, autoscale, set-show
@subsection bind
@c ?commands show bind
@c ?show bind
@cindex bind
@opindex bind
`show bind` shows the current state of all hotkey bindings. See `bind`.
@node bmargin, border, bind_, set-show
@subsection bmargin
@c ?commands set bmargin
@c ?set bmargin
@cindex bmargin
@opindex bmargin
The command @ref{bmargin} sets the size of the bottom margin.
Please see @ref{margin} for details.
@node border, boxwidth, bmargin, set-show
@subsection border
@c ?commands set border
@c ?commands unset border
@c ?commands show border
@c ?set border
@c ?set border polar
@c ?unset border
@c ?show border
@cindex border
@opindex border
@cindex noborder
The @ref{border} and @ref{border} commands control the display of the graph
borders for the `plot` and `splot` commands. Note that the borders do not
necessarily coincide with the axes; with `plot` they often do, but with
`splot` they usually do not.
Syntax:
@example
set border @{<integer>@}
@{front | back | behind@}
@{linestyle | ls <line_style>@}
@{linetype | lt <line_type>@} @{linewidth | lw <line_width>@}
@{linecolor | lc <colorspec>@} @{dashtype | dt <dashtype>@}
@{polar@}
unset border
show border
@end example
With a `splot` displayed in an arbitrary orientation, like `set view 56,103`,
the four corners of the x-y plane can be referred to as "front", "back",
"left" and "right". A similar set of four corners exist for the top surface,
of course. Thus the border connecting, say, the back and right corners of the
x-y plane is the "bottom right back" border, and the border connecting the top
and bottom front corners is the "front vertical". (This nomenclature is
defined solely to allow the reader to figure out the table that follows.)
The borders are encoded in a 12-bit integer: the four low bits control the
border for `plot` and the sides of the base for `splot`; the next four bits
control the verticals in `splot`; the four high bits control the edges on top
of an `splot`. The border settings is thus the sum of the appropriate
entries from the following table:
@example
Bit plot splot
1 bottom bottom left front
2 left bottom left back
4 top bottom right front
8 right bottom right back
16 no effect left vertical
32 no effect back vertical
64 no effect right vertical
128 no effect front vertical
256 no effect top left back
512 no effect top right back
1024 no effect top left front
2048 no effect top right front
4096 polar no effect
@end example
@c ^<table align="center" border="1" rules="groups" frame="hsides" cellpadding="3">
@c ^<colgroup>
@c ^ <col align="right">
@c ^ <col align="center">
@c ^ <col align="center">
@c ^</colgroup>
@c ^<thead>
@c ^<tr> <th>Bit</th> <th>plot</th> <th>splot</th></tr>
@c ^</thead>
@c ^<tbody>
@c ^<tr> <td>1</td> <td>bottom</td> <td>bottom left front</td></tr>
@c ^<tr> <td>2</td> <td>left</td> <td>bottom left back</td></tr>
@c ^<tr> <td>4</td> <td>top</td> <td>bottom right front</td></tr>
@c ^<tr> <td>8</td> <td>right</td> <td>bottom right back</td></tr>
@c ^<tr> <td>16</td> <td>no effect</td> <td>left vertical</td></tr>
@c ^<tr> <td>32</td> <td>no effect</td> <td>back vertical</td></tr>
@c ^<tr> <td>64</td> <td>no effect</td> <td>right vertical</td></tr>
@c ^<tr> <td>128</td> <td>no effect</td> <td>front vertical</td></tr>
@c ^<tr> <td>256</td> <td>no effect</td> <td>top left back</td></tr>
@c ^<tr> <td>512</td> <td>no effect</td> <td>top right back</td></tr>
@c ^<tr> <td>1024</td> <td>no effect</td> <td>top left front</td></tr>
@c ^<tr> <td>2048</td> <td>no effect</td> <td>top right front</td></tr>
@c ^<tr> <td>4096</td> <td>polar</td> <td>no effect</td></tr>
@c ^</tbody>
@c ^</table>
The default setting is 31, which is all four sides for `plot`, and base and
z axis for `splot`.
Separate from the four vertical lines in a 3D border, the `splot` command
by default draws a vertical line each corner of a surface to the base plane
of the plot. These verticals are not controlled by @ref{border}.
Instead use @ref{cornerpoles}.
In 2D plots the border is normally drawn on top of all plots elements
(`front`). If you want the border to be drawn behind the plot elements,
use `set border back`.
In hidden3d plots the lines making up the border are normally subject to the
same hidden3d processing as the plot elements. `set border behind` will
override this default.
Using the optional <linestyle>, <linetype>, <linewidth>, <linecolor>, and
<dashtype> specifiers, the way the border lines are drawn can be influenced
(limited by what the current terminal driver supports).
Besides the border itself, this line style is used for the tics, independent
of whether they are plotted on the border or on the axes (see `set xtics`).
For `plot`, tics may be drawn on edges other than bottom and left by enabling
the second axes -- see `set xtics` for details.
If a `splot` draws only on the base, as is the case with "`unset surface; set
contour base`", then the verticals and the top are not drawn even if they are
specified.
The `set grid` options 'back', 'front' and 'layerdefault' also
control the order in which the border lines are drawn with respect to
the output of the plotted data.
The `polar` keyword enables a circular border for polar plots.
Examples:
Draw default borders:
@example
set border
@end example
Draw only the left and bottom (`plot`) or both front and back bottom left
(`splot`) borders:
@example
set border 3
@end example
Draw a complete box around a `splot`:
@example
set border 4095
@end example
Draw a topless box around a `splot`, omitting the front vertical:
@example
set border 127+256+512 # or set border 1023-128
@end example
Draw only the top and right borders for a `plot` and label them as axes:
@example
unset xtics; unset ytics; set x2tics; set y2tics; set border 12
@end example
@node boxwidth, boxdepth, border, set-show
@subsection boxwidth
@c ?commands set boxwidth
@c ?commands show boxwidth
@c ?set boxwidth
@c ?show boxwidth
@cindex boxwidth
@opindex boxwidth
The @ref{boxwidth} command is used to set the default width of boxes in the
@ref{boxes}, @ref{boxerrorbars}, @ref{boxplot}, @ref{candlesticks} and @ref{histograms} styles.
Syntax:
@example
set boxwidth @{<width>@} @{absolute|relative@}
show boxwidth
@end example
By default, adjacent boxes are extended in width until they touch each other.
A different default width may be specified using the @ref{boxwidth} command.
`Relative` widths are interpreted as being a fraction of this default width.
An explicit value for the boxwidth is interpreted as being a number of units
along the current x axis (`absolute`) unless the modifier `relative` is given.
If the x axis is a log-scale (see `set log`) then the value of boxwidth is
truly "absolute" only at x=1; this physical width is maintained everywhere
along the axis (i.e. the boxes do not become narrower the value of x
increases). If the range spanned by a log scale x axis is far from x=1,
some experimentation may be required to find a useful value of boxwidth.
The default is superseded by explicit width information taken from an extra
data column in styles @ref{boxes} or @ref{boxerrorbars}.
See @ref{boxes} and @ref{boxerrorbars} for more details.
To set the box width to automatic use the command
@example
set boxwidth
@end example
To set the box width to half of the automatic size use
@example
set boxwidth 0.5 relative
@end example
To set the box width to an absolute value of 2 use
@example
set boxwidth 2 absolute
@end example
@node boxdepth, chi_shapes, boxwidth, set-show
@subsection boxdepth
@c ?commands set boxdepth
@c ?commands show boxdepth
@c ?set boxdepth
@c ?show boxdepth
@cindex boxdepth
@opindex boxdepth
@example
set boxdepth @{<y extent>@} | square
@end example
The @ref{boxdepth} command affects only 3D plots created by @ref{boxes}.
It sets the extent of each box along the y axis, i.e. its thickness.
`set boxdepth square` will try to choose a y extent that gives the appearance
of a square cross section independent of the axis scales on x and y.
@node chi_shapes, color, boxdepth, set-show
@subsection chi_shapes
@c ?command set chi_shapes
@c ?set chi_shapes
@c ?command unset chi_shapes
@c ?unset chi_shapes
@cindex chi_shapes
@opindex chi_shapes
@example
set chi_shapes fraction <value>
unset chi_shapes
@end example
The concave hull filter creates χ-shapes defined by a characteristic length
chi_length. If no chi_length variable has been set, it chooses a value equal
to a fraction of the longest edge in the bounding polygon (the convex hull).
The fraction defaults to 0.6 but can be changed using this command.
Choosing a value of 1.0 will reduce the resulting hull to the convex hull.
Smaller values will produce increasingly concave hulls. See `concavehull`.
The @ref{chi_shapes} command restores the fraction to 0.6 and undefines
the chi_length variable.
@node color, colormap, chi_shapes, set-show
@subsection color
@c ?commands set color
@c ?set color
Gnuplot assigns each element of a `plot` or `splot` command a new set of line
properties taken from a predefined sequence. The default is to distinguish
successive lines by a change in color. The alternative selected by
@ref{monochrome} uses a sequence of black lines distinguished by linewidth or
dot/dash pattern. The `set color` command exits this alternative monochrome
mode and restores the previous set of default color lines.
See @ref{monochrome}, `set linetype`, and @ref{colorsequence}.
@node colormap, colorsequence, color, set-show
@subsection colormap
@c ?commands set colormap
@c ?set colormap
@cindex colormap
@opindex colormap
@c ?show colormap
@cindex alpha channel
@cindex transparency
@cindex palette
@opindex palette
Syntax:
@example
set colormap new <colormap-name>
set colormap <colormap-name> range [<min>:<max>]
show colormaps
@end example
`set colormap new <name>` creates a colormap array <name> and loads it from
the current palette settings. This saved colormap can be further manipulated
as an array of 32-bit ARGB color values and used by name in subsequent plots.
Here is an example that creates a palette running from dark red to white,
saves it to a colormap array named 'Reds', and makes all entries in the
colormap partially transparent. This named colormap is then used later
to color a pm3d surface.
Note that the alpha channel value in a named colormap follows the convention
for ARGB line properties; i.e 0 is opaque, 0xff is fully transparent.
@example
set palette defined (0 "dark-red", 1 "white")
set colormap new Reds
do for [i=1:|Reds|] @{ Reds[i] = Reds[i] | 0x3F000000 @}
splot func(x,y) with pm3d fillcolor palette Reds
@end example
The mapping of z values onto the colormap can be tuned by setting minimum and
maximum z values that correspond to the end points. For example
@example
set colormap Reds range [0:10]
@end example
If no range is set, or if min and max are the same, then the mapping uses the
current limits of cbrange. See @ref{cbrange}.
A colormap can be used to gradient-fill a rectangular area.
See @ref{colormap}.
@node colorsequence, clabel, colormap, set-show
@subsection colorsequence
@c ?commands set colorsequence
@c ?set colorsequence
@cindex colorsequence
@opindex colorsequence
Syntax:
@example
set colorsequence @{default|classic|podo@}
@end example
`set colorsequence default` selects a terminal-independent repeating sequence
of eight colors. See `set linetype`, `colors`.
`set colorsequence classic` lets each separate terminal type provide its own
sequence of line colors. The number provided varies from 4 to more than 100,
but most start with red/green/blue/magenta/cyan/yellow.
This was the default behaviour prior to version 5.
`set colorsequence podo` selects eight colors drawn from a set recommended by
Wong (2011) [Nature Methods 8:441] as being easily distinguished by color-blind
viewers with either protanopia or deuteranopia.
In each case you can further customize the length of the sequence and the
colors used. See `set linetype`, `colors`.
@node clabel, clip, colorsequence, set-show
@subsection clabel
@c ?commands set clabel
@c ?commands unset clabel
@c ?commands show clabel
@c ?set clabel
@c ?unset clabel
@c ?show clabel
@cindex clabel
@opindex clabel
This command has been deprecated. Use @ref{cntrlabel} instead.
`set clabel "format"` is replaced by `set cntrlabel format "format"`.
@ref{clabel} is replaced by `set cntrlabel onecolor`.
@node clip, cntrlabel, clabel, set-show
@subsection clip
@c ?commands set clip
@c ?commands unset clip
@c ?commands show clip
@c ?set clip
@c ?unset clip
@c ?show clip
@cindex clip
@opindex clip
Syntax:
@example
set clip @{points|one|two|radial@}
unset clip @{points|one|two|radial@}
show clip
@end example
Default state:
@example
unset clip points
set clip one
unset clip two
unset clip radial
@end example
Data points whose center lies inside the plot boundaries are normally drawn
even if the finite size of the point symbol causes it to extend past a boundary
line. `set clip points` causes such points to be clipped (i.e. not drawn) even
though the point center is inside the boundaries of a 2D plot.
Data points whose center lies outside the plot boundaries are never drawn.
`unset clip` causes a line segment in a plot not to be drawn if either end of
that segment lies outside the plot boundaries (i.e. xrange and yrange).
`set clip one` causes `gnuplot` to draw the in-range portion of line
segments with one endpoint in range and one endpoint out of range.
`set clip two` causes `gnuplot` to draw the in-range portion of line
segments with both endpoints out of range.
Line segments that lie entirely outside the plot boundaries are never drawn.
`set clip radial` affects plotting only in polar mode. It clips lines
against the radial bound established by `set rrange [0:MAX]`. This criteria
is applied in conjunction with `set clip @{one|two@}`. I.e. the portion of a
line between two points with R > RMAX that passes through the circle
R = RMAX is drawn only if both `clip two` and `clip radial` are set.
Notes:
* `set clip` affects only points and lines produced by plot styles `lines`,
@ref{linespoints}, `points`, `arrows`, and @ref{vectors}.
* Clipping of colored quadrangles drawn for pm3d surfaces and other solid
objects is controlled @ref{clipping}. The default is smooth clipping
against the current zrange.
* Object clipping is controlled by the `clip` or `noclip` property of the
individual object.
* In the current version of gnuplot, "plot with vectors" in polar mode does
not test or clip against the maximum radius.
@node cntrlabel, cntrparam, clip, set-show
@subsection cntrlabel
@c ?commands set cntrlabel
@c ?commands show cntrlabel
@c ?set cntrlabel
@c ?show cntrlabel
@cindex cntrlabel
@opindex cntrlabel
Syntax:
@example
set cntrlabel @{format "format"@} @{font "font"@}
set cntrlabel @{start <int>@} @{interval <int>@}
set cntrlabel onecolor
@end example
@ref{cntrlabel} controls the labeling of contours, either in the key (default)
or on the plot itself in the case of @ref{labels}. In the latter
case labels are placed along each contour line according to the `pointinterval`
or `pointnumber` property of the label descriptor. By default a label is
placed on the 5th line segment making up the contour line and repeated every
20th segment. These defaults are equivalent to
@example
set cntrlabel start 5 interval 20
@end example
They can be changed either via the @ref{cntrlabel} command or by specifying the
interval in the `splot` command itself
@example
set contours; splot $FOO with labels point pointinterval -1
@end example
Setting the interval to a negative value means that the label appear only
once per contour line. However if @ref{samples} or @ref{isosamples} is large
then many contour lines may be created, each with a single label.
A contour label is placed in the plot key for each linetype used. By default
each contour level is given its own linetype, so a separate label appears for
each. The command `set cntrlabel onecolor` causes all contours to be drawn
using the same linetype, so only one label appears in the plot key.
This command replaces an older command @ref{clabel}.
@node cntrparam, color_box, cntrlabel, set-show
@subsection cntrparam
@c ?commands set cntrparam
@c ?commands show cntrparam
@c ?set cntrparam
@c ?show cntrparam
@cindex cntrparam
@opindex cntrparam
@ref{cntrparam} controls the generation of contours and their smoothness for
a contour plot. `show contour` displays current settings of @ref{cntrparam} as
well as `contour`.
Syntax:
@example
set cntrparam @{ @{ linear
| cubicspline
| bspline
| points <n>
| order <n>
| levels @{ <n>
| auto @{<n>@}
| discrete <z1> @{,<z2>@{,<z3>...@}@}
| incremental <start>, <incr> @{,<end>@}
@}
@{@{un@}sorted@}
@{firstlinetype N@}
@}
@}
show contour
@end example
This command has two functions. First, it sets the values of z for which
contours are to be determined. The number of contour levels <n> should be an
integral constant expression. <z1>, <z2> ... are real-valued expressions.
Second, it controls the appearance of the individual contour lines.
Keywords controlling the smoothness of contour lines:
`linear`, `cubicspline`, `bspline`--- Controls type of approximation or
interpolation. If `linear`, then straight line segments connect points of
equal z magnitude. If `cubicspline`, then piecewise-linear contours are
interpolated between the same equal z points to form somewhat smoother
contours, but which may undulate. If `bspline`, a guaranteed-smoother curve
is drawn, which only approximates the position of the points of equal-z.
`points`--- Eventually all drawings are done with piecewise-linear strokes.
This number controls the number of line segments used to approximate the
`bspline` or `cubicspline` curve. Number of cubicspline or bspline
segments (strokes) = `points` * number of linear segments.
`order`--- Order of the bspline approximation to be used. The bigger this
order is, the smoother the resulting contour. (Of course, higher order
bspline curves will move further away from the original piecewise linear
data.) This option is relevant for `bspline` mode only. Allowed values are
integers in the range from 2 (linear) to 10.
Keywords controlling the selection of contour levels:
`levels auto`--- This is the default. <n> specifies a nominal number of levels;
the actual number will be adjusted to give simple labels. If the surface is
bounded by zmin and zmax, contours will be generated at integer multiples
of dz between zmin and zmax, where dz is 1, 2, or 5 times some power of ten
(like the step between two tic marks).
`levels discrete`--- Contours will be generated at z = <z1>, <z2> ... as
specified; the number of discrete levels sets the number of contour levels.
In `discrete` mode, any `set cntrparam levels <n>` are ignored.
`levels incremental`--- Contours are generated at values of z beginning at
<start> and increasing by <increment>, until the number of contours is reached.
<end> is used to determine the number of contour levels, which will be changed
by any subsequent `set cntrparam levels <n>`. If the z axis is logarithmic,
<increment> will be interpreted as a multiplicative factor, as it is for
@ref{ztics}, and <end> should not be used.
Keywords controlling the assignment of linetype to contours:
By default the contours are generated in the reverse order specified
(`unsorted`). Thus `set cntrparam levels increment 0, 10, 100` will create
11 contours levels starting with 100 and ending with 0. Adding the keyword
`sorted` re-orders the contours by increasing numerical value, which in this
case would mean the first contour is drawn at 0.
By default contours are drawn using successive linetypes starting with the
next linetype after that used for the corresponding surface.
Thus `splot x*y lt 5` would use lt 6 for the first contour generated.
If @ref{hidden3d} mode is active then each surface uses two linetypes. In this
case using default settings would cause the first contour to use the same
linetype as the hidden surface, which is undesirable. This can be avoided
in either of two ways.
(1) Use `set hidden3d offset N` to change the linetype used for the hidden
surface. A good choice would be `offset -1` since that will avoid all the
contour linetypes.
(2) Use the `set cntrparam firstlinetype N` option to specify a block of
linetypes used for contour lines independent of whatever was used for the
surface. This is particularly useful if you want to customize the set of
contour linetypes. N <= 0 restores the default.
If the command @ref{cntrparam} is given without any arguments specified
all options are reset to the default:
@example
set cntrparam order 4 points 5
set cntrparam levels auto 5 unsorted
set cntrparam firstlinetype 0
@end example
@menu
* Examples_::
@end menu
@node Examples_, , cntrparam, cntrparam
@subsubsection Examples
@c ?commands set cntrparam examples
@c ?set cntrparam examples
@c ?cntrparam examples
Examples:
@example
set cntrparam bspline
set cntrparam points 7
set cntrparam order 10
@end example
To select levels automatically, 5 if the level increment criteria are met:
@example
set cntrparam levels auto 5
@end example
To specify discrete levels at .1, .37, and .9:
@example
set cntrparam levels discrete .1,1/exp(1),.9
@end example
To specify levels from 0 to 4 with increment 1:
@example
set cntrparam levels incremental 0,1,4
@end example
To set the number of levels to 10 (changing an incremental end or possibly
the number of auto levels):
@example
set cntrparam levels 10
@end example
To set the start and increment while retaining the number of levels:
@example
set cntrparam levels incremental 100,50
@end example
To define and use a customized block of contour linetypes
@example
set linetype 100 lc "red" dt '....'
do for [L=101:199] @{
if (L%10 == 0) @{
set linetype L lc "black" dt solid lw 2
@} else @{
set linetype L lc "gray" dt solid lw 1
@}
@}
set cntrparam firstlinetype 100
set cntrparam sorted levels incremental 0, 1, 100
@end example
See also `set contour` for control of where the contours are drawn, and
@ref{cntrlabel} for control of the format of the contour labels and linetypes.
See also
@uref{http://www.gnuplot.info/demo/contours.html,contours demo (contours.dem)
}
and
@uref{http://www.gnuplot.info/demo/discrete.html,contours with user defined levels demo (discrete.dem).
}
D contours 5
D discrete 3
@node color_box, colornames, cntrparam, set-show
@subsection color box
@c ?commands set colorbox
@c ?commands show colorbox
@c ?commands unset colorbox
@c ?set colorbox
@c ?show colorbox
@c ?unset colorbox
@cindex colorbox
For plots that use palette coloring, in particular pm3d plots, the palette
gradient is drawn in a color box next to the plot unless it is switched off
by `unset colorbox`.
@example
set colorbox
set colorbox @{
@{ vertical | horizontal @} @{@{no@}invert@}
@{ default | bottom | user @}
@{ origin x, y @}
@{ size x, y @}
@{ front | back @}
@{ noborder | bdefault | border [line style] @}
@}
show colorbox
unset colorbox
@end example
The orientation of the color gradient is set by `vertical` or `horizontal`.
The color box position can be `default` or `bottom` or `user`.
The `bottom` keyword is a convenience short cut equivalent to
@example
set colorbox horizontal user origin screen 0.1, 0.07 size 0.8, 0.03.
@end example
If the colorbox is placed underneath the plot, as it is with `bottom`,
it may be useful to reserve additional space for it: `set bmargin screen 0.2`.
`origin x, y` and `size x, y` are used to tailor the exact placement in
`user` or `bottom` positioning. The x and y values are interpreted as screen
coordinates by default, and this is the only legal option for 3D plots.
2D plots, including splot with `set view map`, allow any coordinate system.
`back`/`front` control whether the color box is draw before or after the plot.
@ref{border} turns the border on (this is the default). `noborder` turns the border
off. If an positive integer argument is given after @ref{border}, it is used as a
line style tag which is used for drawing the border, e.g.:
@example
set style line 2604 linetype -1 linewidth .4
set colorbox border 2604
@end example
will use line style `2604`, a thin line with the default border color (-1)
for drawing the border. `bdefault` (which is the default) will use the default
border line style for drawing the border of the color box.
The axis of the color box is called `cb` and it is controlled by means of the
usual axes commands, i.e. `set/unset/show` with @ref{cbrange}, `[m]cbtics`,
`format cb`, `grid [m]cb`, @ref{cblabel}, and perhaps even @ref{cbdata}, `[no]cbdtics`,
`[no]cbmtics`.
`set colorbox` without any parameter switches the position to default.
`unset colorbox` resets the default parameters for the colorbox and switches
the colorbox off.
See also help for `set pm3d`, @ref{palette}, and `set style line`.
@node colornames, contour, color_box, set-show
@subsection colornames
@cindex colornames
@opindex colornames
Gnuplot knows a limited number of color names. You can use these to define
the color range spanned by a pm3d palette, to assign a named color to a
particular linetype or linestyle, or to define a gradient for the current
color palette.
Use the command @ref{colornames} to list the known color names together
with their RGB component definitions.
Examples:
@example
set style line 1 linecolor "sea-green"
set palette defined (0 "dark-red", 1 "white")
print sprintf("0x%06x", rgbcolor("dark-green"))
0x006400
@end example
@node contour, cornerpoles, colornames, set-show
@subsection contour
@c ?commands set contour
@c ?commands unset contour
@c ?commands show contour
@c ?set contour
@c ?unset contour
@c ?show contour
@cindex contour
@opindex contour
@cindex contours
@cindex nocontour
`set contour` enables placement of contour lines on 3D surfaces.
This option is available only for `splot`. It requires grid data,
e.g. a file in which all the points for a single y-isoline are listed,
then all the points for the next y-isoline, and so on. A single blank line
(containing no characters other than blank spaces) separates one y-isoline
from the next. see `grid_data` for more details.
If the data is not already gridded, @ref{dgrid3d} can be used to first
create and populate an appropriate grid.
Syntax:
@example
set contour @{base | surface | both@}
unset contour
show contour
@end example
The three options specify where to draw the contours: `base` draws the
contours on the grid base where the x/ytics are placed, `surface` draws the
contours on the surfaces themselves, and `both` draws the contours on both
the base and the surface. If no option is provided, the default is `base`.
See also @ref{cntrparam} for the parameters that affect the drawing of
contours, and @ref{cntrlabel} for control of labeling of the contours.
Note that this option places lines or labels without otherwise changing
the appearance of the surface itself. If you want to recolor the surface
so that the areas bounded by contour lines are assigned distinct colors,
use instead the contourfill plot style. See @ref{contourfill}.
While `set contour` is in effect, `splot with <style>` will place the
style elements (points, lines, impulses, labels, etc) along the contour lines.
`with pm3d` will produce a pm3d surface and also contour lines.
If you want to mix other plot elements, say labels read from a file, with
the contours generated while `set contour` is active you must append the
keyword `nocontours` after that clause in the splot command.
The surface can be switched off (see `unset surface`) to give a contour-only
graph. A 2D projection of the contour lines and optional labels can be
generated by
@example
set view map
splot DATA with lines nosurface, DATA with labels
@end example
Older gnuplot versions used an alternative multi-step method to save the
3D contour lines into a file or datablock and then plot them using a
2D plot command as shown below.
@example
set contour
set table $datablock
splot DATA with lines nosurface
unset table
# contour lines are now in $datablock, one contour per index
plot for [level=0:*] $datablock index level with lines
@end example
See also @ref{datafile} and demos for
@uref{http://www.gnuplot.info/demo/contours.html,contours (contours.dem)
}
and
@uref{http://www.gnuplot.info/demo/discrete.html,user defined contour levels (discrete.dem).
}
@node cornerpoles, contourfill_, contour, set-show
@subsection cornerpoles
@c ?command set cornerpoles
@c ?set cornerpoles
@cindex cornerpoles
@opindex cornerpoles
By default splot draws a vertical line from each corner of a 3D surface to the
base plane. These vertical lines can be suppressed using @ref{cornerpoles}.
@node contourfill_, dashtype_, cornerpoles, set-show
@subsection contourfill
@c ?commands set contourfill
@c ?commands show contourfill
@c ?set contourfill
@c ?show contourfill
The 3D plot style @ref{contourfill} slices a pm3d surface into sections
delimited by a set of planes perpendicular to the z axis. The command
@ref{contourfill} controls placement of these limiting planes and the
colors assigned to the individual sections.
Syntax:
@example
set contourfill auto N # split zrange evenly into N slices
set contourfill ztics # slice at each z axis major tick
set contourfill cbtics # slice at each cb axis major tick
set contourfill @{palette | firstlinetype N@}
@end example
The default is @ref{palette}, which splits the current
z range into five equal slices (6 bounding planes) and assigns each slice
the palette mapped color of its midpoint z value.
The options @ref{ztics} or @ref{cbtics} place split zrange by slicing at major ticks
along that axis. For example to slice specifically at z=2.5, z=7 and z=10
you could use the commands below.
@example
set ztics add ("floor" 2.5, "boundary X" 7, "ceiling" 10)
set contourfill ztics
@end example
If you do not want to use palette coloring for the sections, you can choose
any arbitrary range of successive linetypes and assign them the desired color
sequence.
@example
set for [i=101:110] linetype i lc mycolor[i]
set contourfill firstlinetype 101
@end example
@ref{palette} restores palette coloring.
D contourfill 3
@node dashtype_, datafile, contourfill_, set-show
@subsection dashtype
@c ?commands set dashtype
@c ?commands show dashtype
@c ?set dashtype
@c ?show dashtype
The @ref{dashtype} command allows you to define a dash pattern that can
then be referred to by its index. This is purely a convenience, as anywhere
that would accept the dashtype by its numerical index would also accept an
explicit dash pattern.
Example:
@example
set dashtype 5 (2,4,2,6) # define or redefine dashtype number 5
plot f1(x) dt 5 # plot using the new dashtype
plot f1(x) dt (2,4,2,6) # exactly the same plot as above
set linetype 5 dt 5 # always use this dash pattern with linetype 5
set dashtype 66 "..-" # define a new dashtype using a string
@end example
See also @ref{dashtype}.
D dashtypes 2
@node datafile, decimalsign, dashtype_, set-show
@subsection datafile
@c ?set datafile
@c ?show datafile
The @ref{datafile} command options control interpretation of fields read from
input data files by the `plot`, `splot`, and @ref{fit} commands.
Several options are currently implemented. The settings apply uniformly to all
data files read by subsequent commands; however see `functionblocks` for a
way to work around this if it is necessary to simultaneously handles files with
conflicting formats.
@menu
* set_datafile_columnheaders::
* set_datafile_fortran::
* set_datafile_nofpe_trap::
* set_datafile_missing::
* set_datafile_separator::
* set_datafile_commentschars::
* set_datafile_binary::
@end menu
@node set_datafile_columnheaders, set_datafile_fortran, datafile, datafile
@subsubsection set datafile columnheaders
@c ?set datafile columnheaders
@cindex columnheaders
The @ref{columnheaders} command guarantees that the first row of
input will be interpreted as column headers rather than as data values.
It affects all input data sources to plot, splot, fit, and stats commands.
If this setting is disabled by @ref{columnheaders}, the same
effect is triggered on a per-file basis if there is an explicit columnheader()
function in a using specifier or plot title associated with that file.
See also `set key autotitle` and `columnheader`.
@node set_datafile_fortran, set_datafile_nofpe_trap, set_datafile_columnheaders, datafile
@subsubsection set datafile fortran
@c ?set datafile fortran
@c ?show datafile fortran
@cindex fortran
The `set datafile fortran` command enables a special check for values in the
input file expressed as Fortran D or Q constants. This extra check slows down
the input process, and should only be selected if you do in fact have datafiles
containing Fortran D or Q constants. The option can be disabled again using
`unset datafile fortran`.
@node set_datafile_nofpe_trap, set_datafile_missing, set_datafile_fortran, datafile
@subsubsection set datafile nofpe_trap
@c ?set datafile nofpe_trap
@cindex fpe_trap
@cindex nofpe_trap
@cindex floating point exceptions
The `set datafile nofpe_trap` command tells gnuplot not to re-initialize a
floating point exception handler before every expression evaluation used while
reading data from an input file. This can significantly speed data input from
very large files at the risk of program termination if a floating-point
exception is generated.
@node set_datafile_missing, set_datafile_separator, set_datafile_nofpe_trap, datafile
@subsubsection set datafile missing
@c ?set datafile missing
@c ?show datafile missing
@c ?set missing
@cindex missing
Syntax:
@example
set datafile missing "<string>"
set datafile missing NaN
show datafile missing
unset datafile
@end example
The `set datafile missing` command tells `gnuplot` there is a special string
used in input data files to denote a missing data entry. There is no default
character for `missing`. Gnuplot makes a distinction between missing data and
invalid data (e.g. "NaN", 1/0.). For example invalid data causes a gap in a
line drawn through sequential data points; missing data does not.
Non-numeric characters found in a numeric field will usually be interpreted as
invalid rather than as a missing data point unless they happen to match the
`missing` string.
Conversely @ref{NaN} causes all data or expressions evaluating
to not-a-number (NaN) to be treated as missing data. See the
@uref{http://www.gnuplot.info/demo/imageNaN.html,imageNaN demo.
}
The program notices a missing value flag in column N when the using specifier
in a plot command directly refers to the column as `using N`, `using ($N)`,
or `using (function($N))`. In these cases the expression, e.g. func($N),
is not evaluated at all.
The current gnuplot version also notices direct references of the form
(column(N)), and it notices during evaluation if the expression depends
even indirectly on a column value flagged "missing".
In all these cases the program treats the entire input data line as if it were
not present at all. However if an expression depends on a data value that is
truly missing (e.g. an empty field in a csv file) it may not be caught by
these checks. If it evaluates to NaN it will be treated as invalid data
rather than as a missing data point. If you want to treat such invalid data
the same as missing data, use the command @ref{NaN}.
@node set_datafile_separator, set_datafile_commentschars, set_datafile_missing, datafile
@subsubsection set datafile separator
@c ?set datafile separator
@c ?show datafile separator
@c ?datafile separator
@cindex separator
The command `set datafile separator` tells `gnuplot` that data fields in
subsequent input files are separated by a specific character rather than by
whitespace. The most common use is to read in csv (comma-separated value)
files written by spreadsheet or database programs. By default data fields
are separated by whitespace.
Syntax:
@example
set datafile separator @{whitespace | tab | comma | "<chars>"@}
@end example
Examples:
@example
# Input file contains tab-separated fields
set datafile separator "\t"
@end example
@example
# Input file contains comma-separated values fields
set datafile separator comma
@end example
@example
# Input file contains fields separated by either * or |
set datafile separator "*|"
@end example
@node set_datafile_commentschars, set_datafile_binary, set_datafile_separator, datafile
@subsubsection set datafile commentschars
@c ?set datafile commentschars
@cindex commentschars
The command `set datafile commentschars` specifies what characters can be used
in a data file to begin comment lines. If the first non-blank character on a
line is one of these characters then the rest of the data line is ignored.
Default value of the string is "#!" on VMS and "#" otherwise.
Syntax:
@example
set datafile commentschars @{"<string>"@}
show datafile commentschars
unset commentschars
@end example
Then, the following line in a data file is completely ignored
@example
# 1 2 3 4
@end example
but the following
@example
1 # 3 4
@end example
will be interpreted as garbage in the 2nd column followed by valid data in
the 3rd and 4th columns.
Example:
@example
set datafile commentschars "#!%"
@end example
@node set_datafile_binary, , set_datafile_commentschars, datafile
@subsubsection set datafile binary
@c ?set datafile binary
The @ref{binary} command is used to set the defaults when reading
binary data files. The syntax matches precisely that used for commands
`plot` and `splot`. See @ref{matrix} and @ref{general} for details
about the keywords that can be present in <binary list>.
Syntax:
@example
set datafile binary <binary list>
show datafile binary
show datafile
unset datafile
@end example
Examples:
@example
set datafile binary filetype=auto
set datafile binary array=(512,512) format="%uchar"
@end example
@c ?show datafile binary
@example
show datafile binary # list current settings
@end example
@node decimalsign, dgrid3d, datafile, set-show
@subsection decimalsign
@c ?commands set decimalsign
@c ?commands show decimalsign
@c ?commands unset decimalsign
@c ?set decimalsign
@c ?show decimalsign
@c ?unset decimalsign
@cindex decimalsign
@opindex decimalsign
@cindex locale
@opindex locale
The @ref{decimalsign} command selects a decimal sign for numbers printed
into tic labels or `set label` strings.
Syntax:
@example
set decimalsign @{<value> | locale @{"<locale>"@}@}
unset decimalsign
show decimalsign
@end example
The argument <value> is a string to be used in place of the usual
decimal point. Typical choices include the period, '.', and the comma,
',', but others may be useful, too. If you omit the <value> argument,
the decimal separator is not modified from the usual default, which is
a period. Unsetting decimalsign has the same effect as omitting <value>.
Example:
Correct typesetting in most European countries requires:
@example
set decimalsign ','
@end example
Please note: If you set an explicit string, this affects only numbers that
are printed using gnuplot's gprintf() formatting routine, including axis tics.
It does not affect the format expected for input data, and it does not affect
numbers printed with the sprintf() formatting routine. To change the behavior
of both input and output formatting, instead use the form
@example
set decimalsign locale
@end example
This instructs the program to use both input and output formats in accordance
with the current setting of the LC_ALL, LC_NUMERIC, or LANG environmental
variables.
@example
set decimalsign locale "foo"
@end example
This instructs the program to format all input and output in accordance with
locale "foo", which must be installed. If locale "foo" is not found then an
error message is printed and the decimal sign setting is unchanged.
On linux systems you can get a list of the locales installed on your machine by
typing "locale -a". A typical linux locale string is of the form "sl_SI.UTF-8".
A typical Windows locale string is of the form "Slovenian_Slovenia.1250" or
"slovenian". Please note that interpretation of the locale settings is done by
the C library at runtime. Older C libraries may offer only partial support for
locale settings such as the thousands grouping separator character.
@example
set decimalsign locale; set decimalsign "."
@end example
This sets all input and output to use whatever decimal sign is correct for
the current locale, but over-rides this with an explicit '.' in numbers
formatted using gnuplot's internal gprintf() function.
@node dgrid3d, dummy, decimalsign, set-show
@subsection dgrid3d
@c ?commands set dgrid3d
@c ?commands unset dgrid3d
@c ?commands show dgrid3d
@c ?set dgrid3d
@c ?unset dgrid3d
@c ?show dgrid3d
@cindex dgrid3d
@opindex dgrid3d
@cindex nodgrid3d
@cindex kdensity
@cindex nogrid
The @ref{dgrid3d} command enables and sets parameters for mapping non-grid data
onto a grid. See `splot grid_data` for details about the grid data structure.
Aside from its use in fitting 3D surfaces, this process can also be used to
generate 2D heatmaps, where the 'z' value of each point contributes to a local
weighted value.
Syntax:
@example
set dgrid3d @{<rows>@} @{,@{<cols>@}@} splines
set dgrid3d @{<rows>@} @{,@{<cols>@}@} qnorm @{<norm>@}
set dgrid3d @{<rows>@} @{,@{<cols>@}@} @{gauss | cauchy | exp | box | hann@}
@{kdensity@} @{<dx>@} @{,<dy>@}
unset dgrid3d
show dgrid3d
@end example
By default @ref{dgrid3d} is disabled. When enabled, 3D data points read from a
file are treated as a scattered data set used to fit a gridded surface.
The grid dimensions are derived from the bounding box of the scattered data
subdivided by the row/col_size parameters from the @ref{dgrid3d} statement.
The grid is equally spaced in x (rows) and in y (columns); the z values are
computed as weighted averages or spline interpolations of the scattered points'
z values. In other words, a regularly spaced grid is created and then a smooth
approximation to the raw data is evaluated for each grid point.
This surface is then plotted in place of the raw data.
While dgrid3d mode is enabled, if you want to plot individual points or lines
without using them to create a gridded surface you must append the keyword
`nogrid` to the corresponding splot command.
The number of columns defaults to the number of rows, which defaults to 10.
Several algorithms are available to calculate the approximation from the
raw data. Some of these algorithms can take additional parameters.
These interpolations are such that the closer the data point is to a grid
point, the more effect it has on that grid point.
The `splines` algorithm calculates an interpolation based on thin plate
splines. It does not take additional parameters.
The `qnorm` algorithm calculates a weighted average of the input data at
each grid point. Each data point is weighted by the inverse of its distance
from the grid point raised to some power. The power is specified as an
optional integer parameter that defaults to 1.
This algorithm is the default.
Finally, several smoothing kernels are available to calculate weighted
averages: z = Sum_i w(d_i) * z_i / Sum_i w(d_i), where z_i is the value
of the i-th data point and d_i is the distance between the current grid
point and the location of the i-th data point. All kernels assign higher
weights to data points that are close to the current grid point and lower
weights to data points further away.
The following kernels are available:
@example
gauss : w(d) = exp(-d*d)
cauchy : w(d) = 1/(1 + d*d)
exp : w(d) = exp(-d)
box : w(d) = 1 if d<1
= 0 otherwise
hann : w(d) = 0.5*(1+cos(pi*d)) if d<1
w(d) = 0 otherwise
@end example
When using one of these five smoothing kernels, up to two additional
numerical parameters can be specified: dx and dy. These are used to
rescale the coordinate differences when calculating the distance:
d_i = sqrt( ((x-x_i)/dx)**2 + ((y-y_i)/dy)**2 ), where x,y are the
coordinates of the current grid point and x_i,y_i are the coordinates
of the i-th data point. The value of dy defaults to the value of dx,
which defaults to 1. The parameters dx and dy make it possible to
control the radius over which data points contribute to a grid point
IN THE UNITS OF THE DATA ITSELF.
The optional keyword `kdensity`, which must come after the name of the
kernel, but before the optional scale parameters, modifies the algorithm
so that the values calculated for the grid points are not divided by the
sum of the weights ( z = Sum_i w(d_i) * z_i ). If all z_i are constant,
this effectively plots a bivariate kernel density estimate: a kernel
function (one of the five defined above) is placed at each data point,
the sum of these kernels is evaluated at every grid point, and this smooth
surface is plotted instead of the original data. This is similar in
principle to what the `smooth kdensity` option does to 1D datasets.
See kdensity2d.dem and heatmap_points.dem for usage example.
The @ref{dgrid3d} option is a simple scheme which replaces scattered data
with weighted averages on a regular grid. More sophisticated approaches
to this problem exist and should be used to preprocess the data outside
`gnuplot` if this simple solution is found inadequate.
See also the online demos for
@uref{http://www.gnuplot.info/demo/dgrid3d.html,dgrid3d
}
@uref{http://www.gnuplot.info/demo/scatter.html,scatter
}
and
@uref{http://www.gnuplot.info/demo/heatmap_points.html,heatmap_points
}
D heatmap_points 1
D heatmap_points 2
D heatmap_points 3
@node dummy, encoding, dgrid3d, set-show
@subsection dummy
@c ?commands set dummy
@c ?commands show dummy
@c ?set dummy
@c ?show dummy
@c ?unset dummy
@cindex dummy
@opindex dummy
The @ref{dummy} command changes the default dummy variable names.
Syntax:
@example
set dummy @{<dummy-var>@} @{,<dummy-var>@}
show dummy
@end example
By default, `gnuplot` assumes that the independent, or "dummy", variable for
the `plot` command is "t" if in parametric or polar mode, or "x" otherwise.
Similarly the independent variables for the `splot` command are "u" and "v"
in parametric mode (`splot` cannot be used in polar mode), or "x" and "y"
otherwise.
It may be more convenient to call a dummy variable by a more physically
meaningful or conventional name. For example, when plotting time functions:
@example
set dummy t
plot sin(t), cos(t)
@end example
Examples:
@example
set dummy u,v
set dummy ,s
@end example
The second example sets the second variable to s. To reset the dummy variable
names to their default values, use
@example
unset dummy
@end example
@node encoding, errorbars, dummy, set-show
@subsection encoding
@c ?commands set encoding
@c ?commands show encoding
@c ?set encoding
@c ?show encoding
@cindex encoding
@opindex encoding
@cindex encodings
@cindex utf8
@cindex sjis
@cindex UTF-8
@cindex SJIS
The @ref{encoding} command selects a character encoding.
Syntax:
@example
set encoding @{<value>@}
set encoding locale
show encoding
@end example
Valid values are
@example
default - tells a terminal to use its default encoding
iso_8859_1 - the most common Western European encoding prior to UTF-8.
Known in the PostScript world as 'ISO-Latin1'.
iso_8859_15 - a variant of iso_8859_1 that includes the Euro symbol
iso_8859_2 - used in Central and Eastern Europe
iso_8859_9 - used in Turkey (also known as Latin5)
koi8r - popular Unix cyrillic encoding
koi8u - Ukrainian Unix cyrillic encoding
cp437 - codepage for MS-DOS
cp850 - codepage for OS/2, Western Europe
cp852 - codepage for OS/2, Central and Eastern Europe
cp950 - MS version of Big5 (emf terminal only)
cp1250 - codepage for MS Windows, Central and Eastern Europe
cp1251 - codepage for 8-bit Russian, Serbian, Bulgarian, Macedonian
cp1252 - codepage for MS Windows, Western Europe
cp1254 - codepage for MS Windows, Turkish (superset of Latin5)
sjis - shift-JIS Japanese encoding
utf8 - variable-length (multibyte) representation of Unicode
entry point for each character
@end example
The command @ref{locale} is different from the other options.
It attempts to determine the current locale from the runtime environment.
On most systems this is controlled by the environmental variables
LC_ALL, LC_CTYPE, or LANG. This mechanism is necessary, for example, to
pass multibyte character encodings such as UTF-8 or EUC_JP to the wxt
and pdf terminals. This command does not affect the locale-specific
representation of dates or numbers.
See also @ref{locale} and @ref{decimalsign}.
Generally you should set the encoding before setting the terminal type,
as it may affect the selection of fonts.
@node errorbars, fit_, encoding, set-show
@subsection errorbars
@c ?commands set errorbars
@c ?commands show errorbars
@c ?set errorbars
@c ?show errorbars
@cindex errorbars
@opindex errorbars
@c ?commands set bars
@c ?commands show bars
@c ?set bars
@c ?show bars
@cindex bars
The @ref{errorbars} command controls the tics at the ends of error bars,
and also at the end of the whiskers belonging to a boxplot.
Syntax:
@example
set errorbars @{small | large | fullwidth | <size>@} @{front | back@}
@{line-properties@}
unset errorbars
show errorbars
@end example
`small` is a synonym for 0.0 (no crossbar), and `large` for 1.0.
The default is 1.0 if no size is given.
The keyword `fullwidth` is relevant only to boxplots and to histograms with
errorbars. It sets the width of the errorbar ends to be the same as the width
of the associated box. It does not change the width of the box itself.
The `front` and `back` keywords are relevant only to errorbars attached
to filled rectangles (boxes, candlesticks, histograms).
Error bars are by default drawn using the same line properties as the border
of the associated box. You can change this by providing a separate set of
line properties for the error bars.
@example
set errorbars linecolor black linewidth 0.5 dashtype '.'
@end example
@node fit_, fontpath, errorbars, set-show
@subsection fit
@c ?commands set fit
@c ?commands show fit
@c ?set fit
@c ?show fit
@c ?set fit quiet
@c ?set fit verbose
@c ?set fit brief
@c ?set fit results
@c ?set fit prescale
@c ?set fit limit
@c ?set fit maxiter
@c ?set fit errorscaling
@c ?set fit errorvariables
@c ?set fit logfile
@c ?set fit script
@c ?set fit v4
@c ?set fit v5
The @ref{fit} command controls the options for the @ref{fit} command.
Syntax:
@example
set fit @{nolog | logfile @{"<filename>"|default@}@}
@{@{no@}quiet|results|brief|verbose@}
@{@{no@}errorvariables@}
@{@{no@}covariancevariables@}
@{@{no@}errorscaling@}
@{@{no@}prescale@}
@{maxiter <value>|default@}
@{limit <epsilon>|default@}
@{limit_abs <epsilon_abs>@}
@{start-lambda <value>|default@}
@{lambda-factor <value>|default@}
@{script @{"<command>"|default@}@}
@{v4 | v5@}
unset fit
show fit
@end example
The `logfile` option defines where the @ref{fit} command writes its output. The
<filename> argument must be enclosed in single or double quotes. If no
filename is given or @ref{fit} is used the log file is reset to its default
value "fit.log" or the value of the environmental variable `FIT_LOG`. If the
given logfile name ends with a / or \, it is interpreted to be a directory
name, and the actual filename will be "fit.log" in that directory.
By default the information written to the log file is also echoed to the
terminal session. `set fit quiet` turns off the echo, whereas `results`
prints only final results. `brief` gives one line summaries for every
iteration of the fit in addition. `verbose` yields detailed iteration
reports as in version 4.
If the `errorvariables` option is turned on, the error of each fitted
parameter computed by @ref{fit} will be copied to a user-defined variable
whose name is formed by appending "_err" to the name of the parameter
itself. This is useful mainly to put the parameter and its error onto
a plot of the data and the fitted function, for reference, as in:
@example
set fit errorvariables
fit f(x) 'datafile' using 1:2 via a, b
print "error of a is:", a_err
set label 1 sprintf("a=%6.2f +/- %6.2f", a, a_err)
plot 'datafile' using 1:2, f(x)
@end example
If the `errorscaling` option is specified, which is the default, the
calculated parameter errors are scaled with the reduced chi square. This is
equivalent to providing data errors equal to the calculated standard
deviation of the fit (FIT_STDFIT) resulting in a reduced chi square of one.
With the `noerrorscaling` option the estimated errors are the unscaled
standard deviations of the fit parameters.
If no weights are specified for the data, parameter errors are always scaled.
If the `prescale` option is turned on, parameters are prescaled by their
initial values before being passed to the Marquardt-Levenberg
routine. This helps tremendously if there are parameters that differ
in size by many orders of magnitude. Fit parameters with an initial value
of exactly zero are never prescaled.
The maximum number of iterations may be limited with the `maxiter` option.
A value of 0 or `default` means that there is no limit.
The `limit` option can be used to change the default epsilon limit (1e-5) to
detect convergence. When the sum of squared residuals changes by a factor
less than this number (epsilon), the fit is considered to have 'converged'.
The `limit_abs` option imposes an additional absolute limit in the change
of the sum of squared residuals and defaults to zero.
If you need even more control about the algorithm, and know the
Marquardt-Levenberg algorithm well, the following options can be used to
influence it. The startup value of `lambda` is normally calculated
automatically from the ML-matrix, but if you want to, you may provide your
own using the `start_lambda` option. Setting it to `default` will
re-enable the automatic selection. The option `lambda_factor` sets the factor
by which `lambda` is increased or decreased whenever the chi-squared target
function increased or decreased significantly. Setting it to `default`
re-enables the default factor of 10.0.
The `script` option may be used to specify a `gnuplot` command to be executed
when a fit is interrupted---see @ref{fit}. This setting takes precedence over
the default of @ref{replot} and the environment variable `FIT_SCRIPT`.
If the `covariancevariables` option is turned on, the covariances between
final parameters will be saved to user-defined variables. The variable name
for a certain parameter combination is formed by prepending "FIT_COV_" to
the name of the first parameter and combining the two parameter names by
"_". For example given the parameters "a" and "b" the covariance variable is
named "FIT_COV_a_b".
In version 5 the syntax of the fit command changed and it now defaults to
unitweights if no 'error' keyword is given. The `v4` option restores the
default behavior of gnuplot version 4, see also @ref{fit}.
@node fontpath, format__, fit_, set-show
@subsection fontpath
@c ?commands set fontpath
@c ?commands show fontpath
@c ?set fontpath
@c ?show fontpath
@cindex fontpath
@opindex fontpath
Syntax:
@example
set fontpath "/directory/where/my/fonts/live"
set term postscript fontfile <filename>
@end example
[DEPRECATED in version 5.4]
The @ref{fontpath} directory is relevant only for embedding fonts in
postscript output produced by the postscript terminal.
It has no effect on other gnuplot terminals.
If you are not embedding fonts you do not need this command, and even if you
are embedding fonts you only need it for fonts that cannot be found via
the other paths below.
Earlier versions of gnuplot tried to emulate a font manager by tracking
multiple directory trees containing fonts.
This is now replaced by a search in the following places:
(1) an absolute path given in the `set term postscript fontfile` command
(2) the current directory
(3) any of the directories specified by @ref{loadpath}
(4) the directory specified by @ref{fontpath}
(5) the directory provided in environmental variable GNUPLOT_FONTPATH
Note: The search path for fonts specified by filename for the libgd terminals
(png gif jpeg sixel) is controlled by environmental variable GDFONTPATH.
@node format__, grid, fontpath, set-show
@subsection format
@c ?commands set format
@c ?commands show format
@c ?set format
@c ?show format
@cindex format
@opindex format
@c ?format cb
The format of the tic-mark labels can be set with the `set format` command
or with the `set tics format` or individual `set @{axis@}tics format` commands.
For information on using an explicit format for input data see `using format`.
Syntax:
@example
set format @{<axes>@} @{"<format-string>"@} @{numeric|timedate|geographic@}
show format
@end example
where <axes> is either `x`, `y`, `xy`, `x2`, `y2`, `z`, `cb` or nothing
(which applies the format to all axes). The following two commands are
equivalent:
@example
set format y "%.2f"
set ytics format "%.2f"
@end example
The length of the string is restricted to 100 characters. The default format
is "% h", "$%h$" for LaTeX terminals. Other formats such as "%.2f" or "%3.0em"
are often desirable. "set format" with no following string will restore the
default.
If the empty string "" is given, tics will have no labels, although the tic
mark will still be plotted. To eliminate the tic marks, use `unset xtics` or
`set tics scale 0`.
Newline (\n) and enhanced text markup is accepted in the format string.
Use double-quotes rather than single-quotes in this case. See also `syntax`.
Characters not preceded by "%" are printed verbatim. Thus you can include
spaces and labels in your format string, such as "%g m", which will put " m"
after each number. If you want "%" itself, double it: "%g %%".
See also `set xtics` for more information about tic labels, and
@ref{decimalsign} for how to use non-default decimal separators in numbers
printed this way.
See also
@uref{http://www.gnuplot.info/demo/electron.html,electron demo (electron.dem).
}
@menu
* gprintf_::
* format_specifiers::
* time/date_specifiers::
@end menu
@node gprintf_, format_specifiers, format__, format__
@subsubsection gprintf
@cindex gprintf
@findex gprintf
The string function gprintf("format",x) uses gnuplot's own format specifiers,
as do the gnuplot commands `set format`, @ref{timestamp}, and others. These
format specifiers are not the same as those used by the standard C-language
routine sprintf(). gprintf() accepts only a single variable to be formatted.
Gnuplot also provides an sprintf("format",x1,x2,...) routine if you prefer.
For a list of gnuplot's format options, see `format specifiers`.
@node format_specifiers, time/date_specifiers, gprintf_, format__
@subsubsection format specifiers
@c ?commands set format specifiers
@c ?set format specifiers
@c ?format specifiers
@cindex format_specifiers
The acceptable formats (if not in time/date mode) are:
@example
Format Explanation
%f floating point notation
%e or %E exponential notation; an "e" or "E" before the power
%g or %G the shorter of %e (or %E) and %f
%h or %H like %g with "x10^@{%S@}" or "*10^@{%S@}" instead of "e%S"
%x or %X hex
%o or %O octal
%t mantissa to base 10
%l mantissa to base of current logscale
%s mantissa to base of current logscale; scientific power
%T power to base 10
%L power to base of current logscale
%S scientific power
%c character replacement for scientific power
%b mantissa of ISO/IEC 80000 notation (ki, Mi, Gi, Ti, Pi, Ei, Zi, Yi)
%B prefix of ISO/IEC 80000 notation (ki, Mi, Gi, Ti, Pi, Ei, Zi, Yi)
%P multiple of pi
@end example
@c ^<table align="center" border="1" rules="groups" frame="hsides" cellpadding="3">
@c ^<colgroup>
@c ^ <col align="center">
@c ^ <col align="left">
@c ^</colgroup>
@c ^<thead>
@c ^<tr> <th>Format</th> <th>Explanation</th></tr>
@c ^</thead>
@c ^<tbody>
@c ^<tr> <td><tt>%f</tt></td> <td>floating point notation</td></tr>
@c ^<tr> <td><tt>%e</tt> or <tt>%E</tt></td> <td>exponential notation; an "e" or "E" before the power</td></tr>
@c ^<tr> <td><tt>%g</tt> or <tt>%G</tt></td> <td>the shorter of <tt>%e</tt> (or <tt>%E</tt>) and <tt>%f</tt></td></tr>
@c ^<tr> <td><tt>%h</tt> or <tt>%H</tt></td> <td><tt>%g</tt> with "x10^@{%S@}" or "*10^@{%S@}" instead of "e%S"</td></tr>
@c ^<tr> <td><tt>%x</tt> or <tt>%X</tt></td> <td>hex</td></tr>
@c ^<tr> <td><tt>%o</tt> or <tt>%O</tt></td> <td>octal</td></tr>
@c ^<tr> <td><tt>%t</tt></td> <td>mantissa to base 10</td></tr>
@c ^<tr> <td><tt>%l</tt></td> <td>mantissa to base of current logscale</td></tr>
@c ^<tr> <td><tt>%s</tt></td> <td>mantissa to base of current logscale; scientific power</td></tr>
@c ^<tr> <td><tt>%T</tt></td> <td>power to base 10</td></tr>
@c ^<tr> <td><tt>%L</tt></td> <td>power to base of current logscale</td></tr>
@c ^<tr> <td><tt>%S</tt></td> <td>scientific power</td></tr>
@c ^<tr> <td><tt>%c</tt></td> <td>character replacement for scientific power</td></tr>
@c ^<tr> <td><tt>%b</tt></td> <td>mantissa of ISO/IEC 80000 notation (ki, Mi, Gi, Ti, Pi, Ei, Zi, Yi)</td></tr>
@c ^<tr> <td><tt>%B</tt></td> <td>prefix of ISO/IEC 80000 notation (ki, Mi, Gi, Ti, Pi, Ei, Zi, Yi)</td></tr>
@c ^<tr> <td><tt>%P</tt></td> <td>multiple of π</td></tr>
@c ^</tbody>
@c ^</table>
A 'scientific' power is one such that the exponent is a multiple of three.
Character replacement of scientific powers (`"%c"`) has been implemented
for powers in the range -18 to +18. For numbers outside of this range the
format reverts to exponential.
Other acceptable modifiers (which come after the "%" but before the format
specifier) are "-", which left-justifies the number; "+", which forces all
numbers to be explicitly signed; " " (a space), which makes positive numbers
have a space in front of them where negative numbers have "-";
"#", which places a decimal point after
floats that have only zeroes following the decimal point; a positive integer,
which defines the field width; "0" (the digit, not the letter) immediately
preceding the field width, which indicates that leading zeroes are to be used
instead of leading blanks; and a decimal point followed by a non-negative
integer, which defines the precision (the minimum number of digits of an
integer, or the number of digits following the decimal point of a float).
Some systems may not support all of these modifiers but may also support
others; in case of doubt, check the appropriate documentation and
then experiment.
Examples:
@example
set format y "%t"; set ytics (5,10) # "5.0" and "1.0"
set format y "%s"; set ytics (500,1000) # "500" and "1.0"
set format y "%+-12.3f"; set ytics(12345) # "+12345.000 "
set format y "%.2t*10^%+03T"; set ytic(12345)# "1.23*10^+04"
set format y "%s*10^@{%S@}"; set ytic(12345) # "12.345*10^@{3@}"
set format y "%s %cg"; set ytic(12345) # "12.345 kg"
set format y "%.0P pi"; set ytic(6.283185) # "2 pi"
set format y "%.0f%%"; set ytic(50) # "50%"
@end example
@example
set log y 2; set format y '%l'; set ytics (1,2,3)
#displays "1.0", "1.0" and "1.5" (since 3 is 1.5 * 2^1)
@end example
There are some problem cases that arise when numbers like 9.999 are printed
with a format that requires both rounding and a power.
If the data type for the axis is time/date, the format string must contain
valid codes for the 'strftime' function (outside of `gnuplot`, type "man
strftime"). See @ref{timefmt} for a list of the allowed input format codes.
@node time/date_specifiers, , format_specifiers, format__
@subsubsection time/date specifiers
@c ?commands set format date_specifiers
@c ?commands set format time_specifiers
@c ?set format date_specifiers
@c ?set format time_specifiers
@c ?set date_specifiers
@c ?set time_specifiers
@cindex date_specifiers
@cindex time_specifiers
There are two groups of time format specifiers: time/date and relative time.
These may be used to generate axis tic labels or to encode time in a string.
See `set xtics time`, @ref{strftime}, @ref{strptime}.
The time/date formats are
@example
Format Explanation
%a short name of day of the week (ignored on input)
%A full name of day of the week (ignored on input)
%b or %h abbreviated name of the month
%B full name of the month
%d day of the month, 01--31
%D shorthand for "%m/%d/%y" (only output)
%F shorthand for "%Y-%m-%d" (only output)
%k hour, 0--23 (one or two digits)
%H hour, 00--23 (always two digits)
%l hour, 1--12 (one or two digits)
%I hour, 01--12 (always two digits)
%j day of the year, 001--366
%m month, 01--12
%M minute, 00--60
%p "am" or "pm"
%r shorthand for "%I:%M:%S %p" (only output)
%R shorthand for "%H:%M" (only output)
%s number of seconds since the start of year 1970
%S second, integer 00--60 on output, (double) on input
%T shorthand for "%H:%M:%S" (only output)
%U week of the year (CDC/MMWR "epi week") (ignored on input)
%w day of the week, 0--6 (Sunday = 0) (ignored on input)
%W week of the year (ISO 8601 week date) (ignored on input)
%y year, 0-68 for 2000-2068, 69-99 for 1969-1999
%Y year, 4-digit
%z timezone, [+-]hh:mm
%Z timezone name, ignored string
@end example
@c ^<table align="center" border="1" rules="groups" frame="hsides" cellpadding="3">
@c ^<colgroup>
@c ^ <col align="center">
@c ^ <col align="left">
@c ^</colgroup>
@c ^<thead>
@c ^<tr> <th>Date Format</th> <th>Explanation</th></tr>
@c ^</thead>
@c ^<tbody>
@c ^<tr> <td><tt>%a</tt></td> <td>abbreviated name of day of the week</td></tr>
@c ^<tr> <td><tt>%A</tt></td> <td>full name of day of the week</td></tr>
@c ^<tr> <td><tt>%b</tt> or <tt>%h</tt></td> <td>abbreviated name of the month</td></tr>
@c ^<tr> <td><tt>%B</tt></td> <td>full name of the month</td></tr>
@c ^<tr> <td><tt>%d</tt></td> <td>day of the month, 01–31</td></tr>
@c ^<tr> <td><tt>%D</tt></td> <td>shorthand for <tt>%m/%d/%y</tt> (only output)</td></tr>
@c ^<tr> <td><tt>%F</tt></td> <td>shorthand for <tt>%Y-%m-%d</tt> (only output)</td></tr>
@c ^<tr> <td><tt>%k</tt></td> <td>hour, 0–23 (one or two digits)</td></tr>
@c ^<tr> <td><tt>%H</tt></td> <td>hour, 00–23 (always two digits)</td></tr>
@c ^<tr> <td><tt>%l</tt></td> <td>hour, 1–12 (one or two digits)</td></tr>
@c ^<tr> <td><tt>%I</tt></td> <td>hour, 01–12 (always two digits)</td></tr>
@c ^<tr> <td><tt>%j</tt></td> <td>day of the year, 1–366</td></tr>
@c ^<tr> <td><tt>%m</tt></td> <td>month, 01–12</td></tr>
@c ^<tr> <td><tt>%M</tt></td> <td>minute, 0–60</td></tr>
@c ^<tr> <td><tt>%p</tt></td> <td>"am" or "pm"</td></tr>
@c ^<tr> <td><tt>%r</tt></td> <td>shorthand for <tt>%I:%M:%S %p</tt> (only output)</td></tr>
@c ^<tr> <td><tt>%R</tt></td> <td>shorthand for <tt>%H:%M</tt> (only output)</td></tr>
@c ^<tr> <td><tt>%S</tt></td> <td>second, integer 0–60 on output, (double) on input</td></tr>
@c ^<tr> <td><tt>%s</tt></td> <td>number of seconds since start of year 1970</td></tr>
@c ^<tr> <td><tt>%T</tt></td> <td>shorthand for <tt>%H:%M:%S</tt> (only output)</td></tr>
@c ^<tr> <td><tt>%U</tt></td> <td>week of the year (CDC/MMWR "epi week")</td></tr>
@c ^<tr> <td><tt>%w</tt></td> <td>day of the week, 0–6 (Sunday = 0)</td></tr>
@c ^<tr> <td><tt>%W</tt></td> <td>week of the year (ISO 8601 week date)</td></tr>
@c ^<tr> <td><tt>%y</tt></td> <td>year, 0-99 in range 1969-2068</td></tr>
@c ^<tr> <td><tt>%Y</tt></td> <td>year, 4-digit</td></tr>
@c ^<tr> <td><tt>%z</tt></td> <td>timezone, [+-]hh:mm</td></tr>
@c ^<tr> <td><tt>%Z</tt></td> <td>timezone name, ignored string</td></tr>
@c ^</tbody>
@c ^</table>
For more information on the %W format (ISO week of year) see `tm_week`.
The %U format (CDC/MMWR epidemiological week) is similar to %W except that it
uses weeks that start on Sunday rather than Monday.
Caveat: Both the %W and the %U formats were unreliable in gnuplot versions
prior to 5.4.2. See unit test "week_date.dem".
The relative time formats express the length of a time interval on either
side of a zero time point. The relative time formats are
@example
Format Explanation
%tD +/- days relative to time=0
%tH +/- hours relative to time=0 (does not wrap at 24)
%tM +/- minutes relative to time=0
%tS +/- seconds associated with previous tH or tM field
@end example
@c ^<table align="center" border="1" rules="groups" frame="hsides" cellpadding="3">
@c ^<colgroup>
@c ^ <col align="center">
@c ^ <col align="left">
@c ^</colgroup>
@c ^<thead>
@c ^<tr> <th>Time Format</th> <th>Explanation</th></tr>
@c ^</thead>
@c ^<tbody>
@c ^<tr> <td><tt>%tD</tt></td> <td>+/- days relative to time=0</td></tr>
@c ^<tr> <td><tt>%tH</tt></td> <td>+/- hours relative to time=0 (does not wrap at 24)</td></tr>
@c ^<tr> <td><tt>%tM</tt></td> <td>+/- minutes relative to time=0</td></tr>
@c ^<tr> <td><tt>%tS</tt></td> <td>+/- seconds associated with previous tH or tM field</td></tr>
@c ^</tbody>
@c ^</table>
Numerical formats may be preceded by a "0" ("zero") to pad the field with
leading zeroes, and preceded by a positive digit to define the minimum field
width. The %S, and %t formats also accept a precision specifier so that
fractional hours/minutes/seconds can be written.
@noindent --- EXAMPLES ---
@c ?commands set format date_specifiers examples
@c ?commands set format time_specifiers examples
@c ?set format date_specifiers examples
@c ?set format time_specifiers examples
@c ?set date_specifiers examples
@c ?set time_specifiers examples
@c ?date_specifiers examples
@c ?time_specifiers examples
Examples of date format:
Suppose the x value in seconds corresponds a time slightly before midnight
on 25 Dec 1976. The text printed for a tic label at this position would be
@example
set format x # defaults to "12/25/76 \n 23:11"
set format x "%A, %d %b %Y" # "Saturday, 25 Dec 1976"
set format x "%r %D" # "11:11:11 pm 12/25/76"
set xtics time format "%B" # "December"
@end example
Examples of time format:
The date format specifiers encode a time in seconds as a clock time on a
particular day. So hours run only from 0-23, minutes from 0-59, and negative
values correspond to dates prior to the epoch (1-Jan-1970). In order to report
a time value in seconds as some number of hours/minutes/seconds relative to a
time 0, use time formats %tH %tM %tS. To report a value of -3672.50 seconds
@example
set format x # default date format "12/31/69 \n 22:58"
set format x "%tH:%tM:%tS" # "-01:01:12"
set format x "%.2tH hours" # "-1.02 hours"
set format x "%tM:%.2tS" # "-61:12.50"
@end example
@node grid, hidden3d, format__, set-show
@subsection grid
@c ?commands set grid
@c ?commands unset grid
@c ?commands show grid
@c ?set grid
@c ?set grid vertical
@c ?unset grid
@c ?show grid
@cindex grid
@opindex grid
The `set grid` command allows grid lines to be drawn on the plot.
Syntax:
@example
set grid @{@{no@}@{m@}xtics@} @{@{no@}@{m@}ytics@} @{@{no@}@{m@}ztics@}
@{@{no@}@{m@}x2tics@} @{@{no@}@{m@}y2tics@} @{@{no@}@{m@}rtics@}
@{@{no@}@{m@}cbtics@}
@{polar @{<angle>@}@}
@{layerdefault | front | back@}
@{@{no@}vertical@}
@{<line-properties-major> @{, <line-properties-minor>@}@}
unset grid
show grid
@end example
The grid can be enabled and disabled for the major and/or minor tic
marks on any axis, and the linetype and linewidth can be specified
for major and minor grid lines, also via a predefined linestyle, as
far as the active terminal driver supports this (see `set style line`).
A polar grid can be drawn for 2D plots. This is the default action of
`set grid` if the program is already in polar mode, but can be enabled
explicitly by @ref{rtics} whether or not the program is in
polar mode. Circles are drawn to intersect major and/or minor tics along the
r axis, and radial lines are drawn with a spacing of <angle>. Tic marks
around the perimeter are controlled by @ref{ttics}, but these do not produce
radial grid lines.
The pertinent tics must be enabled before `set grid` can draw them; `gnuplot`
will quietly ignore instructions to draw grid lines at non-existent tics, but
they will appear if the tics are subsequently enabled.
If no linetype is specified for the minor gridlines, the same linetype as the
major gridlines is used. The default polar angle is 30 degrees.
If `front` is given, the grid is drawn on top of the graphed data. If
`back` is given, the grid is drawn underneath the graphed data. Using
`front` will prevent the grid from being obscured by dense data. The
default setup, `layerdefault`, is equivalent to `back` for 2D plots.
In 3D plots the default is to split up the grid and the graph box into
two layers: one behind, the other in front of the plotted data and
functions. Since @ref{hidden3d} mode does its own sorting, it ignores
all grid drawing order options and passes the grid lines through the
hidden line removal machinery instead. These options actually affect
not only the grid, but also the lines output by @ref{border} and the
various ticmarks (see `set xtics`).
In 3D plots grid lines at x- and y- axis tic positions are by default drawn
only on the base plane parallel to z=0. The `vertical` keyword activates
drawing grid lines in the xz and yz planes also, running from zmin to zmax.
Z grid lines are drawn on the bottom of the plot. This looks better if a
partial box is drawn around the plot---see @ref{border}.
@node hidden3d, history_, grid, set-show
@subsection hidden3d
@c ?commands set hidden3d
@c ?commands unset hidden3d
@c ?commands show hidden3d
@c ?set hidden3d
@c ?unset hidden3d
@c ?show hidden3d
@cindex hidden3d
@opindex hidden3d
@cindex nohidden3d
The @ref{hidden3d} command enables hidden line removal for surface plotting
(see `splot`). Some optional features of the underlying algorithm can also
be controlled using this command.
Syntax:
@example
set hidden3d @{defaults@} |
@{ @{front|back@}
@{@{offset <offset>@} | @{nooffset@}@}
@{trianglepattern <bitpattern>@}
@{@{undefined <level>@} | @{noundefined@}@}
@{@{no@}altdiagonal@}
@{@{no@}bentover@} @}
unset hidden3d
show hidden3d
@end example
In contrast to the usual display in gnuplot, hidden line removal actually
treats the given function or data grids as real surfaces that can't be seen
through, so plot elements behind the surface will be hidden by it. For this
to work, the surface needs to have 'grid structure' (see @ref{datafile}
about this), and it has to be drawn `with lines` or @ref{linespoints}.
When @ref{hidden3d} is set, both the hidden portion of the surface and possibly
its contours drawn on the base (see `set contour`) as well as the grid will
be hidden. Each surface has its hidden parts removed with respect to itself
and to other surfaces, if more than one surface is plotted. Contours drawn
on the surface (`set contour surface`) don't work.
@ref{hidden3d} also affects 3D plotting styles `points`, @ref{labels}, @ref{vectors}, and
@ref{impulses} even if no surface is present in the graph.
Unobscured portions of each vector are drawn as line segments (no arrowheads).
Individual plots within the graph may be explicitly excluded from this
processing by appending the extra option `nohidden3d` to the `with` specifier.
Hidden3d does not affect solid surfaces drawn using the pm3d mode. To achieve
a similar effect purely for pm3d surfaces, use instead `set pm3d depthorder`.
To mix pm3d surfaces with normal @ref{hidden3d} processing, use the option
`set hidden3d front` to force all elements included in hidden3d processing to
be drawn after any remaining plot elements, including the pm3d surface.
Functions are evaluated at isoline intersections. The algorithm interpolates
linearly between function points or data points when determining the visible
line segments. This means that the appearance of a function may be different
when plotted with @ref{hidden3d} than when plotted with `nohidden3d` because in
the latter case functions are evaluated at each sample. Please see
@ref{samples} and @ref{isosamples} for discussion of the difference.
The algorithm used to remove the hidden parts of the surfaces has some
additional features controllable by this command. Specifying `defaults` will
set them all to their default settings, as detailed below. If `defaults` is
not given, only explicitly specified options will be influenced: all others
will keep their previous values, so you can turn on/off hidden line removal
via `set @{no@}hidden3d`, without modifying the set of options you chose.
The first option, `offset`, influences the linetype used for lines on the
'back' side. Normally, they are drawn in a linetype one index number higher
than the one used for the front, to make the two sides of the surface
distinguishable. You can specify a different linetype offset to add
instead of the default 1, by `offset <offset>`. Option `nooffset` stands for
`offset 0`, making the two sides of the surface use the same linetype.
Next comes the option `trianglepattern <bitpattern>`. <bitpattern> must be
a number between 0 and 7, interpreted as a bit pattern. Each bit determines
the visibility of one edge of the triangles each surface is split up into.
Bit 0 is for the 'horizontal' edges of the grid, Bit 1 for the 'vertical'
ones, and Bit 2 for the diagonals that split each cell of the original grid
into two triangles. The default pattern is 3, making all horizontal and
vertical lines visible, but not the diagonals. You may want to choose 7 to
see those diagonals as well.
The `undefined <level>` option lets you decide what the algorithm is to do
with data points that are undefined (missing data, or undefined function
values), or exceed the given x-, y- or z-ranges. Such points can either be
plotted nevertheless, or taken out of the input data set. All surface
elements touching a point that is taken out will be taken out as well, thus
creating a hole in the surface. If <level> = 3, equivalent to option
`noundefined`, no points will be thrown away at all. This may produce all
kinds of problems elsewhere, so you should avoid this. <level> = 2 will
throw away undefined points, but keep the out-of-range ones. <level> = 1,
the default, will get rid of out-of-range points as well.
By specifying `noaltdiagonal`, you can override the default handling of a
special case can occur if @ref{undefined} is active (i.e. <level> is not 3).
Each cell of the grid-structured input surface will be divided in two
triangles along one of its diagonals. Normally, all these diagonals have
the same orientation relative to the grid. If exactly one of the four cell
corners is excluded by the @ref{undefined} handler, and this is on the usual
diagonal, both triangles will be excluded. However if the default setting
of `altdiagonal` is active, the other diagonal will be chosen for this cell
instead, minimizing the size of the hole in the surface.
The `bentover` option controls what happens to another special case, this
time in conjunction with the `trianglepattern`. For rather crumply surfaces,
it can happen that the two triangles a surface cell is divided into are seen
from opposite sides (i.e. the original quadrangle is 'bent over'), as
illustrated in the following ASCII art:
@example
C----B
original quadrangle: A--B displayed quadrangle: |\ |
("set view 0,0") | /| ("set view 75,75" perhaps) | \ |
|/ | | \ |
C--D | \|
A D
@end example
If the diagonal edges of the surface cells aren't generally made visible by
bit 2 of the <bitpattern> there, the edge CB above wouldn't be drawn at all,
normally, making the resulting display hard to understand. Therefore, the
default option of `bentover` will turn it visible in this case. If you don't
want that, you may choose `nobentover` instead.
D hidden 6
See also
@uref{http://www.gnuplot.info/demo/hidden.html,hidden line removal demo (hidden.dem)
}
and
@uref{http://www.gnuplot.info/demo/singulr.html,complex hidden line demo (singulr.dem).
}
@node history_, isosamples, hidden3d, set-show
@subsection history
@c ?commands set history
@c ?set history
Syntax:
@example
set history @{size <N>@} @{quiet|numbers@} @{full|trim@} @{default@}
@end example
A log of recent gnuplot commands is kept by default in $HOME/.gnuplot_history.
If this file is not found and xdg desktop support is enabled, the program will
instead use $XDG_STATE_HOME/gnuplot_history.
When leaving gnuplot the value of history size limits the number of lines
saved to the history file. `set history size -1` allows an unlimited number
of lines to be written to the history file.
By default the @ref{history} command prints a line number in front of each command.
`history quiet` suppresses the number for this command only.
`set history quiet` suppresses numbers for all future @ref{history} commands.
The @ref{trim} option reduces the number of duplicate lines in the history list
by removing earlier instances of the current command.
Default settings: @ref{trim}.
@node isosamples, isosurface_, history_, set-show
@subsection isosamples
@c ?commands set isosamples
@c ?commands show isosamples
@c ?set isosamples
@c ?show isosamples
@cindex isosamples
@opindex isosamples
The isoline density (grid) for plotting functions as surfaces may be changed
by the @ref{isosamples} command.
Syntax:
@example
set isosamples <iso_1> @{,<iso_2>@}
show isosamples
@end example
Each function surface plot will have <iso_1> iso-u lines and <iso_2> iso-v
lines. If you only specify <iso_1>, <iso_2> will be set to the same value
as <iso_1>. By default, sampling is set to 10 isolines per u or v axis.
A higher sampling rate will produce more accurate plots, but will take longer.
These parameters have no effect on data file plotting.
An isoline is a curve parameterized by one of the surface parameters while
the other surface parameter is fixed. Isolines provide a simple means to
display a surface. By fixing the u parameter of surface s(u,v), the iso-u
lines of the form c(v) = s(u0,v) are produced, and by fixing the v parameter,
the iso-v lines of the form c(u) = s(u,v0) are produced.
When a function surface plot is being done without the removal of hidden
lines, @ref{samples} controls the number of points sampled along each
isoline; see @ref{samples} and @ref{hidden3d}. The contour algorithm
assumes that a function sample occurs at each isoline intersection, so
change in @ref{samples} as well as @ref{isosamples} may be desired when changing
the resolution of a function surface/contour.
@node isosurface_, isotropic, isosamples, set-show
@subsection isosurface
@c ?commands set isosurface
@c ?commands show isosurface
@c ?set isosurface
@c ?show isosurface
Syntax:
@example
set isosurface @{mixed|triangles@}
set isosurface @{no@}insidecolor <n>
@end example
Surfaces plotted by the command @ref{isosurface} are by
default constructed from a mixture of quadrangles and triangles. The use
of quadrangles creates a less complicated visual impression.
This command provides an option to tessellate with only triangles.
By default the inside of an isosurface is drawn in a separate color.
The method of choosing that color is the same as for hidden3d surfaces,
where an offset <n> is added to the base linetype. To draw both the inside
and outside surfaces in the same color, use `set isosurface noinsidecolor`.
@node isotropic, jitter, isosurface_, set-show
@subsection isotropic
@c ?commands set isotropic
@c ?set isotropic
@cindex isotropic
@opindex isotropic
Syntax:
@example
set isotropic
unset isotropic
@end example
@ref{isotropic} adjusts the aspect ratio and size of the plot so that the
unit length along the x, y, and z axes is the same. It is equivalent to
`set size ratio -1; set view equal xyz` and supersedes both of those commands.
This affects both 2D and 3D plots.
@ref{isotropic} relaxes both the 2D and 3D constraints. It is equivalent to
the older commands `set size noratio; set view noequal_axes` but hopefully
easier to remember.
@node jitter, key_, isotropic, set-show
@subsection jitter
@c ?commands set jitter
@c ?set jitter
@cindex jitter
@opindex jitter
@cindex beeswarm
Syntax:
@example
set jitter @{overlap <yposition>@} @{spread <factor>@} @{wrap <limit>@}
@{swarm|square|vertical@}
@end example
Examples:
@example
set jitter # jitter points within 1 character width
set jitter overlap 1.5 # jitter points within 1.5 character width
set jitter over 1.5 spread 0.5 # same but half the displacement on x
@end example
When one or both coordinates of a data set are restricted to discrete values
then many points may lie exactly on top of each other. Jittering introduces an
offset to the coordinates of these superimposed points that spreads them into a
cluster. The threshold value for treating the points as being overlapped may
be specified in character widths or any of the usual coordinate options.
See `coordinates`. Jitter affects 2D plot styles `with points`,
@ref{impulses} and @ref{boxplot}. It also affects 3D plotting of voxel grids.
The default jittering operation displaces points only along x.
This produces a distinctive pattern sometimes called a "bee swarm plot".
The optional keyword `square` adjusts the y coordinate of displaced points
in addition to their x coordinate so that the points lie in distinct layers
separated by at least the `overlap` distance.
To jitter along y (only) rather than along x, use keyword `vertical`.
The maximum displacement (in character units) can be limited using the `wrap`
keyword.
Note that both the overlap criterion and the magnitude of jitter default to
one character unit. Thus the plot appearance will change with the terminal
font size, canvas size, or zoom factor. To avoid this you can specify the
overlap criterion in the y axis coordinate system (the `first` keyword) and
adjust the point size and spread multiplier as appropriate.
See `coordinates`, @ref{pointsize}.
Caveat: jitter is incompatible with "pointsize variable".
@ref{jitter} is also useful in 3D plots of voxel data. Because voxel grids
are regular lattices of evenly spaced points, many view angles cause points
to overlap and/or generate Moiré patterns. These artifacts can be removed
by displacing the symbol drawn at each grid point by a random amount.
@node key_, label, jitter, set-show
@subsection key
@c ?commands set key
@c ?commands unset key
@c ?commands show key
@c ?set key
@c ?unset key
@c ?show key
@cindex key
@opindex key
@cindex nokey
@cindex legend
The `set key` command enables a key (or legend) containing a title and a
sample (line, point, box) for each plot in the graph. The key may be turned off
by requesting `set key off` or `unset key`. Individual key entries may be
turned off by using the `notitle` keyword in the corresponding plot command.
The text of the titles is controlled by the `set key autotitle` option or by
the @ref{title} keyword of individual `plot` and `splot` commands.
See `key placement` for syntax of options that affect where the key is placed.
See `key layout` for syntax of options that affect the content of the key.
Syntax (global options):
@example
set key @{on|off@} @{default@}
@{font "<face>,<size>"@} @{@{no@}enhanced@}
@{@{no@}title "<text>" @{<font or other text options>@}@}
@{@{no@}autotitle @{columnheader@}@}
@{@{no@}box @{<line properties>@}@} @{@{no@}opaque @{fc <colorspec>@}@}
@{width <width_increment>@} @{height <height_increment>@}
unset key
@end example
By default the key is placed in the upper right inside corner of the graph.
The optional `font` becomes the default for all elements of the key.
You can provide an option title for the key as a whole that spans the full
width of the key at the top. This title can use different font, color,
justification, and enhancement from individual plot titles.
Each component in a plot command is represented in the key by a single line
containing corresponding title text and a line or symbol or shape
representing the plot style. The title text may be auto-generated or given
explicitly in the plot command as `title "text"`. Using the keyword `notitle`
in the plot command will suppress generation of the entire line.
If you want to suppress the text only, use `title ""` in the plot command.
Contour plots generated additional entries in the key (see @ref{cntrlabel}).
You can add extra lines to the key by inserting a dummy plot command that uses
the keyword `keyentry` rather than a filename or a function. See `keyentry`.
A box can be drawn around the key (`box @{...@}`) with user-specified line
properties. The `height` and `width` increments (specified in character units)
are added to or subtracted from the size of the key box.
This is useful mainly when you want larger borders around the key entries.
By default the key is built up one plot at a time. That is, the key symbol and
title are drawn at the same time as the corresponding plot. That means newer
plots may sometimes place elements on top of the key. `set key opaque` causes
the key to be generated after all the plots. In this case the key area is
filled with background color or the requested fill color and then the key
symbols and titles are written.
The default can be restored by `set key noopaque`.
The text in the key uses `enhanced` mode by default. This can be suppressed
by the `noenhanced` keyword applied to the entire key, to the key title only,
or to individual plot titles.
`set key default` restores the default key configuration.
@example
set key notitle
set key nobox noopaque
set key fixed right top vertical Right noreverse enhanced autotitle
set key noinvert samplen 4 spacing 1 width 0 height 0
set key maxcolumns 0 maxrows 0
@end example
@menu
* 3D_key::
* key_examples::
* extra_key_entries::
* key_autotitle::
* key_layout::
* key_placement::
* key_offset::
* key_samples::
* multiple_keys::
@end menu
@node 3D_key, key_examples, key_, key_
@subsubsection 3D key
@c ?set key 3D
@c ?set key splot
@c ?key 3D
@c ?key splot
@c ?set key fixed
@c ?key fixed
Placement of the key for 3D plots (`splot`) by default uses the `fixed` option.
This is very similar to `inside` placement with one important difference.
The plot boundaries of a 3D plot change as the view point is rotated or scaled.
If the key is positioned `inside` these boundaries then the key also moves when
the view is changed. `fixed` positioning ignores changes to the view angles or
scaling; i.e. the key remains fixed in one location on the canvas as the plot
is rotated.
For 2D plots the `fixed` option is exactly equivalent to `inside`.
If `splot` is being used to draw contours, by default a separate key entry is
generated for each contour level with a distinct line type.
To modify this see @ref{cntrlabel}.
@node key_examples, extra_key_entries, 3D_key, key_
@subsubsection key examples
@c ?set key examples
@c ?key examples
This places the key at the default location:
@example
set key default
@end example
This places a key at a specific place (upper right) on the screen:
@example
set key at screen 0.85, 0.85
@end example
This places the key below the graph and minimizes the vertical space taken:
@example
set key below horizontal
@end example
This places the key in the bottom left corner of the plot,
left-justifies the text, gives the key box a title at the top,
and draws a box around it with a thick border:
@example
set key left bottom Left title 'Legend' box lw 3
@end example
@node extra_key_entries, key_autotitle, key_examples, key_
@subsubsection extra key entries
@c ?key entries
@cindex keyentry
Normally each plot autogenerates a single line entry in the key. If you need
more control over what appears in the key you can use the `keyentry` keyword
in the `plot` or `splot` command to insert extra lines. Instead of providing
a filename or function to plot, use `keyentry` as a placeholder followed by
plot style information (used to generate a key symbol) and a title.
All the usual options for title font, text color, `at` coordinates, and
enhanced text markup apply.
Example:
@example
set key outside right center
plot $HEATMAP matrix with image notitle, \
keyentry "Outcomes" left, \
keyentry with boxes fc palette cb 0 title "no effect", \
keyentry with boxes fc palette cb 1 title "threshold", \
keyentry with boxes fc palette cb 3 title "typical range", \
keyentry title "as reported in [12]", \
keyentry with boxes fc palette cb 5 title "strong effect"
@end example
The line generated by `keyentry "Outcomes" left` places left-justified text
in the space that would normally hold the sample. This allows an embedded
title that may span the full width of the key. If a title is given also in
the same keyentry then both strings appear on the same line, allowing
generation of two-column key entries.
You can use keywords `left/right/center` for justification, `boxed`, etc.
Example:
@example
plot ..., keyentry "West Linn" boxed title "locations"
@end example
@node key_autotitle, key_layout, extra_key_entries, key_
@subsubsection key autotitle
@c ?commands set key autotitle
@c ?set key autotitle
@c ?key autotitle
@cindex autotitle
@c ?autotitle columnheader
@c ?key autotitle columnheader
`set key autotitle` causes each plot to be identified in the key by the name
of the data file or function used in the plot command. This is the default.
`set key noautotitle` disables the automatic generation of plot titles.
@cindex columnheader
The command `set key autotitle columnheader` causes the first entry in each
column of input data to be interpreted as a text string and used as a title for
the corresponding plot. If the quantity being plotted is a function of data
from several columns, gnuplot may be confused as to which column to draw the
title from. In this case it is necessary to specify the column explicitly in
the plot command, e.g.
@example
plot "datafile" using (($2+$3)/$4) title columnhead(3) with lines
@end example
Note: The effect of `set key autotitle columnheader`, treatment of the first
line in a data file as column headers rather than data applies even if the
key is disabled by `unset key`. It also applies to `stats` and @ref{fit} commands
even though they generate no key. If you want the first line of data to be
treated as column headers but _not_ to use them for plot titles, use
@ref{columnheaders}.
In all cases an explicit @ref{title} or `notitle` keyword in the plot command
itself will override the default from `set key autotitle`.
@node key_layout, key_placement, key_autotitle, key_
@subsubsection key layout
@c ?set key layout
@c ?key layout
Key layout options:
@example
set key @{vertical | horizontal@}
@{maxcols @{<max no. of columns> | auto@}@}
@{maxrows @{<max no. of rows> | auto@}@}
@{columns <exact no. of columns>@}
@{keywidth [screen|graph] <fraction>@}
@{Left | Right@}
@{@{no@}reverse@} @{@{no@}invert@}
@{samplen <sample_length>@} @{spacing <line_spacing>@}
@{width <width_increment>@} @{height <height_increment>@}
@{title @{"<text>"@} @{@{no@}enhanced@} @{center | left | right@}@}
@{font "<face>,<size>"@} @{textcolor <colorspec>@}
@end example
Automatic arrangement of elements within the key into rows and columns is
affected by the keywords shown above. The default is `vertical`, for which
the key uses the fewest columns possible. Elements are aligned in a column
until there is no more vertical space, at which point a new column is started.
The vertical space may be limited using 'maxrows'.
In the case of `horizontal`, the key instead uses the fewest rows possible.
The horizontal space may be limited using 'maxcols'.
The auto-selected number of rows and columns may be unsatisfactory.
You can specify a definite number of columns using `set key columns <N>`.
In this case you may need to adjust the sample widths (`samplen`) and the
total key width (`keywidth`).
By default the first plot label is at the top of the key and successive labels
are entered below it. The `invert` option causes the first label to be placed
at the bottom of the key, with successive labels entered above it. This option
is useful to force the vertical ordering of labels in the key to match the
order of box types in a stacked histogram.
`set key title "text"` places an overall title at the top of the key.
Font, text justification, and other text properties specific to the title can
be specified by placing the required keywords immediately after the
`"text"` in this command.
Font or text properties specified elsewhere apply to all text in the key.
The default layout places a style sample (color, line, point, shape, etc) at
the left of the key entry line, and the title text at the right.
The text and sample positions can be swapped using the `reverse` keyword.
Text justification of the individual plot titles within the key is controlled
by `Left` or `Right` (default).
The horizontal extend of the style sample can be set to an approximate number
of character width (`samplen`).
When using the TeX/LaTeX group of terminals or terminals in which formatting
information is embedded in the string, `gnuplot` is bad at estimating the
amount of space required, so the automatic key layout may be poor.
If the key is to be positioned at the left, it may help to use the combination
`set key left Left reverse` and force the appropriate number of columns or
total key width.
@node key_placement, key_offset, key_layout, key_
@subsubsection key placement
@c ?commands set key placement
@c ?set key placement
@c ?key placement
Key placement options:
@example
set key @{inside | outside | fixed@}
@{lmargin | rmargin | tmargin | bmargin@}
@{at <position>@}@}
@{left | right | center@} @{top | bottom | center@}
@{offset <dx>,<dy>@}
@end example
This section describes placement of the primary, auto-generated key.
To construct a secondary key or place plot titles elsewhere, see
`multiple keys`.
To understand positioning, the best concept is to think of a region, i.e.,
inside/outside, or one of the margins. Along with the region, keywords
`left/center/right` (l/c/r) and `top/center/bottom` (t/c/b) control where
within the particular region the key should be placed.
In `inside` mode, the keywords `left` (l), `right` (r), `top` (t),
`bottom` (b), and `center` (c) push the key out toward the plot boundary as
illustrated here:
@example
t/l t/c t/r
@end example
@example
c/l c c/r
@end example
@example
b/l b/c b/r
@end example
In `outside` mode, automatic placement is similar to the above illustration,
but with respect to the view, rather than the graph boundary.
That is, a border is moved inward to make room for the key outside of
the plotting area, although this may interfere with other labels and may
cause an error on some devices. The particular plot border that is moved
depends upon the position described above and the stacking direction. For
options centered in one of the dimensions, there is no ambiguity about which
border to move. For the corners, when the stack direction is `vertical`, the
left or right border is moved inward appropriately. When the stack direction
is `horizontal`, the top or bottom border is moved inward appropriately.
The margin syntax allows automatic placement of key regardless of stack
direction. When one of the margins @ref{lmargin} (lm), @ref{rmargin} (rm),
@ref{tmargin} (tm), and @ref{bmargin} (bm) is combined with a single, non-conflicting
direction keyword, the key is positioned along the outside of the page
as shown here.
Keywords `above` and `over` are synonymous with @ref{tmargin}.
Keywords `below` and `under` are synonymous with @ref{bmargin}.
@example
l/tm c/tm r/tm
@end example
@example
t/lm t/rm
@end example
@example
c/lm c/rm
@end example
@example
b/lm b/rm
@end example
@example
l/bm c/bm r/bm
@end example
For version compatibility, `above`, `over`, `below`, or `under` without any
additional l/c/r or stack direction keyword uses `center` and `horizontal`.
The keyword `outside` without any additional t/b/c or stack direction keyword
uses `top`, `right` and `vertical` (i.e., the same as t/rm above).
The <position> can be a simple x,y,z as in previous versions, but these can
be preceded by one of five keywords (`first`, `second`, `graph`, `screen`,
`character`) which selects the coordinate system in which the position of
the first sample line is specified. See `coordinates` for more details.
The effect of `left`, `right`, `top`, `bottom`, and `center` when <position>
is given is to align the key as though it were text positioned using the
label command, i.e., `left` means left align with key to the right of
<position>, etc.
@node key_offset, key_samples, key_placement, key_
@subsubsection key offset
@c ?commands set key offset
@c ?set key offset
@c ?key offset
Regardless of the key placement options chosen, the final position of the key
can be adjusted manually by specifying an offset. As usual, the x and y
components of the offset may be given in character, graph, or screen
coordinates.
@node key_samples, multiple_keys, key_offset, key_
@subsubsection key samples
@c ?commands set key samples
@c ?set key samples
@c ?key samples
By default, each plot on the graph generates a corresponding entry in the key.
This entry contains a plot title and a sample line/point/box of the same color
and fill properties as used in the plot itself. The font and textcolor
properties control the appearance of the individual plot titles that appear in
the key. Setting the textcolor to "variable" causes the text for each key
entry to be the same color as the line or fill color for that plot.
This was the default in some earlier versions of gnuplot.
The length of the sample line can be controlled by `samplen`. The sample
length is computed as the sum of the tic length and <sample_length> times the
character width. It also affects the positions of point samples in the key
since these are drawn at the midpoint of the sample line, even if the line
itself is not drawn.
Key entry lines are single-spaced based on the current font size.
This can be adjusted by `set key spacing <line-spacing>`.
The <width_increment> is a number of character widths to be added to or
subtracted from the length of the string. This is useful only when you are
putting a box around the key and you are using control characters in the text.
`gnuplot` simply counts the number of characters in the string when computing
the box width; this allows you to correct it.
@node multiple_keys, , key_samples, key_
@subsubsection multiple keys
@c ?multiple keys
@c ?set key multiple keys
@c ?key multiple keys
@cindex legend
It is possible to construct a legend/key manually rather than having the plot
titles all appear in the auto-generated key. This allows, for example, creating
a single legend for the component panels in a multiplot.
@example
set multiplot layout 3,2 columnsfirst
set style data boxes
plot $D using 0:6 lt 1 title at 0.75, 0.20
plot $D using 0:12 lt 2 title at 0.75, 0.17
plot $D using 0:13 lt 3 title at 0.75, 0.14
plot $D using 0:14 lt 4 title at 0.75, 0.11
set label 1 at screen 0.75, screen 0.22 "Custom combined key area"
plot $D using 0:($6+$12+$13+$14) with linespoints title "total"
unset multiplot
@end example
@node label, linetype, key_, set-show
@subsection label
@c ?commands set label
@c ?commands unset label
@c ?commands show label
@c ?set label
@c ?unset label
@c ?show label
@cindex label
@opindex label
@cindex nolabel
Arbitrary labels can be placed on the plot using the `set label` command.
Syntax:
@example
set label @{<tag>@} @{"<label text>"@} @{at <position>@}
@{left | center | right@}
@{norotate | rotate @{by <degrees>@}@}
@{font "<name>@{,<size>@}"@}
@{noenhanced@}
@{front | back@}
@{textcolor <colorspec>@}
@{point <pointstyle> | nopoint@}
@{offset <offset>@}
@{nobox@} @{boxed @{bs <boxstyle>@}@}
@{hypertext@}
unset label @{<tag>@}
show label
@end example
The <position> is specified by either x,y or x,y,z, and may be preceded by
`first`, `second`, `polar`, `graph`, `screen`, or `character` to indicate the
coordinate system. See `coordinates` for details.
The tag is an integer that is used to identify the label. If no <tag>
is given, the lowest unused tag value is assigned automatically. The
tag can be used to delete or modify a specific label. To change any
attribute of an existing label, use the `set label` command with the
appropriate tag, and specify the parts of the label to be changed.
The <label text> can be a string constant, a string variable, or a string-
valued expression. See `strings`, @ref{sprintf}, and @ref{gprintf}.
By default, the text is placed flush left against the point x,y,z. To adjust
the way the label is positioned with respect to the point x,y,z, add the
justification parameter, which may be `left`, `right` or `center`,
indicating that the point is to be at the left, right or center of the text.
Labels outside the plotted boundaries are permitted but may interfere with
axis labels or other text.
Some terminals support enclosing the label in a box. See `set style textbox`.
Not all terminals can handle boxes for rotated text.
If `rotate` is given, the label is written vertically. If `rotate by <degrees>`
is given, the baseline of the text will be set to the specified angle.
Some terminals do not support text rotation.
Font and its size can be chosen explicitly by `font "<name>@{,<size>@}"` if the
terminal supports font settings. Otherwise the default font of the terminal
will be used.
Normally the enhanced text mode string interpretation, if enabled for the
current terminal, is applied to all text strings including label text.
The `noenhanced` property can be used to exempt a specific label from the
enhanced text mode processing. The can be useful if the label contains
underscores, for example. See `enhanced text`.
If `front` is given, the label is written on top of the graphed data. If
`back` is given (the default), the label is written underneath the graphed
data. Using `front` will prevent a label from being obscured by dense data.
`textcolor <colorspec>` changes the color of the label text. <colorspec> can be
a linetype, an rgb color, or a palette mapping. See help for @ref{colorspec} and
@ref{palette}. `textcolor` may be abbreviated `tc`.
@example
`tc default` resets the text color to its default state.
`tc lt <n>` sets the text color to that of line type <n>.
`tc ls <n>` sets the text color to that of line style <n>.
`tc palette z` selects a palette color corresponding to the label z position.
`tc palette cb <val>` selects a color corresponding to <val> on the colorbox.
`tc palette fraction <val>`, with 0<=val<=1, selects a color corresponding to
the mapping [0:1] to grays/colors of the @ref{palette}.
`tc rgb "#RRGGBB"` or `tc rgb "0xRRGGBB"` sets an arbitrary 24-bit RGB color.
`tc rgb 0xRRGGBB` As above; a hexadecimal constant does not require quotes.
@end example
If a <pointstyle> is given, using keywords `lt`, `pt` and `ps`, see @ref{style},
a point with the given style and color of the given line type is plotted at
the label position and the text of the label is displaced slightly.
This option is used by default for placing labels in `mouse` enhanced
terminals. Use `nopoint` to turn off the drawing of a point near
the label (this is the default).
The displacement defaults to 1,1 in @ref{pointsize} units if a <pointstyle> is
given, 0,0 if no <pointstyle> is given. The displacement can be controlled
by the optional `offset <offset>` where <offset> is specified by either x,y
or x,y,z, and may be preceded by `first`, `second`, `graph`, `screen`, or
`character` to select the coordinate system. See `coordinates` for details.
If one (or more) axis is timeseries, the appropriate coordinate should be
given as a quoted time string according to the @ref{timefmt} format string.
See @ref{xdata} and @ref{timefmt}.
The options available for `set label` are also available for the @ref{labels} plot
style. See @ref{labels}. In this case the properties `textcolor`, `rotate`, and
@ref{pointsize} may be followed by keyword `variable` rather than by a fixed value.
In this case the corresponding property of individual labels is determined by
additional columns in the `using` specifier.
@menu
* examples_::
* hypertext::
@end menu
@node examples_, hypertext, label, label
@subsubsection examples
@c ?label examples
@c ?set label examples
Examples:
To set a label at (1,2) to "y=x", use:
@example
set label "y=x" at 1,2
@end example
To set a Sigma of size 24, from the Symbol font set, at the center of
the graph, use:
@example
set label "S" at graph 0.5,0.5 center font "Symbol,24"
@end example
To set a label "y=x^2" with the right of the text at (2,3,4), and tag the
label as number 3, use:
@example
set label 3 "y=x^2" at 2,3,4 right
@end example
To change the preceding label to center justification, use:
@example
set label 3 center
@end example
To delete label number 2, use:
@example
unset label 2
@end example
To delete all labels, use:
@example
unset label
@end example
To show all labels (in tag order), use:
@example
show label
@end example
To set a label on a graph with a timeseries on the x axis, use, for example:
@example
set timefmt "%d/%m/%y,%H:%M"
set label "Harvest" at "25/8/93",1
@end example
To display a freshly fitted parameter on the plot with the data and the
fitted function, do this after the @ref{fit}, but before the `plot`:
@example
set label sprintf("a = %3.5g",par_a) at 30,15
bfit = gprintf("b = %s*10^%S",par_b)
set label bfit at 30,20
@end example
To display a function definition along with its fitted parameters, use:
@example
f(x)=a+b*x
fit f(x) 'datafile' via a,b
set label GPFUN_f at graph .05,.95
set label sprintf("a = %g", a) at graph .05,.90
set label sprintf("b = %g", b) at graph .05,.85
@end example
To set a label displaced a little bit from a small point:
@example
set label 'origin' at 0,0 point lt 1 pt 2 ps 3 offset 1,-1
@end example
To set a label whose color matches the z value (in this case 5.5) of some
point on a 3D splot colored using pm3d:
@example
set label 'text' at 0,0,5.5 tc palette z
@end example
@node hypertext, , examples_, label
@subsubsection hypertext
@cindex hypertext
@c ?label hypertext
@c ?set label hypertext
Some terminals (wxt, qt, svg, canvas, win) allow you to attach hypertext
to specific points on the graph or elsewhere on the canvas. When the mouse
hovers over the anchor point, a pop-up box containing the text is displayed.
Terminals that do not support hypertext will display nothing. You must enable
the `point` attribute of the label in order for the hypertext to be anchored.
Enhanced text markup is not applied to hypertext labels.
Examples:
@example
set label at 0,0 "Plot origin" hypertext point pt 1
plot 'data' using 1:2:0 with labels hypertext point pt 7 \
title 'mouse over point to see its order in data set'
@end example
@example
# mousing over any point of this pm3d surface will display
# its Z coordinate as hypertext
splot '++' using 1:2:(F($1,$2)) with pm3d, \
'++' using 1:2:(F($1,$2)):(sprintf("%.3f", F($1,$2))) with labels \
hypertext point lc rgb "0xff000000" notitle
@end example
For the wxt and qt terminals, left-click on a hypertext anchor after the
text has appeared will copy the hypertext to the clipboard.
@c ^ <br><table class="button"><tr><td>
@c ^ <a href="http://www.gnuplot.info/demo_svg_6.0/hypertext.html"
@c ^ class="button">
@c ^ click to see hypertext demo </a>
@c ^ </td></tr></table>
EXPERIMENTAL (implementation details may change) -
Text of the form "image@{<xsize>,<ysize>@}:<filename>@{\n<caption text>@}" will
trigger display of the image file in a pop-up box. The optional size overrides
a default box size 300x200. The types of image file recognized may vary by
terminal type, but *.png should always work. Any additional text lines
following the image filename are displayed as usual for hypertext.
Example:
@example
set label 7 "image:../figures/Fig7_inset.png\nFigure 7 caption..."
set label 7 at 10,100 hypertext point pt 7
@end example
@node linetype, link, label, set-show
@subsection linetype
@c ?commands set linetype
@c ?commands show linetype
@c ?set linetype
@c ?show linetype
The `set linetype` command allows you to redefine the basic linetypes used
for plots. The command options are identical to those for "set style line".
Unlike line styles, redefinitions by `set linetype` are persistent.
They are not affected by @ref{reset}. However the initial linetype properties
are restored by `reset session`.
For example, whatever linetypes one and two look like to begin with, if you
redefine them like this:
@example
set linetype 1 lw 2 lc rgb "blue" pointtype 6
set linetype 2 lw 2 lc rgb "forest-green" pointtype 8
@end example
everywhere that uses lt 1 will now get a thick blue line. This includes
uses such as the definition of a temporary linestyle derived from the base
linetype 1. Similarly lt 2 will now produce a thick green line.
This mechanism can be used to define a set of personal preferences for the
sequence of lines used in gnuplot. The recommended way to do this is to add
to the run-time initialization file ~/.gnuplot a sequence of commands like
@example
set linetype 1 lc rgb "dark-violet" lw 2 pt 1
set linetype 2 lc rgb "sea-green" lw 2 pt 7
set linetype 3 lc rgb "cyan" lw 2 pt 6 pi -1
set linetype 4 lc rgb "dark-red" lw 2 pt 5 pi -1
set linetype 5 lc rgb "blue" lw 2 pt 8
set linetype 6 lc rgb "dark-orange" lw 2 pt 3
set linetype 7 lc rgb "black" lw 2 pt 11
set linetype 8 lc rgb "goldenrod" lw 2
set linetype cycle 8
@end example
Every time you run gnuplot the line types will be initialized to these values.
You may initialize as many linetypes as you like. If you do not redefine, say,
linetype 3 then it will continue to have the default properties (in this case
blue, pt 3, lw 1, etc).
Similar script files can be used to define theme-based color choices, or sets
of colors optimized for a particular plot type or output device.
@cindex cycle
The command `set linetype cycle 8` tells gnuplot to re-use these definitions
for the color and linewidth of higher-numbered linetypes. That is, linetypes
9-16, 17-24, and so on will use this same sequence of colors and widths.
The point properties (pointtype, pointsize, pointinterval) are not affected by
this command. `unset linetype cycle` disables this feature. If the line
properties of a higher numbered linetype are explicitly defined, this takes
precedence over the recycled low-number linetype properties.
@node link, lmargin, linetype, set-show
@subsection link
@c ?commands set link
@c ?set link
@cindex link
@opindex link
Syntax:
@example
set link @{x2 | y2@} @{via <expression1> inverse <expression2>@}
unset link
@end example
The @ref{link} command establishes a mapping between the x and x2 axes, or the
y and y2 axes. <expression1> maps primary axis coordinates onto the secondary
axis. <expression2> maps secondary axis coordinates onto the primary axis.
Examples:
@example
set link x2
@end example
This is the simplest form of the command. It forces the x2 axis to have
identically the same range, scale, and direction as the x axis.
Commands @ref{xrange}, @ref{x2range}, `set auto x`, etc will affect both the
x and x2 axes.
@example
set link x2 via x**2 inverse sqrt(x)
plot "sqrt_data" using 1:2 axes x2y1, "linear_data" using 1:2 axes x1y1
@end example
This command establishes forward and reverse mapping between the x and x2 axes.
The forward mapping is used to generate x2 tic labels and x2 mouse coordinate
The reverse mapping is used to plot coordinates given in the x2 coordinate
system. Note that the mapping as given is valid only for x non-negative. When
mapping to the y2 axis, both <expression1> and <expression2> must use y as
dummy variable.
@node lmargin, loadpath, link, set-show
@subsection lmargin
@c ?commands set lmargin
@c ?set lmargin
@cindex lmargin
@opindex lmargin
The command @ref{lmargin} sets the size of the left margin.
Please see @ref{margin} for details.
@node loadpath, locale, lmargin, set-show
@subsection loadpath
@c ?commands set loadpath
@c ?commands show loadpath
@c ?set loadpath
@c ?show loadpath
@cindex loadpath
@opindex loadpath
The @ref{loadpath} setting defines additional locations for data and command
files searched by the @ref{call}, `load`, `plot` and `splot` commands. If a
file cannot be found in the current directory, the directories in
@ref{loadpath} are tried.
Syntax:
@example
set loadpath @{"pathlist1" @{"pathlist2"...@}@}
show loadpath
@end example
Path names may be entered as single directory names, or as a list of
path names separated by a platform-specific path separator, eg. colon
(':') on Unix, semicolon (';') on DOS/Windows/OS/2 platforms.
The @ref{loadpath}, @ref{save} and `save set` commands replace the
platform-specific separator with a space character (' ').
If the environment variable GNUPLOT_LIB is set, its contents are appended to
@ref{loadpath}. However, @ref{loadpath} prints the contents of @ref{loadpath}
and GNUPLOT_LIB separately. Also, the @ref{save} and `save set` commands ignore
the contents of GNUPLOT_LIB.
@node locale, logscale, loadpath, set-show
@subsection locale
@c ?commands set locale
@c ?set locale
@cindex locale
@opindex locale
The @ref{locale} setting determines the language with which `@{x,y,z@}@{d,m@}tics`
will write the days and months.
Syntax:
@example
set locale @{"<locale>"@}
@end example
<locale> may be any language designation acceptable to your installation.
See your system documentation for the available options. The command
`set locale ""` will try to determine the locale from the LC_TIME, LC_ALL,
or LANG environment variables.
To change the decimal point locale, see @ref{decimalsign}.
To change the character encoding to the current locale, see @ref{encoding}.
@node logscale, macros, locale, set-show
@subsection logscale
@c ?commands set logscale
@c ?commands unset logscale
@c ?commands show logscale
@c ?set logscale
@c ?unset logscale
@c ?show logscale
@c ?set log
@cindex logscale
@opindex logscale
@cindex nologscale
Syntax:
@example
set logscale <axes> @{<base>@}
unset logscale <axes>
show logscale
@end example
where <axes> may be any combinations of `x`, `x2`, `y`, `y2`, `z`, `cb`, and
`r` in any order. <base> is the base of the log scaling (default is base 10).
If no axes are specified, the command affects all axes except `r`.
The command @ref{logscale} turns off log scaling for all axes.
Note that the ticmarks generated for logscaled axes are not uniformly spaced.
See `set xtics`.
Examples:
To enable log scaling in both x and z axes:
@example
set logscale xz
@end example
To enable scaling log base 2 of the y axis:
@example
set logscale y 2
@end example
To enable z and color log axes for a pm3d plot:
@example
set logscale zcb
@end example
To disable z axis log scaling:
@example
unset logscale z
@end example
@node macros, mapping, logscale, set-show
@subsection macros
@c ?commands set macros
@c ?set macros
In this version of gnuplot macro substitution is always enabled.
Tokens in the command line of the form @@<stringvariablename> will be replaced
by the text string contained in <stringvariablename>. See `substitution`.
@node mapping, margin, macros, set-show
@subsection mapping
@c ?commands set mapping
@c ?commands show mapping
@c ?set mapping
@c ?show mapping
@cindex mapping
@opindex mapping
If data are provided to `splot` in spherical or cylindrical coordinates,
the @ref{mapping} command should be used to instruct `gnuplot` how to
interpret them.
Syntax:
@example
set mapping @{cartesian | spherical | cylindrical@}
@end example
A cartesian coordinate system is used by default.
For a spherical coordinate system, the data occupy two or three columns
(or `using` entries). The first two are interpreted as the azimuthal
and polar angles theta and phi (or "longitude" and "latitude"), in the
units specified by @ref{angles}. The radius r is taken from the third
column if there is one, or is set to unity if there is no third column.
The mapping is:
@example
x = r * cos(theta) * cos(phi)
y = r * sin(theta) * cos(phi)
z = r * sin(phi)
@end example
Note that this is a "geographic" spherical system, rather than a "polar"
one (that is, phi is measured from the equator, rather than the pole).
For a cylindrical coordinate system, the data again occupy two or three
columns. The first two are interpreted as theta (in the units specified by
@ref{angles}) and z. The radius is either taken from the third column or set
to unity, as in the spherical case. The mapping is:
@example
x = r * cos(theta)
y = r * sin(theta)
z = z
@end example
The effects of @ref{mapping} can be duplicated with the `using` specifier of the
`splot` command, but @ref{mapping} may be more convenient if many data files are
to be processed. However even if @ref{mapping} is used, `using` may still be
necessary if the data in the file are not in the required order.
@ref{mapping} has no effect on `plot`.
@c ^ See also
@uref{http://www.gnuplot.info/demo/world.html,world.dem: mapping demos.
}
@node margin, micro, mapping, set-show
@subsection margin
@c ?commands set margins
@c ?commands show margins
@c ?set margin
@c ?set margins
@c ?show margins
@cindex margins
The @ref{margin} is the distance between the plot border and the outer edge of the
canvas. The size of the margin is chosen automatically, but can be overridden
by the @ref{margin} commands. @ref{margin} shows the current settings.
To alter the distance between the inside of the plot border and the data in the
plot itself, see @ref{offsets}.
Syntax:
@example
set lmargin @{@{at screen@} <margin>@}
set rmargin @{@{at screen@} <margin>@}
set tmargin @{@{at screen@} <margin>@}
set bmargin @{@{at screen@} <margin>@}
set margins <left>, <right>, <bottom>, <top>
show margin
@end example
The default units of <margin> are character heights or widths, as appropriate.
A positive value defines the absolute size of the margin. A negative value
(or none) causes `gnuplot` to revert to the computed value. For 3D plots,
only the left margin can be set using character units.
The keywords `at screen` indicates that the margin is specified as a fraction
of the full drawing area. This can be used to precisely line up the corners of
individual 2D and 3D graphs in a multiplot. This placement ignores the current
values of @ref{origin} and @ref{size}, and is intended as an alternative
method for positioning graphs within a multiplot.
Normally the margins of a plot are automatically calculated based on tics,
tic labels, axis labels, the plot title, the timestamp and the size of the
key if it is outside the borders. If, however, tics are attached to the
axes (`set xtics axis`, for example), neither the tics themselves nor their
labels will be included in either the margin calculation or the calculation
of the positions of other text to be written in the margin. This can lead
to tic labels overwriting other text if the axis is very close to the border.
@node micro, minussign, margin, set-show
@subsection micro
@c ?commands set micro
@c ?commands show micro
@c ?commands unset micro
@c ?set micro
@c ?show micro
@c ?unset micro
@cindex micro
@opindex micro
By default the "%c" format specifier for scientific notation used to generate
axis tick labels uses a lower case u as a prefix to indicate "micro" (10^-6).
The @ref{micro} command tells gnuplot to use a different typographic
character (unicode U+00B5). The byte sequence used to represent this character
depends on the current encoding. See `format specifiers`, @ref{encoding}.
If the current encoding default is not satisfactory, you can provide a
character string that generates the desired representation. This is mostly
useful for latex terminals, for example
@example
set micro "@{\textmu@}"
@end example
@node minussign, monochrome, micro, set-show
@subsection minussign
@c ?commands set minussign
@c ?commands show minussign
@c ?commands unset minussign
@c ?set minussign
@c ?show minussign
@c ?unset minussign
@cindex minussign
@opindex minussign
Gnuplot uses the C language library routine sprintf() for most formatted input.
However it also has its own formatting routine `gprintf()` that is used to
generate axis tic labels. The C library routine always use a hyphen character
(ascii \055) to indicate a negative number, as in -7. Many people prefer a
different typographic minus sign character (unicode U+2212) for this purpose,
as in −7. The command
@example
set minussign
@end example
causes gprintf() to use this minus sign character rather than a hyphen in
numeric output. In a utf-8 locale this is the multibyte sequence corresponding
to unicode U+2212. In a Window codepage 1252 locale this is the 8-bit
character ALT+150 ("en dash"). The @ref{minussign} command will affect axis
tic labels and any labels that are created by explicitly invoking gprintf.
It has no effect on other strings that contain a hyphen. See @ref{gprintf}.
Note that this command is ignored when you are using any of the LaTeX
terminals, as LaTeX has its own mechanism for handling minus signs.
It also is not necessary when using the postscript terminal because the
postscript prologue output by gnuplot remaps the ascii hyphen code \055 to a
different glyph named `minus`.
Example (assumes utf8 locale):
@example
set minus
A = -5
print "A = ",A # printed string will contain a hyphen
print gprintf("A = %g",A) # printed string will contain character U+2212
set label "V = -5" # label will contain a hyphen
set label sprintf("V = %g",-5) # label will contain a hyphen
set label gprintf("V = %g",-5) # label will contain character U+2212
@end example
@node monochrome, mouse, minussign, set-show
@subsection monochrome
@c ?commands set monochrome
@c ?set monochrome
@cindex monochrome
@opindex monochrome
Syntax:
@example
set monochrome @{linetype N <linetype properties>@}
@end example
The @ref{monochrome} command selects an alternative set of linetypes that
differ by dot/dash pattern or line width rather than by color. This command
replaces the monochrome option offered by certain terminal types in earlier
versions of gnuplot. For backward compatibility these terminal types now
implicitly invoke "set monochrome" if their own "mono" option is present.
For example,
@example
set terminal pdf mono
@end example
is equivalent to
@example
set terminal pdf
set mono
@end example
Selecting monochrome mode does not prevent you from explicitly drawing lines
using RGB or palette colors, but see also @ref{gray}.
Six monochrome linetypes are defined by default. You can change their
properties or add additional monochrome linetypes by using the full form of the
command. Changes made to the monochrome linetypes do not affect the color
linetypes and vice versa. To restore the usual set of color linetypes, use
either @ref{monochrome} or `set color`.
@node mouse, mttics, monochrome, set-show
@subsection mouse
@c ?commands set mouse
@c ?commands unset mouse
@c ?set mouse
@c ?unset mouse
@cindex mousing
@cindex mouse
@opindex mouse
@cindex nomouse
The command `set mouse` enables mouse actions for the current interactive
terminal. It is enabled by default.
There are two mouse modes. The 2D mode works for `plot` commands and for `splot`
maps (i.e. @ref{view} with z-rotation 0, 90, 180, 270 or 360 degrees, including
`set view map`). In this mode the mouse position is tracked and you can pan or
zoom using the mouse buttons or arrow keys. Some terminals support toggling
individual plots on/off by clicking on the corresponding key title or on a
separate widget.
For 3D graphs `splot`, the view and scaling of the graph can be changed with
mouse buttons 1 and 2, respectively. A vertical motion of Button 2 with the
shift key held down changes the @ref{xyplane}. If additionally to these
buttons the modifier <ctrl> is held down, the coordinate axes are displayed
but the data are suppressed. This is useful for large data sets.
Mouse button 3 controls the azimuth of the z axis (see @ref{azimuth}).
Mousing coordinate readout in multiplot mode is displayed only with for the
most recent plot within the multiplot. See `new multiplots`.
Syntax:
@example
set mouse @{doubleclick <ms>@} @{nodoubleclick@}
@{@{no@}zoomcoordinates@}
@{zoomfactors <xmultiplier>, <ymultiplier>@}
@{noruler | ruler @{at x,y@}@}
@{polardistance@{deg|tan@} | nopolardistance@}
@{format <string>@}
@{mouseformat <int> | <string> | function <f(x,y)>@}
@{@{no@}labels @{"labeloptions"@}@}
@{@{no@}zoomjump@} @{@{no@}verbose@}
unset mouse
@end example
The options `noruler` and `ruler` switch the ruler off and on, the latter
optionally setting the origin at the given coordinates. While the ruler is on,
the distance in user units from the ruler origin to the mouse is displayed
continuously. By default, toggling the ruler has the key binding 'r'.
The option `polardistance` determines if the distance between the mouse cursor
and the ruler is also shown in polar coordinates (distance and angle in
degrees or tangent (slope)). This corresponds to the default key binding '5'.
@cindex labels
Choose the option @ref{labels} to define persistent gnuplot labels using Button 2.
The default is `nolabels`, which makes Button 2 draw only a temporary label at
the mouse position. Labels are drawn with the current setting of @ref{mouseformat}.
The `labeloptions` string is passed to the `set label` command. The default is
"point pointtype 1" which will plot a small plus at the label position.
Temporary labels will disappear at the next @ref{replot} or mouse zoom operation.
Persistent labels can be removed by holding the Ctrl-Key down while clicking
Button 2 on the label's point. The threshold for how close you must be to the
label is also determined by the @ref{pointsize}.
If the option `verbose` is turned on the communication commands are shown
during execution. This option can also be toggled by hitting `6` in the
driver's window. `verbose` is off by default.
Press 'h' in the driver's window for a summary of the mouse and key bindings.
This will also display user defined bindings or `hotkeys` defined by the
`bind` command. Note that user defined binding may override default bindings.
See also help for `bind`.
@menu
* doubleclick::
* format___::
* mouseformat::
* scrolling::
* zoom::
@end menu
@node doubleclick, format___, mouse, mouse
@subsubsection doubleclick
@c ?set mouse doubleclick
@c ?mouse doubleclick
The doubleclick resolution is given in milliseconds and used for Button 1,
which copies the current mouse position to the `clipboard` on some terminals.
The default value is 300 ms. Setting the value to 0 ms triggers the copy on
a single click.
@node format___, mouseformat, doubleclick, mouse
@subsubsection format
@c ?set mouse format
@c ?mouse format
The `set mouse format` command specifies a format string for sprintf() which
determines how the mouse cursor [x,y] coordinates are printed to the plot
window and to the clipboard. The default is "% #g".
This setting is superseded by "set mouse mouseformat".
@node mouseformat, scrolling, format___, mouse
@subsubsection mouseformat
@c ?set mouse mouseformat
@cindex mouseformat
Syntax:
@example
set mouse mouseformat i
set mouse mouseformat "custom format"
set mouse mouseformat function string_valued_function(x, y)
@end example
This command controls the format used to report the current mouse position.
An integer argument selects one of the format options in the table below.
A string argument is used as a format for sprintf() in option 7 and should
contain two float specifiers, one for x and one for y.
Use of a custom function returning a string is EXPERIMENTAL.
It allows readout of coordinate systems in which inverse mapping from screen
coordinates to plot coordinates requires joint consideration of both x and y.
See for example the map_projection demo.
Example:
@example
set mouse mouseformat "mouse x,y = %5.2g, %10.3f"
@end example
Use `set mouse mouseformat ""` to turn this string off again.
The following formats are available:
@example
0 default (same as 1)
1 axis coordinates 1.23, 2.45
2 graph coordinates (from 0 to 1) /0.00, 1.00/
3 x = timefmt y = axis [(as set by @ref{timefmt}), 2.45]
4 x = date y = axis [31. 12. 1999, 2.45]
5 x = time y = axis [23:59, 2.45]
6 x = date time y = axis [31. 12. 1999 23:59, 2.45]
7 format from `set mouse mouseformat <format-string>`
8 format from `set mouse mouseformat function <func>`
@end example
@node scrolling, zoom, mouseformat, mouse
@subsubsection scrolling
@c ?set mouse scrolling
@c ?mouse scrolling
@c ?mouse wheel
@cindex scrolling
@cindex mousewheel
The mouse wheel adjusts x and y axis ranges in both 2D and 3D plots.
Each adjustment increment is 10% of the current range by default.
This may be changed by `set mouse zoomfactor <x-multiplier>, <y-multiplier>`.
@itemize @bullet
@item
<wheel-up> scrolls y and y2 axis ranges up by a fraction of the current range
@item
<wheel-down> scrolls y and y2 ranges down by a fraction of the current range
@item
<shift+wheel-up> scrolls left (decreases x and x2 ranges)
@item
<shift+wheel-down> scrolls right (increases x and x2 ranges)
@item
<control+wheel-up> zooms in around the current mouse position
@item
<control+wheel-down> zooms out around the current mouse position
@item
<shift+control+wheel-up> zooms in only along x and x2 (pinch)
@item
<shift+control+wheel-down> zooms out only along x and x2 (expand)
@end itemize
@node zoom, , scrolling, mouse
@subsubsection zoom
@c ?mouse zoom
@cindex zoom
Proportional zoom in/out around the current mouse position is controlled
by the mouse wheel (see @ref{scrolling}).
Enlarging a selected region in a 2D plot is accomplished by holding down the
left mouse button and dragging the mouse to delineate a zoom region.
The original plot can be restored by typing the 'u' hotkey in the plot window.
Hotkeys 'p' and 'n' step back and forth through a history of zoom operations.
The option `zoomcoordinates` determines if the coordinates of the zoom box are
drawn at the edges while zooming. This is on by default.
If the option `zoomjump` is on, the mouse pointer will automatically offset a
small distance after starting a zoom region with button 3. This can be useful
to avoid a tiny (or even empty) zoom region. `zoomjump` is off by default.
@node mttics, multiplot, mouse, set-show
@subsection mttics
@c ?commands set mttics
@c ?commands unset mttics
@c ?commands show mttics
@c ?set mttics
@c ?unset mttics
@c ?show mttics
@cindex mttics
@opindex mttics
@cindex nomttics
Minor tic marks around the perimeter of a polar plot are controlled by
by @ref{mttics}. Please see `set mxtics`.
@node multiplot, mx2tics, mttics, set-show
@subsection multiplot
@c ?commands set multiplot
@c ?commands unset multiplot
@c ?set multiplot
@c ?unset multiplot
@cindex multiplot
@opindex multiplot
@cindex nomultiplot
@cindex layout
The command @ref{multiplot} places `gnuplot` in multiplot mode, in which
several plots are placed next to each other on the same page or screen window.
Syntax:
@example
set multiplot
@{ title <page title> @{font <fontspec>@} @{enhanced|noenhanced@} @}
@{ layout <rows>,<cols>
@{rowsfirst|columnsfirst@} @{downwards|upwards@}
@{scale <xscale>@{,<yscale>@}@} @{offset <xoff>@{,<yoff>@}@}
@{margins <left>,<right>,<bottom>,<top>@}
@{spacing <xspacing>@{,<yspacing>@}@}
@}
set multiplot @{next|previous@}
unset multiplot
@end example
For some terminals, no plot is displayed until the command @ref{multiplot}
is given, which causes the entire page to be drawn and then returns gnuplot
to its normal single-plot mode. For other terminals, each separate `plot`
command produces an updated display.
@cindex inset
The @ref{clear} command is used to erase the rectangular area of the page that will
be used for the next plot. This is typically needed to inset a small plot
inside a larger plot.
Any labels or arrows that have been defined will be drawn for each plot
according to the current size and origin (unless their coordinates are
defined in the `screen` system). Just about everything else that can be
`set` is applied to each plot, too. If you want something to appear only
once on the page, for instance a single time stamp, you'll need to put a `set
time`/`unset time` pair around one of the `plot`, `splot` or @ref{replot}
commands within the @ref{multiplot}/@ref{multiplot} block.
The multiplot title is separate from the individual plot titles, if any.
Space is reserved for it at the top of the page, spanning the full width
of the canvas.
The commands @ref{origin} and @ref{size} must be used to correctly position
each plot if no layout is specified or if fine tuning is desired. See
@ref{origin} and @ref{size} for details of their usage.
Example:
@example
set multiplot
set size 0.4,0.4
set origin 0.1,0.1
plot sin(x)
set size 0.2,0.2
set origin 0.5,0.5
plot cos(x)
unset multiplot
@end example
This displays a plot of cos(x) stacked above a plot of sin(x).
@ref{size} and @ref{origin} refer to the entire plotting area used for each
plot. Please also see @ref{size}. If you want to have the axes
themselves line up, you can guarantee that the margins are the same size with
the @ref{margin} commands. See @ref{margin} for their use. Note that the
margin settings are absolute, in character units, so the appearance of the
graph in the remaining space will depend on the screen size of the display
device, e.g., perhaps quite different on a video display and a printer.
With the `layout` option you can generate simple multiplots without having
to give the @ref{size} and @ref{origin} commands before each plot: Those
are generated automatically, but can be overridden at any time. With
`layout` the display will be divided by a grid with <rows> rows and
<cols> columns. This grid is filled rows first or columns first depending on
whether the corresponding option is given in the multiplot command. The stack
of plots can grow `downwards` or `upwards`.
Default is `rowsfirst` and `downwards`.
The commands `set multiplot next` and `set multiplot previous` are relevant
only in the context of using the layout option. `next` skips the next position
in the grid, leaving a blank space. `prev` returns to the grid position
immediately preceding the most recently plotted position.
Each plot can be scaled by `scale` and shifted with `offset`; if the y-values
for scale or offset are omitted, the x-value will be used. @ref{multiplot}
will turn off the automatic layout and restore the values of @ref{size} and
@ref{origin} as they were before `set multiplot layout`.
Example:
@example
set size 1,1
set origin 0,0
set multiplot layout 3,2 columnsfirst scale 1.1,0.9
[ up to 6 plot commands here ]
unset multiplot
@end example
The above example will produce 6 plots in 2 columns filled top to bottom,
left to right. Each plot will have a horizontal size of 1.1/2 and a vertical
size of 0.9/3.
Another possibility is to set uniform margins for all plots in the layout with
options `layout margins` and `spacing`, which must be used together. With
`margins` you set the outer margins of the whole multiplot grid.
`spacing` gives the gap size between two adjacent subplots, and can also
be given in `character` or `screen` units. If a single value is given,
it is used for both x and y direction, otherwise two different values
can be selected.
If one value has no unit, the one of the preceding margin setting is used.
Example:
@example
set multiplot layout 2,2 margins 0.1, 0.9, 0.1, 0.9 spacing 0.0
@end example
In this case the two left-most subplots will have left boundaries at screen
coordinate 0.1, the two right-most subplots will have right boundaries at
screen coordinate 0.9, and so on. Because the spacing between subplots is
given as 0, their inner boundaries will superimpose.
Example:
@example
set multiplot layout 2,2 margins char 5,1,1,2 spacing screen 0, char 2
@end example
This produces a layout in which the boundary of both left subplots is
5 character widths from the left edge of the canvas, the right boundary of the
right subplots is 1 character width from the canvas edge.
The overall bottom margin is one character height and the overall top margin
is 2 character heights. There is no horizontal gap between the two columns of
subplots. The vertical gap between subplots is equal to 2 character heights.
Example:
@example
set multiplot layout 2,2 columnsfirst margins 0.1,0.9,0.1,0.9 spacing 0.1
set ylabel 'ylabel'
plot sin(x)
set xlabel 'xlabel'
plot cos(x)
unset ylabel
unset xlabel
plot sin(2*x)
set xlabel 'xlabel'
plot cos(2*x)
unset multiplot
@end example
See also @ref{remultiplot}, `new multiplots`,
@uref{http://www.gnuplot.info/demo/multiplt.html,multiplot demo (multiplt.dem)
}
@node mx2tics, mxtics, multiplot, set-show
@subsection mx2tics
@c ?commands set mx2tics
@c ?commands unset mx2tics
@c ?commands show mx2tics
@c ?set mx2tics
@c ?unset mx2tics
@c ?show mx2tics
@cindex mx2tics
@opindex mx2tics
@cindex nomx2tics
Minor tic marks along the x2 (top) axis are controlled by @ref{mx2tics}.
Please see `set mxtics`.
@node mxtics, my2tics, mx2tics, set-show
@subsection mxtics
@c ?commands set mxtics
@c ?commands unset mxtics
@c ?commands show mxtics
@c ?set mxtics
@c ?unset mxtics
@c ?show mxtics
@cindex mxtics
@opindex mxtics
@cindex nomxtics
Minor tic marks along the x axis are controlled by `set mxtics`. They can be
turned off with `unset mxtics`. Similar commands control minor tics along
the other axes.
Syntax:
@example
set mxtics <freq>
set mxtics default
set mxtics time <N> <units>
unset mxtics
show mxtics
@end example
The same syntax applies to @ref{mytics}, @ref{mztics}, @ref{mx2tics}, @ref{my2tics}, `mrtics`,
@ref{mttics} and `mcbtics`.
<freq> is the number of sub-intervals (NOT the number of minor tic marks)
between major tics. The default for a linear axis is either 2 (one mark) or
5 (four marks) depending on the spacing of the major tics.
`default` will return the number of minor ticks to its default value.
`set mxtics time <N> <units>` applies only when the major tics are set to
time mode. See `set mxtics time`.
If the axis is logarithmic, the number of sub-intervals will be set to a
reasonable number by default (based upon the length of a decade). This will
be overridden if <freq> is given. However the usual minor tics (2, 3, ...,
8, 9 between 1 and 10, for example) are obtained by setting <freq> to 10,
even though there are but nine sub-intervals.
To set minor tics at arbitrary positions, use the ("<label>" <pos> <level>,
...) form of `set @{x|x2|y|y2|z@}tics` with <label> empty and <level> set to 1.
The `set m@{x|x2|y|y2|z@}tics` commands work only when there are uniformly
spaced major tics. If all major tics were placed explicitly by
`set @{x|x2|y|y2|z@}tics`, then minor tic commands are ignored. Implicit
major tics and explicit minor tics can be combined using
`set @{x|x2|y|y2|z@}tics` and `set @{x|x2|y|y2|z@}tics add`.
Examples:
@example
set xtics 0, 5, 10
set xtics add (7.5)
set mxtics 5
@end example
Major tics at 0,5,7.5,10, minor tics at 1,2,3,4,6,7,8,9
@example
set logscale y
set ytics format ""
set ytics 1e-6, 10, 1
set ytics add ("1" 1, ".1" 0.1, ".01" 0.01, "10^-3" 0.001, \
"10^-4" 0.0001)
set mytics 10
@end example
Major tics with special formatting, minor tics at log positions
By default, minor tics are off for linear axes and on for logarithmic axes.
They inherit the settings for `axis|border` and `@{no@}mirror` specified for
the major tics. Please see `set xtics` for information about these.
@menu
* mxtics_time::
@end menu
@node mxtics_time, , mxtics, mxtics
@subsubsection mxtics time
@c ?set mxtics time
@c ?mxtics time
Syntax:
@example
set mxtics time <N> @{seconds|minutes|hours|days|weeks|months|years@}
@end example
This is a new command option introduced in gnuplot version 6.
It places minor tic marks exactly at some integral number of time units
rather than at some fraction of the major tic interval.
The new default is that minor tics are not generated if the major tics are
in time mode (`set xdata time` or `set xtics time`).
`set mxtics` or `set mxtics <freq>` can restore the pre-version 6 behavior
but this was always problematic. For example, automatic subdivision of a
72-year span placed major tics at 12-year intervals and minor tics at
5-year intervals.
Using `set mxtics time 2 years`, however, will place a minor tic mark exactly
at the start of alternate years. `set mxtics time 1 month` will place tic
marks exactly at 1 Jan, 1 Feb, 1 Mar, 1 Apr, ... even though those intervals
contain an unequal number of days.
@node my2tics, mytics, mxtics, set-show
@subsection my2tics
@c ?commands set my2tics
@c ?commands unset my2tics
@c ?commands show my2tics
@c ?set my2tics
@c ?unset my2tics
@c ?show my2tics
@cindex my2tics
@opindex my2tics
@cindex nomy2tics
Minor tic marks along the y2 (right-hand) axis are controlled by @ref{my2tics}. Please see `set mxtics`.
@node mytics, mztics, my2tics, set-show
@subsection mytics
@c ?commands set mytics
@c ?commands unset mytics
@c ?commands show mytics
@c ?set mytics
@c ?unset mytics
@c ?show mytics
@cindex mytics
@opindex mytics
@cindex nomytics
Minor tic marks along the y axis are controlled by @ref{mytics}. Please
see `set mxtics`.
@node mztics, nonlinear, mytics, set-show
@subsection mztics
@c ?commands set mztics
@c ?commands unset mztics
@c ?commands show mztics
@c ?set mztics
@c ?unset mztics
@c ?show mztics
@cindex mztics
@opindex mztics
@cindex nomztics
Minor tic marks along the z axis are controlled by @ref{mztics}. Please
see `set mxtics`.
@node nonlinear, object, mztics, set-show
@subsection nonlinear
@c ?commands set nonlinear
@c ?set nonlinear
@cindex nonlinear
@opindex nonlinear
Syntax:
@example
set nonlinear <axis> via f(axis) inverse g(axis)
unset nonlinear <axis>
@end example
This command is similar to the @ref{link} command except that only one of the
two linked axes is visible. The hidden axis remains linear. Coordinates along
the visible axis are mapped by applying g(x) to hidden axis coordinates.
f(x) maps the visible axis coordinates back onto the hidden linear axis.
You must provide both the forward and inverse expressions.
To illustrate how this works, consider the case of a log-scale x2 axis.
@example
set x2ange [1:1000]
set nonlinear x2 via log10(x) inverse 10**x
@end example
This achieves the same effect as `set log x2`. The hidden axis in this case
has range [0:3], obtained by calculating [log10(xmin):log10(xmax)].
The transformation functions f() and g() must be defined using a
dummy variable appropriate to the nonlinear axis:
@example
axis: x x2 dummy variable x
axis: y y2 dummy variable y
axis: z cb dummy variable z
axis: r dummy variable r
@end example
@c ?set nonlinear examples
@c ?nonlinear examples
Example:
@example
set xrange [-3:3]
set nonlinear x via norm(x) inverse invnorm(x)
@end example
This example establishes a probability-scaled ("probit") x axis, such that
plotting the cumulative normal function Phi(x) produces a straight line plot
against a linear y axis.
@cindex logit
Example:
@example
logit(p) = log(p/(1-p))
logistic(a) = 1. / (1. + exp(-a))
set xrange [.001 : .999]
set nonlinear y via logit(y) inverse logistic(y)
plot logit(x)
@end example
This example establishes a logit-scaled y axis such that plotting logit(x)
on a linear x axis produces a straight line plot.
@cindex broken axis
Example:
@example
f(x) = (x <= 100) ? x : (x < 500) ? NaN : x-390
g(x) = (x <= 100) ? x : x+390
set xrange [0:1000] noextend
set nonlinear x via f(x) inverse g(x)
set xtics add (100,500)
plot sample [x=1:100] x, [x=500:1000] x
@end example
This example creates a "broken axis". X coordinates 0-100 are at the left,
X coordinates 500-1000 are at the right, there is a small gap (10 units)
between them. So long as no data points with (100 < x < 500) are plotted,
this works as expected.
@node object, offsets, nonlinear, set-show
@subsection object
@cindex objects
@c ?commands set object
@c ?commands show object
@c ?set object
@c ?object depthorder
@c ?show object
The @ref{object} command defines a single object which will appear in
subsequent plots. You may define as many objects as you like. Currently the
supported object types are @ref{rectangle}, `circle`, `ellipse`, and `polygon`.
Rectangles inherit a default set of style properties (fill, color, border) from
those set by the command @ref{rectangle}. Every object can be given
individual style properties when it is defined or in a later command.
Objects to be drawn in 2D plots may be defined in any combination of
axis, graph, polar, or screen coordinates.
Object specifications in 3D plots cannot use graph coordinates.
Rectangles and ellipses in 3D plots are limited to screen coordinates.
Syntax:
@example
set object <index>
<object-type> <object-properties>
@{front|back|behind|depthorder@}
@{clip|noclip@}
@{fc|fillcolor <colorspec>@} @{fs <fillstyle>@}
@{default@} @{lw|linewidth <width>@} @{dt|dashtype <dashtype>@}
unset object <index>
@end example
<object-type> is either @ref{rectangle}, `ellipse`, `circle`, or `polygon`.
Each object type has its own set of characteristic properties.
The options `front`, `back`, `behind` control whether the object is drawn
before or after the plot itself. See @ref{layers}.
Setting `front` will draw the object in front of all plot elements, but
behind any labels that are also marked `front`. Setting `back` will place the
object behind all plot curves and labels. Setting `behind` will place the
object behind everything including the axes and `back` rectangles, thus
@example
set object rectangle from screen 0,0 to screen 1,1 behind
@end example
can be used to provide a colored background for the entire graph or page.
By default, objects are clipped to the graph boundary unless one or more
vertices are given in screen coordinates. Setting `noclip` will disable
clipping to the graph boundary, but will still clip against the screen size.
The fill color of the object is taken from the <colorspec>. @ref{fillcolor}
may be abbreviated `fc`. The fill style is taken from <fillstyle>.
See @ref{colorspec} and `fillstyle`. If the keyword `default` is given,
these properties are inherited from the default settings at the time a plot
is drawn. See @ref{rectangle}.
@menu
* rectangle::
* ellipse::
* circle::
* polygon::
@end menu
@node rectangle, ellipse, object, object
@subsubsection rectangle
@cindex rectangle
@c ?commands set object rectangle
@c ?commands show object rectangle
@c ?set object rectangle
@c ?show object rectangle
Syntax:
@example
set object <index> rectangle
@{from <position> @{to|rto@} <position> |
center <position> size <w>,<h> |
at <position> size <w>,<h>@}
@end example
The position of the rectangle may be specified by giving the position of two
diagonal corners (bottom left and top right) or by giving the position of the
center followed by the width and the height. In either case the positions
may be given in axis, graph, or screen coordinates. See `coordinates`.
The options `at` and `center` are synonyms.
Examples:
@example
# Force the entire area enclosed by the axes to have background color cyan
set object 1 rect from graph 0, graph 0 to graph 1, graph 1 back
set object 1 rect fc rgb "cyan" fillstyle solid 1.0
@end example
@example
# Position a red square with lower left at 0,0 and upper right at 2,3
set object 2 rect from 0,0 to 2,3 fc lt 1
@end example
@example
# Position an empty rectangle (no fill) with a blue border
set object 3 rect from 0,0 to 2,3 fs empty border rgb "blue"
@end example
@example
# Return fill and color to the default style but leave vertices unchanged
set object 2 rect default
@end example
Rectangle corners specified in screen coordinates may extend beyond the edge of
the current graph. Otherwise the rectangle is clipped to fit in the graph.
@node ellipse, circle, rectangle, object
@subsubsection ellipse
@cindex ellipse
@c ?commands set object ellipse
@c ?commands show object ellipse
@c ?set object ellipse
@c ?show object ellipse
Syntax:
@example
set object <index> ellipse @{at|center@} <position> size <w>,<h>
@{angle <orientation>@} @{units xy|xx|yy@}
@{<other-object-properties>@}
@end example
The position of the ellipse is specified by giving the center followed by
the width and the height (actually the major and minor axes). The keywords
`at` and `center` are synonyms. The center position may be given in axis,
graph, or screen coordinates. See `coordinates`. The major and minor axis
lengths must be given in axis coordinates. The orientation of the ellipse
is specified by the angle between the horizontal axis and the major diameter
of the ellipse. If no angle is given, the default ellipse orientation
will be used instead (see `set style ellipse`). The `units` keyword
controls the scaling of the axes of the ellipse. `units xy` means that the
major axis is interpreted in terms of units along the x axis, while the
minor axis in that of the y axis. `units xx` means that both axes of the
ellipses are scaled in the units of the x axis, while `units yy` means
that both axes are in units of the y axis.
The default is `xy` or whatever `set style ellipse units` was set to.
NB: If the x and y axis scales are not equal, (e.g. `units xy` is in
effect) then the major/minor axis ratio will no longer be correct after
rotation.
Note that `set object ellipse size <2r>,<2r>` does not in general produce
the same result as `set object circle <r>`. The circle radius is always
interpreted in terms of units along the x axis, and will always produce a
circle even if the x and y axis scales are different and even if the aspect
ratio of your plot is not 1. If `units` is set to `xy`, then
'set object ellipse' interprets the first <2r> in terms of x axis units
and the second <2r> in terms of y axis units. This will only produce a
circle if the x and y axis scales are identical and the plot aspect ratio
is 1. On the other hand, if `units` is set to `xx` or `yy`, then the
diameters specified in the 'set object' command will be interpreted in the
same units, so the ellipse will have the correct aspect ratio, and it will
maintain its aspect ratio even if the plot is resized.
@node circle, polygon, ellipse, object
@subsubsection circle
@cindex circle
@c ?commands set object circle
@c ?commands show object circle
@c ?set object circle
@c ?show object circle
Syntax:
@example
set object <index> circle @{at|center@} <position> size <radius>
@{arc [<begin>:<end>]@} @{no@{wedge@}@}
@{<other-object-properties>@}
@end example
The position of the circle is specified by giving the position of the center
center followed by the radius. The keywords `at` and `center` are synonyms.
In 2D plots the position and radius may be given in any coordinate system.
See `coordinates`. Circles in 3D plots cannot use graph coordinates.
In all cases the radius is calculated relative to the horizontal scale of the
axis, graph, or canvas. Any disparity between the horizontal and vertical
scaling will be corrected for so that the result is always a circle.
If you want to draw a circle in plot coordinates (such that it will appear as
an ellipse if the horizontal and vertical scales are different), use
`set object ellipse` instead.
By default a full circle is drawn. The optional qualifier `arc` specifies
a starting angle and ending angle, in degrees, for one arc of the circle.
The arc is always drawn counterclockwise.
See also `set style circle`, `set object ellipse`.
@node polygon, , circle, object
@subsubsection polygon
@cindex polygon
@c ?commands set object polygon
@c ?commands show object polygon
@c ?set object polygon
@c ?show object polygon
Syntax:
@example
set object <index> polygon
from <position> to <position> ... @{to <position>@}
@end example
or
@example
from <position> rto <position> ... @{rto <position>@}
@end example
The position of the polygon may be specified by giving the position of a
sequence of vertices. These may be given in any coordinate system.
If relative coordinates are used (rto) then the coordinate type must match
that of the previous vertex.
See `coordinates`.
Example:
@example
set object 1 polygon from 0,0 to 1,1 to 2,0
set object 1 fc rgb "cyan" fillstyle solid 1.0 border lt -1
@end example
@noindent --- DEPTHORDER ---
@c ?polygon depthorder
@c ?set object depthorder
The option `set object N depthorder` applies to 3D polygon objects only.
Rather than assigning the object to layer front/back/behind it is included
in the list of pm3d quadrangles sorted and rendered in order of depth by
`set pm3d depthorder`. As with pm3d surfaces, two-sided coloring can be
generated by specifying the object fillcolor as a linestyle. In this
case the ordering of the first three vertices in the polygon determines
the "side".
If you set this property for an object that is not a 3D polygon it probably
will not be drawn at all.
@node offsets, origin, object, set-show
@subsection offsets
@c ?commands set offsets
@c ?commands unset offsets
@c ?commands show offsets
@c ?set offsets
@c ?unset offsets
@c ?show offsets
@cindex offsets
@opindex offsets
@cindex nooffsets
Autoscaling sets the x and y axis ranges to match the coordinates of the data
that is plotted. Offsets provide a mechanism to expand these ranges to leave
empty space between the data and the plot borders. Autoscaling then further
extends each range to reach the next axis tic unless this has been suppressed
by @ref{noextend} or @ref{noextend}. See @ref{noextend}.
Offsets affect only scaling for the x1 and y1 axes.
Syntax:
@example
set offsets <left>, <right>, <top>, <bottom>
unset offsets
show offsets
@end example
Each offset may be a constant or an expression. Each defaults to 0.
By default, the left and right offsets are given in units of the first x axis,
the top and bottom offsets in units of the first y axis. Alternatively, you
may specify the offsets as a fraction of the total graph dimension by using the
keyword "graph". Only "graph" offsets are possible for nonlinear axes.
A positive offset expands the axis range in the specified direction, e.g.
a positive bottom offset makes ymin more negative. Negative offsets interact
badly with autoscaling and clipping.
Example:
@example
set autoscale noextend
set offsets graph 0.05, 0, 2, 2
plot sin(x)
@end example
This graph of sin(x) will have y range [-3:3] because the function will be
autoscaled to [-1:1] and the vertical offsets add 2 at each end of the range.
The x range will be [-11:10] because the default is [-10:10] and it has been
expanded to the left by 0.05 of that total range.
@node origin, output, offsets, set-show
@subsection origin
@c ?commands set origin
@c ?commands show origin
@c ?set origin
@c ?show origin
@cindex origin
@opindex origin
The @ref{origin} command is used to specify the origin of a plotting surface
(i.e., the graph and its margins) on the screen. The coordinates are given
in the `screen` coordinate system (see `coordinates` for information about
this system).
Syntax:
@example
set origin <x-origin>,<y-origin>
@end example
@node output, overflow, origin, set-show
@subsection output
@c ?commands set output
@c ?commands show output
@c ?set output
@c ?show output
@cindex output
@opindex output
@c ?output file
Syntax:
@example
set output @{"<filename>"@}
unset output
show output
@end example
Graphs produced by non-interactive terminals are by default sent to `stdout`.
The @ref{output} command redirects output to the specified file or device.
The file opened by this command remains open until a subsequent set/unset
output command, a change in terminal type, or exit from gnuplot.
Interactive terminals ignore @ref{output}.
The filename must be enclosed in quotes. If the filename is omitted, the
command is equivalent to @ref{output}; any output file opened by a previous
@ref{output} will be closed and new output will be sent to `stdout`.
When both @ref{terminal} and @ref{output} are used together, it is safest to
give @ref{terminal} first, because some terminals set a flag which is needed
in some operating systems. This would be the case, for example, if the
operating system needs a separate open command for binary files.
On platforms that support pipes, it may be useful to pipe terminal output.
For instance,
@example
set output "|lpr -Plaser filename"
set term png; set output "|display png:-"
@end example
On MSDOS machines, `set output "PRN"` directs output to the default printer.
@node overflow, palette__, output, set-show
@subsection overflow
@cindex overflow
@opindex overflow
@c ?commands set overflow
@c ?commands unset overflow
@c ?set overflow
@c ?unset overflow
@c ?show overflow
Syntax:
@example
set overflow @{float | NaN | undefined@}
unset overflow
@end example
This version of gnuplot supports 64-bit integer arithmetic.
This means that for values from 2^53 to 2^63 (roughly 10^16 to 10^19)
integer evaluation preserves more precision than evaluation using IEEE 754
floating point arithmetic. However unlike the IEEE floating point
representation, which sacrifices precision to span a total range of
roughly [-10^307 : 10^307], integer operations that result in values outside
the range [-2^63 : 2^63] overflow. The @ref{overflow} command lets you
control what happens in case of overflow. See options below.
@ref{overflow} is the same as @ref{float}. It causes the result to be
returned as a real number rather than as an integer. This is the default.
The command @ref{overflow} causes integer arithmetic overflow to be ignored.
No error is shown. This may be desirable if your platform allows only 32-bit
integer arithmetic and you want to approximate the behaviour of gnuplot
versions prior to 5.4.
The @ref{reset} command does not affect the state of overflow handling.
Earlier gnuplot versions were limited to 32-bit arithmetic and ignored
integer overflow. Note, however, that some built-in operators did not
use integer arithmetic at all, even when given integer arguments. This
included the exponentiation operator N**M and the summation operator
(see @ref{summation}). These operations now return an integer value when
given integer arguments, making them potentially susceptible to overflow
and thus affected by the state of @ref{overflow}.
@menu
* float::
* NaN::
* undefined::
* affected_operations::
@end menu
@node float, NaN, overflow, overflow
@subsubsection float
@c ?set overflow float
@c ?overflow float
If an integer arithmetic expression overflows the limiting range,
[-2^63 : 2^63] for 64-bit integers, the result is returned as a floating
point value instead. This is not treated as an error.
Example:
@example
gnuplot> set overflow float
gnuplot> A = 2**62 - 1; print A, A+A, A+A+A
4611686018427387903 9223372036854775806 1.38350580552822e+19
@end example
@node NaN, undefined, float, overflow
@subsubsection NaN
@c ?set overflow NaN
@c ?overflow NaN
@c ?overflow nan
If an integer arithmetic expression overflows the limiting range,
[-2^63 : 2^63] for 64-bit integers, the result is returned as NaN
(Not a Number). This is not treated as an error.
Example:
@example
gnuplot> set overflow NaN
gnuplot> print 10**18, 10**19
1000000000000000000 NaN
@end example
@node undefined, affected_operations, NaN, overflow
@subsubsection undefined
@c ?set overflow undefined
@c ?overflow undefined
If an integer arithmetic expression overflows the limiting range,
[-2^63 : 2^63] for 64-bit integers, the result is undefined.
This is treated as an error.
Example:
@example
gnuplot> set overflow undefined
gnuplot> A = 10**19
^
undefined value
@end example
@node affected_operations, , undefined, overflow
@subsubsection affected operations
@c ?set overflow affected_operations
@c ?overflow affected_operations
The @ref{overflow} state affects the arithmetic operators
@example
+ - * / **
@end example
and the built-in summation operation `sum`.
All of these operations will return an integer result if all of the arguments
are integers, so long as no overflow occurs during evaluation.
The @ref{overflow} state does not affect logical or bit operations
@example
<< >> | ^ &
@end example
If overflow occurs at any point during the course of evaluating of a summation
@ref{float} will cause the result to be returned as a real number even
if the final sum is within the range of integer representation.
@node palette__, parametric_, overflow, set-show
@subsection palette
@c ?commands set palette
@c ?set palette
@cindex palette
@opindex palette
The palette is a set of colors, usually ordered as one or more stepped
gradients, used to color pm3d surfaces, heat maps, and other plot elements.
Colors in the current palette are automatically mapped from plot
coordinate z values or from an extra data column of gray values.
The current palette is shown by default in a separate `colorbox` drawn
next to plots that use plot style `pm3d`. The colorbox can be customized
or disabled. See `set colorbox`. See also @ref{palette} and @ref{palette}.
Syntax:
@example
set palette
set palette @{
@{ gray | color @}
@{ gamma <gamma> @}
@{ rgbformulae <r>,<g>,<b>
| defined @{ ( <gray1> <color1> @{, <grayN> <colorN>@}... ) @}
| file '<filename>' @{datafile-modifiers@}
| colormap <colormap-name>
| functions <R>,<G>,<B>
@}
@{ cubehelix @{start <val>@} @{cycles <val>@} @{saturation <val>@} @}
@{ viridis @}
@{ model @{ RGB | CMY | HSV @{start <radians>@} @} @}
@{ positive | negative @}
@{ nops_allcF | ps_allcF @}
@{ maxcolors <maxcolors> @}
@}
@end example
A palette can be defined in several ways.
- Provide formulae for the red, green, and blue components as a function
of the gray value between 0 and 1.
@ref{rgbformulae} allows you to choose from 36 predefined formulae.
@ref{functions} allows you to define your own functions.
- Use @ref{defined} to specify one or more smooth gradients,
each spanning one segment of the total z range.
- Load a previously save palette into the current palette.
`Set palette file` reads a saved palette from a file.
@ref{colormap} extracts the RGB components from a saved colormap.
- Specify a named palette, perhaps with additional parameters to customize.
The named palettes currently provided are @ref{cubehelix} (a customizable family
of palettes) and @ref{viridis}.
@ref{palette} (without options) restores the default values.
`set palette negative` inverts the direction of the palette, e.g.
`set palette viridis negative` creates a gradient from yellow to blue rather
than from blue to yellow.
@ref{gray} switches to a grayscale palette.
`set palette color` restores the most recent color palette.
In `pm3d` color surfaces the gray value of each small quadrangle is obtained by
mapping the averaged z-coordinate of its 4 corners from the range [min_z,max_z]
into the range of grays, which is always [0:1].
The palette maps that gray value into an RGB color.
Palette colors can be mentioned explicitly in a color specification (see
@ref{colorspec}). This is useful to assign a palette color to an object or label.
The palette can be defined in any of three color spaces: RGB CMY HSV.
See `set palette model`.
All color component values in all color spaces are limited to [0,1].
@menu
* rgbformulae::
* defined::
* functions_::
* gray::
* cubehelix::
* viridis::
* colormap_::
* file::
* gamma_correction::
* maxcolors::
* Color_model::
* postscript::
@end menu
@node rgbformulae, defined, palette__, palette__
@subsubsection rgbformulae
@c ?commands set palette rgbformulae
@c ?set palette rgbformulae
@c ?palette rgbformulae
@cindex rgbformulae
@cindex colors
@example
set palette rgbformulae <function 1>, <function 2>, <function 3>
@end example
Despite its name, this option applies to all color spaces.
You must specify one of 36 preset mapping functions by number for each color
component. The available functions are listed by @ref{rgbformulae}.
The default is `set palette rgbformulae 7,5,15`. In RGB space this uses
function 7 to map the red component, function 5 to map the green component,
and function 15 to map the blue component. A negative function number
inverts the sense of that component by mapping f(1-gray) rather than f(gray).
Some nice schemes in RGB color space
@example
7,5,15 ... default (black-blue-red-yellow)
3,11,6 ... green-red-violet
23,28,3 ... ocean (green-blue-white)
21,22,23 ... hot (black-red-yellow-white)
30,31,32 ... black-blue-violet-yellow-white
33,13,10 ... rainbow (blue-green-yellow-red)
34,35,36 ... AFM hot (black-red-yellow-white)
@end example
A full color palette in HSV color space
@example
3,2,2 ... red-yellow-green-cyan-blue-magenta-red
@end example
@node defined, functions_, rgbformulae, palette__
@subsubsection defined
@c ?commands set palette defined
@c ?set palette defined
@c ?palette defined
@cindex colors
Gray-to-rgb mapping can be manually set by use of @ref{defined}:
A color gradient is defined and used to give the rgb values. Such a gradient
is a piecewise linear mapping from gray values in [0,1] to the RGB space
[0,1]x[0,1]x[0,1]. You must specify the gray values and the corresponding RGB
values between which linear interpolation will be done.
Syntax:
@example
set palette defined @{ ( <gray1> <color1> @{, <grayN> <colorN>@}... ) @}
@end example
where N ≥ 2 and <grayN> are gray values which are mapped to [0,1].
The corresponding rgb color <colorN> can be specified in three different ways:
@example
<color> := @{ <r> <g> <b> | '<color-name>' | '#rrggbb' @}
@end example
Either by three numbers (each in [0,1]) for red, green and blue, separated by
whitespace, or the name of the color in quotes or X style color specifiers
also in quotes. You may freely mix the three types in a gradient definition,
but the named color "red" will be something strange if RGB is not selected
as color space. Use @ref{colornames} for a list of known color names.
The <gray> values must form an ascending sequence of real numbers;
the sequence will be automatically rescaled to [0,1].
@ref{defined} (without a gradient definition in braces) switches to
RGB color space and uses a preset full-spectrum color gradient.
Use `show palette gradient` to display the gradient.
Examples:
To produce a gray palette (useless but instructive) use:
@example
set palette model RGB
set palette defined ( 0 "black", 1 "white" )
@end example
To produce a blue-to-yellow-to-red palette use (all equivalent):
@example
set palette defined ( 0 "blue", 1 "yellow", 2 "red" )
set palette defined ( 0 0 0 1, 1 1 1 0, 2 1 0 0 )
set palette defined ( 0 "#0000ff", 1 "#ffff00", 2 "#ff0000" )
@end example
Full color spectrum within HSV color space:
@example
set palette model HSV
set palette defined ( 0 0 1 1, 1 1 1 1 )
set palette defined ( 0 0 1 0, 1 0 1 1, 6 0.8333 1 1, 7 0.8333 0 1)
@end example
Full color HSV spectrum wrapping at some hue other than red
@example
set palette model HSV start 0.15
set palette defined ( 0 0 1 1, 1 1 1 1 )
@end example
To produce a palette with only a few, equally-spaced colors:
@example
set palette model RGB maxcolors 4
set palette defined ( 0 "yellow", 1 "red" )
@end example
'Traffic light' palette (non-smooth color jumps at gray = 1/3 and 2/3).
@example
set palette model RGB
set palette defined (0 "dark-green", 1 "green", \
1 "yellow", 2 "dark-yellow", \
2 "red", 3 "dark-red" )
@end example
@node functions_, gray, defined, palette__
@subsubsection functions
@c ?commands set palette functions
@c ?set palette functions
@c ?palette functions
@example
set palette functions <f1(gray)>, <f2(gray)>, <f3(gray)>
@end example
This option is like @ref{rgbformulae} except that you must provide
an actual function for each color component rather than the index of a preset
function. The dummy parameter of each function, if any, must be "gray".
The function must map gray values in [0,1] to output values also in [0,1].
Examples:
To produce a full color palette use:
@example
set palette model HSV functions gray, 1, 1
@end example
A nice black to gold palette:
@example
set palette model RGB functions 1.1*gray**0.25, gray**0.75, 0
@end example
A gamma-corrected black and white palette
@example
gamma = 2.2
map(gray) = gray**(1./gamma)
set palette model RGB functions map(gray), map(gray), map(gray)
@end example
@node gray, cubehelix, functions_, palette__
@subsubsection gray
@c ?commands set palette gray
@c ?set palette gray
@c ?set palette grey
@c ?palette gray
@ref{gray} switches to a grayscale palette shading from 0.0 = black
to 1.0 = white. `set palette color` is an easy way to switch back from the
gray palette to the last color mapping.
@node cubehelix, viridis, gray, palette__
@subsubsection cubehelix
@c ?commands set palette cubehelix
@c ?set palette cubehelix
@cindex cubehelix
The "cubehelix" option defines a family of palettes in which color (hue) varies
around the standard color wheel while the net perceived intensity increases
monotonically as the gray value goes from 0 to 1.
@example
D A Green (2011) http://arxiv.org/abs/1108.5083
@end example
`start` defines the starting point along the color wheel in radians.
`cycles` defines how many color wheel cycles span the palette range.
Larger values of `saturation` produce more saturated color; saturation > 1
may lead to clipping of the individual RGB components and to intensity
becoming non-monotonic. The palette is also affected by `set palette gamma`.
The default values are
@example
set palette cubehelix start 0.5 cycles -1.5 saturation 1
set palette gamma 1.5
@end example
@node viridis, colormap_, cubehelix, palette__
@subsubsection viridis
@c ?commands set palette viridis
@c ?set palette viridis
@cindex viridis
@example
set palette viridis
@end example
The "viridis" palette is a (blue->yellow) gradient designed to accommodate
users with impaired color vision. Viridis was developed by Stéfan van der Walt
and Nathaniel Smith. It features an approximately linear gradient of perceived
brightness (luminance). The colormap version used in gnuplot is based on
@example
"Viridis - Colorblind-Friendly Color Maps for R", Garnier et al (2021)
https://CRAN.R-project.org/package=viridis
@end example
D viridis 1
@node colormap_, file, viridis, palette__
@subsubsection colormap
@c ?commands set palette colormap
@c ?palette colormap
`set palette colormap <name>` loads a defined gradient that was previously
saved to a colormap. Alpha channel information in the colormap, if any,
will be lost when the color values are copied into the palette definition.
See @ref{colormap}.
@node file, gamma_correction, colormap_, palette__
@subsubsection file
@c ?commands set palette file
@c ?set palette file
@c ?palette file
`set palette file` is basically a `set palette defined (<gradient>)` where
<gradient> is read from a datafile or datablock. The color values may be
provided either as a single 24-bit packed RGB integer (1 or 2 `using` columns)
or as three separate fractional R, G, B components (3 or 4 `using` columns).
If no explicit gray value is provided in the first input column, the line
number is used; this generates equal spacing along the color axis.
The file is read as a normal data file, so all datafile modifiers can be used.
Please note that `R` might actually be `H` if HSV color space is selected.
Use `show palette gradient` to display the gradient.
Examples:
Read in a palette of RGB triples each in range [0,255]:
@example
set palette file 'some-palette' using ($1/255):($2/255):($3/255)
@end example
Equidistant rainbow (blue-green-yellow-red) palette:
@example
set palette model RGB file "-" using 1:2:3
0 0 1
0 1 0
1 1 0
1 0 0
e
@end example
Same thing using explicit gray intervals and packed RGB values:
@example
set palette model RGB file "-" using 1:2
1 0x0000ff
2 0x00ff00
3 0xffff00
4 0xff0000
e
@end example
Binary palette files are supported as well, see @ref{general}. Example:
put 64 triplets of R,G,B doubles into file palette.bin and load it by
@example
set palette file "palette.bin" binary record=64 using 1:2:3
@end example
@node gamma_correction, maxcolors, file, palette__
@subsubsection gamma correction
@c ?commands set palette gamma-correction
@c ?set palette gamma-correction
@c ?palette gamma-correction
@cindex gamma-correction
Automatic gamma correction via `set palette gamma <gamma>` can be done for
gray maps (@ref{gray}) and for the @ref{cubehelix} color palette schemes.
Gamma = 1 produces a linear ramp of intensity. See @ref{palette}.
For gray mappings, <gamma> defaults to 1.5 which is usually suitable.
The gamma correction is applied to the cubehelix color palette family, but not
to other palette coloring schemes. However, you may easily implement gamma
correction for explicit color functions.
Example:
@example
set palette model RGB
set palette functions gray**0.64, gray**0.67, gray**0.70
@end example
To use gamma correction with interpolated gradients specify intermediate
gray values with appropriate colors. Instead of
@example
set palette defined ( 0 0 0 0, 1 1 1 1 )
@end example
use e.g.
@example
set palette defined ( 0 0 0 0, 0.5 .73 .73 .73, 1 1 1 1 )
@end example
or even more intermediate points until the linear interpolation fits the
"gamma corrected" interpolation well enough.
@node maxcolors, Color_model, gamma_correction, palette__
@subsubsection maxcolors
@c ?commands set palette maxcolors
@c ?set palette maxcolors
@c ?palette maxcolors
`set palette maxcolors <N>` limits the palette to N discrete colors
selected from a continuous palette sampled at equally spaced intervals.
If you want unequal spacing of N discrete colors, use @ref{defined}
instead of a single continuous palette.
The primary use for this is to generate heat maps with discrete colors,
each representing a range of values.
A second use is to handle terminals that support only a limited number of
colors (e.g. 256 colors in gif or sixel). The default gnuplot linetype colors
use up some of these, further limiting the number available for palette use.
Thus a multiplot using multiple palettes could fail because the first palette
has used all the available color positions. You can mitigate this by
restricting the number of colors used by each palette.
@node Color_model, postscript, maxcolors, palette__
@subsubsection Color model
@c ?commands set palette model
@c ?set palette model
@c ?palette model
@c ?color model
@cindex HSV
@cindex RGB
@cindex CMY
@example
set palette model @{ RGB | CMY | HSV @{start <radians>@} @}
@end example
Sometimes RGB color space is not the most convenient color space to work in.
You may change the color space `model` to one of `RGB`, `HSV`, `CMY`.
RGB stands for Red, Green, Blue; CMY stands for Cyan, Magenta, Yellow;
HSV stands for Hue, Saturation, Value. In HSV space the full color wheel is
traversed as H runs from 0 to 1, so H=0 and H=1 describe the same color.
By default the cycle starts and ends at red. The optional parameter `start`
introduces an offset, so after `set palette model HSV start 0.3` H=0 and H=1
both correspond to green.
For more information on color models see:
@uref{http://en.wikipedia.org/wiki/Color_space,http://en.wikipedia.org/wiki/Color_space
}
Documentation for palette options was written for RGB color space, so please
note that `R` really means "first color component", which can be `H` or `C`
depending on the actual color space in use.
@node postscript, , Color_model, palette__
@subsubsection postscript
@c ?commands set palette postscript
@c ?set palette postscript
This section is only relevant to output from `set term postscript color`.
When the palette is defined using @ref{rgbformulae}, gnuplot writes
a postscript implementation of the required analytical formulae as a header
just before a pm3d drawing (see /g and /cF definitions). Usually, it makes
sense to write definitions of only the 3 formulae used in the palette.
This is the default option `nops_allcF`. The option `ps_allcF` instead writes
definitions of all 36 formulae. This allows you to edit the postscript file
in order to have different palettes for different surfaces in one graph.
If you write a pm3d surface to a postscript file, it may be possible to reduce
the file size by running the awk script `pm3dCompress.awk` afterward.
If the data lies on a rectangular grid, even greater compression may be
possible using the awk script `pm3dConvertToImage.awk`.
Both scripts are distributed with gnuplot.
Usage:
@example
awk -f pm3dCompress.awk thefile.ps >smallerfile.ps
awk -f pm3dConvertToImage.awk thefile.ps >smallerfile.ps
@end example
@node parametric_, paxis, palette__, set-show
@subsection parametric
@c ?commands set parametric
@c ?commands unset parametric
@c ?commands show parametric
@c ?set parametric
@c ?unset parametric
@c ?show parametric
@cindex parametric
@opindex parametric
@cindex noparametric
The @ref{parametric} command changes the meaning of `plot` (`splot`) from
normal functions to parametric functions. The command @ref{parametric}
restores the plotting style to normal, single-valued expression plotting.
Syntax:
@example
set parametric
unset parametric
show parametric
@end example
For 2D plotting, a parametric function is determined by a pair of parametric
functions operating on a parameter. An example of a 2D parametric function
would be `plot sin(t),cos(t)`, which draws a circle (if the aspect ratio is
set correctly---see @ref{size}). `gnuplot` will display an error message if
both functions are not provided for a parametric `plot`.
For 3D plotting, the surface is described as x=f(u,v), y=g(u,v), z=h(u,v).
Therefore a triplet of functions is required. An example of a 3D parametric
function would be `cos(u)*cos(v),cos(u)*sin(v),sin(u)`, which draws a sphere.
`gnuplot` will display an error message if all three functions are not
provided for a parametric `splot`.
The total set of possible plots is a superset of the simple f(x) style plots,
since the two functions can describe the x and y values to be computed
separately. In fact, plots of the type t,f(t) are equivalent to those
produced with f(x) because the x values are computed using the identity
function. Similarly, 3D plots of the type u,v,f(u,v) are equivalent to
f(x,y).
Note that the order the parametric functions are specified is xfunction,
yfunction (and zfunction) and that each operates over the common parametric
domain.
Also, the @ref{parametric} function implies a new range of values. Whereas
the normal f(x) and f(x,y) style plotting assume an xrange and yrange (and
zrange), the parametric mode additionally specifies a trange, urange, and
vrange. These ranges may be set directly with @ref{trange}, @ref{urange},
and @ref{vrange}, or by specifying the range on the `plot` or `splot`
commands. Currently the default range for these parametric variables is
[-5:5]. Setting the ranges to something more meaningful is expected.
@node paxis, pixmap, parametric_, set-show
@subsection paxis
@cindex paxis
@opindex paxis
@c ?commands set paxis
@c ?set paxis
@c ?show paxis
Syntax:
@example
set paxis <axisno> @{range <range-options> | tics <tic-options>@}
set paxis <axisno> label <label-options> @{ offset <radial-offset> @}
show paxis <axisno> @{range | tics@}
@end example
The @ref{paxis} command is equivalent to the @ref{xrange} and `set xtics`
commands except that it acts on one of the axes p1, p2, ... used in parallel
axis plots and spiderplots. See @ref{parallelaxes}, @ref{xrange}, and `set xtics`.
The normal options to the range and tics commands are accepted although not
all options make sense for parallel axis plots.
`set paxis <axisno> label <label-options>` is relevant to spiderplots but
ignored otherwise. Axes of a parallel axis plot can be labeled using the
@ref{title} option of the plot command, which generates an xtic label.
Note that this may require also `set xtics`.
The axis linetype properties are controlled using `set style parallelaxis`.
@node pixmap, pm3d, paxis, set-show
@subsection pixmap
@cindex pixmap
@opindex pixmap
@c ?set pixmap
@c ?unset pixmaps
@c ?show pixmaps
@c ?commands set pixmap
Syntax:
@example
set pixmap <index> @{"filename" | colormap <name>@}
at <position>
@{width <w> | height <h> | size <w>,<h>@}
@{front|back|behind@} @{center@}
show pixmaps
unset pixmaps
unset pixmap <index>
@end example
The `set pixmap` command is similar to @ref{object} in that it defines an
object that will appear on subsequent plots. The rectangular array of
red/green/blue/alpha values making up the pixmap are read from a png, jpeg,
or gif file. The position and extent occupied by the pixmap in the gnuplot
output may be specified in any coordinate system (see `coordinates`).
The coordinates given by `at <position>` refer to the lower left
corner of the pixmap unless keyword `center` is present.
If the x-extent of the rendered pixmap is set using `width <x-extent>` the
aspect ratio of the original image is retained and neither the aspect ratio
nor the orientation of the pixmap changes with axis scaling or rotation.
Similarly if the y-extent is set using `height <y-extent>`. If both the
x-extent and y-extent are given using `size <x-extent> <y-extent>` this
overrides the original aspect ratio. If no size is set then the original
size in pixels is used (the effective size is then terminal-dependent).
Pixmaps are not clipped to the border of the plot. As an exception to the
general behaviour of objects and layers, a pixmap assigned to layer `behind`
is rendered for only the first plot in a multiplot. This allows all panels
in a multiplot to share a single background pixmap.
Examples:
@example
# Use a gradient as the background for all plotting
# Both x and y will be resized to fill the entire canvas
set pixmap 1 "gradient.png"
set pixmap 1 at screen 0, 0 size screen 1, 1 behind
@end example
@example
# Place a logo at the lower right of each page plotted
set pixmap 2 "logo.jpg"
set pixmap 2 at screen 0.95, 0 width screen 0.05 behind
@end example
@example
# Place a small image at some 3D coordinate
# It will move as if attached to the surface being plotted
# but will always face forward and remain upright
set pixmap 3 "image.png" at my_x, my_y, f(my_x,my_y) width screen .05
splot f(x,y)
@end example
@menu
* pixmap_from_colormap::
@end menu
@node pixmap_from_colormap, , pixmap, pixmap
@subsubsection pixmap from colormap
@c ?pixmap colormap
@c ?set pixmap colormap
@cindex gradient
Syntax:
@example
set pixmap <index> colormap <name>
@end example
Another use of pixmaps is to store a gradient described by a named palette.
This is an easy way to specify gradient fill for a rectangular area.
It could be used to draw a separate colorbox for that named palette,
or even as a background for the entire plot or the entire canvas.
@example
set palette defined (0 "beige", 1 "light-cyan")
set colormap new Gradient
set pixmap 1 colormap Gradient behind
set pixmap 1 at screen 0,0 size screen 1,1
plot <something>
@end example
@node pm3d, pointintervalbox, pixmap, set-show
@subsection pm3d
@c ?commands set pm3d
@c ?commands show pm3d
@c ?set pm3d
@c ?show pm3d
@cindex pm3d
@opindex pm3d
pm3d is an `splot` style for drawing palette-mapped 3d and 4d data as
color/gray maps and surfaces. It allows plotting gridded or non-gridded data
without preprocessing. pm3d style options also affect solid-fill polygons
used to construct other 3D plot elements.
Syntax (the options can be given in any order):
@example
set pm3d @{
@{ at <position> @}
@{ interpolate <steps/points in scan, between scans> @}
@{ scansautomatic | scansforward | scansbackward
| depthorder @{base@} @}
@{ flush @{ begin | center | end @} @}
@{ ftriangles | noftriangles @}
@{ clip | clip1in | clip4in @}
@{ @{no@}clipcb @}
@{ corners2color
@{ mean|geomean|harmean|rms|median|min|max|c1|c2|c3|c4 @}
@}
@{ @{no@}lighting
@{primary <fraction>@} @{specular <fraction>@} @{spec2 <fraction>@}
@}
@{ @{no@}border @{retrace@} @{<linestyle-options>@}@}
@{ implicit | explicit @}
@{ map @}
@}
show pm3d
unset pm3d
@end example
Note that pm3d plots are plotted sequentially in the order given in the
splot command. Thus earlier plots may be obscured by later plots.
To avoid this you can use the `depthorder` scan option.
The pm3d surfaces can be projected onto the `top` or `bottom` of the view box.
See @ref{position}.
The following command draws three color surfaces at different altitudes:
@example
set border 4095
set pm3d at s
splot 10*x with pm3d at b, x*x-y*y, x*x+y*y with pm3d at t
@end example
See also help for @ref{palette}, @ref{cbrange}, `set colorbox`,
and the demo file `demo/pm3d.dem`.
@menu
* with_pm3d_(pm3d_explicit)::
* pm3d_implicit::
* algorithm::
* lighting::
* position::
* scanorder::
* clipping::
* color_assignment::
* corners2color::
* border_::
* fillcolor::
* interpolate::
* deprecated_options::
@end menu
@node with_pm3d_(pm3d_explicit), pm3d_implicit, pm3d, pm3d
@subsubsection with pm3d (pm3d explicit)
@c ?pm3d explicit
@c ?with pm3d
@c ?splot with pm3d
@c ?plotting styles pm3d
@c ?splot with pm3d zclip
@c ?pm3d zclip
@cindex zclip
Syntax
@example
splot DATA using (x):(y):(z)@{:(color)@} with pm3d
@{fs|fillstyle <fillstyle>@} @{fc|fillcolor <colorspec>@}
@{zclip [zmin:zmax]@}
@end example
The rendering properties of all pm3d surfaces are controlled using
`set pm3d`. By default the full surface is rendered as a grid of
quadrangles, each colored by the palette color mapped to that z coordinate.
If you provide a fourth input column, the palette mapping uses that value
rather than z. See @ref{fillcolor}, @ref{color_assignment}.
When you explicitly use `with pm3d` in the plot command rather than using
another plot style while `set pm3 implicit` is active, additional rendering
options are possible. This allows you to use separate coloring schemes for
different surfaces in the same plot.
EXPERIMENTAL: This gnuplot version introduces an option `zclip` that
clips the generated surface smoothly at a pair of limiting z values.
The example below animates gradual removal of the top portion of a
two-color 3D surface.
@example
set style line 101 lc "gray"
set style line 102 lc "blue"
set pm3d depthorder
do for [i=0:N] @{
splot f(x,y) with pm3d fillcolor ls 101 zclip [* : zmax-(i*delta)]
pause 0.2 # 1/5 second between animation frames
@}
@end example
@node pm3d_implicit, algorithm, with_pm3d_(pm3d_explicit), pm3d
@subsubsection pm3d implicit
@c ?pm3d implicit
A pm3d color surface is drawn if the splot command explicitly specifies
`with pm3d`, if the data or function @ref{style} is set to pm3d globally,
or if the pm3d mode is `set pm3d implicit`. For the latter two cases
the pm3d surface is draw in addition to the mesh produced by the style
specified in the plot command. E.g.
@example
splot 'fred.dat' with lines, 'lola.dat' with lines
@end example
would draw both a mesh of lines and a pm3d surface for each data set.
If the option `explicit` is on (or `implicit` is off) only plots specified
by the `with pm3d` attribute are plotted with a pm3d surface, e.g.:
@example
splot 'fred.dat' with lines, 'lola.dat' with pm3d
@end example
would plot 'fred.dat' with lines (only) and 'lola.dat' with a pm3d surface.
On gnuplot start-up, the mode is `explicit`. For historical and compatibility
reasons, the commands `set pm3d;` (i.e. no options) and `set pm3d at X ...`
(i.e. `at` is the first option) change the mode to `implicit`.
The command `set pm3d;` sets other options to their default state.
If you set the default data or function style to `pm3d`, e.g.:
@example
set style data pm3d
@end example
then the options `implicit` and `explicit` have no effect.
@node algorithm, lighting, pm3d_implicit, pm3d
@subsubsection algorithm
@c ?pm3d algorithm
Let us first describe how a map/surface is drawn. The input data come from an
evaluated function or from an `splot data file`. Each surface consists of a
sequence of separate scans (isolines). The pm3d algorithm fills the region
between two neighbouring points in one scan with another two points in the
next scan by a gray (or color) according to z-values (or according to an
additional 'color' column, see help for `using`) of these 4 corners; by default
the 4 corner values are averaged, but this can be changed by the option
@ref{corners2color}. In order to get a reasonable surface, the neighbouring scans
should not cross and the number of points in the neighbouring scans should not
differ too much; of course, the best plot is with scans having same number of
points. There are no other requirements (e.g. the data need not be gridded).
Another advantage is that the pm3d algorithm does not draw anything outside of
the input (measured or calculated) region.
Surface coloring works with the following input data:
1. splot of function or of data file with one or three data columns: The
gray/color scale is obtained by mapping the averaged (or @ref{corners2color})
z-coordinate of the four corners of the above-specified quadrangle into the
range [min_color_z,max_color_z] of @ref{zrange} or @ref{cbrange} providing a gray value
in the range [0:1]. This value can be used directly as the gray for gray maps.
The normalized gray value can be further mapped into a color---see @ref{palette}
for the complete description.
2. splot of data file with two or four data columns: The gray/color value is
obtained by using the last-column coordinate instead of the z-value, thus
allowing the color and the z-coordinate be mutually independent. This can be
used for 4d data drawing.
Other notes:
1. The term 'scan' referenced above is used more among physicists than the
term 'iso_curve' referenced in gnuplot documentation and sources. You measure
maps recorded one scan after another scan, that's why.
2. The 'gray' or 'color' scale is a linear mapping of a continuous variable
onto a smoothly varying palette of colors. The mapping is shown in a
rectangle next to the main plot. This documentation refers to this as a
"colorbox", and refers to the indexing variable as lying on the colorbox axis.
See `set colorbox`, @ref{cbrange}.
@node lighting, position, algorithm, pm3d
@subsubsection lighting
@cindex lighting
@c ?pm3d lighting
@c ?pm3d nolighting
@c ?set pm3d lighting
@cindex spotlight
@c ?pm3d spotlight
@c ?set pm3d spotlight
Syntax:
@example
set pm3d lighting @{primary <frac>@} @{specular <frac>@} @{spec2 <frac>@}
set pm3d spotlight @{rgb <color>@} @{rot_x <angle>@} @{rot_z <angle>@}
@{Phong <value>@} @{default@}
@end example
By default the colors assigned to pm3d objects are not dependent on orientation
or viewing angle. This state corresponds to `set pm3d nolighting`.
The command @ref{lighting} selects a simple lighting model consisting of a
single fixed source of illumination contributing 50% of the overall lighting.
The strength of this light relative to the ambient illumination can be adjusted
by `set pm3d lighting primary <fraction>`. Inclusion of specular highlighting
can be adjusted by setting a fractional contribution:
@example
set pm3d lighting primary 0.50 specular 0.0 # no highlights
set pm3d lighting primary 0.50 specular 0.6 # strong highlights
@end example
Solid-color pm3d surfaces tend to look very flat without specular highlights.
Since highlights the primary source only affect one side of the surface,
it may help to add illumination from a second spotlight shining from another
direction. The strength of this second spotlight is set by "spec2 <fraction>".
The second spotlight is included in the lighting model only if spec2 is greater
than zero. The direction, color, and specular model is controlled by
"set pm3d spotlight". Use and positioning of this spotlight is illustrated
in the interactive demo `spotlight.dem`.
See also hidden_compare.dem
@uref{http://www.gnuplot.info/demo/hidden_compare.html,(comparison of hidden3d and pm3d treatment of solid-color surfaces)
}
Example:
@example
set pm3d lighting primary 0.8 spec 0.4 spec2 0.4
set pm3d spot rgb "blue"
@end example
D spotlight 1
@node position, scanorder, lighting, pm3d
@subsubsection position
@c ?pm3d position
@c ?set pm3d position
The pm3d colored surface can be drawn at the true z position of the surface
or projected onto the base plane or the top plane. This is controlled by
the `at` option with a string of up to 6 combinations of `b`, `t` and `s`.
For instance, `at b` plots at the bottom only, `at st` plots first at the
surface and then on the top plane, while `at bstbst` is unlikely to be useful.
Colored quadrangles are plotted one after another. That means later
quadrangles can occlude or overlap the previous ones. You may try to switch
between `scansforward` and `scansbackward` to force the first scan of the data
to be plotted first or last. The default is `scansautomatic` where gnuplot
makes a guess about scans order. The `depthorder` option completely reorders
the quadrangles by sorting on the distance from the viewpoint. This allow to
visualize even complicated surfaces; see `pm3d depthorder` for more details.
@node scanorder, clipping, position, pm3d
@subsubsection scanorder
@c ?pm3d scanorder
@c ?pm3d depthorder
@c ?pm3d flush
@c ?pm3d ftriangles
@c ?set pm3d scanorder
@c ?set pm3d depthorder
@c ?set pm3d flush
@c ?set pm3d ftriangles
@cindex depthorder
@cindex flush
@cindex scansforward
@cindex scansautomatic
@cindex scansbackward
@cindex ftriangles
@example
set pm3d @{scansautomatic | scansforward | scansbackward | depthorder@}
@end example
By default the quadrangles making up a pm3d solid surface are rendered in the
order they are encountered along the surface grid points. This order may be
controlled by the options `scansautomatic`|`scansforward`|`scansbackward`.
These scan options are not in general compatible with hidden-surface removal.
If two successive scans do not have same number of points, then it has to be
decided whether to start taking points for quadrangles from the beginning of
both scans (`flush begin`), from their ends (`flush end`) or to center them
(`flush center`). Note, that `flush (center|end)` are incompatible with
`scansautomatic`: if you specify `flush center` or `flush end` and
`scansautomatic` is set, it is silently switched to `scansforward`.
If two subsequent scans do not have the same number of points, the option
`ftriangles` specifies whether color triangles are drawn at the scan tail(s)
where there are not enough points in either of the scans. This can be used to
draw a smooth map boundary.
Gnuplot does not do true hidden surface removal for solid surfaces, but often
it is sufficient to render the component quadrangles in order from furthest
to closest. This mode may be selected using the option
@example
set pm3d depthorder
@end example
Note that the global option @ref{hidden3d} does not affect pm3d surfaces.
The `depthorder` option by itself tends to produce bad results when
applied to the long thin rectangles generated by @ref{boxes}.
It works better to add the keyword `base`, which performs the depth sort
using the intersection of the box with the plane at z=0. This type of
plot is further improved by adding a lighting model.
Example:
@example
set pm3d depthorder base
set pm3d lighting
set boxdepth 0.4
splot $DATA using 1:2:3 with boxes
@end example
@node clipping, color_assignment, scanorder, pm3d
@subsubsection clipping
@c ?pm3d clipping
@c ?set pm3d clipping
@cindex clipcb
@cindex clip1in
@cindex clip4in
@c ?pm3d clipcb
@cindex noclipcb
@c ?pm3d noclipcb
Syntax:
@example
set pm3d @{clip | clip1in | clip4in@}
set pm3d @{no@}clipcb
@end example
The component quadrangles of a pm3d surface or other 3D object are by default
smoothly clipped against the current zrange. This is a change from earlier
gnuplot versions. In 2D projection (`set view map`) this mode also clips
against xrange and yrange.
Alternatively, surfaces can be clipped by rendering whole quadrangles but only
those with all 4 corners in-range on x, y, and z (`set pm3d clip4in`), or only
those with at least one corner in-range on x, y, and z (`set pm3d clip1in`).
The options `clip`, `clip1in`, and `clip4in` are mutually exclusive.
Separate from clipping based on spatial x, y, and z coordinates, quadrangles
can be rendered or not based on extreme palette color values.
`clipcb`: (default) palette color values < cbmin are treated as cbmin;
palette color values > cbmax are treated as cbmax.
`noclipcb`: quadrangles with color value outside cbrange are not drawn at all.
@node color_assignment, corners2color, clipping, pm3d
@subsubsection color_assignment
@c ?pm3d color_assignment
The default pm3d coloring assigns an individual color to each quadrangle of
the surface grid. For alternative coloring schemes that assign uniform color to
the entire surface, see @ref{fillcolor}.
A single gray/color value (i.e. not a gradient) is assigned to each quadrangle.
This value is calculated from the z-coordinates the four quadrangle corners
according to `corners2color <option>`. The value is then used to select a
color from the current palette. See @ref{palette}.
It is not possible to change palettes inside a single `splot` command.
If a fourth column of data is provided, the coloring of individual quadrangles
works as above except that the color value is distinct from the z value.
As a separate coloring option, the fourth data column may provide instead
an RGB color. See `rgbcolor variable`. In this case the plotting command
must be
@example
splot ... using 1:2:3:4 with pm3d lc rgb variable
@end example
Notice that ranges of z-values and color-values for surfaces are adjustable
independently by @ref{zrange}, @ref{cbrange}, `set log z`, `set log cb`, etc.
@node corners2color, border_, color_assignment, pm3d
@subsubsection corners2color
@c ?pm3d corners2color
@c ?set pm3d corners2color
@cindex corners2color
@cindex mean
@cindex geomean
@cindex harmean
@cindex median
@cindex min
@cindex max
@cindex rms
The color of each quadrangle in a pm3d surface is assigned based on the color
values of its four bounding vertices.
The options 'mean' (default), 'geomean', 'harmean, 'rms', and 'median' produce
various kinds of surface color smoothing, while options 'min' and 'max' choose
minimal or maximal value, respectively. This may not be desired for pixel
images or for maps with sharp and intense peaks, in which case the options
'c1', 'c2', 'c3' or 'c4' can be used instead to assign the quadrangle color
based on the z-coordinate of only one corner. Some experimentation may be
needed to determine which corner corresponds to 'c1', as the orientation
depends on the drawing direction. Because the pm3d algorithm does not extend
the colored surface outside the range of the input data points, the 'c<j>'
coloring options will result in pixels along two edges of the grid not
contributing to the color of any quadrangle. For example, applying the pm3d
algorithm to the 4x4 grid of data points in script `demo/pm3d.dem` (please have
a look) produces only (4-1)x(4-1)=9 colored rectangles.
@node border_, fillcolor, corners2color, pm3d
@subsubsection border
@c ?set pm3d hidden3d
@c ?pm3d hidden3d
@c ?set pm3d border
@c ?pm3d border
@example
set pm3d border @{retrace@} @{line-properties@}
set pm3d noborder
@end example
This option draws bounding lines around each pm3d quadrangle as it is rendered.
Additional line properties (linetype, color, linewidth) are optional.
By default the border is drawn as a solid black line with width 1.
`set pm3d border retrace` causes a border to be drawn in the same color as the
quadrangle. In principle this should give the same result as `noborder`, but
some output modes can suffer from antialiasing artifacts between adjacent
filled quadrangles. Retracing the border hides these artifacts, at the cost of
a larger output file.
@node fillcolor, interpolate, border_, pm3d
@subsubsection fillcolor
@c ?pm3d fillcolor
@example
splot FOO with pm3d fillcolor <colorspec>
@end example
Plot style `with pm3d` accepts an optional fillcolor in the splot command.
This specification is applied to the entire pm3d surface. See @ref{colorspec}.
Most fillcolor specifications will result in a single solid color, which is
hard to interpret visually unless there is also a lighting model present to
distinguish surface components based on orientation. See @ref{lighting}.
There are a few special cases. @ref{palette} would produce
the same result as the default pm3d palette-based coloring, and is therefore
not a useful option. `with pm3d fillcolor linestyle N` is more interesting.
This variant assigns distinct colors to the top and bottom of the pm3d
surface, similar to the color scheme used by gnuplot's @ref{hidden3d} mode.
Linestyle N is used for the top surface; linestyle N+1 for the bottom surface.
Note that "top" and "bottom" depend on the scan order, so that the colors are
inverted for `pm3d scansbackward` as compared to `pm3d scansforward`.
This coloring option works best with `pm3d depthorder`, however, which
unfortunately does not allow you to control the scan order so you may have
to instead swap the colors defined for linestyles N and N+1.
@node interpolate, deprecated_options, fillcolor, pm3d
@subsubsection interpolate
@c ?set pm3d interpolate
@c ?pm3d interpolate
The option `interpolate m,n` will interpolate between grid points to generate
a finer mesh. For data files, this smooths the color surface and enhances the
contrast of spikes in the surface. When working with functions, interpolation
makes little sense. It would usually make more sense to increase @ref{samples} and
@ref{isosamples}.
For positive m and n, each quadrangle or triangle is interpolated m-times and
n-times in the respective direction. For negative m and n, the interpolation
frequency is chosen so that there will be at least |m| and |n| points drawn;
you can consider this as a special gridding function.
Note: `interpolate 0,0`, will automatically choose an optimal number of
interpolated surface points.
Note: Currently color interpolation is always linear, even if corners2color
is set to a nonlinear scheme such as the geometric mean.
@node deprecated_options, , interpolate, pm3d
@subsubsection deprecated_options
@c ?set pm3d deprecated_options
@c ?pm3d deprecated_options
@c ?set pm3d map
@c ?pm3d map
@cindex map
The deprecated option `set pm3d map` was equivalent to
`set pm3d at b; set view map; set style data pm3d; set style func pm3d;`
The deprecated option `set pm3d hidden3d N` was equivalent to
`set pm3d border ls N`.
@node pointintervalbox, pointsize, pm3d, set-show
@subsection pointintervalbox
@c ?commands set pointintervalbox
@c ?set pointintervalbox
@cindex pointintervalbox
@opindex pointintervalbox
The `pointinterval` and `pointnumber` properties of a line type are used only
in plot style @ref{linespoints}. A negative value of pointinterval or pointnumber,
e.g. -N, means that before the selected set of point symbols are drawn a box
(actually circle) behind each point symbol is blanked out by filling with the
background color. The command @ref{pointintervalbox} controls the radius of
this blanked-out region. It is a multiplier for the default radius, which is
equal to the point size. @ref{pointintervalbox} draws no blanked-out region.
@node pointsize, polar, pointintervalbox, set-show
@subsection pointsize
@c ?commands set pointsize
@c ?commands show pointsize
@c ?set pointsize
@c ?show pointsize
@cindex pointsize
@opindex pointsize
The @ref{pointsize} command scales the size of the points used in plots.
Syntax:
@example
set pointsize <multiplier>
show pointsize
@end example
The default is a multiplier of 1.0. Larger pointsizes may be useful to
make points more visible in bitmapped graphics.
The pointsize of a single plot may be changed on the `plot` command.
See `plot with` for details.
Please note that the pointsize setting is not supported by all terminal
types.
@node polar, print_, pointsize, set-show
@subsection polar
@c ?commands set polar
@c ?commands unset polar
@c ?commands show polar
@c ?set polar
@c ?unset polar
@c ?show polar
@cindex polar
@opindex polar
@cindex nopolar
The `set polar` command changes the meaning of the plot from rectangular
coordinates to polar coordinates.
Syntax:
@example
set polar
set polar grid <grid options>
unset polar
show polar
@end example
In polar coordinates, the dummy variable (t) represents an angle theta.
The default range of t is [0:2*pi], or [0:360] if degree units have been
selected (see @ref{angles}).
The command `unset polar` changes the meaning of the plot back to the default
rectangular coordinate system.
The `set polar` command affects only 2D plotting.
See the @ref{mapping} command for analogous 3D functionality.
While in polar coordinates the meaning of an expression in t is really
r = f(t), where t is an angle of rotation. The trange controls the domain
(the angle) of the function. The r, x and y ranges control the extent of the
graph in the x and y directions. Each of these ranges, as well as the
rrange, may be autoscaled or set explicitly. For details, see @ref{rrange}
and @ref{xrange}.
Example:
@example
set polar
plot t*sin(t)
set trange [-2*pi:2*pi]
set rrange [0:3]
plot t*sin(t)
@end example
The first `plot` uses the default polar angular domain of 0 to 2*pi. The
radius and the size of the graph are scaled automatically. The second `plot`
expands the domain, and restricts the size of the graph to the area within
3 units of the origin. This has the effect of limiting x and y to [-3:3].
By default polar plots are oriented such that theta=0 is at the far right,
with theta increasing counterclockwise. You can change both the origin and
the sense explicitly. See @ref{theta}.
You may want to `set size square` to have `gnuplot` try to make the aspect
ratio equal to unity, so that circles look circular. Tic marks around the
perimeter can be specified using @ref{ttics}.
See also
@uref{http://www.gnuplot.info/demo/polar.html,polar demos (polar.dem)
}
and
@uref{http://www.gnuplot.info/demo/poldat.html,polar data plot (poldat.dem).
}
@menu
* polar_grid::
@end menu
@node polar_grid, , polar, polar
@subsubsection polar grid
@c ?commands set polar grid
@c ?set polar grid
@c ?polar grid
Syntax:
@example
set polar grid @{<theta_segments>, <radial_segments>@}
@{ qnorm @{<power>@} | gauss | cauchy | exp | box | hann @}
@{ kdensity @} @{ scale <scale> @}
@{theta [min:max]@} @{r [min:max]@}
@end example
The polar grid settings are used in conjunction with the plot style
`with surface` to generate a heat map from a set of polar coordinate points.
The surface consists of a grid filling a circle divided into segments formed
by discrete ranges on theta and r.
Each segment is assigned a value derived from the input set of individual
scattered points [x,y,z] by applying a filter operation.
The default filter is `qnorm 1`, which averages each point's z value weighted
by the inverse of the point's distance from the center of that grid segment.
Alternative filter operations gauss, cauchy, exp, box, and hann are described
in more detail elsewhere. See @ref{dgrid3d}.
`kdensity`: This keyword tells the program to use the weighted sum of
contributions from all points rather than the weighted average.
`scale`: This scale facter (default 1.0) is applied to all distances prior to
using them in the weighting calculation.
Masking: All input points are used to calculate grid values.
The full gridded surface always spans theta range [0:360] and the radial
defined by autoscaling or by a previous @ref{rrange} command.
However the portion of the surface that actually appears in the plot
can be restricted to a truncated wedge bounded by lower and upper
limits on theta and r. Theta limits must be given in degrees.
For example the following commands will generate a plot which is auto-scaled
in size to show all input points. The contributions of all input points are
summed, not averaged (`kdensity`), and only a wedge of the resulting gridded
surface is displayed.
@example
set rrange [0:*]
set polar grid qnorm kdensity theta [0:190]
plot DATA with surface, DATA with points
@end example
@node print_, psdir, polar, set-show
@subsection print
@c ?commands set print
@c ?commands show print
@c ?set print
@c ?show print
The `set print` command redirects the output of the `print` command.
Syntax:
@example
set print
set print "-"
set print "<filename>" [append]
set print "|<shell_command>"
set print $datablock [append]
@end example
`set print` with no parameters restores output to <STDERR>. The <filename>
"-" means <STDOUT>. The `append` flag causes the file to be opened in append
mode. A <filename> starting with "|" is opened as a pipe to the
<shell_command> on platforms that support piping.
The destination for `print` commands can also be a named data block. Data
block names start with '$', see also `inline data`.
When printing a string to a data block, embedded newline characters are
expanded to generate multiple data block entries.
@node psdir, raxis, print_, set-show
@subsection psdir
@c ?commands set psdir
@c ?commands show psdir
@c ?set psdir
@c ?show psdir
@cindex psdir
@opindex psdir
The `set psdir <directory>` command controls the search path used by the
postscript terminal to find prologue.ps and character encoding files.
You can use this mechanism to switch between different sets of
locally-customized prolog files.
The search order is
@example
1) The directory specified by @ref{psdir}, if any
2) The directory specified by environmental variable GNUPLOT_PS_DIR
3) A built-in header or one from the default system directory
4) Directories set by @ref{loadpath}
@end example
@node raxis, rgbmax, psdir, set-show
@subsection raxis
@c ?commands set raxis
@cindex raxis
@opindex raxis
@c ?set raxis
@c ?unset raxis
The commands @ref{raxis} and @ref{raxis} toggle whether the polar axis
is drawn separately from grid lines and the x axis. If the minimum of the
current rrange is non-zero (and not autoscaled), then a white circle is drawn
at the center of the polar plot to indicate that the plot lines and axes do
not reach 0. The axis line is drawn using the same line type as the plot
border. See `polar`, @ref{rrange}, @ref{rtics}, @ref{rlabel}, `set grid`.
@node rgbmax, rlabel, raxis, set-show
@subsection rgbmax
@c ?commands set rgbmax
@c ?set rgbmax
@cindex rgbmax
@opindex rgbmax
@c ?unset rgbmax
@cindex rgbimage
Syntax:
@example
set rgbmax @{1.0 | 255@}
unset rgbmax
@end example
The red/green/blue color components of an rgbimage plot are by default
interpreted as integers in the range [0:255]. `set rgbmax 1.0` tells the
program that data values used to generate the color components of a plot
with @ref{rgbimage} or @ref{rgbalpha} are floating point values in the range [0:1].
@ref{rgbmax} returns to the default integer range [0:255].
@node rlabel, rmargin, rgbmax, set-show
@subsection rlabel
@c ?commands set rlabel
@cindex rlabel
@opindex rlabel
@c ?set rlabel
@c ?unset rlabel
This command places a label above the r axis. The label will be drawn whether
or not the plot is in polar mode. See @ref{xlabel} for additional keywords.
@node rmargin, rrange, rlabel, set-show
@subsection rmargin
@c ?commands set rmargin
@c ?set rmargin
@cindex rmargin
@opindex rmargin
The command @ref{rmargin} sets the size of the right margin.
Please see @ref{margin} for details.
@node rrange, rtics, rmargin, set-show
@subsection rrange
@c ?commands set rrange
@c ?commands show rrange
@c ?set rrange
@c ?show rrange
@cindex rrange
@opindex rrange
The @ref{rrange} command sets the range of the radial coordinate for a graph
in polar mode. This has the effect of setting both xrange and yrange as well.
The resulting xrange and yrange are both [-(rmax-rmin) : +(rmax-rmin)].
However if you later change the x or y range, for example by zooming, this does
not change rrange, so data points continue to be clipped against rrange.
Unlike other axes, autoscaling the raxis always results in rmin = 0.
The `reverse` autoscaling flag is ignored.
Note: Setting a negative value for rmin may produce unexpected results.
@node rtics, samples, rrange, set-show
@subsection rtics
@c ?commands set rtics
@c ?commands show rtics
@c ?set rtics
@c ?show rtics
@cindex rtics
@opindex rtics
The @ref{rtics} command places tics along the polar axis. The tics and labels
are drawn to the right of the origin. The `mirror` keyword causes them to be
drawn also to the left of the origin. See `polar`, `set xtics`, and
`set mxtics` for discussion of keywords.
@node samples, size, rtics, set-show
@subsection samples
@c ?commands set samples
@c ?commands show samples
@c ?set samples
@c ?show samples
@cindex samples
@opindex samples
Function plots are constructed by sampling the function at a given number of x
values and drawing line segments to connect the values f(x0)..f(x1)..f(x2)...
The default sampling rate for functions, or for interpolating data, may be
changed by the @ref{samples} command. To change the sampling range for a
particular component of a `plot` or `splot` command, see @ref{sampling}.
Syntax:
@example
set samples <samples_1> @{,<samples_2>@}
show samples
@end example
By default, sampling is set to 100 points. A higher sampling rate will
produce more accurate plots, but will take longer. This parameter has no
effect on data file plotting unless one of the interpolation/approximation
options is used. See @ref{smooth}, @ref{cntrparam} and @ref{dgrid3d}.
When a 2D graph is being done, only the value of <samples_1> is relevant.
When a surface plot is being done without the removal of hidden lines, the
value of samples specifies the number of samples that are to be evaluated for
the isolines. Each iso-v line will have <sample_1> samples and each iso-u
line will have <sample_2> samples. If you only specify <samples_1>,
<samples_2> will be set equal to <samples_1>.
See also @ref{isosamples}.
@node size, spiderplot_, samples, set-show
@subsection size
@c ?commands set size
@c ?commands show size
@c ?set size
@c ?show size
@cindex size
@opindex size
@c ?aspect ratio
@c ?set size square
@c ?set size ratio
@cindex ratio
@cindex square
Syntax:
@example
set size @{@{no@}square | ratio <r> | noratio@} @{<xscale>,<yscale>@}
show size
@end example
The <xscale> and <yscale> values are scale factors for the size of the plot,
which includes the graph, labels, and margins.
Historical note: In early versions of gnuplot some terminal types used
@ref{size} to control also the size of the output canvas.
Now there are two distinct properties: `'set size'` and `'set term ... size'`.
`set term <terminal_type> size <x units>, <y units>` controls the size of the
output file, or `canvas`. Please see individual terminal documentation for the
units of the size parameters. By default, the plot will fill this canvas.
`set size <xscale>, <yscale>` scales the plot itself relative to the size of
the canvas. Scale values less than 1.0 cause the plot to fill only part of the
canvas. This can be used together with @ref{multiplot} to inset a small plot inside
a larger plot or to place several small plots side-by-side.
Scale values greater than 1.0 are not supported and may cause errors.
`ratio` causes `gnuplot` to try to create a graph with an aspect ratio of <r>
(the ratio of the y-axis length to the x-axis length) within the portion of
the plot specified by <xscale> and <yscale>.
The meaning of a negative value for <r> is different. If <r>=-1, gnuplot
tries to set the scales so that the unit length along on both the x and y axes
is the same; i.e. they are isotropic. See also @ref{isotropic}.
This is the 2D equivalent to the 3D command `set view equal xy`.
If <r>=-2, the unit on y has twice the length of the unit on x, and so on.
See also @ref{isotropic}.
The success of `gnuplot` in producing the requested aspect ratio depends on
the terminal selected. The graph area will be the largest rectangle of
aspect ratio <r> that will fit into the specified portion of the output
(leaving adequate margins, of course).
@cindex square
`set size square` is a synonym for `set size ratio 1`.
Both `noratio` and `nosquare` return the graph to the default aspect ratio
of the terminal, but do not return <xscale> or <yscale> to their default
values (1.0).
`ratio` and `square` have no effect on 3D plots, but do affect 3D projections
created using `set view map`. See also `set view equal`, which forces
the x and y axes of a 3D onto the same scale.
Examples:
To set the size so that the plot fills the available canvas:
@example
set size 1,1
@end example
To make the graph half size and square use:
@example
set size square 0.5,0.5
@end example
To make the graph twice as high as wide use:
@example
set size ratio 2
@end example
@node spiderplot_, style, size, set-show
@subsection spiderplot
@c ?set spiderplot
The @ref{spiderplot} command switches interpretation of coordinates to a
polar system in which each data point is mapped to a position along a
radial axis. paxis 1 is always vertical; axes 2 to N proceed clockwise
with even spacing. The command must be issued prior to plotting. It has
additional effects equivalent to
@example
set style data spiderplot
unset border
unset tics
set key noautotitle
set size ratio 1.0
@end example
Use @ref{reset} to restore these after plotting.
@node style, surface_, spiderplot_, set-show
@subsection style
@c ?set style
@c ?show style
@c ?unset style
Default plotting styles are chosen with the `set style data` and
`set style function` commands. See `plot with` for information about how to
override the default plotting style for individual functions and data sets.
See `plotting styles` or `plot with` for a complete list of styles.
Syntax:
@example
set style function <style>
set style data <style>
show style function
show style data
@end example
Default styles for specific plotting elements may also be set.
Syntax:
@example
set style arrow <n> <arrowstyle>
set style boxplot <boxplot style options>
set style circle radius <size> @{clip|noclip@}
set style ellipse size <size> units @{xy|xx|yy@} @{clip|noclip@}
set style fill <fillstyle>
set style histogram <histogram style options>
set style line <n> <linestyle>
set style rectangle <object options> <linestyle> <fillstyle>
set style textbox @{<n>@} @{opaque|transparent@} @{@{no@}border@} @{fillcolor@}
set style watchpoint labels <label options>
@end example
@menu
* set_style_arrow::
* boxplot_::
* set_style_data::
* set_style_fill::
* set_style_function::
* set_style_histogram::
* set_style_increment::
* set_style_line::
* set_style_circle::
* set_style_rectangle::
* set_style_ellipse::
* set_style_parallelaxis::
* set_style_spiderplot::
* set_style_textbox::
* set_style_watchpoint::
@end menu
@node set_style_arrow, boxplot_, style, style
@subsubsection set style arrow
@c ?commands set style arrow
@c ?commands unset style arrow
@c ?commands show style arrow
@c ?set style arrow
@c ?unset style arrow
@c ?show style arrow
@cindex arrowstyle
You can use `set style arrow` to define a set of arrow types. Each type has
its own width, point type, color, etc so that you can refer to them later by
an index instead of repeating all the information at each invocation.
Syntax:
@example
set style arrow <index> default
set style arrow <index> @{nohead | head | backhead | heads@}
@{size <length>,<angle>@{,<backangle>@} @{fixed@}@}
@{filled | empty | nofilled | noborder@}
@{front | back@}
@{ @{linestyle | ls <line_style>@}
| @{linetype | lt <line_type>@}
@{linewidth | lw <line_width@}
@{linecolor | lc <colorspec>@}
@{dashtype | dt <dashtype>@} @}
unset style arrow
show style arrow
@end example
<index> is an integer that identifies the arrowstyle.
If `default` is given all arrow style parameters are set to their default
values.
If the linestyle <index> already exists, only the given parameters are
changed while all others are preserved. If not, all undefined values are
set to the default values.
An arrow style invoked from a `plot` or `splot` command can include a
data-dependent linecolor (`lc variable` or `lc rgb variable`) that consumes
an additional column of data in the corresponding `using` specification.
In this case the style is probably not useful for individual arrows created
by `set arrow`.
Specifying `nohead` produces arrows drawn without a head---a line segment.
This gives you yet another way to draw a line segment on the plot. By
default, arrows have one head. Specifying `heads` draws arrow heads on both
ends of the line.
Head size can be modified using `size <length>,<angle>` or
`size <length>,<angle>,<backangle>`, where `<length>` defines length of each
branch of the arrow head and `<angle>` the angle (in degrees) they make with
the arrow. `<Length>` is in x-axis units; this can be changed by `first`,
`second`, `graph`, `screen`, or `character` before the <length>; see
`coordinates` for details.
By default the size of the arrow head is reduced for very short arrows.
This can be disabled using the `fixed` keyword after the @ref{size} command.
`<backangle>` is the angle (in degrees) the back branches make with the arrow
(in the same direction as `<angle>`). It is ignored if the style is `nofilled`.
Specifying `filled` produces filled arrow heads with a border line around the
arrow head. Specifying `noborder` produces filled arrow heads with no border.
In this case the tip of the arrow head lies exactly on the endpoint of the
vector and the arrow head is slightly smaller overall. Dashed arrows should
always use `noborder`, since a dashed border is ugly.
Not all terminals support filled arrow heads.
The line style may be selected from a user-defined list of line styles
(see `set style line`) or may be defined here by providing values for
`<line_type>` (an index from the default list of styles) and/or
`<line_width>` (which is a multiplier for the default width).
Note, however, that if a user-defined line style has been selected, its
properties (type and width) cannot be altered merely by issuing another
`set style arrow` command with the appropriate index and `lt` or `lw`.
If `front` is given, the arrows are written on top of the graphed data. If
`back` is given (the default), the arrow is written underneath the graphed
data. Using `front` will prevent a arrow from being obscured by dense data.
Examples:
To draw an arrow without an arrow head and double width, use:
@example
set style arrow 1 nohead lw 2
set arrow arrowstyle 1
@end example
See also `set arrow` for further examples.
@node boxplot_, set_style_data, set_style_arrow, style
@subsubsection boxplot
@c ?commands set style boxplot
@c ?commands unset style boxplot
@c ?commands show style boxplot
@c ?set style boxplot
@c ?unset style boxplot
@c ?show style boxplot
The @ref{boxplot} command allows you to change the layout of plots
created using the @ref{boxplot} plot style.
Syntax:
@example
set style boxplot @{range <r> | fraction <f>@}
@{@{no@}outliers@} @{pointtype <p>@}
@{candlesticks | financebars@}
@{medianlinewidth <width>@}
@{separation <x>@}
@{labels off | auto | x | x2@}
@{sorted | unsorted@}
@end example
The box in the boxplot always spans the range of values from the first
quartile to the third quartile of the data points. The limit of the whiskers
that extend from the box can be controlled in two different ways. By default
the whiskers extend from each end of the box for a range equal to 1.5 times
the interquartile range (i.e. the vertical height of the box proper).
Each whisker is truncated back toward the median so that it terminates at a
y value belonging to some point in the data set. Since there may be no point
whose value is exactly 1.5 times the interquartile distance, the whisker may
be shorter than its nominal range. This default corresponds to
@example
set style boxplot range 1.5
@end example
Alternatively, you can specify the fraction of the total number of points
that the whiskers should span. In this case the range is extended
symmetrically from the median value until it encompasses the requested fraction
of the data set. Here again each whisker is constrained to end at a point in
the data set. To span 95% of the points in the set
@example
set style boxplot fraction 0.95
@end example
Any points that lie outside the range of the whiskers are considered outliers.
By default these are drawn as individual circles (pointtype 7). The option
`nooutliers` disables this.
If outliers are not drawn they do not contribute to autoscaling.
By default boxplots are drawn in a style similar to candlesticks, but you have
the option of using instead a style similar to finance bars.
A crossbar indicating the median is drawn using the same line type as box
boundary. If you want a thicker line for the median
@example
set style boxplot medianlinewidth 2.0
@end example
If you want no median line, set this to 0.
If the using specification for a boxplot contains a fourth column, the values
in that column will be interpreted as a discrete category to which this data
point belongs. In this case one boxplot is drawn for each category found in
the input. These boxplots will be drawn next to each other spaced by 1.0
along x (in x-axis units). This spacing can be changed by the option
`set style boxplot separation`.
The @ref{labels} option governs how and where these boxplots (each representing a
part of the dataset) are labeled. By default the category identifier is used
as a tick label on the horizontal axis -- x or x2, depending on which one is
used for the plot itself. This setting corresponds to option `labels auto`.
The labels can be forced to use either of the x or x2 axes -- options
`labels x` and `labels x2`, respectively --, or they can be turned off
altogether with the option `labels off`.
By default the boxplots corresponding to different categories will be drawn
in the same order the levels are encountered in the data file. This behavior
corresponds to the `unsorted` option. If the `sorted` option is active, the
category identifiers are first sorted alphabetically, and the boxplots are
drawn in the sorted order.
The `separation`, @ref{labels}, `sorted` and `unsorted` option only have an effect
if a fourth column is given the plot specification.
See @ref{boxplot}, @ref{candlesticks}, @ref{financebars}.
@node set_style_data, set_style_fill, boxplot_, style
@subsubsection set style data
@c ?commands set style data
@c ?commands show style data
@c ?set style data
@c ?show style data
@c ?data style
The `set style data` command changes the default plotting style for data
plots.
Syntax:
@example
set style data <plotting-style>
show style data
@end example
See `plotting styles` for the choices.
`show style data` shows the current default data plotting style.
@node set_style_fill, set_style_function, set_style_data, style
@subsubsection set style fill
@c ?commands set style fill
@c ?commands show style fill
@c ?set style fill
@c ?show style fill
@cindex fillstyle
The `set style fill` command is used to set the default style of the plot
elements in plots with boxes, histograms, candlesticks and filledcurves.
This default can be superseded by fillstyles attached to individual plots.
Note that there is a separate default fill style for rectangles created by
`set obj`. See @ref{rectangle}.
Syntax:
@example
set style fill @{empty
| @{transparent@} solid @{<density>@}
| @{transparent@} pattern @{<n>@}@}
@{border @{lt@} @{lc <colorspec>@} | noborder@}
@end example
The default fillstyle is `empty`.
The `solid` option causes filling with a solid color, if the terminal
supports that. The <density> parameter specifies the intensity of the
fill color. At a <density> of 0.0, the box is empty, at <density> of 1.0,
the inner area is of the same color as the current linetype.
Some terminal types can vary the density continuously; others implement
only a few levels of partial fill. If no <density> parameter is given,
it defaults to 1.
The `pattern` option causes filling to be done with a fill pattern supplied
by the terminal driver. The kind and number of available fill patterns
depend on the terminal driver. If multiple datasets using filled boxes are
plotted, the pattern cycles through all available pattern types, starting
from pattern <n>, much as the line type cycles for multiple line plots.
The `empty` option causes filled boxes not to be filled. This is the default.
@cindex fillcolor
@cindex fc
Fill color (`fillcolor <colorspec>`) is distinct from fill style. I.e. plot
elements or objects can share a fillstyle while retaining separate colors.
In most places where a fillstyle is accepted you can also specify a fill color.
Fillcolor may be abbreviated `fc`.
Otherwise the fill color is take from the current linetype.
Example:
@example
plot FOO with boxes fillstyle solid 1.0 fillcolor "cyan"
@end example
@noindent --- SET STYLE FILL BORDER ---
@c ?commands set style fill border
@c ?set style fill border
@c ?fillstyle border
@cindex border
@opindex border
The bare keyword @ref{border} causes the filled object to be surrounded by a
solid line of the current linetype and color. You can change the color of
this line by adding either a linetype or a linecolor.
`noborder` specifies that no bounding line is drawn.
Examples:
@example
# Half-intensity fill, full intensity border in same color
set style fill solid 0.5 border
# Half-transparent fill, solid black border (linetype -1)
set style fill transparent solid 0.5 border -1
# Pattern fill in current color, border using color of linetype 5
plot ... with boxes fillstyle pattern 2 border lt 5
# Fill area in cyan, border in blue
plot ... with boxes fillcolor "cyan" fs solid border linecolor "blue"
@end example
Note: The border property of a fill style only affects plots drawn
@ref{filledcurves} in the default mode (closed curve).
@noindent --- SET STYLE FILL TRANSPARENT ---
@c ?commands set style fill transparent
@c ?set style fill transparent
@c ?fillstyle transparent
@cindex transparent
Some terminals support the attribute `transparent` for filled areas.
In the case of transparent solid fill areas, the `density` parameter is
interpreted as an alpha value; that is, density 0 is fully transparent,
density 1 is fully opaque. In the case of transparent pattern fill, the
background of the pattern is either fully transparent or fully opaque.
Note that there may be additional limitations on the creation or viewing of
graphs containing transparent fill areas. For example, the png terminal can
only use transparent fill if the "truecolor" option is set. Some pdf viewers
may not correctly display the fill areas even if they are correctly described
in the pdf file. Ghostscript/gv does not correctly display pattern-fill areas
even though actual PostScript printers generally have no problem.
@node set_style_function, set_style_histogram, set_style_fill, style
@subsubsection set style function
@c ?commands set style function
@c ?commands show style function
@c ?set style function
@c ?show style function
The `set style function` command changes the default plotting style for
function plots (e.g. lines, points, filledcurves). See `plotting styles`.
Syntax:
@example
set style function <plotting-style>
show style function
@end example
@node set_style_histogram, set_style_increment, set_style_function, style
@subsubsection set style histogram
@c ?commands set style histogram
See @ref{histograms}.
@node set_style_increment, set_style_line, set_style_histogram, style
@subsubsection set style increment
@c ?commands set style increment
@c ?set style increment
By default, successive plots within the same graph will use successive
linetypes. `set style increment userstyles` changed this to step through
successive user-defined line styles instead.
DEPRECATED. This command is present in gnuplot version 6.0 only if your
copy was built with configuration option --enable-backward-compatibility.
Instead use `set linetype` to redefine a convenient range of linetypes
for the program to use. See `set linetype`.
@node set_style_line, set_style_circle, set_style_increment, style
@subsubsection set style line
@c ?commands set style line
@c ?commands unset style line
@c ?commands show style line
@c ?set style line
@c ?unset style line
@c ?show style line
@cindex linestyle
@cindex linewidth
@cindex linewidth
@cindex interval
@cindex linespoints
@cindex pointinterval
@cindex pointnumber
Each terminal has a default set of line and point types, which can be seen
by using the command `test`. `set style line` defines a set of line types
and widths and point types and sizes so that you can refer to them later by
an index instead of repeating all the information at each invocation.
Syntax:
@example
set style line <index> default
set style line <index> @{@{linetype | lt@} <line_type> | <colorspec>@}
@{@{linecolor | lc@} <colorspec>@}
@{@{linewidth | lw@} <line_width>@}
@{@{pointtype | pt@} <point_type>@}
@{@{pointsize | ps@} <point_size>@}
@{@{pointinterval | pi@} <interval>@}
@{@{pointnumber | pn@} <max_symbols>@}
@{@{dashtype | dt@} <dashtype>@}
@{palette@}
unset style line
show style line
@end example
`default` sets all line style parameters to those of the linetype with
that same index.
If the linestyle <index> already exists, only the given parameters are
changed while all others are preserved. If not, all undefined values are
set to the default values.
Line styles created by this mechanism do not replace the default linetype
styles; both may be used. Line styles are temporary. They are lost whenever
you execute a @ref{reset} command. To redefine the linetype itself,
please see `set linetype`.
The line and point types default to the index value. The exact symbol that is
drawn for that index value may vary from one terminal type to another.
The line width and point size are multipliers for the current terminal's
default width and size (but note that <point_size> here is unaffected by
the multiplier given by the command@ref{pointsize}).
The `pointinterval` controls the spacing between points in a plot drawn with
style @ref{linespoints}. The default is 0 (every point is drawn). For example,
`set style line N pi 3` defines a linestyle that uses pointtype N, pointsize
and linewidth equal to the current defaults for the terminal, and will draw
every 3rd point in plots using @ref{linespoints}. A negative value for the
interval is treated the same as a positive value, except that some terminals
will try to interrupt the line where it passes through the point symbol.
The `pointnumber` property is similar to `pointinterval` except that rather
than plotting every Nth point it limits the total number of points to N.
Not all terminals support the `linewidth` and @ref{pointsize} features; if
not supported, the option will be ignored.
Terminal-independent colors may be assigned using either
`linecolor <colorspec>` or `linetype <colorspec>`, abbreviated `lc` or `lt`.
This requires giving a RGB color triple, a known palette color name,
a fractional index into the current palette, or a constant value from the
current mapping of the palette onto cbrange.
See `colors`, @ref{colorspec}, @ref{palette}, @ref{colornames}, @ref{cbrange}.
`set style line <n> linetype <lt>` will set both a terminal-dependent dot/dash
pattern and color. The commands`set style line <n> linecolor <colorspec>` or
`set style line <n> linetype <colorspec>` will set a new line color while
leaving the existing dot-dash pattern unchanged.
In 3d mode (`splot` command), the special keyword @ref{palette} is allowed as a
shorthand for "linetype palette z". The color value corresponds to the
z-value (elevation) of the splot, and varies smoothly along a line or surface.
Examples:
Suppose that the default lines for indices 1, 2, and 3 are red, green, and
blue, respectively, and the default point shapes for the same indices are a
square, a cross, and a triangle, respectively. Then
@example
set style line 1 lt 2 lw 2 pt 3 ps 0.5
@end example
defines a new linestyle that is green and twice the default width and a new
pointstyle that is a half-sized triangle. The commands
@example
set style function lines
plot f(x) lt 3, g(x) ls 1
@end example
will create a plot of f(x) using the default blue line and a plot of g(x)
using the user-defined wide green line. Similarly the commands
@example
set style function linespoints
plot p(x) lt 1 pt 3, q(x) ls 1
@end example
will create a plot of p(x) using the default triangles connected by a red
line and q(x) using small triangles connected by a green line.
@example
splot sin(sqrt(x*x+y*y))/sqrt(x*x+y*y) w l pal
@end example
creates a surface plot using smooth colors according to @ref{palette}. Note,
that this works only on some terminals. See also @ref{palette}, `set pm3d`.
@example
set style line 10 linetype 1 linecolor rgb "cyan"
@end example
will assign linestyle 10 to be a solid cyan line on any terminal that
supports rgb colors.
@node set_style_circle, set_style_rectangle, set_style_line, style
@subsubsection set style circle
@c ?commands set style circle
@c ?commands unset style circle
@c ?commands show style circle
@c ?set style circle
@c ?unset style circle
@c ?show style circle
Syntax:
@example
set style circle @{radius @{graph|screen@} <R>@}
@{@{no@}wedge@}
@{clip|noclip@}
@end example
This command sets the default radius used in plot style "with circles". It
applies to data plots with only 2 columns of data (x,y) and to function plots.
The default is "set style circle radius graph 0.02". `Nowedge` disables
drawing of the two radii that connect the ends of an arc to the center.
The default is `wedge`. This parameter has no effect on full circles. `Clip`
clips the circle at the plot boundaries, `noclip` disables this. Default is
`clip`.
@node set_style_rectangle, set_style_ellipse, set_style_circle, style
@subsubsection set style rectangle
@c ?commands set style rectangle
@c ?commands unset style rectangle
@c ?commands show style rectangle
@c ?set style rectangle
@c ?unset style rectangle
@c ?show style rectangle
Rectangles defined with the @ref{object} command can have individual styles.
However, if the object is not assigned a private style then it inherits a
default that is taken from the @ref{rectangle} command.
Syntax:
@example
set style rectangle @{front|back@} @{lw|linewidth <lw>@}
@{fillcolor <colorspec>@} @{fs <fillstyle>@}
@end example
See @ref{colorspec} and `fillstyle`. @ref{fillcolor} may be abbreviated as `fc`.
Examples:
@example
set style rectangle back fc rgb "white" fs solid 1.0 border lt -1
set style rectangle fc linestyle 3 fs pattern 2 noborder
@end example
The default values correspond to solid fill with the background color and a
black border.
@node set_style_ellipse, set_style_parallelaxis, set_style_rectangle, style
@subsubsection set style ellipse
@c ?commands set style ellipse
@c ?commands show style ellipse
@c ?set style ellipse
@c ?unset style ellipse
@c ?show style ellipse
Syntax:
@example
set style ellipse @{units xx|xy|yy@}
@{size @{graph|screen@} <a>, @{@{graph|screen@} <b>@}@}
@{angle <angle>@}
@{clip|noclip@}
@end example
This command governs whether the diameters of ellipses are interpreted in
the same units or not.
Default is `xy`, which means that the major diameter (first axis) of
ellipses will be interpreted in the same units as the x (or x2) axis,
while the minor (second) diameter in those of the y (or y2) axis.
In this mode the ratio of the ellipse axes depends on the scales of the
plot axes and aspect ratio of the plot. When set to `xx` or `yy`,
both axes of all ellipses will be interpreted in the same units.
This means that the ratio of the axes of the plotted ellipses will be
correct even after rotation, but either their vertical or horizontal extent
will not be correct.
This is a global setting that affects all ellipses, both those defined as
objects and those generated with the `plot` command, however, the value of
`units` can also be redefined on a per-plot and per-object basis.
It is also possible to set a default size for ellipses with the @ref{size}
keyword. This default size applies to data plots with only
2 columns of data (x,y) and to function plots. The two values are
interpreted as the major and minor diameters (as opposed to semi-major
and semi-minor axes) of the ellipse.
The default is "set style ellipse size graph 0.05,0.03".
Last, but not least it is possible to set the default orientation with the
`angle` keyword. The orientation, which is defined as the angle between the
major axis of the ellipse and the plot's x axis, must be given in degrees.
`Clip` clips the ellipse at the plot boundaries, `noclip` disables this.
Default is `clip`.
For defining ellipse objects, see `set object ellipse`;
for the 2D plot style, see @ref{ellipses}.
@node set_style_parallelaxis, set_style_spiderplot, set_style_ellipse, style
@subsubsection set style parallelaxis
@c ?commands set style parallelaxis
@c ?set style parallelaxis
@c ?show style parallelaxis
Syntax:
@example
set style parallelaxis @{front|back@} @{line-properties@}
@end example
Determines the line type and layer for drawing the vertical axes in plots
@ref{parallelaxes}. See @ref{parallelaxes}, @ref{paxis}.
@node set_style_spiderplot, set_style_textbox, set_style_parallelaxis, style
@subsubsection set style spiderplot
@c ?commands set style spiderplot
@c ?set style spiderplot
Syntax:
@example
set style spiderplot
@{fillstyle <fillstyle-properties>@}
@{<line-properties> | <point-properties>@}
@end example
This commands controls the default appearance of spider plots.
The fill, line, and point properties can be modified in the first component
of the plot command. The overall appearance of the plot is also affected
by other settings such as @ref{spiderplot}. See also @ref{paxis},
@ref{spiderplot}.
Example:
@example
# Default spider plot will be a polygon with a thick border but no fill
set style spiderplot fillstyle empty border lw 3
# This one will additionally place an open circle (pt 6) at each axis
plot for [i=1:6] DATA pointtype 6 pointsize 3
@end example
@node set_style_textbox, set_style_watchpoint, set_style_spiderplot, style
@subsubsection set style textbox
@c ?commands set style textbox
@c ?commands show style textbox
@c ?set style textbox
@c ?unset style textbox
@c ?show style textbox
@cindex textbox
@cindex boxed
Syntax:
@example
set style textbox @{<boxstyle-index>@}
@{opaque|transparent@} @{fillcolor <color>@}
@{@{no@}border @{linecolor <colorspec>@}@}@{linewidth <lw>@}
@{margins <xmargin>,<ymargin>@}
@end example
This command controls the appearance of labels with the attribute 'boxed'.
Terminal types that do not support boxed text will ignore this style.
Note: Implementation for some terminals (svg, latex) is incomplete.
Most terminals cannot place a box correctly around rotated text.
Three numbered textbox styles can be defined. If no boxstyle index <bs>
is given, the default (unnumbered) style is changed.
Example:
@example
# default style has only a black border
set style textbox transparent border lc "black"
# style 2 (bs 2) has a light blue background with no border
set style textbox 2 opaque fc "light-cyan" noborder
set label 1 "I'm in a box" boxed
set label 2 "I'm blue" boxed bs 2
@end example
@node set_style_watchpoint, , set_style_textbox, style
@subsubsection set style watchpoint
@c ?commands set style watchpoint
@c ?commands show style watchpoint
@c ?set style watchpoint
Syntax:
@example
set style watchpoint nolabels
set style watchpoint labels @{label-options@}
@end example
The watchpoint target "mouse" always prints a label to the plot.
Other watchpoint targets either print or do not print a label depending on
whether the style is set to `label` or `nolabel`.
The appearance of watchpoint labels can be customized using the full range
of label properties available to other gnuplot labels, including font,
textcolor, point type and size of a point marking the exact x,y coordinates.
See `set label`.
Currently the text of the label is always autogenerated by the program
using the axis tic formats for the current plot to produce the string
" x-coordinate : y-coordinate".
Examples:
@example
set style watchpoint labels point pt 4 ps 2
set style watchpoint labels font ":Italic,6" textcolor "blue"
set style watchpoint labels boxed offset 1, 0.5
@end example
@node surface_, table, style, set-show
@subsection surface
@c ?commands set surface
@c ?commands unset surface
@c ?commands show surface
@c ?set surface
@c ?unset surface
@c ?show surface
@cindex surface
@opindex surface
@cindex nosurface
The `set surface` command is only relevant for 3D plots (`splot`).
Syntax:
@example
set surface @{implicit|explicit@}
unset surface
show surface
@end example
`unset surface` will cause `splot` to not draw points or lines corresponding
to any of the function or data file points. This is mainly useful for drawing
only contour lines rather than the surface they were derived from. Contours
may still be drawn on the surface, depending on the `set contour` option.
To turn off the surface for an individual function or data file while leaving
others active, use the `nosurface` keyword in the `splot` command.
The combination `unset surface; set contour base` is useful for displaying
contours on the grid base. See also `set contour`.
If a 3D data set is recognizable as a mesh (grid) then by default the program
implicitly treats the plot style `with lines` as requesting a gridded surface.
See `grid_data`. The command `set surface explicit` suppresses this expansion,
plotting only the individual lines described by separate blocks of data in the
input file. A gridded surface can still be plotted by explicitly requesting
splot `with surface`.
@node table, terminal, surface_, set-show
@subsection table
@c ?commands set table
@c ?set table
@cindex table
@opindex table
When @ref{table} mode is enabled, `plot` and `splot` commands print out a
multicolumn text table of values
@example
X Y @{Z@} <flag>
@end example
rather than creating an actual plot on the current terminal. The flag character
is "i" if the point is in the active range, "o" if it is out-of-range, or "u"
if it is undefined. The data format is determined by the format of the axis
tickmarks (see `set format`), and the columns are separated by single spaces.
This can be useful if you want to generate contours and then save them for
further use. The same method can be used to save interpolated data
(see @ref{samples} and @ref{dgrid3d}).
Syntax:
@example
set table @{"outfile" | $datablock@} @{append@}
@{separator @{whitespace|tab|comma|"<char>"@}@}
plot <whatever>
unset table
@end example
Subsequent tabular output is written to "outfile", if specified, otherwise it
is written to stdout or other current value of @ref{output}. If `outfile`
exists it will be replaced unless the `append` keyword is given.
Alternatively, tabular output can be redirected to a named data block.
Data block names start with '$', see also `inline data`. You must explicitly
@ref{table} in order to go back to normal plotting on the current terminal.
The `separator` character can be used to output csv (comma separated value)
files. This mode only affects plot style @ref{table}. See @ref{table}.
@menu
* plot_with_table::
@end menu
@node plot_with_table, , table, table
@subsubsection plot with table
@c ?plot with table
@c ?with table
This discussion applies only to the special plot style @ref{table}.
To avoid any style-dependent processing of the input data being tabulated
(filters, smoothing, errorbar expansion, secondary range checking, etc),
or to increase the number of columns that can be tabulated, use the keyword
"table" instead of a normal plot style.
In this case the output does not contain an extra column containing a
flag `i`, `o`, `u` indicating inrange/outrange/undefined.
The destination for output must first be specified with `set table <where>`.
For example
@example
set table $DATABLOCK1
plot <file> using 1:2:3:4:($5+$6):(func($7)):8:9:10 with table
@end example
Because there is no actual plot style in this case the columns do not
correspond to specific axes. Therefore xrange, yrange, etc are ignored.
If a `using` term evaluates to a string, the string is tabulated.
Numerical data is always written with format %g. If you want some other format
use sprintf or gprintf to create a formatted string.
@example
plot <file> using ("File 1"):1:2:3 with table
plot <file> using (sprintf("%4.2f",$1)) : (sprintf("%4.2f",$3)) with table
@end example
@cindex csv
To create a csv file use
@example
set table "tab.csv" separator comma
plot <foo> using 1:2:3:4 with table
@end example
[EXPERIMENTAL] To select only a subset of the data points for tabulation you
can provide an input filter condition (`if <expression>`) at the end of the
command. Note that the input filter may reference data columns that are not
part of the output. Details of this feature may change in a future version.
@example
plot <file> using 1:2:($4+$5) with table if (strcol(3) eq "Red")
plot <file> using 1:2:($4+$5) with table if (10. < $1 && $1 < 100.)
plot <file> using 1:2:($4+$5) with table if (filter($6,$7) != 0)
@end example
@node terminal, termoption, table, set-show
@subsection terminal
@c ?commands set terminal
@c ?commands show terminal
@c ?set terminal
@c ?set term
@c ?show terminal
@c ?show term
@c ?set terminal push
@c ?set term push
@c ?terminal push
@c ?term push
@cindex push
@c ?set terminal pop
@c ?set term pop
@c ?terminal pop
@c ?term pop
@cindex pop
`gnuplot` supports many different graphics devices. Use @ref{terminal} to
tell `gnuplot` what kind of output to generate. Use @ref{output} to redirect
that output to a file or device.
Syntax:
@example
set terminal @{<terminal-type> | push | pop@}
show terminal
@end example
If <terminal-type> is omitted, `gnuplot` will list the available terminal
types. <terminal-type> may be abbreviated.
If both @ref{terminal} and @ref{output} are used together, it is safest to
give @ref{terminal} first, because some terminals set a flag which is needed
in some operating systems.
Some terminals have many additional options.
The options used by a previous invocation `set term <term> <options>` of a
given `<term>` are remembered, thus subsequent `set term <term>` does
not reset them. This helps in printing, for instance, when switching
among different terminals---previous options don't have to be repeated.
The command `set term push` remembers the current terminal including its
settings while `set term pop` restores it. This is equivalent to `save term`
and `load term`, but without accessing the filesystem. Therefore they can be
used to achieve platform independent restoring of the terminal after printing,
for instance. After gnuplot's startup, the default terminal or that from
`startup` file is pushed automatically. Therefore portable scripts can rely
that `set term pop` restores the default terminal on a given platform unless
another terminal has been pushed explicitly.
For more information, see the `complete list of terminals`.
@node termoption, theta, terminal, set-show
@subsection termoption
@c ?commands set termoption
@c ?set termoption
@cindex termoption
@opindex termoption
The @ref{termoption} command allows you to change the behaviour of the
current terminal without requiring a new @ref{terminal} command. Only one
option can be changed per command, and only a small number of options can
be changed this way. Currently the only options accepted are
@example
set termoption @{no@}enhanced
set termoption font "<fontname>@{,<fontsize>@}"
set termoption fontscale <scale>
set termoption @{linewidth <lw>@}@{lw <lw>@} @{dashlength <dl>@}@{dl <dl>@}
set termoption @{pointscale <scale>@} @{ps <scale>@}
@end example
@node theta, tics, termoption, set-show
@subsection theta
@c ?commands set theta
@c ?set theta
@c ?unset theta
@cindex theta
@opindex theta
Polar coordinate plots are by default oriented such that theta = 0 is on the
right side of the plot, with theta increasing as you proceed counterclockwise
so that theta = 90 degrees is at the top. @ref{theta} allows you to change
the origin and direction of the polar angular coordinate theta.
@example
set theta @{right|top|left|bottom@}
set theta @{clockwise|cw|counterclockwise|ccw@}
@end example
@ref{theta} restores the default state "set theta right ccw".
@node tics, ticslevel, theta, set-show
@subsection tics
@c ?commands set tics
@c ?commands unset tics
@c ?commands show tics
@c ?set tics scale
@c ?set tics
@c ?unset tics
@c ?show tics
@cindex tics
@opindex tics
The `set tics` command controls the tic marks and labels on all axes at once.
The tics may be turned off with the `unset tics` command, and may be turned on
(the default state) with `set tics`. Fine control of tics on individual axes
is possible using the alternative commands `set xtics`, @ref{ztics}, etc.
Syntax:
@example
set tics @{axis | border@} @{@{no@}mirror@}
@{in | out@} @{front | back@}
@{@{no@}rotate @{by <ang>@}@} @{offset <offset> | nooffset@}
@{left | right | center | autojustify@}
@{format "formatstring"@} @{font "name@{,<size>@}"@} @{@{no@}enhanced@}
@{ textcolor <colorspec> @}
set tics scale @{default | <major> @{,<minor>@}@}
unset tics
show tics
@end example
The options can be applied to a single axis (x, y, z, x2, y2, cb), e.g.
@example
set xtics rotate by -90
unset cbtics
@end example
All tic marks are drawn using the same line properties as the plot border
(see @ref{border}).
Set tics `back` or `front` applies to all axes at once, but only for 2D plots
(not splot). It controls whether the tics are placed behind or in front of
the plot elements, in the case that there is overlap.
`axis` or @ref{border} tells `gnuplot` to put the tics (both the tics themselves
and the accompanying labels) along the axis or the border, respectively. If
the axis is very close to the border, the `axis` option will move the
tic labels to outside the border in case the border is printed (see
@ref{border}). The relevant margin settings will usually be sized badly by
the automatic layout algorithm in this case.
`mirror` tells `gnuplot` to put unlabeled tics at the same positions on the
opposite border. `nomirror` does what you think it does.
`in` and `out` change the tic marks to be drawn inwards or outwards.
`set tics scale` controls the size of the tic marks. The first value <major>
controls the auto-generated or user-specified major tics (level 0). The
second value controls the auto-generated or user-specified minor tics
(level 1). <major> defaults to 1.0, <minor> defaults to <major>/2.
Additional values control the size of user-specified tics with level 2, 3, ...
Default tic sizes are restored by `set tics scale default`.
`rotate` asks `gnuplot` to rotate the text through 90 degrees, which will be
done if the terminal driver in use supports text rotation. `norotate`
cancels this. `rotate by <ang>` asks for rotation by <ang> degrees, supported
by some terminal types.
The defaults are `border mirror norotate` for tics on the x and y axes, and
`border nomirror norotate` for tics on the x2 and y2 axes. For the z axis,
the default is `nomirror`.
The <offset> is specified by either x,y or x,y,z, and may be preceded by
`first`, `second`, `graph`, `screen`, or `character` to select the
coordinate system. <offset> is the offset of the tics texts from their
default positions, while the default coordinate system is `character`.
See `coordinates` for details. `nooffset` switches off the offset.
By default, tic labels are justified automatically depending on the axis and
rotation angle to produce aesthetically pleasing results. If this is not
desired, justification can be overridden with an explicit `left`, `right` or
`center` keyword. `autojustify` restores the default behavior.
`set tics` with no options restores mirrored, inward-facing tic marks for
the primary axes. All other settings are retained.
See also `set xtics` for more control of major (labeled) tic marks and
`set mxtics` for control of minor tic marks. These commands provide control
of each axis independently.
@node ticslevel, ticscale, tics, set-show
@subsection ticslevel
@c ?commands set ticslevel
@c ?commands show ticslevel
@c ?set ticslevel
@c ?show ticslevel
@cindex ticslevel
@opindex ticslevel
Deprecated. See @ref{xyplane}.
@node ticscale, timestamp, ticslevel, set-show
@subsection ticscale
@c ?commands set ticscale
@c ?commands show ticscale
@c ?set ticscale
@c ?show ticscale
@cindex ticscale
@opindex ticscale
The @ref{ticscale} command is deprecated, use `set tics scale` instead.
@node timestamp, timefmt, ticscale, set-show
@subsection timestamp
@c ?commands set timestamp
@c ?commands unset timestamp
@c ?commands show timestamp
@c ?set timestamp
@c ?unset timestamp
@c ?show timestamp
@cindex timestamp
@opindex timestamp
@cindex notimestamp
The command @ref{timestamp} places the current time and date in the plot margin.
Syntax:
@example
set timestamp @{"<format>"@} @{top|bottom@} @{@{no@}rotate@}
@{offset <xoff>@{,<yoff>@}@} @{font "<fontspec>"@}
@{textcolor <colorspec>@}
unset timestamp
show timestamp
@end example
The format string is used to write the date and time. Its default value is
what asctime() uses: "%a %b %d %H:%M:%S %Y" (weekday, month name, day of the
month, hours, minutes, seconds, four-digit year). With `top` or `bottom` you
can place the timestamp along the top left or bottom left margin
(default: bottom). `rotate` writes the timestamp vertically. The constants
<xoff> and <yoff> are offsets that let you adjust the position more finely.
<font> is used to specify the font with which the time is to be written.
Example:
@example
set timestamp "%d/%m/%y %H:%M" offset 80,-2 font "Helvetica"
@end example
See @ref{timefmt} for more information about time format strings.
@node timefmt, title_, timestamp, set-show
@subsection timefmt
@c ?commands set timefmt
@c ?commands show timefmt
@c ?set timefmt
@c ?show timefmt
@cindex timefmt
@opindex timefmt
This command sets the default format used to input time data.
See `set xdata time`, `timecolumn`.
Syntax:
@example
set timefmt "<format string>"
show timefmt
@end example
The valid formats for both @ref{timefmt} and `timecolumn` are:
@example
Format Explanation
%d day of the month, 1--31
%m month of the year, 1--12
%y year, 0--99
%Y year, 4-digit
%j day of the year, 1--365
%H hour, 0--24
%M minute, 0--60
%s seconds since the Unix epoch (1970-01-01, 00:00 UTC)
%S second, integer 0--60 on output, (double) on input
%b three-character abbreviation of the name of the month
%B name of the month
%p two character match to one of: am AM pm PM
@end example
@c ^<table align="center" border="1" rules="groups" frame="hsides" cellpadding="3">
@c ^<colgroup>
@c ^ <col align="center">
@c ^ <col align="left">
@c ^</colgroup>
@c ^<thead>
@c ^<tr> <th>Format</th> <th>Explanation</th></tr>
@c ^</thead>
@c ^<tbody>
@c ^<tr> <td><tt>%d</tt></td> <td>day of the month, 1–31</td></tr>
@c ^<tr> <td><tt>%m</tt></td> <td>month of the year, 1–12</td></tr>
@c ^<tr> <td><tt>%y</tt></td> <td>year, 0–99</td></tr>
@c ^<tr> <td><tt>%Y</tt></td> <td>year, 4-digit</td></tr>
@c ^<tr> <td><tt>%j</tt></td> <td>day of the year, 1–365</td></tr>
@c ^<tr> <td><tt>%H</tt></td> <td>hour, 0–24</td></tr>
@c ^<tr> <td><tt>%M</tt></td> <td>minute, 0–60</td></tr>
@c ^<tr> <td><tt>%s</tt></td> <td>seconds since the Unix epoch (1970-01-01 00:00 UTC)</td></tr>
@c ^<tr> <td><tt>%S</tt></td> <td>second, integer 0–60 on output, (double) on input</td></tr>
@c ^<tr> <td><tt>%b</tt></td> <td>three-character abbreviation of the name of the month</td></tr>
@c ^<tr> <td><tt>%B</tt></td> <td>name of the month</td></tr>
@c ^<tr> <td><tt>%p</tt></td> <td>two-character match to one of: am AM pm PM</td></tr>
@c ^</tbody>
@c ^</table>
Any character is allowed in the string, but must match exactly. \t (tab) is
recognized. Backslash-octals (\nnn) are converted to char. If there is no
separating character between the time/date elements, then %d, %m, %y, %H, %M
and %S read two digits each. If a decimal point immediately follows the field
read by %S, the decimal and any following digits are interpreted as a
fractional second. %Y reads four digits. %j reads three digits.
%b requires three characters, and %B requires as many as it needs.
Spaces are treated slightly differently. A space in the string stands for
zero or more whitespace characters in the file. That is, "%H %M" can be used
to read "1220" and "12 20" as well as "12 20".
Each set of non-blank characters in the timedata counts as one column in the
`using n:n` specification. Thus `11:11 25/12/76 21.0` consists of three
columns. To avoid confusion, `gnuplot` requires that you provide a complete
`using` specification if your file contains timedata.
If the date format includes the day or month in words, the format string must
exclude this text. But it can still be printed with the "%a", "%A", "%b", or
"%B" specifier. `gnuplot` will determine the proper month and weekday from the
numerical values. See `set format` for more details about these and other
options for printing time data.
When reading two-digit years with %y, values 69-99 refer to the 20th century,
while values 00-68 refer to the 21st century. NB: This is in accordance with
the UNIX98 spec, but conventions vary widely and two-digit year values are
inherently ambiguous.
If the %p format returns "am" or "AM", hour 12 will be interpreted as hour 0.
If the %p format returns "pm" or "PM", hours < 12 will be increased by 12.
See also @ref{xdata} `time/date` and `time_specifiers` for more information.
Example:
@example
set timefmt "%d/%m/%Y\t%H:%M"
@end example
tells `gnuplot` to read date and time separated by tab. (But look closely at
your data---what began as a tab may have been converted to spaces somewhere
along the line; the format string must match what is actually in the file.)
See also
@uref{http://www.gnuplot.info/demo/timedat.html,time data demo.
}
@node title_, tmargin, timefmt, set-show
@subsection title
@c ?commands set title
@c ?commands show title
@c ?set title
@c ?show title
@cindex title
@opindex title
The @ref{title} command produces a plot title that is centered at the top of
the plot. @ref{title} is a special case of `set label`.
Syntax:
@example
set title @{"<title-text>"@} @{offset <offset>@} @{font "<font>@{,<size>@}"@}
@{@{textcolor | tc@} @{<colorspec> | default@}@} @{@{no@}enhanced@}
show title
@end example
If <offset> is specified by either x,y or x,y,z the title is moved by the
given offset. It may be preceded by `first`, `second`, `graph`, `screen`,
or `character` to select the coordinate system. See `coordinates` for
details. By default, the `character` coordinate system is used. For
example, "`set title offset 0,-1`" will change only the y offset of the
title, moving the title down by roughly the height of one character. The
size of a character depends on both the font and the terminal.
<font> is used to specify the font with which the title is to be written;
the units of the font <size> depend upon which terminal is used.
`textcolor <colorspec>` changes the color of the text. <colorspec> can be a
linetype, an rgb color, or a palette mapping. See help for @ref{colorspec} and
@ref{palette}.
`noenhanced` requests that the title not be processed by the enhanced text
mode parser, even if enhanced text mode is currently active.
@ref{title} with no parameters clears the title.
See `syntax` for details about the processing of backslash sequences and
the distinction between single- and double-quotes.
@node tmargin, trange, title_, set-show
@subsection tmargin
@c ?commands set tmargin
@c ?set tmargin
@cindex tmargin
@opindex tmargin
The command @ref{tmargin} sets the size of the top margin.
Please see @ref{margin} for details.
@node trange, ttics, tmargin, set-show
@subsection trange
@c ?commands set trange
@c ?commands show trange
@c ?set trange
@c ?show trange
@cindex trange
@opindex trange
Syntax: set trange [tmin:tmax]
The range of the parametric variable t is useful in three contexts.
@itemize @bullet
@item
In parametric mode `plot` commands it limits the range of sampling
for both generating functions. See @ref{parametric}, @ref{samples}.
@item
In polar mode `plot` commands it limits or defines the acceptable
range of the angular parameter theta during input. Data points
with theta value outside this range are excluded from the plot even
if they would otherwise lie inside the plot boundary. See `polar`.
@item
In `plot` or `splot` commands using 1-dimensional sampled data via
the pseudofile "+". See `sampling 1D`, @ref{special-filenames}.
@end itemize
@node ttics, urange, trange, set-show
@subsection ttics
@c ?commands set ttics
@c ?commands show ttics
@c ?set ttics
@c ?show ttics
@cindex ttics
@opindex ttics
The @ref{ttics} command places tics around the perimeter of a polar plot.
This is the border if `set border polar` is enabled, otherwise the outermost
circle of the polar grid drawn at the rightmost ticmark along the r axis.
See `set grid`, @ref{rtics}. The angular position is always labeled in degrees.
The full perimeter can be labeled regardless of the current trange setting.
The desired range of the tic labels should be given as shown below.
Additional properties of the tic marks can be set. See `xtics`.
@example
set ttics -180, 30, 180
set ttics add ("Theta = 0" 0)
set ttics font ":Italic" rotate
@end example
D ttics 3
@node urange, version, ttics, set-show
@subsection urange
@c ?commands set urange
@c ?commands show urange
@c ?set urange
@c ?show urange
@cindex urange
@opindex urange
Syntax: set urange [umin:umax]
The range of the parametric variables u and v is useful in two contexts.
1) `splot` in parametric mode. See @ref{parametric}, @ref{isosamples}.
2) generating 2-dimension sampled data for either `plot` or `splot` using the
pseudofile "++". See `sampling 2D`.
@node version, vgrid, urange, set-show
@subsection version
@c ?show version
@c ?show version long
The @ref{version} command lists the version of gnuplot being run, its last
modification date, the copyright holders, and email addresses for the FAQ,
the gnuplot-info mailing list, and reporting bugs--in short, the information
listed on the screen when the program is invoked interactively.
Syntax:
@example
show version @{long@}
@end example
Show version `long` also lists the operating system, configuration and
compilation options used when this copy of `gnuplot` was built.
@node vgrid, view, version, set-show
@subsection vgrid
@c ?commands set vgrid
@c ?set vgrid
@c ?unset vgrid
@c ?show vgrid
@cindex vgrid
@opindex vgrid
Syntax:
@example
set vgrid $gridname @{size N@}
unset vgrid $gridname
show vgrid
@end example
If the named grid already exists, mark it as active (use it for subsequent
@ref{vfill} and `voxel` operations). If a new size is given, replace the existing
content with a zero-filled N x N x N grid. If a grid with this name does not
already exist, allocate an N x N x N grid (default N=100), zero the contents,
and mark it as active. Note that grid names must begin with '$'.
@ref{vgrid} lists all currently defined voxel grids.
Example output:
@example
$vgrid1: (active)
size 100 X 100 X 100
vxrange [-4:4] vyrange[-4:4] vzrange[-4:4]
non-zero voxel values: min 0.061237 max 94.5604
number of zero voxels: 992070 (99.21%)
@end example
`unset vgrid $gridname` releases all data structures associated with that
voxel grid. The data structures are also released by `reset session`.
The function `voxel(x,y,z)` returns the value of the active grid point
nearest that coordinate. See also `splot voxel-grids`.
@node view, vrange, vgrid, set-show
@subsection view
@c ?commands set view
@c ?commands show view
@c ?set view
@c ?set view map
@c ?show view
@cindex view
@opindex view
The @ref{view} command sets the viewing angle for `splot`s. It controls how
the 3D coordinates of the plot are mapped into the 2D screen space. It
provides controls for both rotation and scaling of the plotted data, but
supports orthographic projections only. It supports both 3D projection or
orthogonal 2D projection into a 2D plot-like map.
Syntax:
@example
set view <rot_x>@{,@{<rot_z>@}@{,@{<scale>@}@{,<scale_z>@}@}@}
set view map @{scale <scale>@}
set view projection @{xy|xz|yz@}
set view @{no@}equal @{xy|xyz@}
set view azimuth <angle>
show view
@end example
where <rot_x> and <rot_z> control the rotation angles (in degrees) in a
virtual 3D coordinate system aligned with the screen such that initially
(that is, before the rotations are performed) the screen horizontal axis is
x, screen vertical axis is y, and the axis perpendicular to the screen is z.
The first rotation applied is <rot_x> around the x axis. The second rotation
applied is <rot_z> around the new z axis.
Command `set view map` is used to represent the drawing as a map. It is useful
for `contour` plots or 2D heatmaps using pm3d mode rather than `with image`.
In the latter case, take care that you properly use @ref{zrange} and @ref{cbrange} for
input data point filtering and color range scaling, respectively.
<rot_x> is bounded to the [0:180] range with a default of 60 degrees, while
<rot_z> is bounded to the [0:360] range with a default of 30 degrees.
<scale> controls the scaling of the entire `splot`, while <scale_z> scales
the z axis only. Both scales default to 1.0.
Examples:
@example
set view 60, 30, 1, 1
set view ,,0.5
@end example
The first sets all the four default values. The second changes only scale,
to 0.5.
@menu
* azimuth::
* equal_axes::
* projection::
@end menu
@node azimuth, equal_axes, view, view
@subsubsection azimuth
@c ?set view azimuth
@c ?view azimuth
@cindex azimuth
@example
set view azimuth <angle-in-degrees>
@end example
The setting of azimuth affects the orientation of the z axis in a 3D graph
(splot). At the default azimuth = 0 the z axis of the plot lies in the plane
orthogonal to the screen horizontal. I.e. the projection of the z axis lies
along the screen vertical. Non-zero azimuth rotates the plot about the line
of sight through the origin so that a projection of the z axis is no longer
vertical. When azimuth = 90 the z axis is horizontal rather than vertical.
During interactive viewing, hot-key `z` resets azimuth to 0.
@node equal_axes, projection, azimuth, view
@subsubsection equal_axes
@c ?set view equal_axes
@c ?set view equal xyz
@c ?set view equal
@c ?view equal_axes
@c ?view equal xyz
@cindex equal_axes
@c ?equal xyz
The command `set view equal xy` forces the unit length of the x and y axes
to be on the same scale, and chooses that scale so that the plot will fit on
the page. The command `set view equal xyz` additionally sets the z axis
scale to match the x and y axes; however there is no guarantee that the
z axis range will fit within the plot boundary. See also @ref{isotropic}.
By default all three axes are scaled independently to fill the available area.
See also @ref{xyplane}.
@node projection, , equal_axes, view
@subsubsection projection
@c ?set view projection
@c ?view projection
@cindex projection
Syntax:
@example
set view projection @{xy|xz|yz@}
@end example
Rotates the view angles of a 3D plot so that one of the primary planes
xy, xz, or yz lies in the plane of the plot. Axis label and tic positioning
is adjusted accordingly; tics and labels on the third axis are disabled.
The plot is scaled up to approximately match the size that 'plot' would
generate for the same axis ranges.
`set view projection xy` is equivalent to `set view map`.
When the x and y coordinates used to specify objects, labels, arrows and other
elements are both provided as "graph" coordinates, then in projection views
they are interpreted as "horizontal/vertical" rather than "x/y".
@example
set key top right at graph 0.95, graph 0.95 # works in any projection
@end example
@node vrange, vxrange, view, set-show
@subsection vrange
@c ?commands set vrange
@c ?commands show vrange
@c ?set vrange
@c ?show vrange
@cindex vrange
@opindex vrange
Syntax: set vrange [vmin:vmax]
The range of the parametric variables u and v is useful in two contexts.
1) `splot` in parametric mode. See @ref{parametric}, @ref{isosamples}.
2) generating 2-dimension sampled data for either `plot` or `splot` using the
pseudofile "++". See `sampling 2D`.
@node vxrange, vyrange, vrange, set-show
@subsection vxrange
@c ?commands set vxrange
@c ?set vxrange
@cindex vxrange
@opindex vxrange
Syntax: set vxrange [vxmin:vxmax]
Establishes the range of x coordinates spanned by the active voxel grid.
Analogous commands @ref{vyrange} and @ref{vzrange} exist for the other two
dimensions of the voxel grid. If no explicit ranges have been set prior to
the first @ref{vclear}, @ref{vfill}, or `voxel(x,y,z) = ` command, vmin and vmax
will be copied from the current values of @ref{xrange}.
@node vyrange, vzrange, vxrange, set-show
@subsection vyrange
@c ?commands set vyrange
@c ?set vyrange
@cindex vyrange
@opindex vyrange
See @ref{vxrange}
@node vzrange, walls, vyrange, set-show
@subsection vzrange
@c ?commands set vzrange
@c ?set vzrange
@cindex vzrange
@opindex vzrange
See @ref{vxrange}
@node walls, watchpoints, vzrange, set-show
@subsection walls
@c ?commands set walls
@c ?commands show walls
@c ?set walls
@c ?show walls
@c ?unset walls
@cindex walls
@opindex walls
Syntax:
@example
set walls
set wall @{x0|y0|z0|x1|y1@} @{<fillstyle>@} @{fc <fillcolor>@}
@end example
3D surfaces drawn by `splot` lie within a normalized unit cube regardless
of the x y and z axis ranges. The bounding walls of this cube are described by
the planes (graph coord x == 0), (graph coord x == 1), etc. The @ref{walls}
command renders the walls x0 y0 and z0 as solid surfaces. By default these
surfaces are semi-transparent (fillstyle transparent solid 0.5). You can
customize which walls are drawn and also their individual color and fill style.
If you choose to enable walls, you may also want to use `set xyplane 0`.
Example:
@example
set wall x0; set wall y1; set wall z0 fillstyle solid 1.0 fillcolor "gray"
splot f(x,y) with pm3d fc "goldenrod"
@end example
@node watchpoints, x2data, walls, set-show
@subsection watchpoints
@c ?commands show watchpoints
@c ?show watchpoints
One or more watchpoints may be set for each component plot in a plot command.
All watchpoint targets and hits from the previous plot command are summarized
by the command @ref{watchpoints}.
Example:
@example
plot DATA using 1:2 smooth cnormal watch y=0.25 watch y=0.5 watch y=0.75
show watchpoints
@end example
@example
Plot title: "DATA using 1:2 smooth cnormal"
Watch 1 target y = 0.25 (1 hits)
hit 1 x 50.6 y 0.25
Watch 2 target y = 0.5 (1 hits)
hit 1 x 63.6 y 0.5
Watch 3 target y = 0.75 (1 hits)
hit 1 x 68.3 y 0.75
@end example
The coordinates of all points satisfying the first watchpoint (y=0.25) are
stored in an array WATCH_1. The points satisfying (y=0.5) are stored in an
array WATCH_2, and so on.
Each hit is stored as a complex number with x as the real component and
y as the imaginary component. So the first hit of watchpoint 2 has
x = real(WATCH_2[1]) y = imag(WATCH_2[1]). In this example only the
x coordinates of the hits are interesting, as the y coordinates will always
match the corresponding target y value. However if the watchpoint target
is a z value or a function f(x,y), neither the x or the y coordinate of a hit
is known in advance.
@node x2data, x2dtics, watchpoints, set-show
@subsection x2data
@c ?commands set x2data
@c ?commands show x2data
@c ?set x2data
@c ?show x2data
@cindex x2data
@opindex x2data
The @ref{x2data} command sets data on the x2 (top) axis to timeseries
(dates/times). Please see @ref{xdata}.
@node x2dtics, x2label, x2data, set-show
@subsection x2dtics
@c ?commands set x2dtics
@c ?commands unset x2dtics
@c ?commands show x2dtics
@c ?set x2dtics
@c ?unset x2dtics
@c ?show x2dtics
@cindex x2dtics
@opindex x2dtics
@cindex nox2dtics
The @ref{x2dtics} command changes tics on the x2 (top) axis to days of the
week. Please see @ref{xdtics} for details.
@node x2label, x2mtics, x2dtics, set-show
@subsection x2label
@c ?commands set x2label
@c ?commands show x2label
@c ?set x2label
@c ?show x2label
@cindex x2label
@opindex x2label
The @ref{x2label} command sets the label for the x2 (top) axis.
Please see @ref{xlabel}.
@node x2mtics, x2range, x2label, set-show
@subsection x2mtics
@c ?commands set x2mtics
@c ?commands unset x2mtics
@c ?commands show x2mtics
@c ?set x2mtics
@c ?unset x2mtics
@c ?show x2mtics
@cindex x2mtics
@opindex x2mtics
@cindex nox2mtics
The @ref{x2mtics} command changes tics on the x2 (top) axis to months of the
year. Please see @ref{xmtics} for details.
@node x2range, x2tics, x2mtics, set-show
@subsection x2range
@c ?commands set x2range
@c ?commands show x2range
@c ?set x2range
@c ?show x2range
@cindex x2range
@opindex x2range
The @ref{x2range} command sets the horizontal range that will be displayed on
the x2 (top) axis. See @ref{xrange} for the full set of command options.
See also @ref{link}.
@node x2tics, x2zeroaxis, x2range, set-show
@subsection x2tics
@c ?commands set x2tics
@c ?commands unset x2tics
@c ?commands show x2tics
@c ?set x2tics
@c ?unset x2tics
@c ?show x2tics
@cindex x2tics
@opindex x2tics
@cindex nox2tics
The @ref{x2tics} command controls major (labeled) tics on the x2 (top) axis.
Please see `set xtics` for details.
@node x2zeroaxis, xdata, x2tics, set-show
@subsection x2zeroaxis
@c ?commands set x2zeroaxis
@c ?commands unset x2zeroaxis
@c ?commands show x2zeroaxis
@c ?set x2zeroaxis
@c ?unset x2zeroaxis
@c ?show x2zeroaxis
@cindex x2zeroaxis
@opindex x2zeroaxis
@cindex nox2zeroaxis
The @ref{x2zeroaxis} command draws a line at the origin of the x2 (top) axis
(y2 = 0). For details, please see @ref{zeroaxis}.
@node xdata, xdtics, x2zeroaxis, set-show
@subsection xdata
@c ?commands set xdata
@c ?commands show xdata
@c ?set xdata
@c ?show xdata
@cindex xdata
@opindex xdata
This command controls interpretation of data on the x axis.
An analogous command acts on each of the other axes.
Syntax:
@example
set xdata @{time@}
show xdata
@end example
The same syntax applies to @ref{ydata}, @ref{zdata}, @ref{x2data}, @ref{y2data} and @ref{cbdata}.
The `time` option signals that data represents a time/date in seconds.
Gnuplot version 6 stores time to millisecond precision.
@ref{xdata} (with no `time` keyword) restores data interpretation to normal.
@menu
* time_::
@end menu
@node time_, , xdata, xdata
@subsubsection time
@c ?commands set xdata time
@c ?set xdata time
`set xdata time` indicates that the x coordinate represents a date or time to
millisecond precision. There is an analogous command `set ydata time`.
There are separate format mechanisms for interpretation of time data on input
and output. Input data is read from a file either by using the global
@ref{timefmt} or by using the function timecolumn() as part of the plot command.
These input mechanisms also apply to using time values to set an axis range.
See @ref{timefmt}, `timecolumn`.
Example:
@example
set xdata time
set timefmt "%d-%b-%Y"
set xrange ["01-Jan-2013" : "31-Dec-2014"]
plot DATA using 1:2
@end example
or
@example
plot DATA using (timecolumn(1,"%d-%b-%Y")):2
@end example
For output, i.e. tick labels along that axis or coordinates output by mousing,
the function 'strftime' (type "man strftime" on unix to look it up) is used to
convert from the internal time in seconds to a string representation of a date.
`gnuplot` tries to figure out a reasonable format for this. You can customize
the format using either `set format x` or `set xtics format`.
See `time_specifiers` for a special set of time format specifiers.
See also `time/date` for more information.
@node xdtics, xlabel, xdata, set-show
@subsection xdtics
@c ?commands set xdtics
@c ?commands unset xdtics
@c ?commands show xdtics
@c ?set xdtics
@c ?unset xdtics
@c ?show xdtics
@cindex xdtics
@opindex xdtics
@cindex noxdtics
The @ref{xdtics} commands converts the x-axis tic marks to days of the week
where 0=Sun and 6=Sat. Overflows are converted modulo 7 to dates. `set
noxdtics` returns the labels to their default values. Similar commands do
the same things for the other axes.
Syntax:
@example
set xdtics
unset xdtics
show xdtics
@end example
The same syntax applies to @ref{ydtics}, @ref{zdtics}, @ref{x2dtics}, @ref{y2dtics} and
@ref{cbdtics}.
See also the `set format` command.
@node xlabel, xmtics, xdtics, set-show
@subsection xlabel
@c ?commands set xlabel
@c ?commands show xlabel
@c ?set xlabel
@c ?show xlabel
@cindex xlabel
@opindex xlabel
The @ref{xlabel} command sets the x axis label. Similar commands set labels
on the other axes.
Syntax:
@example
set xlabel @{"<label>"@} @{offset <offset>@} @{font "<font>@{,<size>@}"@}
@{textcolor <colorspec>@} @{@{no@}enhanced@}
@{rotate by <degrees> | rotate parallel | norotate@}
show xlabel
@end example
The same syntax applies to @ref{x2label}, @ref{ylabel}, @ref{y2label}, @ref{zlabel} and
@ref{cblabel}.
If <offset> is specified by either x,y or x,y,z the label is moved by the
given offset. It may be preceded by `first`, `second`, `graph`, `screen`,
or `character` to select the coordinate system. See `coordinates` for
details. By default, the `character` coordinate system is used. For
example, "`set xlabel offset -1,0`" will change only the x offset of the
title, moving the label roughly one character width to the left. The size
of a character depends on both the font and the terminal.
<font> is used to specify the font in which the label is written; the units
of the font <size> depend upon which terminal is used.
`noenhanced` requests that the label text not be processed by the enhanced text
mode parser, even if enhanced text mode is currently active.
To clear a label, put no options on the command line, e.g., "@ref{y2label}".
The default positions of the axis labels are as follows:
xlabel: The x-axis label is centered below the bottom of the plot.
ylabel: The y-axis label is centered to the left of the plot, defaulting to
either horizontal or vertical orientation depending on the terminal type.
The program may not reserve enough space to the left of the plot to hold long
non-rotated ylabel text. You can adjust this with @ref{lmargin}.
zlabel: The z-axis label is centered along the z axis and placed in the space
above the grid level.
cblabel: The color box axis label is centered along the box and placed below
or to the right according to horizontal or vertical color box gradient.
y2label: The y2-axis label is placed to the right of the y2 axis. The
position is terminal-dependent in the same manner as is the y-axis label.
x2label: The x2-axis label is placed above the plot but below the title.
It is also possible to create an x2-axis label by using new-line
characters to make a multi-line plot title, e.g.,
@example
set title "This is the title\n\nThis is the x2label"
@end example
Note that double quotes must be used. The same font will be used for both
lines, of course.
The orientation (rotation angle) of the x, x2, y and y2 axis labels in 2D plots
can be changed by specifying `rotate by <degrees>`. The orientation of the x
and y axis labels in 3D plots defaults to horizontal but can be changed to run
parallel to the axis by specifying `rotate parallel`.
If you are not satisfied with the default position of an axis label, use `set
label` instead--that command gives you much more control over where text is
placed.
Please see `syntax` for further information about backslash processing
and the difference between single- and double-quoted strings.
@node xmtics, xrange, xlabel, set-show
@subsection xmtics
@c ?commands set xmtics
@c ?commands unset xmtics
@c ?commands show xmtics
@c ?set xmtics
@c ?unset xmtics
@c ?show xmtics
@cindex xmtics
@opindex xmtics
@cindex noxmtics
The @ref{xmtics} command converts the x-axis tic marks to months of the
year where 1=Jan and 12=Dec. Overflows are converted modulo 12 to months.
The tics are returned to their default labels by @ref{xmtics}. Similar
commands perform the same duties for the other axes.
Syntax:
@example
set xmtics
unset xmtics
show xmtics
@end example
The same syntax applies to @ref{x2mtics}, @ref{ymtics}, @ref{y2mtics}, @ref{zmtics} and
@ref{cbmtics}.
See also the `set format` command.
@node xrange, xtics, xmtics, set-show
@subsection xrange
@c ?commands set xrange
@c ?commands show xrange
@c ?set xrange
@c ?show xrange
@c ?set range
@cindex writeback
@cindex restore
@cindex xrange
@opindex xrange
The @ref{xrange} command sets the horizontal range that will be displayed.
A similar command exists for each of the other axes, as well as for the
polar radius r and the parametric variables t, u, and v.
Syntax:
@example
set xrange [@{@{<min>@}:@{<max>@}@}] @{@{no@}reverse@} @{@{no@}writeback@} @{@{no@}extend@}
| restore
show xrange
@end example
where <min> and <max> terms are constants, expressions or an asterisk to set
autoscaling. If the data are time/date, you must give the range as a quoted
string according to the @ref{timefmt} format.
If <min> or <max> is omitted the current value will not be changed.
See below for full autoscaling syntax. See also @ref{noextend}.
The same syntax applies to @ref{yrange}, @ref{zrange}, @ref{x2range}, @ref{y2range}, @ref{cbrange},
@ref{rrange}, @ref{trange}, @ref{urange} and @ref{vrange}.
See @ref{link} for options that link the ranges of x and x2, or y and y2.
The `reverse` option reverses the direction of an autoscaled axis. For example,
if the data values range from 10 to 100, it will autoscale to the equivalent of
set xrange [100:10]. The `reverse` flag has no effect if the axis is not
autoscaled.
Autoscaling: If <min> (the same applies for correspondingly to <max>) is
an asterisk "*" autoscaling is turned on. The range in which autoscaling
is being performed may be limited by a lower bound <lb> or an upper bound
<ub> or both. The syntax is
@example
@{ <lb> < @} * @{ < <ub> @}
@end example
For example,
@example
0 < * < 200
@end example
sets <lb> = 0 and <ub> = 200. With such a setting <min> would be autoscaled,
but its final value will be between 0 and 200 (both inclusive despite the
'<' sign). If no lower or upper bound is specified, the '<' to also be
omitted. If <ub> is lower than <lb> the constraints will be turned off
and full autoscaling will happen.
This feature is useful to plot measured data with autoscaling but providing
a limit on the range, to clip outliers, or to guarantee a minimum range
that will be displayed even if the data would not need such a big range.
The `writeback` option essentially saves the range found by @ref{autoscale} in
the buffers that would be filled by @ref{xrange}. This is useful if you wish
to plot several functions together but have the range determined by only
some of them. The `writeback` operation is performed during the `plot`
execution, so it must be specified before that command. To restore,
the last saved horizontal range use `set xrange restore`. For example,
@example
set xrange [-10:10]
set yrange [] writeback
plot sin(x)
set yrange restore
replot x/2
@end example
results in a yrange of [-1:1] as found only from the range of sin(x); the
[-5:5] range of x/2 is ignored. Executing @ref{yrange} after each command
in the above example should help you understand what is going on.
In 2D, @ref{xrange} and @ref{yrange} determine the extent of the axes, @ref{trange}
determines the range of the parametric variable in parametric mode or the
range of the angle in polar mode. Similarly in parametric 3D, @ref{xrange},
@ref{yrange}, and @ref{zrange} govern the axes and @ref{urange} and @ref{vrange} govern the
parametric variables.
In polar mode, @ref{rrange} determines the radial range plotted. <rmin> acts as
an additive constant to the radius, whereas <rmax> acts as a clip to the
radius---no point with radius greater than <rmax> will be plotted. @ref{xrange}
and @ref{yrange} are affected---the ranges can be set as if the graph was of
r(t)-rmin, with rmin added to all the labels.
Any range may be partially or totally autoscaled, although it may not make
sense to autoscale a parametric variable unless it is plotted with data.
Ranges may also be specified on the `plot` command line. A range given on
the plot line will be used for that single `plot` command; a range given by
a `set` command will be used for all subsequent plots that do not specify
their own ranges. The same holds true for `splot`.
@menu
* examples__::
* extend::
@end menu
@node examples__, extend, xrange, xrange
@subsubsection examples
@c ?commands set xrange examples
@c ?set xrange examples
@c ?set range examples
@c ?xrange examples
Examples:
To set the xrange to the default:
@example
set xrange [-10:10]
@end example
To set the yrange to increase downwards:
@example
set yrange [10:-10]
@end example
To change zmax to 10 without affecting zmin (which may still be autoscaled):
@example
set zrange [:10]
@end example
To autoscale xmin while leaving xmax unchanged:
@example
set xrange [*:]
@end example
To autoscale xmin but keeping xmin positive:
@example
set xrange [0<*:]
@end example
To autoscale x but keep minimum range of 10 to 50 (actual might be larger):
@example
set xrange [*<10:50<*]
@end example
Autoscaling but limit maximum xrange to -1000 to 1000, i.e. autoscaling
within [-1000:1000]
@example
set xrange [-1000<*:*<1000]
@end example
Make sure xmin is somewhere between -200 and 100:
@example
set xrange [-200<*<100:]
@end example
@node extend, , examples__, xrange
@subsubsection extend
@c ?commands set xrange noextend
@c ?set xrange noextend
@c ?set range noextend
@c ?xrange noextend
@c ?set xrange extend
@c ?set range extend
@c ?xrange extend
@ref{noextend} is the same as @ref{noextend}.
See @ref{noextend}.
@node xtics, xyplane, xrange, set-show
@subsection xtics
@c ?commands set xtics
@c ?commands unset xtics
@c ?commands show xtics
@c ?set xtics
@c ?unset xtics
@c ?show xtics
@cindex xtics
@opindex xtics
@cindex noxtics
Fine control of the major (labeled) tics on the x axis is possible with the
`set xtics` command. The tics may be turned off with the `unset xtics`
command, and may be turned on (the default state) with `set xtics`. Similar
commands control the major tics on the y, z, x2 and y2 axes.
Syntax:
@example
set xtics @{axis | border@} @{@{no@}mirror@}
@{in | out@} @{scale @{default | <major> @{,<minor>@}@}@}
@{@{no@}rotate @{by <ang>@}@} @{offset <offset> | nooffset@}
@{left | right | center | autojustify@}
@{add@}
@{ autofreq
| <incr>
| <start>, <incr> @{,<end>@}
| (@{"<label>"@} <pos> @{<level>@} @{,@{"<label>"@}...) @}
@{format "formatstring"@} @{font "name@{,<size>@}"@} @{@{no@}enhanced@}
@{ numeric | timedate | geographic @}
@{@{no@}logscale@}
@{ rangelimited @}
@{ textcolor <colorspec> @}
unset xtics
show xtics
@end example
The same syntax applies to @ref{ytics}, @ref{ztics}, @ref{x2tics}, @ref{y2tics} and @ref{cbtics}.
`axis` or @ref{border} tells `gnuplot` to put the tics (both the tics themselves
and the accompanying labels) along the axis or the border, respectively. If
the axis is very close to the border, the `axis` option will move the
tic labels to outside the border. The relevant margin settings will usually
be sized badly by the automatic layout algorithm in this case.
`mirror` tells `gnuplot` to put unlabeled tics at the same positions on the
opposite border. `nomirror` does what you think it does.
`in` and `out` change the tic marks to be drawn inwards or outwards.
With `scale`, the size of the tic marks can be adjusted. If <minor> is not
specified, it is 0.5*<major>. The default size 1.0 for major tics and 0.5
for minor tics is requested by `scale default`.
`rotate` asks `gnuplot` to rotate the text through 90 degrees, which will be
done if the terminal driver in use supports text rotation. `norotate`
cancels this. `rotate by <ang>` asks for rotation by <ang> degrees, supported
by some terminal types.
The defaults are `border mirror norotate` for tics on the x and y axes, and
`border nomirror norotate` for tics on the x2 and y2 axes. For the z axis,
the `@{axis | border@}` option is not available and the default is
`nomirror`. If you do want to mirror the z-axis tics, you might want to
create a bit more room for them with @ref{border}.
The <offset> is specified by either x,y or x,y,z, and may be preceded by
`first`, `second`, `graph`, `screen`, or `character` to select the
coordinate system. <offset> is the offset of the tics texts from their
default positions, while the default coordinate system is `character`.
See `coordinates` for details. `nooffset` switches off the offset.
Example:
Move xtics more closely to the plot.
@example
set xtics offset 0,graph 0.05
@end example
To change the relative order of drawing axis tics and the plot itself, use
the `set grid` command with options 'front', 'back' or 'layerdefault'.
There is no option to assign different axis tics or grid lines to different
layers.
By default, tic labels are justified automatically depending on the axis and
rotation angle to produce aesthetically pleasing results. If this is not
desired, justification can be overridden with an explicit `left`, `right` or
`center` keyword. `autojustify` restores the default behavior.
`set xtics` with no options restores the default border or axis if xtics are
being displayed; otherwise it has no effect. Any previously specified tic
frequency or position @{and labels@} are retained.
Tic positions are calculated automatically by default or if the `autofreq`
option is given.
A series of tic positions can be specified by giving either a tic interval
alone, or a start point, interval, and end point (see `xtics series`).
Individual tic positions can be specified individually by providing an
explicit list of positions, where each position may have an associated
text label. See `xtics list`.
However they are specified, tics will only be plotted when in range.
Format (or omission) of the tic labels is controlled by `set format`, unless
the explicit text of a label is included in the `set xtics ("<label>")` form.
Minor (unlabeled) tics can be added automatically by the `set mxtics`
command, or at explicit positions by the `set xtics ("" <pos> 1, ...)` form.
The appearance of the tics (line style, line width etc.) is determined by the
border line (see @ref{border}), even if the tics are drawn at the axes.
@menu
* xtics_series::
* xtics_list::
* xtics_timedata::
* geographic::
* xtics_logscale::
* xtics_rangelimited::
@end menu
@node xtics_series, xtics_list, xtics, xtics
@subsubsection xtics series
@c ?set xtics series
@c ?xtics series
Syntax:
@example
set xtics <incr>
set xtics <start>, <incr>, <end>
@end example
The implicit <start>, <incr>, <end> form specifies that a series of tics will
be plotted on the axis between the values <start> and <end> with an increment
of <incr>. If <end> is not given, it is assumed to be infinity. The
increment may be negative. If neither <start> nor <end> is given, <start> is
assumed to be negative infinity, <end> is assumed to be positive infinity,
and the tics will be drawn at integral multiples of <incr>. If the axis is
logarithmic, the increment will be used as a multiplicative factor.
If you specify to a negative <start> or <incr> after a numerical value
(e.g., `rotate by <angle>` or `offset <offset>`), the parser fails because
it subtracts <start> or <incr> from that value. As a workaround, specify
`0-<start>` resp. `0-<incr>` in that case.
Example:
@example
set xtics border offset 0,0.5 -5,1,5
@end example
Fails with 'invalid expression' at the last comma.
Use instead
@example
set xtics border offset 0,0.5 0-5,1,5
@end example
or
@example
set xtics offset 0,0.5 border -5,1,5
@end example
These place tics at the border, tics text with an offset of 0,0.5 characters,
and sets the start, increment, and end to -5, 1, and 5, as requested.
Examples:
Make tics at 0, 0.5, 1, 1.5, ..., 9.5, 10.
@example
set xtics 0,.5,10
@end example
Make tics at ..., -10, -5, 0, 5, 10, ...
@example
set xtics 5
@end example
Make tics at 1, 100, 1e4, 1e6, 1e8.
@example
set logscale x; set xtics 1,100,1e8
@end example
@node xtics_list, xtics_timedata, xtics_series, xtics
@subsubsection xtics list
@c ?set xtics list
@c ?set xtics add
@c ?xtics list
@c ?xtics add
Syntax:
@example
set xtics @{add@} ("label1" <pos1> <level1>, "label2" <pos2> <level2>, ...)
@end example
The explicit ("label" <pos> <level>, ...) form allows arbitrary tic
positions or non-numeric tic labels. In this form, the tics do not
need to be listed in numerical order. Each tic has a
position, optionally with a label.
The label is a string enclosed by quotes or a string-valued expression.
It may contain formatting information for converting the position into its
label, such as "%3f clients", or it may be the empty string "".
See `set format` for more information. If no string is given, the
default label (numerical) is used.
An explicit tic mark has a third parameter, the level.
The default is level 0, a major tic. Level 1 generates a minor tic.
Labels are never printed for minor tics. Major and minor tics may be
auto-generated by the program or specified explicitly by the user.
Tics with level 2 and higher must be explicitly specified by the user, and
take priority over auto-generated tics. The size of tics marks at each
level is controlled by the command `set tics scale`.
Examples:
@example
set xtics ("low" 0, "medium" 50, "high" 100)
set xtics (1,2,4,8,16,32,64,128,256,512,1024)
set ytics ("bottom" 0, "" 10, "top" 20)
set ytics ("bottom" 0, "" 10 1, "top" 20)
@end example
In the second example, all tics are labeled. In the third, only the end
tics are labeled. In the fourth, the unlabeled tic is a minor tic.
Normally if explicit tics are given, they are used instead of auto-generated
tics. Conversely if you specify `set xtics auto` or the like it will erase
any previously specified explicit tics. You can mix explicit and auto-
generated tics by using the keyword `add`, which must appear before
the tic style being added.
Example:
@example
set xtics 0,.5,10
set xtics add ("Pi" 3.14159)
@end example
This will automatically generate tic marks every 0.5 along x, but will
also add an explicit labeled tic mark at pi.
@node xtics_timedata, geographic, xtics_list, xtics
@subsubsection xtics timedata
@c ?set xtics timedata
@c ?xtics timedata tics
@c ?set xtics time
@c ?xtics time
@c ?timedata tics
Times and dates are stored internally as a number of seconds.
Input: Non-numeric time and date values are converted to seconds on input using
the format specifier in @ref{timefmt}. Axis range limits, tic placement, and plot
coordinates may be given as quoted dates or times interpreted using @ref{timefmt}.
Output: Axis tic labels are generated using a separate format specified either
by `set format` or `set xtics format`. By default the usual numeric format
specifiers are expected (`set xtics numeric`). Other options are geographic
coordinates (@ref{geographic}), or times or dates (`set xtics time`).
Note: For backward compatibility with earlier gnuplot versions, the command
`set xdata time` will implicitly also do `set xtics time`, and @ref{xdata}
or @ref{xdata} will implicitly reset to `set xtics numeric`. However you
can change this with a later call to `set xtics`.
Examples:
@example
set xdata time # controls interpretation of input data
set timefmt "%d/%m" # format used to read input data
set xtics timedate # controls interpretation of output format
set xtics format "%b %d" # format used for tic labels
set xrange ["01/12":"06/12"]
set xtics "01/12", 172800, "05/12"
@end example
@example
set xdata time
set timefmt "%d/%m"
set xtics format "%b %d" time
set xrange ["01/12":"06/12"]
set xtics ("01/12", "" "03/12", "05/12")
@end example
Both of these will produce tics "Dec 1", "Dec 3", and "Dec 5", but in the
second example the tic at "Dec 3" will be unlabeled.
If the <start>, <incr>, <end> form is used, <incr> defaults to seconds but an
explicit time unit of `minutes`, `hours`, `days`, `weeks`, `months`, or `years`
can be appended. The same is true if only an interval <incr> is given.
Examples
@example
set xtics time 5 years # place labeled tics at five year intervals
set xtics "01-Jan-2000", 1 month, "01-Jan-2001"
@end example
There is also a special time mode for minor tics. See `set mxtics time`.
@node geographic, xtics_logscale, xtics_timedata, xtics
@subsubsection geographic
@c ?commands set xtics geographic
@c ?set xtics geographic
@cindex geographic
@ref{geographic} indicates that x-axis values are to be interpreted as
a geographic coordinate measured in degrees. Use `set xtics format` or
`set format x` to specify the appearance of the axis tick labels.
The format specifiers for geographic data are as follows:
@example
%D = integer degrees
%<width.precision>d = floating point degrees
%M = integer minutes
%<width.precision>m = floating point minutes
%S = integer seconds
%<width.precision>s = floating point seconds
%E = label with E/W instead of +/-
%N = label with N/S instead of +/-
@end example
For example, the command `set format x "%Ddeg %5.2mmin %E"` will cause
x coordinate -1.51 to be labeled as `" 1deg 30.60min W"`.
If the xtics are left in the default state (`set xtics numeric`) the coordinate
will be reported as a decimal number of degrees, and `format` will be assumed
to contain normal numeric format specifiers rather than the special set above.
To output degrees/minutes/seconds in a context other than axis tics, such as
placing labels on a map, you can use the relative time format specifiers
%tH %tM %tS for strptime. See `time_specifiers`, @ref{strptime}.
@node xtics_logscale, xtics_rangelimited, geographic, xtics
@subsubsection xtics logscale
@c ?set xtics logscale
@c ?xtics logscale
@cindex logscale
@opindex logscale
If the @ref{logscale} attribute is set for a tic series along a log-scaled axis,
the tic interval is interpreted as a multiplicative factor rather than a
constant. For example:
@example
# generate a series of tics at y=20 y=200 y=2000 y=20000
set log y
set ytics 20, 10, 50000 logscale
@end example
Note that no tic is placed at y=50000 because it is not in the series 2*10^x.
If the logscale property is disabled, the tic increment will be treated as
an additive constant even for a log-scaled axis. For example:
@example
# generate a series of tics at y=20 y=40 y=60 ... y=200
set log y
set yrange [20:200]
set ytics 20 nologscale
@end example
The @ref{logscale} attribute is set automatically by the `set log` command,
so normally you do not need this keyword unless you want to force a
constant tic interval as in the second example above.
@node xtics_rangelimited, , xtics_logscale, xtics
@subsubsection xtics rangelimited
@c ?set xtics rangelimited
@c ?xtics rangelimited
@cindex rangelimited
@cindex range-frame
This option limits both the auto-generated axis tic labels and the
corresponding plot border to the range of values actually present in the data
that has been plotted. Note that this is independent of the current range
limits for the plot. For example, suppose that the data in "file.dat" all lies
in the range 2 < y < 4. Then the following commands will create a plot for
which the left-hand plot border (y axis) is drawn for only this portion of the
total y range, and only the axis tics in this region are generated.
I.e., the plot will be scaled to the full range on y, but there will be a gap
between 0 and 2 on the left border and another gap between 4 and 10. This
style is sometimes referred to as a `range-frame` graph.
@example
set border 3
set yrange [0:10]
set ytics nomirror rangelimited
plot "file.dat"
@end example
@node xyplane, xzeroaxis, xtics, set-show
@subsection xyplane
@c ?commands set xyplane
@c ?commands show xyplane
@c ?set xyplane
@c ?show xyplane
@cindex xyplane
@opindex xyplane
The @ref{xyplane} command adjusts the position at which the xy plane is drawn
in a 3D plot. The synonym "set ticslevel" is accepted for backwards
compatibility.
Syntax:
@example
set xyplane at <zvalue>
set xyplane relative <frac>
set ticslevel <frac> # equivalent to set xyplane relative
show xyplane
@end example
The form `set xyplane relative <frac>` places the xy plane below the range in
Z, where the distance from the xy plane to Zmin is given as a fraction of the
total range in z. The default value is 0.5. Negative values are permitted,
but tic labels on the three axes may overlap.
The alternative form `set xyplane at <zvalue>` fixes the placement of the
xy plane at a specific Z value regardless of the current z range. Thus to
force the x, y, and z axes to meet at a common origin one would specify
`set xyplane at 0`.
See also @ref{view}, and @ref{zeroaxis}.
@node xzeroaxis, y2data, xyplane, set-show
@subsection xzeroaxis
@c ?commands set xzeroaxis
@c ?commands unset xzeroaxis
@c ?commands show xzeroaxis
@c ?set xzeroaxis
@c ?unset xzeroaxis
@c ?show xzeroaxis
@cindex xzeroaxis
@opindex xzeroaxis
@cindex noxzeroaxis
The @ref{xzeroaxis} command draws a line at y = 0. For details,
please see @ref{zeroaxis}.
@node y2data, y2dtics, xzeroaxis, set-show
@subsection y2data
@c ?commands set y2data
@c ?commands show y2data
@c ?set y2data
@c ?show y2data
@cindex y2data
@opindex y2data
The @ref{y2data} command sets y2 (right-hand) axis data to timeseries
(dates/times). Please see @ref{xdata}.
@node y2dtics, y2label, y2data, set-show
@subsection y2dtics
@c ?commands set y2dtics
@c ?commands unset y2dtics
@c ?set y2dtics
@c ?unset y2dtics
@c ?show y2dtics
@cindex y2dtics
@opindex y2dtics
@cindex noy2dtics
The @ref{y2dtics} command changes tics on the y2 (right-hand) axis to days of
the week. Please see @ref{xdtics} for details.
@node y2label, y2mtics, y2dtics, set-show
@subsection y2label
@c ?commands set y2label
@c ?commands show y2label
@c ?set y2label
@c ?show y2label
@cindex y2label
@opindex y2label
The @ref{y2label} command sets the label for the y2 (right-hand) axis.
Please see @ref{xlabel}.
@node y2mtics, y2range, y2label, set-show
@subsection y2mtics
@c ?commands set y2mtics
@c ?commands unset y2mtics
@c ?commands show y2mtics
@c ?set y2mtics
@c ?unset y2mtics
@c ?show y2mtics
@cindex y2mtics
@opindex y2mtics
@cindex noy2mtics
The @ref{y2mtics} command changes tics on the y2 (right-hand) axis to months
of the year. Please see @ref{xmtics} for details.
@node y2range, y2tics, y2mtics, set-show
@subsection y2range
@c ?commands set y2range
@c ?commands show y2range
@c ?set y2range
@c ?show y2range
@cindex y2range
@opindex y2range
The @ref{y2range} command sets the vertical range that will be displayed on
the y2 (right) axis. See @ref{xrange} for the full set of command options.
See also @ref{link}.
@node y2tics, y2zeroaxis, y2range, set-show
@subsection y2tics
@c ?commands set y2tics
@c ?commands unset y2tics
@c ?commands show y2tics
@c ?set y2tics
@c ?unset y2tics
@c ?show y2tics
@cindex y2tics
@opindex y2tics
@cindex noy2tics
The @ref{y2tics} command controls major (labeled) tics on the y2 (right-hand)
axis. Please see `set xtics` for details.
@node y2zeroaxis, ydata, y2tics, set-show
@subsection y2zeroaxis
@c ?commands set y2zeroaxis
@c ?commands unset y2zeroaxis
@c ?commands show y2zeroaxis
@c ?set y2zeroaxis
@c ?unset y2zeroaxis
@c ?show y2zeroaxis
@cindex y2zeroaxis
@opindex y2zeroaxis
@cindex noy2zeroaxis
The @ref{y2zeroaxis} command draws a line at the origin of the y2 (right-hand)
axis (x2 = 0). For details, please see @ref{zeroaxis}.
@node ydata, ydtics, y2zeroaxis, set-show
@subsection ydata
@c ?commands set ydata
@c ?commands show ydata
@c ?set ydata
@c ?show ydata
@cindex ydata
@opindex ydata
The @ref{ydata} commands sets y-axis data to timeseries (dates/times).
Please see @ref{xdata}.
@node ydtics, ylabel, ydata, set-show
@subsection ydtics
@c ?commands set ydtics
@c ?commands unset ydtics
@c ?commands show ydtics
@c ?set ydtics
@c ?unset ydtics
@c ?show ydtics
@cindex ydtics
@opindex ydtics
@cindex noydtics
The @ref{ydtics} command changes tics on the y axis to days of the week.
Please see @ref{xdtics} for details.
@node ylabel, ymtics, ydtics, set-show
@subsection ylabel
@c ?commands set ylabel
@c ?commands show ylabel
@c ?set ylabel
@c ?show ylabel
@cindex ylabel
@opindex ylabel
This command sets the label for the y axis. Please see @ref{xlabel}.
@node ymtics, yrange, ylabel, set-show
@subsection ymtics
@c ?commands set ymtics
@c ?commands unset ymtics
@c ?commands show ymtics
@c ?set ymtics
@c ?unset ymtics
@c ?show ymtics
@cindex ymtics
@opindex ymtics
@cindex noymtics
The @ref{ymtics} command changes tics on the y axis to months of the year.
Please see @ref{xmtics} for details.
@node yrange, ytics, ymtics, set-show
@subsection yrange
@c ?commands set yrange
@c ?commands show yrange
@c ?set yrange
@c ?show yrange
@cindex yrange
@opindex yrange
The @ref{yrange} command sets the vertical range that will be displayed on
the y axis. Please see @ref{xrange} for details.
@node ytics, yzeroaxis, yrange, set-show
@subsection ytics
@c ?commands set ytics
@c ?commands unset ytics
@c ?commands show ytics
@c ?set ytics
@c ?unset ytics
@c ?show ytics
@cindex ytics
@opindex ytics
@cindex noytics
The @ref{ytics} command controls major (labeled) tics on the y axis.
Please see `set xtics` for details.
@node yzeroaxis, zdata, ytics, set-show
@subsection yzeroaxis
@c ?commands set yzeroaxis
@c ?commands unset yzeroaxis
@c ?commands show yzeroaxis
@c ?set yzeroaxis
@c ?unset yzeroaxis
@c ?show yzeroaxis
@cindex yzeroaxis
@opindex yzeroaxis
@cindex noyzeroaxis
The @ref{yzeroaxis} command draws a line at x = 0. For details,
please see @ref{zeroaxis}.
@node zdata, zdtics, yzeroaxis, set-show
@subsection zdata
@c ?commands set zdata
@c ?commands show zdata
@c ?set zdata
@c ?show zdata
@cindex zdata
@opindex zdata
The @ref{zdata} command sets zaxis data to timeseries (dates/times).
Please see @ref{xdata}.
@node zdtics, zzeroaxis, zdata, set-show
@subsection zdtics
@c ?commands set zdtics
@c ?commands unset zdtics
@c ?commands show zdtics
@c ?set zdtics
@c ?unset zdtics
@c ?show zdtics
@cindex zdtics
@opindex zdtics
@cindex nozdtics
The @ref{zdtics} command changes tics on the z axis to days of the week.
Please see @ref{xdtics} for details.
@node zzeroaxis, cbdata, zdtics, set-show
@subsection zzeroaxis
@c ?commands set zzeroaxis
@c ?commands unset zzeroaxis
@c ?commands show zzeroaxis
@c ?set zzeroaxis
@c ?unset zzeroaxis
@c ?show zzeroaxis
@cindex zzeroaxis
@opindex zzeroaxis
@cindex nozzeroaxis
The @ref{zzeroaxis} command draws a line through (x=0,y=0). This has no effect
on 2D plots, including splot with `set view map`. For details, please
see @ref{zeroaxis} and @ref{xyplane}.
@node cbdata, cbdtics, zzeroaxis, set-show
@subsection cbdata
@c ?commands set cbdata
@c ?commands show cbdata
@c ?set cbdata
@c ?show cbdata
@cindex cbdata
@opindex cbdata
Set color box axis data to timeseries (dates/times). Please see @ref{xdata}.
@node cbdtics, zero, cbdata, set-show
@subsection cbdtics
@c ?commands set cbdtics
@c ?commands unset cbdtics
@c ?commands show cbdtics
@c ?set cbdtics
@c ?unset cbdtics
@c ?show cbdtics
@cindex cbdtics
@opindex cbdtics
@cindex nocbdtics
The @ref{cbdtics} command changes tics on the color box axis to days of the
week. Please see @ref{xdtics} for details.
@node zero, zeroaxis, cbdtics, set-show
@subsection zero
@c ?commands set zero
@c ?commands show zero
@c ?set zero
@c ?show zero
@cindex zero
@opindex zero
The `zero` value is the default threshold for values approaching 0.0.
Syntax:
@example
set zero <expression>
show zero
@end example
`gnuplot` will not plot a point if its imaginary part is greater in magnitude
than the `zero` threshold. This threshold is also used in various other
parts of `gnuplot` as a (crude) numerical-error threshold. The default
`zero` value is 1e-8. `zero` values larger than 1e-3 (the reciprocal of the
number of pixels in a typical bitmap display) should probably be avoided, but
it is not unreasonable to set `zero` to 0.0.
@node zeroaxis, zlabel, zero, set-show
@subsection zeroaxis
@c ?commands set zeroaxis
@c ?commands unset zeroaxis
@c ?commands show zeroaxis
@c ?set zeroaxis
@c ?unset zeroaxis
@c ?show zeroaxis
@cindex zeroaxis
@opindex zeroaxis
The x axis may be drawn by @ref{xzeroaxis} and removed by @ref{xzeroaxis}.
Similar commands behave similarly for the y, x2, y2, and z axes.
`set zeroaxis ...` (no prefix) acts on the x, y, and z axes jointly.
Syntax:
@example
set @{x|x2|y|y2|z@}zeroaxis @{ @{linestyle | ls <line_style>@}
| @{linetype | lt <line_type>@}
@{linewidth | lw <line_width>@}
@{linecolor | lc <colorspec>@}
@{dashtype | dt <dashtype>@} @}
unset @{x|x2|y|y2|z@}zeroaxis
show @{x|y|z@}zeroaxis
@end example
By default, these options are off. The selected zero axis is drawn
with a line of type <line_type>, width <line_width>, color <colorspec>, and
dash type <dashtype> (if supported by the terminal driver currently in use),
or a user-defined style <line_style> (see `set style line`).
If no linetype is specified, any zero axes selected will be drawn
using the axis linetype (linetype 0).
Examples:
To simply have the y=0 axis drawn visibly:
@example
set xzeroaxis
@end example
If you want a thick line in a different color or pattern, instead:
@example
set xzeroaxis linetype 3 linewidth 2.5
@end example
@node zlabel, zmtics, zeroaxis, set-show
@subsection zlabel
@c ?commands set zlabel
@c ?commands show zlabel
@c ?set zlabel
@c ?show zlabel
@cindex zlabel
@opindex zlabel
This command sets the label for the z axis. Please see @ref{xlabel}.
@node zmtics, zrange, zlabel, set-show
@subsection zmtics
@c ?commands set zmtics
@c ?commands unset zmtics
@c ?commands show zmtics
@c ?set zmtics
@c ?unset zmtics
@c ?show zmtics
@cindex zmtics
@opindex zmtics
@cindex nozmtics
The @ref{zmtics} command changes tics on the z axis to months of the year.
Please see @ref{xmtics} for details.
@node zrange, ztics, zmtics, set-show
@subsection zrange
@c ?commands set zrange
@c ?commands show zrange
@c ?set zrange
@c ?show zrange
@cindex zrange
@opindex zrange
The @ref{zrange} command sets the range that will be displayed on the z axis.
The zrange is used only by `splot` and is ignored by `plot`. Please see
@ref{xrange} for details.
@node ztics, cblabel, zrange, set-show
@subsection ztics
@c ?commands set ztics
@c ?commands unset ztics
@c ?commands show ztics
@c ?set ztics
@c ?unset ztics
@c ?show ztics
@cindex ztics
@opindex ztics
@cindex noztics
The @ref{ztics} command controls major (labeled) tics on the z axis.
Please see `set xtics` for details.
@node cblabel, cbmtics, ztics, set-show
@subsection cblabel
@c ?commands set cblabel
@c ?commands show cblabel
@c ?set cblabel
@c ?show cblabel
@cindex cblabel
@opindex cblabel
This command sets the label for the color box axis. Please see @ref{xlabel}.
@node cbmtics, cbrange, cblabel, set-show
@subsection cbmtics
@c ?commands set cbmtics
@c ?commands unset cbmtics
@c ?commands show cbmtics
@c ?set cbmtics
@c ?unset cbmtics
@c ?show cbmtics
@cindex cbmtics
@opindex cbmtics
@cindex nocbmtics
The @ref{cbmtics} command changes tics on the color box axis to months of the
year. Please see @ref{xmtics} for details.
@node cbrange, cbtics, cbmtics, set-show
@subsection cbrange
@c ?commands set cbrange
@c ?commands show cbrange
@c ?set cbrange
@c ?show cbrange
@cindex cbrange
@opindex cbrange
The @ref{cbrange} command sets the range of values which are colored using
the current @ref{palette} by styles `with pm3d`, `with image` and @ref{palette}.
Values outside of the color range use color of the nearest extreme.
If the cb-axis is autoscaled in `splot`, then the colorbox range is taken from
@ref{zrange}. Points drawn in `splot ... pm3d|palette` can be filtered by using
different @ref{zrange} and @ref{cbrange}.
Please see @ref{xrange} for details on @ref{cbrange} syntax. See also
@ref{palette} and `set colorbox`.
@node cbtics, , cbrange, set-show
@subsection cbtics
@c ?commands set cbtics
@c ?commands unset cbtics
@c ?commands show cbtics
@c ?set cbtics
@c ?unset cbtics
@c ?show cbtics
@cindex cbtics
@opindex cbtics
@cindex nocbtics
The @ref{cbtics} command controls major (labeled) tics on the color box axis.
Please see `set xtics` for details.
@node shell, show, set-show, Commands
@section shell
@c ?commands shell
@cindex shell
@cmindex shell
The @ref{shell} command spawns an interactive shell. To return to `gnuplot`,
type @ref{exit} or the END-OF-FILE character if using Unix, or @ref{exit} if using
MS-DOS or OS/2.
The @ref{shell} command ignores anything else on the gnuplot command line.
If instead you want to pass a command string to a shell for immediate
execution, use the @ref{system} function or the shortcut `!`. See @ref{system}.
Examples:
@example
shell
system "print previous_plot.ps"
! print previous_plot.ps
current_time = system("date")
@end example
@node show, splot, shell, Commands
@section show
Most `set` commands have a corresponding show command with no special options.
For example
@example
show linetype 3
@end example
will report the current properties in effect from previous commands like
@example
set linetype 3 linewidth 2 dashpattern '.-'
@end example
A few `show` commands that diverge from this pattern are documented separately.
@menu
* show_colornames::
* show_functions::
* show_palette::
* show_plot::
* show_variables::
@end menu
@node show_colornames, show_functions, show, show
@subsection show colornames
@c ?commands show colornames
@c ?show colornames
@c ?show palette colornames
Gnuplot knows about 100 colors by name (see @ref{colornames}). You can dump
a list of these to the terminal by using the command @ref{colornames}.
There is currently no way to set new names.
@node show_functions, show_palette, show_colornames, show
@subsection show functions
@c ?commands show functions
@c ?show functions
The @ref{functions} command lists all user-defined functions and their
definitions.
Syntax:
@example
show functions
@end example
For information about the definition and usage of functions in `gnuplot`,
please see `expressions`.
See also
@uref{http://www.gnuplot.info/demo/spline.html,splines as user defined functions (spline.dem)
}
and
@uref{http://www.gnuplot.info/demo/airfoil.html,use of functions and complex variables for airfoils (airfoil.dem).
}
@node show_palette, show_plot, show_functions, show
@subsection show palette
@c ?commands show palette
@c ?show palette
@cindex palette
@opindex palette
Syntax:
@example
show palette
show palette palette @{<ncolors>@} @{@{float | int | hex@}@}
show palette gradient
show palette rgbformulae
test palette
@end example
The @ref{palette} command will plot the R,G,B profiles for the current
palette and store the profile values in a datablock $PALETTE.
@menu
* show_palette_gradient::
* show_palette_palette::
* show_palette_rgbformulae::
@end menu
@node show_palette_gradient, show_palette_palette, show_palette, show_palette
@subsubsection show palette gradient
@c ?commands show palette gradient
@c ?show palette gradient
`show palette gradient` displays the piecewise gradient established by a
prior @ref{defined} command. If the current palette is based on
rgbformulae or a set of predefined values then this command does nothing.
@node show_palette_palette, show_palette_rgbformulae, show_palette_gradient, show_palette
@subsubsection show palette palette
@c ?commands show palette palette
@c ?show palette palette
@example
show palette palette @{<ncolors>@} @{@{float | int | hex@}@}
@end example
`show palette palette <n>` prints to the screen or to the file given by
`set print` a table of color components for each entry in the current palette.
By default the continuous palette is sampled in 128 increments. Specifying
<ncolors> will sample the palette evenly at this number of increments
(rather than 128). The default is a long listing in the form
@example
0. gray=0.0000, (r,g,b)=(0.0000,0.0000,0.0000), #000000 = 0 0 0
1. gray=0.1111, (r,g,b)=(0.3333,0.0014,0.6428), #5500a4 = 85 0 164
2. gray=0.2222, (r,g,b)=(0.4714,0.0110,0.9848), #7803fb = 120 3 251
...
@end example
An optional trailing keyword @ref{float}, `int`, or `hex` instead prints only
single representation of the color components per entry:
@example
int: 85 0 164
float: 0.3333 0.0014 0.6428
hex: 0x5500a4
@end example
By using `set print` to direct this output to a file, the current gnuplot
color palette can be loaded into other imaging applications such as Octave.
By using `set print` to direct output to a datablock, the current palette
can be saved so that it is available to future plot commands even if the
active palette is redefined. This allows creating plots that draw from
multiple palettes, although the colorbox still represents only the current
active palette.
@node show_palette_rgbformulae, , show_palette_palette, show_palette
@subsubsection show palette rgbformulae
@c ?commands show palette rgbformulae
@c ?show palette rgbformulae
@ref{rgbformulae} prints the available fixed gray -->
color transformation formulae. It does _not_ show the state of the
current palette.
@node show_plot, show_variables, show_palette, show
@subsection show plot
@c ?commands show plot
@c ?show plot
The `show plot` command shows the most recent plotting command as it results
from the last `plot` and/or `splot` and possible subsequent @ref{replot} commands.
In addition, the `show plot add2history` command adds this current plot
command into the @ref{history}. It is useful if you have used @ref{replot} to add
more curves to the current plot and you want to edit the whole command now.
@node show_variables, , show_plot, show
@subsection show variables
@c ?commands show variables
@c ?show variables all
@c ?show variables
The `show variables` command lists the current value of user-defined and
internal variables. Gnuplot internally defines variables whose names begin
with GPVAL_, MOUSE_, FIT_, and TERM_.
Syntax:
@example
show variables # show variables that do not begin with GPVAL_
show variables all # show all variables including those beginning GPVAL_
show variables NAME # show only variables beginning with NAME
@end example
@node splot, stats_(Statistical_Summary), show, Commands
@section splot
@c ?commands splot
@cindex splot
@cmindex splot
`splot` is the command for drawing 3D plots (well, actually projections on a 2D
surface, but you knew that). It is the 3D equivalent of the `plot` command.
`splot` provides only a single x, y, and z axis; there is no equivalent to the
x2 and y2 secondary axes provided by `plot`.
See the `plot` command for many options available in both 2D and 3D plots.
Syntax:
@example
splot @{<ranges>@}
@{<iteration>@}
<function> | @{@{<file name> | <datablock name>@} @{datafile-modifiers@}@}
| <voxelgridname>
| keyentry
@{<title-spec>@} @{with <style>@}
@{, @{definitions@{,@}@} <function> ...@}
@end example
The `splot` command operates on a data generated by a function, read from
a data file, or stored previously in a named data block. Data file names
are usually provided as a quoted string. The function can be a mathematical
expression, or a triple of mathematical expressions in parametric mode.
Starting in version 5.4 `splot` can operate on voxel data.
See `voxel-grids`, @ref{vgrid}, @ref{vxrange}. At present voxel grids can be
be plotted using styles @ref{dots}, `with points`, or @ref{isosurface}.
Voxel grid values can also be referenced in the `using` specifiers of other
plot styles, for example to assign colors.
By default `splot` draws the xy plane completely below the plotted data.
The offset between the lowest ztic and the xy plane can be changed by @ref{xyplane}. The orientation of a `splot` projection is controlled by
@ref{view}. See @ref{view} and @ref{xyplane} for more information.
The syntax for setting ranges on the `splot` command is the same as for `plot`.
In non-parametric mode, ranges must be given in the order
@example
splot [<xrange>][<yrange>][<zrange>] ...
@end example
In parametric mode, the order is
@example
splot [<urange>][<vrange>][<xrange>][<yrange>][<zrange>] ...
@end example
The @ref{title} option is the same as in `plot`. The operation of `with` is also
the same as in `plot` except that not all 2D plotting styles are available.
The @ref{datafile} options have more differences.
As an alternative to surfaces drawn using parametric or function mode, the
pseudo-file '++' can be used to generate samples on a grid in the xy plane.
See also `show plot`, `set view map`, and @ref{sampling}.
@menu
* data-file::
* grid_data::
* splot_surfaces::
* voxel-grid::
@end menu
@node data-file, grid_data, splot, splot
@subsection data-file
@c ?commands splot datafile
@c ?splot datafile
`Splot`, like `plot`, can display from a file.
Syntax:
@example
splot '<file_name>' @{binary <binary list>@}
@{@{nonuniform|sparse@} matrix@}
@{index <index list>@}
@{every <every list>@}
@{using <using list>@}
@end example
The special filenames `""` and `"-"` are permitted, as in `plot`.
See @ref{special-filenames}.
Keywords @ref{binary} and @ref{matrix} indicate that the data are in a special form,
@ref{index} selects which data sets in a multi-data-set file are plotted,
@ref{every} specifies a subset of lines within a single data set,
`using` determines how the columns within a single record are interpreted.
The options @ref{index} and @ref{every} behave the same way as with `plot`; `using`
does so also, except that the `using` list must provide three entries
instead of two.
The `plot` option @ref{smooth} is not available for `splot`, but
@ref{cntrparam} and @ref{dgrid3d} provide limited smoothing capabilities.
Data file organization is essentially the same as for `plot`, except that
each point is an (x,y,z) triple. If only a single value is provided, it
will be used for z, the block number will be used for y, and the index
of the data point in the block will be used for x. If two or four values
are provided, `gnuplot` uses the last value for calculating the color in
pm3d plots. Three values are interpreted as an (x,y,z) triple. Additional
values are generally used as errors, which can be used by @ref{fit}.
Single blank records separate blocks of data in a `splot` datafile; `splot`
treats blocks as the equivalent of function y-isolines. No line will join
points separated by a blank record. If all blocks contain the same number of
points, `gnuplot` will draw cross-isolines between points in the blocks,
connecting corresponding points. This is termed "grid data", and is required
for drawing a surface, for contouring (`set contour`) and hidden-line removal
(@ref{hidden3d}). See also `splot grid_data`.
@menu
* matrix::
* example_datafile_::
@end menu
@node matrix, example_datafile_, data-file, data-file
@subsubsection matrix
@c ?commands plot datafile matrix
@c ?commands splot datafile matrix
@c ?plot datafile matrix
@c ?splot datafile matrix
@c ?binary matrix
@cindex matrix
Matrix data can be input in several formats (`uniform`, `nonuniform`, `sparse`)
from either text or binary files.
The first variant assumes a uniform grid of x and y coordinates and assigns
each value in the input matrix to one element M[i,j] of this uniform grid.
The assigned x coordinates are the integers [0:NCOLS-1].
The assigned y coordinates are the integers [0:NROWS-1].
This is the default for text data input, but not for binary input.
See `uniform` for examples and additional keywords.
The second variant handles a non-uniform grid with explicit x and y
coordinates. The first row of input data contains the y coordinates;
the first column of input data contains the x coordinates.
For binary input data, the first element of the first row must contain the
number of columns. This is the default for @ref{matrix} input,
but requires an additional keyword `nonuniform` for text input data.
See `nonuniform` for examples.
The @ref{matrix} variant defines a uniform grid into which any number of
individual point values are read from the input file, one per line,
in any order. This is primarily intended for the generation of heatmaps from
incomplete data.
See `sparse` for examples.
@noindent --- UNIFORM MATRIX ---
@c ?commands plot datafile matrix uniform
@c ?commands splot datafile matrix uniform
@c ?datafile matrix uniform
@c ?matrix uniform
@c ?binary matrix uniform
@cindex uniform
Example commands for plotting uniform matrix data:
@example
splot 'file' matrix using 1:2:3 # text input
splot 'file' binary general using 1:2:3 # binary input
@end example
In a uniform grid matrix the z-values are read in a row at a time, i. e.,
@example
z11 z12 z13 z14 ...
z21 z22 z23 z24 ...
z31 z32 z33 z34 ...
@end example
and so forth.
For text input, if the first row contains column labels rather than data,
use the additional keyword @ref{columnheaders}. Similarly if the first field
in each row contains a label rather than data, use the additional keyword
`rowheaders`. Here is an example that uses both:
@example
$DATA << EOD
xxx A B C D
aa z11 z12 z13 z14
bb z21 z22 z23 z24
cc z31 z32 z33 z34
EOD
plot $DATA matrix columnheaders rowheaders with image
@end example
For text input, a blank line or comment line ends the matrix, and starts a new
data block. You can select among the data blocks in a file by the @ref{index}
option to the `splot` command, as usual. The columnheaders option, if present,
is applied only to the first data block.
@noindent --- NONUNIFORM MATRIX ---
@c ?commands plot datafile matrix nonuniform
@c ?commands splot datafile matrix nonuniform
@c ?datafile matrix nonuniform
@c ?matrix nonuniform
@c ?binary matrix nonuniform
@cindex nonuniform
The first row of input data contains the y coordinates.
The first column of input data contains the x coordinates.
For binary input data, the first field of the first row must contain the
number of columns. (This number is ignored for text input).
Example commands for plotting non-uniform matrix data:
@example
splot 'file' nonuniform matrix using 1:2:3 # text input
splot 'file' binary matrix using 1:2:3 # binary input
@end example
Thus the data organization for non-uniform matrix input is
@example
<N+1> <x0> <x1> <x2> ... <xN>
<y0> <z0,0> <z0,1> <z0,2> ... <z0,N>
<y1> <z1,0> <z1,1> <z1,2> ... <z1,N>
: : : : ... :
@end example
which is then converted into triplets:
@example
<x0> <y0> <z0,0>
<x0> <y1> <z0,1>
<x0> <y2> <z0,2>
: : :
<x0> <yN> <z0,N>
@end example
@example
<x1> <y0> <z1,0>
<x1> <y1> <z1,1>
: : :
@end example
These triplets are then converted into `gnuplot` iso-curves and then
`gnuplot` proceeds in the usual manner to do the rest of the plotting.
@noindent --- SPARSE MATRIX ---
@c ?datafile sparse matrix
@cindex sparse
Syntax:
@example
sparse matrix=(cols,rows) origin=(x0,y0) dx=<delx> dy=<dely>
@end example
The `sparse` matrix variant defines a uniform grid as part of the
`plot` or `splot` command line. The grid is initially empty.
Any number of individual points are then read from the input file,
one per line, and assigned to the nearest grid point. I.e. a data line
@example
x y value
@end example
is evaluated as
@example
i = (x - x0) / delx
j = (y - y0) / dely
matrix[i,j] = value
@end example
The size of the matrix is required.
@ref{origin} (optional) defaults to origin=(0,0).
`dx` (optional) defaults to dx=1.
`dy` (optional) defaults to dy=dx.
The intended use of this variant is to generate heatmaps from unordered,
possibly incomplete, data using the `image`, @ref{rgbimage}, or @ref{rgbalpha}
plot styles. The example below generates a distance matrix in the form
of a 4x4 heatmap with only the upper triangle elements present:
@example
$DATA << EOD
1 1 10
1 2 20
1 3 30
1 4 40
2 2 10
2 3 50
2 4 60
3 3 10
3 4 20
4 4 10
EOD
plot $DATA sparse matrix=(4,4) origin=(1,1) with image
@end example
@noindent --- EVERY ---
@c ?datafile matrix every
@c ?matrix every
The @ref{every} keyword has special meaning when used with matrix data.
Rather than applying to blocks of single points, it applies to rows and
column values. Note that matrix rows and columns are indexed starting
from 0, so the row with index N is the (N+1)th row.
Syntax:
@example
plot 'file' matrix every @{<column_incr>@}
@{:@{<row_incr>@}
@{:@{<start_column>@}
@{:@{<start_row>@}
@{:@{<end_column>@}
@{:<end_row>@}@}@}@}@}
@end example
Examples:
@example
plot 'file' matrix every :::N::N # plot all values in row with index N
plot 'file' matrix every ::3::7 # plot columns 3 to 7 for all rows
plot 'file' matrix every ::3:0:7:4 # submatrix bounded by [3,0] and [7,4]
@end example
@noindent --- EXAMPLES ---
@c ?commands plot datafile matrix examples
@c ?commands splot datafile matrix examples
@c ?datafile matrix examples
@c ?matrix examples
@c ?binary matrix examples
A collection of matrix and vector manipulation routines (in C) is provided
in `binary.c`. The routine to write binary data is
@example
int fwrite_matrix(file,m,nrl,nrl,ncl,nch,row_title,column_title)
@end example
An example of using these routines is provided in the file `bf_test.c`, which
generates binary files for the demo file `demo/binary.dem`.
Usage in `plot`:
@example
plot 'a.dat' matrix
plot 'a.dat' matrix using 1:3
plot 'a.gpbin' @{matrix@} binary using 1:3
@end example
will plot rows of the matrix, while using 2:3 will plot matrix columns, and
using 1:2 the point coordinates (rather useless). Applying the @ref{every} option
you can specify explicit rows and columns.
Example -- rescale axes of a matrix in a text file:
@example
splot `a.dat` matrix using (1+$1):(1+$2*10):3
@end example
Example -- plot the 3rd row of a matrix in a text file:
@example
plot 'a.dat' matrix using 1:3 every 1:999:1:2
@end example
(rows are enumerated from 0, thus 2 instead of 3).
Gnuplot can read matrix binary files by use of the option @ref{binary} appearing
without keyword qualifications unique to general binary, i.e., `array`,
@ref{record}, `format`, or @ref{filetype}. Other general binary keywords for
translation should also apply to matrix binary. (See @ref{general} for
more details.)
@node example_datafile_, , matrix, data-file
@subsubsection example datafile
@c ?commands splot datafile example
@c ?splot datafile example
@c ?splot example
A simple example of plotting a 3D data file is
@example
splot 'datafile.dat'
@end example
where the file "datafile.dat" might contain:
@example
# The valley of the Gnu.
0 0 10
0 1 10
0 2 10
@end example
@example
1 0 10
1 1 5
1 2 10
@end example
@example
2 0 10
2 1 1
2 2 10
@end example
@example
3 0 10
3 1 0
3 2 10
@end example
Note that "datafile.dat" defines a 4 by 3 grid ( 4 rows of 3 points each ).
Rows (blocks) are separated by blank records.
Note also that the x value is held constant within each dataline. If you
instead keep y constant, and plot with hidden-line removal enabled, you will
find that the surface is drawn 'inside-out'.
Actually for grid data it is not necessary to keep the x values constant
within a block, nor is it necessary to keep the same sequence of y
values. `gnuplot` requires only that the number of points be the same for
each block. However since the surface mesh, from which contours are
derived, connects sequentially corresponding points, the effect of an
irregular grid on a surface plot is unpredictable and should be examined
on a case-by-case basis.
@node grid_data, splot_surfaces, data-file, splot
@subsection grid data
@c ?commands splot grid_data
@c ?splot grid_data
@cindex grid_data
The 3D routines are designed for points in a grid format, with one sample,
datapoint, at each mesh intersection; the datapoints may originate from
either evaluating a function, see @ref{isosamples}, or reading a datafile,
see @ref{datafile}. The term "isoline" is applied to the mesh lines for
both functions and data. Note that the mesh need not be rectangular in x
and y, as it may be parameterized in u and v, see @ref{isosamples}.
However, `gnuplot` does not require that format. In the case of functions,
'samples' need not be equal to 'isosamples', i.e., not every x-isoline
sample need intersect a y-isoline. In the case of data files, if there
are an equal number of scattered data points in each block, then
"isolines" will connect the points in a block, and "cross-isolines"
will connect the corresponding points in each block to generate a
"surface". In either case, contour and hidden3d modes may give different
plots than if the points were in the intended format.
Scattered data can be fit to a grid before plotting. See @ref{dgrid3d}.
The contour code tests for z intensity along a line between a point on a
y-isoline and the corresponding point in the next y-isoline. Thus a `splot`
contour of a surface with samples on the x-isolines that do not coincide with
a y-isoline intersection will ignore such samples. Try:
@example
set xrange [-pi/2:pi/2]; set yrange [-pi/2:pi/2]
set style function lp
set contour
set isosamples 10,10; set samples 10,10;
splot cos(x)*cos(y)
set samples 4,10; replot
set samples 10,4; replot
@end example
@node splot_surfaces, voxel-grid, grid_data, splot
@subsection splot surfaces
@c ?commands splot surfaces
@c ?splot surfaces
`splot` can display a surface as a collection of points, or by connecting
those points. As with `plot`, the points may be read from a data file or
result from evaluation of a function at specified intervals, see
@ref{isosamples}. The surface may be approximated by connecting the points
with straight line segments, see `set surface`, in which case the surface
can be made opaque with `set hidden3d.` The orientation from which the 3d
surface is viewed can be changed with @ref{view}.
Additionally, for points in a grid format, `splot` can interpolate points
having a common amplitude (see `set contour`) and can then connect those
new points to display contour lines, either directly with straight-line
segments or smoothed lines (see @ref{cntrparam}). Functions are already
evaluated in a grid format, determined by @ref{isosamples} and @ref{samples},
while file data must either be in a grid format, as described in @ref{data-file},
or be used to generate a grid (see @ref{dgrid3d}).
Contour lines may be displayed either on the surface or projected onto the
base. The base projections of the contour lines may be written to a
file, and then read with `plot`, to take advantage of `plot`'s additional
formatting capabilities.
@node voxel-grid, , splot_surfaces, splot
@subsection voxel-grid
@c ?commands splot voxel-grid
@c ?splot voxel-grids
@cindex voxel-grids
Syntax:
@example
splot $voxelgridname with @{dots|points@} @{above <threshold>@} ...
splot $voxelgridname with isosurface @{level <threshold>@} ...
@end example
Voxel data can be plotted with dots or points marking individual voxels whose
value is above the specified threshold value (default threshold = 0).
Color/pointtype/linewidth properties can be appended as usual.
At many view angles the voxel grid points will occlude each other or create
Moiré artifacts on the display. These effects can be avoided by introducing
jitter so that the displayed dot or point is displaced randomly from the
true voxel grid coordinate. See @ref{jitter}.
Dense voxel grids can be down-sampled by using the `pointinterval` property
(`pi` for short) to reduce the number of points drawn.
@example
splot $vgrid with points pointtype 6 pointinterval 2
@end example
@ref{isosurface} will create a tessellated surface in 3D enclosing all voxels
with value greater than the requested threshold. The surface placement is
adjusted by linear interpolation to pass through the threshold value itself.
See @ref{vgrid}, @ref{vfill}.
See demos `vplot.dem`, `isosurface.dem`.
@node stats_(Statistical_Summary), system_, splot, Commands
@section stats (Statistical Summary)
@c ?commands stats
@cindex stats
@cindex statistics
@cindex filter
Syntax:
@example
stats @{<ranges>@} 'filename' @{matrix | using N@{:M@}@} @{name 'prefix'@} @{@{no@}output@}
stats $voxelgridname @{name 'prefix'@}
@end example
This command prepares a statistical summary of the data in one or two columns
of a file. The using specifier is interpreted in the same way as for plot
commands. See `plot` for details on the @ref{index}, @ref{every}, and `using`
directives. Data points are filtered against both xrange and yrange before
analysis. See @ref{xrange}. The summary is printed to the screen by default.
Output can be redirected to a file by prior use of the command `set print`,
or suppressed altogether using the `nooutput` option.
If the file cannot be found or cannot be read, a non-fatal warning is issued.
This can be used to test for the existence of a file without generating a
program error. See `stats test`.
In addition to printed output, the program stores the individual statistics
into three sets of variables.
The first set of variables reports how the data is laid out in the file.
The array of column headers is generated only if option
@ref{columnheaders} is in effect:
@example
STATS_records # total number N of in-range data records
STATS_outofrange # number of records filtered out by range limits
STATS_invalid # number of invalid/incomplete/missing records
STATS_blank # number of blank lines in the file
STATS_blocks # number of indexable blocks of data in the file
STATS_columns # number of data columns in the first row of data
STATS_column_header # array of strings holding column headers found
@end example
The second set reports properties of the in-range data from a single column.
This column is treated as y. If the y axis is autoscaled then no range limits
are applied. Otherwise only values in the range [ymin:ymax] are considered.
If two columns are analysed jointly by a single `stats` command, the suffix
"_x" or "_y" is appended to each variable name.
I.e. STATS_min_x is the minimum value found in the first column, while
STATS_min_y is the minimum value found in the second column.
In this case points are filtered by testing against both xrange and yrange.
@example
STATS_min # minimum value of in-range data points
STATS_max # maximum value of in-range data points
STATS_index_min # index i for which data[i] == STATS_min
STATS_index_max # index i for which data[i] == STATS_max
STATS_lo_quartile # value of the lower (1st) quartile boundary
STATS_median # median value
STATS_up_quartile # value of the upper (3rd) quartile boundary
STATS_mean # mean value of the in-range data points
STATS_ssd # sample standard deviation of the in-range data
= sqrt( Sum[(y-ymean)^2] / (N-1) )
STATS_stddev # population standard deviation of the in-range data
= sqrt( Sum[(y-ymean)^2] / N )
STATS_sum # sum
STATS_sumsq # sum of squares
STATS_skewness # skewness of the in-range data points
STATS_kurtosis # kurtosis of the in-range data points
STATS_adev # mean absolute deviation of the in-range data points
STATS_mean_err # standard error of the mean value
STATS_stddev_err # standard error of the standard deviation
STATS_skewness_err # standard error of the skewness
STATS_kurtosis_err # standard error of the kurtosis
@end example
The third set of variables is only relevant to analysis of two data columns.
@example
STATS_correlation # sample correlation coefficient between x and y values
STATS_slope # A corresponding to a linear fit y = Ax + B
STATS_slope_err # uncertainty of A
STATS_intercept # B corresponding to a linear fit y = Ax + B
STATS_intercept_err # uncertainty of B
STATS_sumxy # sum of x*y
STATS_pos_min_y # x coordinate of a point with minimum y value
STATS_pos_max_y # x coordinate of a point with maximum y value
@end example
Keyword @ref{matrix} indicates that the input consists of a matrix (see @ref{matrix});
the usual statistics are generated by considering all matrix elements.
The matrix dimensions are saved in variables STATS_size_x and STATS_size_y.
@example
STATS_size_x # number of matrix columns
STATS_size_y # number of matrix rows
@end example
The index reported in STATS_index_xxx corresponds to the value of pseudo-column
0 ($0) in plot commands. I.e. the first point has index 0, the last point
has index N-1.
Data values are sorted to find the median and quartile boundaries.
If the total number of points N is odd, then the median value is taken as the
value of data point (N+1)/2. If N is even, then the median is reported as the
mean value of points N/2 and (N+2)/2. Equivalent treatment is used for the
quartile boundaries.
For an example of using the `stats` command to annotate a subsequent plot, see
@uref{http://www.gnuplot.info/demo/stats.html,stats.dem.
}
The `stats` command in this version of gnuplot can handle log-scaled data, but
not the content of time/date fields (`set xdata time` or `set ydata time`).
This restriction may be relaxed in a future version.
@menu
* name::
* test_for_existence_of_a_file::
* voxelgrid::
@end menu
@node name, test_for_existence_of_a_file, stats_(Statistical_Summary), stats_(Statistical_Summary)
@subsection name
@c ?stats name
@c ?statistics name
It may be convenient to track the statistics from more than one file or data
column in parallel. The @ref{name} option causes the default prefix "STATS" to be
replaced by a user-specified string. For example, the mean value of column 2
data from two different files could be compared by
@example
stats "file1.dat" using 2 name "A"
stats "file2.dat" using 2 name "B"
if (A_mean < B_mean) @{...@}
@end example
@cindex columnheader
Instead of providing a string constant as the name, the keyword `columnheader`
or function `columnheader(N)` can be used to generate the name from whatever
string is found in that column in the first row of the data file:
@example
do for [COL=5:8] @{ stats 'datafile' using COL name columnheader @}
@end example
@node test_for_existence_of_a_file, voxelgrid, name, stats_(Statistical_Summary)
@subsection test for existence of a file
@c ?stats test
@c ?statistics test
Trying to plot a nonexistent or unreadable file will generate an error that
halts the progress of a script or iteration. The stats command can be used
to avoid this as in the example below
@example
do for [i=first:last] @{
filename = sprintf("file%02d.dat", i)
stats filename nooutput
if (GPVAL_ERRNO) @{
print GPVAL_ERRMSG
continue
@}
plot filename title filename
@}
@end example
@node voxelgrid, , test_for_existence_of_a_file, stats_(Statistical_Summary)
@subsection voxelgrid
@c ?stats voxelgrid
@c ?statistics voxelgrid
@example
stats $vgridname @{name "prefix"@}
@end example
The stats command can be used to interrogate the content of a voxel grid.
It yields the same information as @ref{vgrid} but saves it in variables
accessible for use in a script.
@example
STATS_min # minimum non-zero value over all voxels in grid
STATS_max # maximum value over all voxels in grid
STATS_mean # mean value of non-zero voxels in grid
STATS_stderr # standard deviation of non-zero voxel values
STATS_sum # sum over all values in grid
STATS_nonzero # number of non-zero voxels
@end example
@node system_, test, stats_(Statistical_Summary), Commands
@section system
@c ?commands system
@cindex system
@cmindex system
Syntax:
@example
system "command string"
! command string
output = system("command string")
show variable GPVAL_SYSTEM
@end example
`system "command"` executes "command" in a subprocess by invoking the
operating system's default shell. If called as a function, `system("command")`
returns the character stream from the subprocess's stdout as a string.
One trailing newline is stripped from the resulting string if present.
See also `backquotes`.
The exit status of the subprocess is reported in variables GPVAL_SYSTEM_ERRNO
and GPVAL_SYSTEM_ERRMSG. Note that if the command string invokes more than
one programs, the subprocess may return "Success" even if one of the programs
produced an error. E.g. file = system("ls -1 *.plt | tail -1") will return
"Success" even if there are no *.plt files because `tail` succeeds even if `ls`
does not.
@node test, toggle, system_, Commands
@section test
@c ?commands test
@c ?test palette
@cindex test
@cmindex test
This command graphically tests or presents terminal and palette capabilities.
Syntax:
@example
test @{terminal | palette@}
@end example
`test` or @ref{terminal} creates a display of line and point styles and other
useful things supported by the @ref{terminal} you are currently using.
@ref{palette} plots profiles of R(z),G(z),B(z), where 0<=z<=1. These are the
RGB components of the current color palette as defined by @ref{palette}.
It also plots the apparent net intensity as calculated using NTSC coefficients
to map RGB onto a grayscale. The command also loads the profile values into a
datablock named $PALETTE.
D viridis 1
@node toggle, undefine, test, Commands
@section toggle
@c ?commands toggle
@cindex toggle
@cmindex toggle
Syntax:
@example
toggle @{<plotno> | "plottitle" | all@}
@end example
This command has the same effect as left-clicking on the key entry for a plot
currently displayed by an interactive terminal (qt, wxt, x11). If the plot is
showing, it is toggled off; if it is currently hidden, it is toggled on.
`toggle all` acts on all active plots, equivalent to the hotkey "i".
`toggle "title"` requires an exact match to the plot title. `toggle "ti*"`
acts on the first plot whose title matches the characters before the final '*'.
If the current terminal is not interactive, the toggle command has no effect.
@node undefine, unset, toggle, Commands
@section undefine
@c ?commands undefine
@cindex undefine
@cmindex undefine
Clear one or more previously defined user variables. This is useful in order
to reset the state of a script containing an initialization test.
A variable name can contain the wildcard character `*` as last character. If the
wildcard character is found, all variables with names that begin with the prefix
preceding the wildcard will be removed. This is useful to remove several variables
sharing a common prefix. Note that the wildcard character is only allowed at the
end of the variable name! Specifying the wildcard character as sole argument to
`undefine` has no effect.
Example:
@example
undefine foo foo1 foo2
if (!exists("foo")) load "initialize.gp"
@end example
@example
bar = 1; bar1 = 2; bar2 = 3
undefine bar* # removes all three variables
@end example
@node unset, update, undefine, Commands
@section unset
@c ?commands unset
@cindex unset
@cmindex unset
@cindex iteration
Options set using the `set` command may be returned to their default state by
the corresponding @ref{unset} command. The @ref{unset} command may contain an optional
iteration clause. See `plot for`.
Examples:
@example
set xtics mirror rotate by -45 0,10,100
...
unset xtics
@end example
@example
# Unset labels numbered between 100 and 200
unset for [i=100:200] label i
@end example
@menu
* linetype_::
* monochrome_::
* output_::
* terminal_::
* warnings::
@end menu
@node linetype_, monochrome_, unset, unset
@subsection linetype
@c ?unset linetype
Syntax:
@example
unset linetype N
@end example
Remove all characteristics previously associated with a single linetype.
Subsequent use of this linetype will use whatever characteristics and color
that is native to the current terminal type (i.e. the default linetypes
properties available in gnuplot versions prior to 4.6).
@node monochrome_, output_, linetype_, unset
@subsection monochrome
@c ?unset monochrome
Switches the active set of linetypes from monochrome to color.
Equivalent to `set color`.
@node output_, terminal_, monochrome_, unset
@subsection output
@c ?unset output
Because some terminal types allow multiple plots to be written into a single
output file, the output file is not automatically closed after plotting.
In order to print or otherwise use the file safely, it should first be closed
explicitly by using @ref{output} or by using @ref{output} to close the
previous file and then open a new one.
@node terminal_, warnings, output_, unset
@subsection terminal
@c ?unset terminal
The default terminal that is active at the time of program entry depends on the
system platform, gnuplot build options, and the environmental variable GNUTERM.
Whatever this default may be, gnuplot saves it to internal variable GNUTERM.
The @ref{terminal} command restores the initial terminal type.
It is equivalent to `set terminal GNUTERM`. However if the string in GNUTERM
contains terminal options in addition to the bare terminal name, you may want
to instead use `set terminal @@GNUTERM`.
@node warnings, , terminal_, unset
@subsection warnings
@c ?unset warnings
@c ?set warnings
@example
set warnings
unset warnings
@end example
Warning messages for non-fatal errors are normally printed to stderr after
echoing the file name, line number, and command line that triggered the warning.
Warnings may be suppressed by the command @ref{warnings}.
A warning may be generated on demand by the command `warn "message"`.
They remain suppressed until explicitly reenabled by @ref{warnings}.
@node update, vclear, unset, Commands
@section update
@c ?commands update
@cindex update
@cmindex update
Note: This command is DEPRECATED. Use @ref{fit} instead.
@node vclear, vfill, update, Commands
@section vclear
@c ?commands vclear
@cindex vclear
@cmindex vclear
Syntax:
@example
vclear @{$gridname@}
@end example
Resets the value of all voxels in an existing grid to zero.
If no grid name is given, clears the currently active grid.
@node vfill, warn, vclear, Commands
@section vfill
@c ?commands vfill
@cindex vfill
@cmindex vfill
@cindex vgfill
@cindex VoxelDistance
@cindex VoxelDistance
@cindex GridDistance
@cindex GridDistance
Syntax:
@example
vfill FILE using x:y:z:radius:(<expression>)
vgfill FILE using x:y:z:radius:(<expression>)
@end example
The @ref{vfill} command acts analogously to a `plot` command except that instead
of creating a plot it modifies voxels in the currently active voxel grid.
For each point read from the input file, the voxel containing that point and
also all other voxels within a sphere of given radius centered about (x,y,z)
are incremented as follows:
@itemize @bullet
@item
user variable VoxelDistance is set to the distance from (x,y,z) to that
voxel's origin in user coordinates (vx,vy,vz).
@item
user variable GridDistance is set to the distance from (x,y,z) to that
voxel's origin in grid coordinates.
@item
The expression provided in the 5th `using` specifier is evaluated.
This expression can use the new value of VoxelDistance and/or GridDistance.
@item
voxel(vx,vy,vz) += result of evaluating <expression>
@end itemize
Examples:
@example
vfill "file.dat" using 1:2:3:(3.0):(1.0)
@end example
This command adds 1 to the value of every voxel within a sphere of radius 3.0
around each point in file.dat. The number of voxels that this sphere impinges
on depends on the grid spacing in user coordinates, which may be different
along the x, y, and z directions.
@example
vgfill "file.dat" using 1:2:3:(2):(1.0)
@end example
This command adds 1 to the value of voxels within a 5x5x5 cube of voxels
centered on the current point. The radius "2" is interpreted as extending
exactly 2 voxels in either direction along x, 2 voxels in either direction
along y, etc, regardless of the relative scaling of user coordinates along
those axes.
Example:
@example
vfill "file.dat" using 1:2:3:4:(VoxelDistance < 1 ? 1 : 1/VoxelDistance)
@end example
This command modifies all voxels in a sphere whose radius is determined for
each point by the content of column 4. The increment added to a voxel
decreases with its distance from the data point.
Note that @ref{vfill} and `vgfill` always increments existing values in the
current voxel grid.
To reset a single voxel to zero, use `voxel(x,y,z) = 0`.
To reset the entire grid to zero, use @ref{vclear}.
@node warn, While, vfill, Commands
@section warn
@cindex warn
@cmindex warn
@c ?commands warn
Syntax:
@example
warn "message"
@end example
The `warn` command is essentially the same as @ref{printerr} except that it
prepends the current filename or function block name and the current line
number before printing the requested message to stderr.
Unlike @ref{printerr} the output from `warn` is suppressed by @ref{warnings}.
@node While, , warn, Commands
@section While
@cindex while
@c ?commands while
Syntax:
@example
while (<expr>) @{
<commands>
@}
@end example
Execute a block of commands repeatedly so long as <expr> evaluates to
a non-zero value. This command cannot be mixed with old-style (un-bracketed)
if/else statements. See also `do`, `continue`, `break`.
@node Terminal_types, Concept_Index, Commands, Top
@chapter Terminal types
@c ^ <h2> Terminal Types </h2>
@c ?complete list of terminals
@menu
* complete_list_of_terminals::
@end menu
@node complete_list_of_terminals, , Terminal_types, Terminal_types
@section complete list of terminals
@cindex terminal
@opindex terminal
@cindex term
Gnuplot supports a large number of output formats. These are selected by
choosing an appropriate terminal type, possibly with additional modifying
options. See @ref{terminal}.
This document may describe terminal types that are not available to you
because they were not configured or installed on your system.
Terminals marked `legacy` are not built by default in recent gnuplot versions
and may not actually work.
To see a list of terminals available in a particular gnuplot session,
type 'set terminal' with no modifiers.
Several terminals are designed for use with TeX/LaTeX document preparation.
A summary of TeX-friendly terminals is available here:
@uref{http://www.gnuplot.info/docs/latex_demo.pdf,http://www.gnuplot.info/docs/latex_demo.pdf
}
@menu
* aifm::
* aqua::
* be::
* epscairo::
* canvas::
* cgm::
* context::
* corel::
* debug::
* svga::
* dumb::
* dxf::
* dxy800a::
* eepic::
* emf::
* epson_180dpi::
* excl::
* fig::
* png_::
* ggi::
* gpic::
* grass::
* hp2623a::
* hp2648::
* hp500c::
* hpgl::
* hpljii::
* hppj::
* imagen::
* kyo::
* latex::
* lua::
* mf::
* mp::
* mif::
* pbm::
* dospc::
* pdf::
* pstricks::
* qms::
* regis::
* svg::
* tek410x::
* tek40::
* texdraw::
* tgif::
* tkcanvas::
* tpic::
* windows::
* wxt::
* x11::
* xlib::
@end menu
@node aifm, aqua, complete_list_of_terminals, complete_list_of_terminals
@subsection aifm
@c ?commands set terminal aifm
@c ?set terminal aifm
@c ?set term aifm
@c ?terminal aifm
@c ?term aifm
@cindex aifm
@ref{terminal}, originally written for Adobe Illustrator 3.0+.
Since Adobe Illustrator understands PostScript level 1 commands directly,
you should use `set terminal post level1` instead.
Syntax:
@example
set terminal aifm @{color|monochrome@} @{"<fontname>"@} @{<fontsize>@}
@end example
@node aqua, be, aifm, complete_list_of_terminals
@subsection aqua
@c ?commands set terminal aqua
@c ?set terminal aqua
@c ?set term aqua
@c ?terminal aqua
@c ?term aqua
@cindex aqua
@tmindex aqua
This terminal relies on AquaTerm.app for display on MacOS.
Syntax:
@example
set terminal aqua @{<n>@} @{title "<wintitle>"@} @{size <x> <y>@}
@{font "<fontname>@{,<fontsize>@}"@}
@{linewidth <lw>@}"@}
@{@{no@}enhanced@} @{solid|dashed@} @{dl <dashlength>@}@}
@end example
where <n> is the number of the window to draw in (default is 0),
<wintitle> is the name shown in the title bar (default "Figure <n>"),
<x> <y> is the size of the plot (default is 846x594 pt = 11.75x8.25 in).
Use <fontname> to specify the font (default is "Times-Roman"),
and <fontsize> to specify the font size (default is 14.0 pt).
The aqua terminal supports enhanced text mode (see `enhanced`), except for
overprint. Font support is limited to the fonts available on the system.
Character encoding can be selected by @ref{encoding} and currently supports
iso_latin_1, iso_latin_2, cp1250, and UTF8 (default).
Lines can be drawn either solid or dashed, (default is solid) and the dash
spacing can be modified by <dashlength> which is a multiplier > 0.
@node be, epscairo, aqua, complete_list_of_terminals
@subsection be
@c ?commands set terminal be
@c ?set terminal be
@c ?set term be
@c ?terminal be
@c ?term be
@cindex be
@cindex BE
The `be` terminal type is present if gnuplot is built for the `beos`
operating system and for use with X servers. It is selected at program
startup if the `DISPLAY` environment variable is set, if the `TERM`
environment variable is set to `xterm`, or if the `-display` command
line option is used.
Syntax:
@example
set terminal be @{reset@} @{<n>@}
@end example
Multiple plot windows are supported: `set terminal be <n>` directs the
output to plot window number n. If n>0, the terminal number will be
appended to the window title and the icon will be labeled `gplt <n>`.
The active window may distinguished by a change in cursor (from default
to crosshair.)
Plot windows remain open even when the `gnuplot` driver is changed to a
different device. A plot window can be closed by pressing the letter q
while that window has input focus, or by choosing `close` from a window
manager menu. All plot windows can be closed by specifying @ref{reset}, which
actually terminates the subprocess which maintains the windows (unless
`-persist` was specified).
Plot windows will automatically be closed at the end of the session
unless the `-persist` option was given.
The size or aspect ratio of a plot may be changed by resizing the `gnuplot`
window.
Linewidths and pointsizes may be changed from within `gnuplot` with
`set linestyle`.
For terminal type `be`, `gnuplot` accepts (when initialized) the standard
X Toolkit options and resources such as geometry, font, and name from the
command line arguments or a configuration file. See the X(1) man page
(or its equivalent) for a description of such options.
A number of other `gnuplot` options are available for the `be` terminal.
These may be specified either as command-line options when `gnuplot` is
invoked or as resources in the configuration file ".Xdefaults". They are
set upon initialization and cannot be altered during a `gnuplot` session.
@menu
* command-line_options::
* monochrome_options::
* color_resources::
* grayscale_resources::
* line_resources::
@end menu
@node command-line_options, monochrome_options, be, be
@subsubsection command-line_options
@c ?commands set terminal be command-line-options
@c ?set terminal be command-line-options
@c ?set term be command-line-options
@c ?be command-line-options
In addition to the X Toolkit options, the following options may be specified
on the command line when starting `gnuplot` or as resources in your
".Xdefaults" file:
@example
`-mono` forces monochrome rendering on color displays.
`-gray` requests grayscale rendering on grayscale or color displays.
(Grayscale displays receive monochrome rendering by default.)
`-clear` requests that the window be cleared momentarily before a
new plot is displayed.
`-raise` raises plot window after each plot
`-noraise` does not raise plot window after each plot
`-persist` plots windows survive after main gnuplot program exits
@end example
The options are shown above in their command-line syntax. When entered as
resources in ".Xdefaults", they require a different syntax.
Example:
@example
gnuplot*gray: on
@end example
`gnuplot` also provides a command line option (`-pointsize <v>`) and a
resource, `gnuplot*pointsize: <v>`, to control the size of points plotted
with the `points` plotting style. The value `v` is a real number (greater
than 0 and less than or equal to ten) used as a scaling factor for point
sizes. For example, `-pointsize 2` uses points twice the default size, and
`-pointsize 0.5` uses points half the normal size.
@node monochrome_options, color_resources, command-line_options, be
@subsubsection monochrome_options
@c ?commands set terminal be monochrome_options
@c ?set terminal be monochrome_options
@c ?set term be monochrome_options
@c ?be monochrome_options
For monochrome displays, `gnuplot` does not honor foreground or background
colors. The default is black-on-white. `-rv` or `gnuplot*reverseVideo: on`
requests white-on-black.
@node color_resources, grayscale_resources, monochrome_options, be
@subsubsection color_resources
@c ?commands set terminal be color_resources
@c ?set terminal be color_resources
@c ?set term be color_resources
@c ?be color_resources
For color displays, `gnuplot` honors the following resources (shown here
with their default values) or the greyscale resources. The values may be
color names as listed in the BE rgb.txt file on your system, hexadecimal
RGB color specifications (see BE documentation), or a color name followed
by a comma and an `intensity` value from 0 to 1. For example, `blue, 0.5`
means a half intensity blue.
@example
gnuplot*background: white
gnuplot*textColor: black
gnuplot*borderColor: black
gnuplot*axisColor: black
gnuplot*line1Color: red
gnuplot*line2Color: green
gnuplot*line3Color: blue
gnuplot*line4Color: magenta
gnuplot*line5Color: cyan
gnuplot*line6Color: sienna
gnuplot*line7Color: orange
gnuplot*line8Color: coral
@end example
The command-line syntax for these is, for example,
Example:
@example
gnuplot -background coral
@end example
@node grayscale_resources, line_resources, color_resources, be
@subsubsection grayscale_resources
@c ?commands set terminal be grayscale_resources
@c ?set terminal be grayscale_resources
@c ?set term be grayscale_resources
@c ?be grayscale_resources
When `-gray` is selected, `gnuplot` honors the following resources for
grayscale or color displays (shown here with their default values). Note
that the default background is black.
@example
gnuplot*background: black
gnuplot*textGray: white
gnuplot*borderGray: gray50
gnuplot*axisGray: gray50
gnuplot*line1Gray: gray100
gnuplot*line2Gray: gray60
gnuplot*line3Gray: gray80
gnuplot*line4Gray: gray40
gnuplot*line5Gray: gray90
gnuplot*line6Gray: gray50
gnuplot*line7Gray: gray70
gnuplot*line8Gray: gray30
@end example
@node line_resources, , grayscale_resources, be
@subsubsection line_resources
@c ?commands set terminal be line_resources
@c ?set terminal be line_resources
@c ?set term be line_resources
@c ?be line_resources
`gnuplot` honors the following resources for setting the width (in pixels) of
plot lines (shown here with their default values.) 0 or 1 means a minimal
width line of 1 pixel width. A value of 2 or 3 may improve the appearance of
some plots.
@example
gnuplot*borderWidth: 2
gnuplot*axisWidth: 0
gnuplot*line1Width: 0
gnuplot*line2Width: 0
gnuplot*line3Width: 0
gnuplot*line4Width: 0
gnuplot*line5Width: 0
gnuplot*line6Width: 0
gnuplot*line7Width: 0
gnuplot*line8Width: 0
@end example
`gnuplot` honors the following resources for setting the dash style used for
plotting lines. 0 means a solid line. A two-digit number `jk` (`j` and `k`
are >= 1 and <= 9) means a dashed line with a repeated pattern of `j` pixels
on followed by `k` pixels off. For example, '16' is a "dotted" line with one
pixel on followed by six pixels off. More elaborate on/off patterns can be
specified with a four-digit value. For example, '4441' is four on, four off,
four on, one off. The default values shown below are for monochrome displays
or monochrome rendering on color or grayscale displays. For color displays,
the default for each is 0 (solid line) except for `axisDashes` which defaults
to a '16' dotted line.
@example
gnuplot*borderDashes: 0
gnuplot*axisDashes: 16
gnuplot*line1Dashes: 0
gnuplot*line2Dashes: 42
gnuplot*line3Dashes: 13
gnuplot*line4Dashes: 44
gnuplot*line5Dashes: 15
gnuplot*line6Dashes: 4441
gnuplot*line7Dashes: 42
gnuplot*line8Dashes: 13
@end example
@node epscairo, canvas, be, complete_list_of_terminals
@subsection epscairo
@c ?set terminal epscairo
@c ?terminal epscairo
@c ?set term epscairo
@c ?term epscairo
@cindex epscairo
@tmindex epscairo
The `epscairo` terminal device generates encapsulated PostScript (*.eps) using
the cairo and pango support libraries. cairo version >= 1.6 is required.
Please read the help for the `pdfcairo` terminal."
@node canvas, cgm, epscairo, complete_list_of_terminals
@subsection canvas
@c ?commands set terminal canvas
@c ?set terminal canvas
@c ?set term canvas
@c ?terminal canvas
@c ?term canvas
@cindex canvas terminal
The `canvas` terminal creates a set of javascript commands that draw onto the
HTML5 canvas element.
Syntax:
@example
set terminal canvas @{size <xsize>, <ysize>@} @{background <rgb_color>@}
@{font @{<fontname>@}@{,<fontsize>@}@} | @{fsize <fontsize>@}
@{@{no@}enhanced@} @{linewidth <lw>@}
@{rounded | butt | square@}
@{dashlength <dl>@}
@{standalone @{mousing@} | name '<funcname>'@}
@{jsdir 'URL/for/javascripts'@}
@{title '<some string>'@}
@end example
where <xsize> and <ysize> set the size of the plot area in pixels.
The default size in standalone mode is 600 by 400 pixels.
The default font size is 10.
NB: Only one font is available, the ascii portion of Hershey simplex Roman
provided in the file canvastext.js. You can replace this with the file
canvasmath.js, which contains also UTF-8 encoded Hershey simplex Greek and
math symbols. For consistency with other terminals, it is also possible to
use `font "name,size"`. Currently the font @ref{name} is ignored, but browser
support for named fonts is likely to arrive eventually.
The default `standalone` mode creates an html page containing javascript
code that renders the plot using the HTML 5 canvas element. The html page
links to two required javascript files 'canvastext.js' and 'gnuplot_common.js'.
An additional file 'gnuplot_dashedlines.js' is needed to support dashed lines.
By default these point to local files, on unix-like systems usually in
directory /usr/local/share/gnuplot/<version>/js. See installation notes for
other platforms. You can change this by using the `jsdir` option to specify
either a different local directory or a general URL. The latter is usually
appropriate if the plot is exported for viewing on remote client machines.
All plots produced by the canvas terminal are mouseable. The additional
keyword `mousing` causes the `standalone` mode to add a mouse-tracking box
underneath the plot. It also adds a link to a javascript file
'gnuplot_mouse.js' and to a stylesheet for the mouse box 'gnuplot_mouse.css'
in the same local or URL directory as 'canvastext.js'.
The @ref{name} option creates a file containing only javascript. Both the
javascript function it contains and the id of the canvas element that it
draws onto are taken from the following string parameter. The commands
@example
set term canvas name 'fishplot'
set output 'fishplot.js'
@end example
will create a file containing a javascript function fishplot() that will
draw onto a canvas with id=fishplot. An html page that invokes this
javascript function must also load the canvastext.js function as described
above. A minimal html file to wrap the fishplot created above might be:
@example
<html>
<head>
<script src="canvastext.js"></script>
<script src="gnuplot_common.js"></script>
</head>
<body onload="fishplot();">
<script src="fishplot.js"></script>
<canvas id="fishplot" width=600 height=400>
<div id="err_msg">No support for HTML 5 canvas element</div>
</canvas>
</body>
</html>
@end example
The individual plots drawn on this canvas will have names fishplot_plot_1,
fishplot_plot_2, and so on. These can be referenced by external javascript
routines, for example gnuplot.toggle_visibility("fishplot_plot_2").
@node cgm, context, canvas, complete_list_of_terminals
@subsection cgm
@c ?commands set terminal cgm
@c ?set terminal cgm
@c ?set term cgm
@c ?terminal cgm
@c ?term cgm
@cindex cgm
@tmindex cgm
The `cgm` terminal generates a Computer Graphics Metafile, Version 1.
This file format is a subset of the ANSI X3.122-1986 standard entitled
"Computer Graphics - Metafile for the Storage and Transfer of Picture
Description Information".
Syntax:
@example
set terminal cgm @{color | monochrome@} @{solid | dashed@} @{@{no@}rotate@}
@{<mode>@} @{width <plot_width>@} @{linewidth <line_width>@}
@{font "<fontname>,<fontsize>"@}
@{background <rgb_color>@}
[deprecated] @{<color0> <color1> <color2> ...@}
@end example
`solid` draws all curves with solid lines, overriding any dashed patterns;
<mode> is `landscape`, `portrait`, or `default`;
<plot_width> is the assumed width of the plot in points;
<line_width> is the line width in points (default 1);
<fontname> is the name of a font (see list of fonts below)
<fontsize> is the size of the font in points (default 12).
The first six options can be in any order. Selecting `default` sets all
options to their default values.
The mechanism of setting line colors in the `set term` command is
deprecated. Instead you should set the background using a separate
keyword and set the line colors using `set linetype`.
The deprecated mechanism accepted colors of the form 'xrrggbb', where x is
the literal character 'x' and 'rrggbb' are the red, green and blue components
in hex. The first color was used for the background, subsequent colors are
assigned to successive line types.
Examples:
@example
set terminal cgm landscape color rotate dashed width 432 \\
linewidth 1 'Helvetica Bold' 12 # defaults
set terminal cgm linewidth 2 14 # wider lines & larger font
set terminal cgm portrait "Times Italic" 12
set terminal cgm color solid # no pesky dashes!
@end example
@menu
* cgm_font::
* cgm_fontsize::
* cgm_linewidth::
* cgm_rotate::
* cgm_solid::
* cgm_size::
* cgm_width::
* cgm_nofontlist::
@end menu
@node cgm_font, cgm_fontsize, cgm, cgm
@subsubsection cgm font
@c ?commands set terminal cgm font
@c ?set terminal cgm font
@c ?set term cgm font
@c ?cgm font
The first part of a Computer Graphics Metafile, the metafile description,
includes a font table. In the picture body, a font is designated by an
index into this table. By default, this terminal generates a table with
the following 35 fonts, plus six more with `italic` replaced by
`oblique`, or vice-versa (since at least the Microsoft Office and Corel
Draw CGM import filters treat `italic` and `oblique` as equivalent):
@example
Helvetica
Helvetica Bold
Helvetica Oblique
Helvetica Bold Oblique
Times Roman
Times Bold
Times Italic
Times Bold Italic
Courier
Courier Bold
Courier Oblique
Courier Bold Oblique
Symbol
Hershey/Cartographic_Roman
Hershey/Cartographic_Greek
Hershey/Simplex_Roman
Hershey/Simplex_Greek
Hershey/Simplex_Script
Hershey/Complex_Roman
Hershey/Complex_Greek
Hershey/Complex_Script
Hershey/Complex_Italic
Hershey/Complex_Cyrillic
Hershey/Duplex_Roman
Hershey/Triplex_Roman
Hershey/Triplex_Italic
Hershey/Gothic_German
Hershey/Gothic_English
Hershey/Gothic_Italian
Hershey/Symbol_Set_1
Hershey/Symbol_Set_2
Hershey/Symbol_Math
ZapfDingbats
Script
15
@end example
@c ^<table align="center" border="1" rules="groups" frame="hsides" cellpadding="3">
@c ^<colgroup>
@c ^ <col align="left">
@c ^ <col align="left">
@c ^</colgroup>
@c ^<thead>
@c ^<tr><th colspan=2 align="center">CGM fonts</th></tr>
@c ^</thead>
@c ^<tbody>
@c ^<tr><td>Helvetica</td><td>Hershey/Cartographic_Roman</td></tr>
@c ^<tr><td>Helvetica Bold</td><td>Hershey/Cartographic_Greek</td></tr>
@c ^<tr><td>Helvetica Oblique</td><td>Hershey/Simplex_Roman</td></tr>
@c ^<tr><td>Helvetica Bold Oblique</td><td>Hershey/Simplex_Greek</td></tr>
@c ^<tr><td>Times Roman</td><td>Hershey/Simplex_Script</td></tr>
@c ^<tr><td>Times Bold</td><td>Hershey/Complex_Roman</td></tr>
@c ^<tr><td>Times Italic</td><td>Hershey/Complex_Greek</td></tr>
@c ^<tr><td>Times Bold Italic</td><td>Hershey/Complex_Italic</td></tr>
@c ^<tr><td>Courier</td><td>Hershey/Complex_Cyrillic</td></tr>
@c ^<tr><td>Courier Bold</td><td>Hershey/Duplex_Roman</td></tr>
@c ^<tr><td>Courier Oblique</td><td>Hershey/Triplex_Roman</td></tr>
@c ^<tr><td>Courier Bold Oblique</td><td>Hershey/Triplex_Italic</td></tr>
@c ^<tr><td>Symbol</td><td>Hershey/Gothic_German</td></tr>
@c ^<tr><td>ZapfDingbats</td><td>Hershey/Gothic_English</td></tr>
@c ^<tr><td>Script</td><td>Hershey/Gothic_Italian</td></tr>
@c ^<tr><td>15</td><td>Hershey/Symbol_Set_1</td></tr>
@c ^<tr><td></td><td>Hershey/Symbol_Set_2</td></tr>
@c ^<tr><td></td><td>Hershey/Symbol_Math</td></tr>
@c ^</tbody>
@c ^</table>
The first thirteen of these fonts are required for WebCGM. The
Microsoft Office CGM import filter implements the 13 standard fonts
listed above, and also 'ZapfDingbats' and 'Script'. However, the
script font may only be accessed under the name '15'. For more on
Microsoft import filter font substitutions, check its help file which
you may find here:
@example
C:\\Program Files\\Microsoft Office\\Office\\Cgmimp32.hlp
@end example
and/or its configuration file, which you may find here:
@example
C:\\Program Files\\Common Files\\Microsoft Shared\\Grphflt\\Cgmimp32.cfg
@end example
In the `set term` command, you may specify a font name which does not
appear in the default font table. In that case, a new font table is
constructed with the specified font as its first entry. You must ensure
that the spelling, capitalization, and spacing of the name are
appropriate for the application that will read the CGM file. (Gnuplot
and any MIL-D-28003A compliant application ignore case in font names.)
If you need to add several new fonts, use several `set term` commands.
Example:
@example
set terminal cgm 'Old English'
set terminal cgm 'Tengwar'
set terminal cgm 'Arabic'
set output 'myfile.cgm'
plot ...
set output
@end example
You cannot introduce a new font in a `set label` command.
@node cgm_fontsize, cgm_linewidth, cgm_font, cgm
@subsubsection cgm fontsize
@c ?commands set terminal cgm fontsize
@c ?set terminal cgm fontsize
@c ?set term cgm fontsize
@c ?cgm fontsize
Fonts are scaled assuming the page is 6 inches wide. If the @ref{size}
command is used to change the aspect ratio of the page or the CGM file
is converted to a different width, the resulting font sizes will be
scaled up or down accordingly. To change the assumed width, use the
`width` option.
@node cgm_linewidth, cgm_rotate, cgm_fontsize, cgm
@subsubsection cgm linewidth
@c ?commands set terminal cgm linewidth
@c ?set terminal cgm linewidth
@c ?set term cgm linewidth
@c ?cgm linewidth
The `linewidth` option sets the width of lines in pt. The default width
is 1 pt. Scaling is affected by the actual width of the page, as
discussed under the `fontsize` and `width` options.
@node cgm_rotate, cgm_solid, cgm_linewidth, cgm
@subsubsection cgm rotate
@c ?commands set terminal cgm rotate
@c ?set terminal cgm rotate
@c ?set term cgm rotate
@c ?cgm rotate
The `norotate` option may be used to disable text rotation. For
example, the CGM input filter for Word for Windows 6.0c can accept
rotated text, but the DRAW editor within Word cannot. If you edit a
graph (for example, to label a curve), all rotated text is restored to
horizontal. The Y axis label will then extend beyond the clip boundary.
With `norotate`, the Y axis label starts in a less attractive location,
but the page can be edited without damage. The `rotate` option confirms
the default behavior.
@node cgm_solid, cgm_size, cgm_rotate, cgm
@subsubsection cgm solid
@c ?set terminal cgm solid
@c ?set term cgm solid
@c ?cgm solid
The `solid` option may be used to disable dashed line styles in the
plots. This is useful when color is enabled and the dashing of the
lines detracts from the appearance of the plot. The `dashed` option
confirms the default behavior, which gives a different dash pattern to
each line type.
@node cgm_size, cgm_width, cgm_solid, cgm
@subsubsection cgm size
@c ?commands set terminal cgm size
@c ?set terminal cgm size
@c ?set term cgm size
@c ?cgm size
Default size of a CGM plot is 32599 units wide and 23457 units high for
landscape, or 23457 units wide by 32599 units high for portrait.
@node cgm_width, cgm_nofontlist, cgm_size, cgm
@subsubsection cgm width
@c ?commands set terminal cgm width
@c ?set terminal cgm width
@c ?set term cgm width
@c ?cgm width
All distances in the CGM file are in abstract units. The application
that reads the file determines the size of the final plot. By default,
the width of the final plot is assumed to be 6 inches (15.24 cm). This
distance is used to calculate the correct font size, and may be changed
with the `width` option. The keyword should be followed by the width in
points. (Here, a point is 1/72 inch, as in PostScript. This unit is
known as a "big point" in TeX.) Gnuplot `expressions` can be used to
convert from other units.
Example:
@example
set terminal cgm width 432 # default
set terminal cgm width 6*72 # same as above
set terminal cgm width 10/2.54*72 # 10 cm wide
@end example
@node cgm_nofontlist, , cgm_width, cgm
@subsubsection cgm nofontlist
@c ?commands set terminal cgm nofontlist
@c ?set terminal cgm nofontlist
@c ?set term cgm nofontlist
@c ?cgm nofontlist
@c ?set terminal cgm winword6
@c ?set term cgm winword6
@c ?cgm winword6
The default font table includes the fonts recommended for WebCGM, which
are compatible with the Computer Graphics Metafile input filter for
Microsoft Office and Corel Draw. Another application might use
different fonts and/or different font names, which may not be
documented. The `nofontlist` (synonym `winword6`) option deletes the font
table from the CGM file. In this case, the reading application should
use a default table. Gnuplot will still use its own default font table
to select font indices. Thus, 'Helvetica' will give you an index of 1,
which should get you the first entry in your application's default font
table. 'Helvetica Bold' will give you its second entry, etc.
@node context, corel, cgm, complete_list_of_terminals
@subsection context
@c ?commands set terminal context
@c ?set terminal context
@c ?terminal context
@c ?set term context
@c ?term context
@cindex context
@tmindex context
ConTeXt is a macro package for TeX, highly integrated with Metapost
(for drawing figures) and intended for creation of high-quality PDF documents.
The terminal outputs Metafun source, which can be edited manually,
but you should be able to configure most things from outside.
For an average user of ConTeXt + gnuplot module it's recommended to refer to
`Using ConTeXt` rather than reading this page
or to read the manual of the gnuplot module for ConTeXt.
The `context` terminal supports the following options:
Syntax:
@example
set term context @{default@}
@{defaultsize | size <scale> | size <xsize>@{in|cm@}, <ysize>@{in|cm@}@}
@{input | standalone@}
@{timestamp | notimestamp@}
@{noheader | header "<header>"@}
@{color | colour | monochrome@}
@{rounded | mitered | beveled@} @{round | butt | squared@}
@{dashed | solid@} @{dashlength | dl <dl>@}
@{linewidth | lw <lw>@}
@{fontscale <fontscale>@}
@{mppoints | texpoints@}
@{inlineimages | externalimages@}
@{defaultfont | font "@{<fontname>@}@{,<fontsize>@}"@}
@end example
In non-standalone (`input`) graphic only parameters @ref{size} to select graphic
size, `fontscale` to scale all the labels for a factor <fontscale>
and font size, make sense, the rest is silently
ignored and should be configured in the .tex file which inputs the graphic.
It's highly recommended to set the proper fontsize if document font differs from
12pt, so that gnuplot will know how much space to reserve for labels.
`default` resets all the options to their default values.
`defaultsize` sets the plot size to 5in,3in.
@ref{size} <scale> sets the plot size to <scale> times <default value>.
If two arguments are given (separated with ','), the first one sets
the horizontal size and the second one the vertical size.
Size may be given without units (in which case it means relative to the default
value), with inches ('in') or centimeters ('cm').
`input` (default) creates a graphic that can be included into another ConTeXt
document.
`standalone` adds some lines, so that the document might be compiled as-is.
You might also want to add `header` in that case.
Use `header` for any additional settings/definitions/macros
that you might want to include in a standalone graphic. `noheader` is the default.
`notimestamp` prevents printing creation time in comments
(if version control is used, one may prefer not to commit new version when only date changes).
`color` to make color plots is the default, but @ref{monochrome} doesn't do anything special yet.
If you have any good ideas how the behaviour should differ to suit the monochrome printers better,
your suggestions are welcome.
`rounded` (default), `mitered` and `beveled` control the shape of line joins.
`round` (default), `butt` and `squared` control the shape of line caps.
See PostScript or PDF Reference Manual for explanation. For wild-behaving functions
and thick lines
it is better to use `rounded` and `round` to prevent sharp corners in line joins.
(Some general support for this should be added to Gnuplot, so that the same options
could be set for each line (style) separately).
`dashed` (default) uses different dash patterns for different line types,
`solid` draws all plots with solid lines.
`dashlength` or `dl` scales the length of the dashed-line segments by <dl>.
`linewidth` or `lw` scales all linewidths by <lw>.
(lw 1 stands for 0.5bp, which is the default line width when drawing with Metapost.)
`fontscale` scales text labels for factor <fontscale> relative to default document font.
`mppoints` uses predefined point shapes, drawn in Metapost.
`texpoints` uses easily configurable set of symbols, defined with ConTeXt
in the following way:
@example
\\defineconversion[my own points][+,@{\\ss x@},\\mathematics@{\\circ@}]
\\setupGNUPLOTterminal[context][points=tex,pointset=my own points]
@end example
`inlineimages` writes binary images to a string and only works in ConTeXt MKIV.
`externalimages` writes PNG files to disk and also works with ConTeXt MKII.
Gnuplot needs to have support for PNG images built in for this to work.
With `font` you can set font name and size in standalone graphics.
In non-standalone (`input`) mode only the font size is important
to reserve enough space for text labels.
The command
@example
set term context font "myfont,ss,10"
@end example
will result in
@example
\\setupbodyfont[myfont,ss,10pt]
@end example
If you additionally set `fontscale` to 0.8 for example,
then the resulting font will be 8pt big and
@example
set label ... font "myfont,12"
@end example
will come out as 9.6pt.
It is your own responsibility to provide proper typescripts (and header),
otherwise switching the font will have no effect.
For a standard font in ConTeXt MKII (pdfTeX) you could use:
@example
set terminal context standalone header '\\usetypescript[iwona][ec]' \\
font "iwona,ss,11"
@end example
Please take a look into ConTeXt documentation, wiki or mailing list (archives)
for any up-to-date information about font usage.
Examples:
@example
set terminal context size 10cm, 5cm # 10cm, 5cm
set terminal context size 4in, 3in # 4in, 3in
@end example
For standalone (whole-page) plots with labels in UTF-8 encoding:
@example
set terminal context standalone header '\\enableregime[utf-8]'
@end example
, /* TODO: LaTeX formatting */
@menu
* Requirements::
* Calling_gnuplot_from_ConTeXt::
@end menu
@node Requirements, Calling_gnuplot_from_ConTeXt, context, context
@subsubsection Requirements
You need gnuplot module for ConTeXt
@uref{http://ctan.org/pkg/context-gnuplot,http://ctan.org/pkg/context-gnuplot
}
and a recent version of ConTeXt.
If you want to call gnuplot on-the-fly, you also need write18 enabled.
In most TeX distributions this can be set with shell_escape=t in texmf.cnf.
See
@uref{http://wiki.contextgarden.net/Gnuplot,http://wiki.contextgarden.net/Gnuplot
}
for details about this terminal and for more exhaustive help & examples.
@node Calling_gnuplot_from_ConTeXt, , Requirements, context
@subsubsection Calling gnuplot from ConTeXt
The easiest way to make plots in ConTeXt documents is
@example
\\usemodule[gnuplot]
\\starttext
\\title@{How to draw nice plots with @{\\sc gnuplot@}?@}
\\startGNUPLOTscript[sin]
set format y "%.1f"
plot sin(x) t '$\\sin(x)$'
\\stopGNUPLOTscript
\\useGNUPLOTgraphic[sin]
\\stoptext
@end example
This will run gnuplot automatically and include the resulting figure in the document."
@node corel, debug, context, complete_list_of_terminals
@subsection corel
@c ?commands set terminal corel
@c ?set terminal corel
@c ?set term corel
@c ?terminal corel
@c ?term corel
@cindex corel
@tmindex corel
Legacy terminal for CorelDraw (circa 1995).
Syntax:
@example
set terminal corel @{monochrome | color@} @{"<font>" @{<fontsize>@}@}
@{<xsize> <ysize> @{<linewidth> @}@}
@end example
where the fontsize and linewidth are specified in points and the sizes in
inches. The defaults are monochrome, "SwitzerlandLight", 22, 8.2, 10 and 1.2."
@node debug, svga, corel, complete_list_of_terminals
@subsection debug
@c ?commands set terminal debug
@c ?set terminal debug
@c ?set term debug
@c ?terminal debug
@c ?term debug
@cindex debug
@tmindex debug
This terminal is provided to allow for the debugging of `gnuplot`. It is
likely to be of use only for users who are modifying the source code."
@node svga, dumb, debug, complete_list_of_terminals
@subsection svga
@c ?commands set terminal svga
@c ?set terminal svga
@c ?set term svga
@c ?terminal svga
@c ?term svga
@cindex svga
@tmindex svga
Legacy terminal. The `svga` terminal driver supports PCs with SVGA graphics.
It is typically only compiled with DJGPP and uses the GRX graphics library.
There is also a variant for Windows 32bit, which is mainly used for
debugging. The underlying library also supports X11, Linux console and SDL,
but these targets are currently not supported.
Syntax:
@example
set terminal svga @{font "<fontname>"@}
@{@{no@}enhanced@}
@{background <rgb color>@}
@{linewidth|lw <lw>@}
@{pointscale|ps <scale>@}
@{fontscale|fs <scale>@}
@end example
Enhanced text support can be activated using the `enhanced` option,
" see `enhanced text`. Note that changing the font size in enhanced text is
currently not supported. Hence, super- and subscripts will have the same size.
The `linewidth` parameter scales the width of lines. The `pointscale`
parameter sets the scale factor for point symbols. You can use `fontscale`
to scale the bitmap font. This might be useful if you have a hi-res display.
Note that integer factors give best results."
@node dumb, dxf, svga, complete_list_of_terminals
@subsection dumb
@c ?commands set terminal dumb
@c ?set terminal dumb
@c ?set term dumb
@c ?terminal dumb
@c ?term dumb
@cindex dumb
@tmindex dumb
The `dumb` terminal driver plots into a text block using ascii characters.
It has an optional size specification and a trailing linefeed flag.
Syntax:
@example
set terminal dumb @{size <xchars>,<ychars>@} @{[no]feed@}
@{aspect <htic>@{,<vtic>@}@}
@{[no]enhanced@}
@{fillchar @{solid|"<char>"@}@}
@{[no]attributes@}
@{mono|ansi|ansi256|ansirgb@}
@end example
where <xchars> and <ychars> set the size of the text block. The default is
79 by 24. The last newline is printed only if `feed` is enabled.
The `aspect` option can be used to control the aspect ratio of the plot by
setting the length of the horizontal and vertical tic marks. Only integer
values are allowed. Default is 2,1 -- corresponding to the aspect ratio of
common screen fonts.
The character "#" is used for area-fill. You can replace this with any
character available in the terminal font. `fillchar solid` is short for
`fillchar "\\U+2588"` (unicode FULL BLOCK).
The `ansi`, `ansi256`, and `ansirgb` options will include escape
sequences in the output to handle colors. Note that these might
not be handled by your terminal. Default is `mono`.
To obtain the best color match in `ansi` mode, you should use
`set colorsequence classic`.
Depending on the mode, the `dumb` terminal will emit the
following sequences (without the additional whitespace):
@example
ESC [ 0 m reset attributes to defaults
foreground color:
ESC [ 1 m set intense/bold
ESC [ 22 m intense/bold off
ESC [ <fg> m with color code 30 <= <fg> <= 37
ESC [ 39 m reset to default
ESC [ 38; 5; <c> m with palette index 16 <= <c> <= 255
ESC [ 38; 2; <r>; <g>; <b> m with components 0 <= <r,g,b> <= 255
background color:
ESC [ <bg> m with color code 40 <= <bg> <= 47
ESC [ 49 m reset to default
ESC [ 48; 5; <c> m with palette index 16 <= <c> <= 231
ESC [ 48; 2; <r>; <g>; <b> m with components 0 <= <r,g,b> <= 255
@end example
See also e.g. the description at
@uref{https://en.wikipedia.org/wiki/ANSI_escape_code#Colors,https://en.wikipedia.org/wiki/ANSI_escape_code#Colors
}
The `attributes` option enables bold and italic text on terminals or
emulators that support the escape sequences
@example
ESC [ 1 m / 22 m for bold on/off and
ESC [ 3 m / 23 m for italic on /off.
@end example
Example:
@example
set term dumb mono size 60,15 aspect 1
set tics nomirror scale 0.5
plot [-5:6.5] sin(x) with impulse ls -1
@end example
@example
1 +-------------------------------------------------+
0.8 +|||++ ++||||++ |
0.6 +|||||+ ++|||||||+ sin(x) +----+ |
0.4 +||||||+ ++|||||||||+ |
0.2 +|||||||+ ++|||||||||||+ +|
0 ++++++++++++++++++++++++++++++++++++++++++++++++++|
-0.2 + +|||||||||||+ +|||||||||||+ |
-0.4 + +|||||||||+ +|||||||||+ |
-0.6 + +|||||||+ +|||||||+ |
-0.8 + ++||||+ ++||||+ |
-1 +---+--------+--------+-------+--------+--------+-+
-4 -2 0 2 4 6 "
@end example
@node dxf, dxy800a, dumb, complete_list_of_terminals
@subsection dxf
@c ?commands set terminal dxf
@c ?set terminal dxf
@c ?set term dxf
@c ?terminal dxf
@c ?term dxf
@cindex dxf
@tmindex dxf
Terminal driver `dxf` for export to AutoCad (Release 10.x).
It has no options. The default size is 120x80 AutoCad units.
`dxf` uses seven colors (white, red, yellow, green, cyan, blue and magenta)
that can be changed only by modifying the source file. If a black-and-white
plotting device is used the colors are mapped to differing line thicknesses.
Note: someone please update this terminal to the 2012 DXF standard!"
@node dxy800a, eepic, dxf, complete_list_of_terminals
@subsection dxy800a
@c ?commands set terminal dxy800a
@c ?set terminal dxy800a
@c ?set term dxy800a
@c ?terminal dxy800a
@c ?term dxy800a
@cindex dxy800a
@tmindex dxy800a
Note: legacy terminal.
This terminal driver supports the Roland DXY800A plotter. It has no options."
@node eepic, emf, dxy800a, complete_list_of_terminals
@subsection eepic
@c ?commands set terminal eepic
@c ?set terminal eepic
@c ?set term eepic
@c ?terminal eepic
@c ?term eepic
@cindex eepic
@tmindex eepic
Note: Legacy terminal (not built by default).
The latex, emtex, eepic, and tpic terminals in older versions of gnuplot
provided minimal support for graphics styles beyond simple lines and points.
They have been directly superseded by the `pict2e` terminal.
For more capable TeX/LaTeX compatible terminal types see
`cairolatex`, `context`, `epslatex`, `mp`, `pstricks`, and `tikz`.
The output of this terminal is intended for use with the "eepic.sty" macro
package for LaTeX. To use it, you need "eepic.sty", "epic.sty" and a
DVI driver that supports the "tpic" \\specials. If your driver doesn't
support those \\specials, "eepicemu.sty" will enable you to use some
of them.
dvips and dvipdfm do support the "tpic" \\specials, pdflatex does not.
Syntax:
@example
set terminal eepic @{default@} @{color|monochrome|dashed@}
@{rotate@} @{size XX,YY@}
@{small|tiny|<fontsize>@}
@end example
`color` causes gnuplot to produce \\color@{...@} commands so that the graphs are
colored. Using this option, you must include \\usepackage@{color@} in the preamble
of your latex document.
`dashed` will allow dashed line types; without this option, only solid lines
with varying thickness will be used.
`dashed` and `color` are mutually exclusive; if `color` is specified, then
`dashed` will be ignored.
`rotate` will enable true rotated text (by 90 degrees). Otherwise, rotated text
will be typeset with letters stacked above each other. If you use this option
you must include \\usepackage@{graphicx@} in the preamble.
`small` will use \\scriptsize symbols as point markers. Default is to use the"
default math size. `tiny` uses \\scriptscriptstyle symbols.
The default size of an eepic plot is 5x3 inches. You can change this using
the @ref{size} terminal option.
<fontsize> is a number which specifies the font size inside the picture
environment; the unit is pt (points), i.e., 10 pt equals approx. 3.5 mm.
If fontsize is not specified, then all text inside the picture will be set
in \\footnotesize.
`default` resets all options to their defaults = no color, no dashed lines,
pseudo-rotated (stacked) text, large point symbols.
Notes:
Remember to escape the # character (or other chars meaningful to (La-)TeX)
by \\\\ (2 backslashes).
It seems that dashed lines become solid lines when the vertices of a plot
are too close. (I do not know if that is a general problem with the tpic
specials, or if it is caused by a bug in eepic.sty or dvips/dvipdfm.)
Points, among other things, are drawn using the LaTeX commands "\\Diamond",
"\\Box", etc. These commands no longer belong to the LaTeX2e core; they are
included in the latexsym package, which is part of the base distribution and
thus part of any LaTeX implementation. Please do not forget to use this package.
Instead of latexsym, you can also include the amssymb package.
All drivers for LaTeX offer a special way of controlling text positioning:
If any text string begins with '@{', you also need to include a '@}' at the
end of the text, and the whole text will be centered both horizontally and
vertically. If the text string begins with '[', you need to follow this with
a position specification (up to two out of t,b,l,r), ']@{', the text itself,
and finally '@}'. The text itself may be anything LaTeX can typeset as an
LR-box. '\\rule@{@}@{@}'s may help for best positioning.
Examples:
@example
set term eepic
@end example
output graphs as eepic macros inside a picture environment;
\\input the resulting file in your LaTeX document.
@example
set term eepic color tiny rotate 8
@end example
eepic macros with \\color macros, \\scripscriptsize point markers,
true rotated text, and all text set with 8pt.
About label positioning:
Use gnuplot defaults (mostly sensible, but sometimes not really best):
@example
set title '\\LaTeX\\ -- $ \\gamma $'
@end example
Force centering both horizontally and vertically:
@example
set label '@{\\LaTeX\\ -- $ \\gamma $@}' at 0,0
@end example
Specify own positioning (top here):
@example
set xlabel '[t]@{\\LaTeX\\ -- $ \\gamma $@}'
@end example
The other label -- account for long ticlabels:
@example
set ylabel '[r]@{\\LaTeX\\ -- $ \\gamma $\\rule@{7mm@}@{0pt@}@}'"
@end example
@node emf, epson_180dpi, eepic, complete_list_of_terminals
@subsection emf
@c ?commands set terminal emf
@c ?set terminal emf
@c ?set term emf
@c ?terminal emf
@c ?term emf
@cindex emf
@tmindex emf
The `emf` terminal generates an Enhanced Metafile Format file.
This file format is recognized by many Windows applications.
Syntax:
@example
set terminal emf @{color | monochrome@}
@{enhanced @{noproportional@}@}
@{rounded | butt@}
@{linewidth <LW>@} @{dashlength <DL>@}
@{size XX,YY@} @{background <rgb_color>@}
@{font "<fontname>@{,<fontsize>@}"@}
@{fontscale <scale>@}
@end example
In @ref{monochrome} mode successive line types cycle through dash patterns.
`linewidth <factor>` multiplies all line widths by this factor.
`dashlength <factor>` is useful for thick lines.
<fontname> is the name of a font; and
`<fontsize>` is the size of the font in points.
The nominal size of the output image defaults to 1024x768 in arbitrary
units. You may specify a different nominal size using the @ref{size} option.
Enhanced text mode tries to approximate proportional character spacing.
If you are using a monospaced font, or don't like the approximation, you
can turn off this correction using the `noproportional` option.
The default settings are `color font "Arial,12" size 1024,768`
Selecting `default` sets all options to their default values.
Examples:
@example
set terminal emf 'Times Roman Italic, 12'"
@end example
@node epson_180dpi, excl, emf, complete_list_of_terminals
@subsection epson_180dpi
@c ?commands set terminal epson_180dpi
@c ?set terminal epson_180dpi
@c ?set term epson_180dpi
@c ?terminal epson_180dpi
@c ?term epson_180dpi
@cindex epson_180dpi
@c ?commands set terminal epson_60dpi
@c ?set terminal epson_60dpi
@c ?set term epson_60dpi
@c ?terminal epson_60dpi
@c ?term epson_60dpi
@cindex epson_60dpi
@c ?commands set terminal epson_lx800
@c ?set terminal epson_lx800
@c ?set term epson_lx800
@c ?terminal epson_lx800
@c ?term epson_lx800
@cindex epson_lx800
@c ?commands set terminal nec_cp6
@c ?set terminal nec_cp6
@c ?set term nec_cp6
@c ?terminal nec_cp6
@c ?term nec_cp6
@cindex nec_cp6
@c ?commands set terminal okidata
@c ?set terminal okidata
@c ?set term okidata
@c ?terminal okidata
@c ?term okidata
@cindex okidata
@tmindex okidata
@c ?commands set terminal starc
@c ?set terminal starc
@c ?set term starc
@c ?terminal starc
@c ?term starc
@cindex starc
@tmindex starc
@c ?commands set terminal tandy_60dpi
@c ?set terminal tandy_60dpi
@c ?set term tandy_60dpi
@c ?terminal tandy_60dpi
@c ?term tandy_60dpi
@cindex tandy_60dpi
@c ?commands set terminal dpu414
@c ?set terminal dpu414
@c ?set term dpu414
@c ?terminal dpu414
@c ?term dpu414
@cindex dpu414
@tmindex dpu414
Note: only available if gnuplot is configured --with-bitmap-terminals.
This driver supports a family of Epson printers and derivatives.
`epson_180dpi` and `epson_60dpi` are drivers for Epson LQ-style 24-pin
printers with resolutions of 180 and 60 dots per inch, respectively.
`epson_lx800` is a generic 9-pin driver appropriate for printers like the
Epson LX-800, the Star NL-10 and NX-1000, the PROPRINTER, and so forth.
`nec_cp6` is generic 24-pin driver that can be used for printers like the
NEC CP6 and the Epson LQ-800.
The `okidata` driver supports the 9-pin OKIDATA 320/321 Standard printers.
The `starc` driver is for the Star Color Printer.
The `tandy_60dpi` driver is for the Tandy DMP-130 series of 9-pin, 60-dpi
printers.
The `dpu414` driver is for the Seiko DPU-414 thermal printer.
`nec_cp6` has the options:
Syntax:
@example
set terminal nec_cp6 @{monochrome | colour | draft@}
@end example
which defaults to monochrome.
`dpu414` has the options:
Syntax:
@example
set terminal dpu414 @{small | medium | large@} @{normal | draft@}
@end example
which defaults to medium (=font size) and normal.
Preferred combinations are `medium normal` and `small draft`.
With each of these drivers, a binary copy is required on a PC to print.
Do not use `print`---use instead `copy file /b lpt1:`.
@node excl, fig, epson_180dpi, complete_list_of_terminals
@subsection excl
@c ?commands set terminal excl
@c ?set terminal excl
@c ?set term excl
@c ?terminal excl
@c ?term excl
@cindex excl
@tmindex excl
Note: legacy terminal.
The `excl` terminal driver supports Talaris printers such as the EXCL Laser
printer and the 1590. It has no options."
@node fig, png_, excl, complete_list_of_terminals
@subsection fig
@c ?commands set terminal fig
@c ?set terminal fig
@c ?set term fig
@c ?terminal fig
@c ?term fig
@cindex fig
@cindex xfig
The `fig` terminal device generates output in the Fig graphics language
for import into the xfig interactive drawing tool.
Notes:
@example
The fig terminal was significantly revised in gnuplot version 5.3.
Currently only version 3.2 of the fig file format is supported.
Use of dash patterns may require Xfig 3.2.6 or newer.
@end example
Syntax:
@example
set terminal fig @{monochrome | color@}
@{small | big | size <xsize>@{in|cm@},<ysize>@{in|cm@}@}
@{landscape | portrait@}
@{pointsmax <max_points>@}
@{font "<fontname>@{,<fontsize>@}"@} @{fontsize <size>@}
@{textnormal | @{textspecial texthidden textrigid@}@}
@{@{linewidth|lw@} <multiplier>@}
@end example
The default settings are
@example
set term fig color small landscape font "Times Roman,10" lw 1.0
@end example
@ref{size} sets the size of the drawing area to <xsize>*<ysize> in units of
inches (default) or centimeters. The default is `size 5in,3in`.
`small` is shorthand for `size 5in,3in` (3in,5in in portrait mode).
`big` is shorthand for `size 8in,5in`.
`pointsmax` sets the maximum number of vertices in a polyline; longer
polylines will be broken into segments.
`font` sets the text font face to <fontname> and its size to <fontsize>
points. Choice is limited to the 35 standard PostScript fonts.
`textnormal` resets the text flags and selects postscript fonts,
`textspecial` sets the text flags for LaTeX specials,
`texthidden` sets the hidden flag and `textrigid` the rigid flag.
`linewidth` is a multiplier for the linewidth property of all lines.
Additional point-plot symbols are also available in the `fig` driver. The
symbols can be used through `pointtype` values % 100 above 50, with different
fill intensities controlled by <pointtype> % 5 and outlines in black (for
<pointtype> % 10 < 5) or in the current color. Available symbols are
@example
50 - 59: circles
60 - 69: squares
70 - 79: diamonds
80 - 89: upwards triangles
90 - 99: downwards triangles
@end example
The size of these symbols scales with the font size.
RGB colors will be replaced with gray unless they have been defined in a
linetype prior to plotting or match a known named color or palette value.
See @ref{colornames}.
E.g.
@example
set linetype 999 lc rgb '#aabbcc'
plot $data with fillecurve fillcolor rgb '#aabbcc'
@end example
@node png_, ggi, fig, complete_list_of_terminals
@subsection png
@c ?commands set terminal png
@c ?set terminal png
@c ?set term png
@c ?terminal png
@c ?term png
@cindex png
@tmindex png
Syntax:
@example
set terminal png
@{@{no@}enhanced@}
@{@{no@}transparent@} @{@{no@}interlace@}
@{@{no@}truecolor@} @{rounded|butt@}
@{linewidth <lw>@} @{dashlength <dl>@}
@{tiny | small | medium | large | giant@}
@{font "<face> @{,<pointsize>@}"@} @{fontscale <scale>@}
@{size <x>,<y>@} @{@{no@}crop@}
@{background <rgb_color>@}
@end example
PNG, JPEG and GIF images are created using the external library libgd.
PNG plots may be viewed interactively by piping the output to the
'display' program from the ImageMagick package as follows:
@example
set term png
set output '| display png:-'
@end example
You can view the output from successive plot commands interactively by typing
<space> in the display window. To save the current plot to a file,
left click in the display window and choose @ref{save}.
`transparent` instructs the driver to make the background color transparent.
Default is `notransparent`.
`interlace` instructs the driver to generate interlaced PNGs.
Default is `nointerlace`.
The `linewidth` and `dashlength` options are scaling factors that affect all
lines drawn, i.e. they are multiplied by values requested in various drawing
commands.
By default the png terminal creates TrueColor images with 24 bits of color
information per pixel. The `notruecolor` option instead uses only 8 bits,
(256 indexed colors).
Transparent fill styles require the `truecolor` option. See `fillstyle`.
A transparent background is possible in either indexed or TrueColor images.
Antialiasing also requires TrueColor.
`butt` instructs the driver to use a line drawing method that does
not overshoot the desired end point of a line. This setting is only
relevant for line widths greater than 1. The alternative is `rounded`,
which produces somewhat more uniform curved lines if antialiasing is not
available (`notruecolor`) but can be much slower.
The details of font selection are complicated.
Two equivalent simple examples are given below:
@example
set term png font arial 11
set term png font "arial,11"
@end example
For more information please see the separate section under `fonts`.
The output plot size <x,y> is given in pixels---it defaults to 640x480.
Please see additional information under `canvas` and @ref{size}.
Blank space at the edges of the finished plot may be trimmed using the `crop`
option, resulting in a smaller final image size. Default is `nocrop`.
@menu
* examples____::
@end menu
@node examples____, , png_, png_
@subsubsection examples
@c ?set term png examples
@example
set terminal png font "arial,14" size 800,600 background "white"
@end example
Searches for a scalable font with face name 'arial' and sets the font
size to 14pt. Please see `fonts` for details of how the font search
is done.
@example
set terminal png transparent enhanced
@end example
Use 24 bits of color information per pixel, with a transparent background.
Use the `enhanced text` mode to control the layout of strings to be printed.
@node ggi, gpic, png_, complete_list_of_terminals
@subsection ggi
@c ?commands set terminal ggi
@c ?set terminal ggi
@c ?set term ggi
@c ?terminal ggi
@c ?term ggi
@cindex ggi
@tmindex ggi
Legacy terminal driver for the GGI (General Graphics Interface) project."
Syntax:
@example
set terminal ggi [acceleration <integer>] [[mode] @{mode@}]
@end example
In X the window cannot be resized using window manager handles, but the
mode can be given with the mode option, e.g.:
@example
- V1024x768
- V800x600
- V640x480
- V320x200
@end example
Please refer to the ggi documentation for other modes. The 'mode' keyword
is optional. It is recommended to select the target by environment variables
as explained in the libggi manual page. To get DGA on X, you should for
example
@example
bash> export GGI_DISPLAY=DGA
csh> setenv GGI_DISPLAY DGA
@end example
'acceleration' is only used for targets which report relative pointer
motion events (e.g. DGA) and is a strictly positive integer multiplication
factor for the relative distances. The default for acceleration is 7.
Examples:
@example
set term ggi acc 10
set term ggi acc 1 mode V1024x768
set term ggi V1024x768"
@end example
@node gpic, grass, ggi, complete_list_of_terminals
@subsection gpic
@c ?commands set terminal gpic
@c ?set terminal gpic
@c ?set term gpic
@c ?terminal gpic
@c ?term gpic
@cindex gpic
@tmindex gpic
Note: Legacy terminal (present only if gnuplot was configured --with-gpic).
The `gpic` terminal driver generates GPIC graphs in the Free Software
Foundations's "groff" package. The default size is 5 x 3 inches. The only
option is the origin, which defaults to (0,0).
Syntax:
@example
set terminal gpic @{<x> <y>@}
@end example
where `x` and `y` are in inches.
A simple graph can be formatted using
@example
groff -p -mpic -Tps file.pic > file.ps.
@end example
The output from pic can be pipe-lined into eqn, so it is possible to put
complex functions in a graph with the `set label` and `set @{x/y@}label`
commands. For instance,
@example
set ylab '@@space 0 int from 0 to x alpha ( t ) roman d t@@'
@end example
will label the y axis with a nice integral if formatted with the command:
@example
gpic filename.pic | geqn -d@@@@ -Tps | groff -m[macro-package] -Tps
> filename.ps
@end example
Figures made this way can be scaled to fit into a document. The pic language
is easy to understand, so the graphs can be edited by hand if need be. All
co-ordinates in the pic-file produced by `gnuplot` are given as x+gnuplotx
and y+gnuploty. By default x and y are given the value 0. If this line is
removed with an editor in a number of files, one can put several graphs in
one figure like this (default size is 5.0x3.0 inches):
@example
.PS 8.0
x=0;y=3
copy "figa.pic"
x=5;y=3
copy "figb.pic"
x=0;y=0
copy "figc.pic"
x=5;y=0
copy "figd.pic"
.PE
@end example
This will produce an 8-inch-wide figure with four graphs in two rows on top
of each other.
One can also achieve the same thing by specifying x and y in the command
@example
set terminal gpic x y
@end example
@node grass, hp2623a, gpic, complete_list_of_terminals
@subsection grass
@c ?commands set terminal grass
@c ?set terminal grass
@c ?set term grass
@c ?terminal grass
@c ?term grass
@cindex grass
@tmindex grass
Note: legacy terminal.
The `grass` terminal driver gives `gnuplot` capabilities to users of the
GRASS geographic information system. Contact grassp-list@@moon.cecer.army.mil
for more information. Pages are written to the current frame of the GRASS
Graphics Window. There are no options."
@node hp2623a, hp2648, grass, complete_list_of_terminals
@subsection hp2623a
@c ?commands set terminal hp2623a
@c ?set terminal hp2623a
@c ?set term hp2623a
@c ?terminal hp2623a
@c ?term hp2623a
@cindex hp2623a
@tmindex hp2623a
The `hp2623a` terminal driver supports the Hewlett Packard HP2623A. It has
no options."
@node hp2648, hp500c, hp2623a, complete_list_of_terminals
@subsection hp2648
@c ?commands set terminal hp2648
@c ?set terminal hp2648
@c ?set term hp2648
@c ?terminal hp2648
@c ?term hp2648
@cindex hp2648
@tmindex hp2648
The `hp2648` terminal driver supports the Hewlett Packard HP2647 and HP2648.
It has no options."
@node hp500c, hpgl, hp2648, complete_list_of_terminals
@subsection hp500c
@c ?commands set terminal hp500c
@c ?set terminal hp500c
@c ?set term hp500c
@c ?terminal hp500c
@c ?term hp500c
@cindex hp500c
@tmindex hp500c
Note: only available if gnuplot is configured --with-bitmap-terminals.
The `hp500c` terminal driver supports the Hewlett Packard HP DeskJet 500c.
It has options for resolution and compression.
Syntax:
@example
set terminal hp500c @{<res>@} @{<comp>@}
@end example
where `res` can be 75, 100, 150 or 300 dots per inch and `comp` can be "rle",
or "tiff". Any other inputs are replaced by the defaults, which are 75 dpi
and no compression. Rasterization at the higher resolutions may require a
large amount of memory."
@node hpgl, hpljii, hp500c, complete_list_of_terminals
@subsection hpgl
@c ?commands set terminal hpgl
@c ?set terminal hpgl
@c ?set term hpgl
@c ?terminal hpgl
@c ?term hpgl
@cindex hpgl
@tmindex hpgl
Syntax:
@example
set terminal hpgl @{<number_of_pens>@} @{eject@} @{fontscale <scale>@}
@end example
The `hpgl` driver produces HPGL output for Hewlett Packard pen plotters
like the HP7475A and many other plotters dating back to the 1970s.
Also, HPGL graphics can be imported by many software packages.
The HPGL command language was largely superseded in later printers by the
PCL command language. See `set term pcl5`.
Terminal options control the number of pens used and whether or not the
plotter ejects a page when done. The default is to use 6 pens and
not eject the page.
All text is drawn in a uniform size. The `fontscale` option applies
a scale factor to make this size larger or smaller.
If gnuplot's current encoding is set to either iso_8859_1 cp850,
non-ascii characters are translated for handling by some printer models
that support the corresponding character set. If your printer model
does not support this, do not set these encodings.
@node hpljii, hppj, hpgl, complete_list_of_terminals
@subsection hpljii
@c ?commands set terminal hpljii
@c ?set terminal hpljii
@c ?set term hpljii
@c ?terminal hpljii
@c ?term hpljii
@cindex hpljii
@tmindex hpljii
@c ?commands set terminal hpdj
@c ?set terminal hpdj
@c ?set term hpdj
@c ?terminal hpdj
@c ?term hpdj
@cindex hpdj
@tmindex hpdj
Note: only available if gnuplot is configured --with-bitmap-terminals.
The `hpljii` terminal driver supports the HP Laserjet Series II printer. The
`hpdj` driver supports the HP DeskJet 500 printer. These drivers allow a
choice of resolutions.
Syntax:
@example
set terminal hpljii | hpdj @{<res>@}
@end example
where `res` may be 75, 100, 150 or 300 dots per inch; the default is 75.
Rasterization at the higher resolutions may require a large amount of memory.
The `hp500c` terminal is similar to `hpdj`; `hp500c` additionally supports
color and compression."
@node hppj, imagen, hpljii, complete_list_of_terminals
@subsection hppj
@c ?commands set terminal hppj
@c ?set terminal hppj
@c ?set term hppj
@c ?terminal hppj
@c ?term hppj
@cindex hppj
@tmindex hppj
Note: only available if gnuplot is configured --with-bitmap-terminals.
The `hppj` terminal driver supports the HP PaintJet and HP3630 printers. The
only option is the choice of font.
Syntax:
@example
set terminal hppj @{FNT5X9 | FNT9X17 | FNT13X25@}
@end example
with the middle-sized font (FNT9X17) being the default."
@node imagen, kyo, hppj, complete_list_of_terminals
@subsection imagen
@c ?commands set terminal imagen
@c ?set terminal imagen
@c ?set term imagen
@c ?terminal imagen
@c ?term imagen
@cindex imagen
@tmindex imagen
The `imagen` terminal driver supports Imagen laser printers. It is capable
of placing multiple graphs on a single page.
Syntax:
@example
set terminal imagen @{<fontsize>@} @{portrait | landscape@}
@{[<horiz>,<vert>]@}
@end example
where `fontsize` defaults to 12 points and the layout defaults to `landscape`.
`<horiz>` and `<vert>` are the number of graphs in the horizontal and
vertical directions; these default to unity.
Example:
@example
set terminal imagen portrait [2,3]
@end example
puts six graphs on the page in three rows of two in portrait orientation."
@node kyo, latex, imagen, complete_list_of_terminals
@subsection kyo
@c ?commands set terminal kyo
@c ?set terminal kyo
@c ?set term kyo
@c ?terminal kyo
@c ?term kyo
@cindex kyo
@tmindex kyo
@c ?commands set terminal prescribe
@c ?set terminal prescribe
@c ?set term prescribe
@c ?terminal prescribe
@c ?term prescribe
@cindex prescribe
@tmindex prescribe
The `kyo` and `prescribe` terminal drivers support the Kyocera laser printer.
The only difference between the two is that `kyo` uses "Helvetica" whereas
`prescribe` uses "Courier". There are no options. Note: legacy terminal."
@node latex, lua, kyo, complete_list_of_terminals
@subsection latex
@c ?commands set terminal emtex
@c ?set terminal emtex
@c ?set term emtex
@c ?terminal emtex
@c ?term emtex
@cindex emtex
@tmindex emtex
@c ?commands set terminal latex
@c ?set terminal latex
@c ?set term latex
@c ?terminal latex
@c ?term latex
@cindex latex
@tmindex latex
Note: Legacy terminal (not built by default).
The latex, emtex, eepic, and tpic terminals in older versions of gnuplot
provided minimal support for graphics styles beyond simple lines and points.
They have been directly superseded by the `pict2e` terminal.
For more capable TeX/LaTeX compatible terminal types see
`cairolatex`, `context`, `epslatex`, `mp`, `pstricks`, and `tikz`.
Syntax:
@example
set terminal @{latex | emtex@} @{default | @{courier|roman@} @{<fontsize>@}@}
@{size <XX>@{unit@}, <YY>@{unit@}@} @{rotate | norotate@}
@{color | monochrome@}
@end example
By default the plot will inherit font settings from the embedding document.
You have the option of forcing either Courier (cmtt) or Roman (cmr) fonts
instead. In this case you may also specify a fontsize.
Unless your driver is capable of building fonts at any size (e.g. dvips),
stick to the standard 10, 11 and 12 point sizes.
METAFONT users beware: METAFONT does not like odd sizes.
All drivers for LaTeX offer a special way of controlling text positioning:
If any text string begins with '@{', you also need to include a '@}' at the
end of the text, and the whole text will be centered both horizontally and
vertically. If the text string begins with '[', you need to follow this with
a position specification (up to two out of t,b,l,r), ']@{', the text itself,
and finally '@}'. The text itself may be anything LaTeX can typeset as an
LR-box. '\\rule@{@}@{@}'s may help for best positioning.
Points, among other things, are drawn using the LaTeX commands "\\Diamond" and
"\\Box". These commands no longer belong to the LaTeX2e core; they are included
in the latexsym package, which is part of the base distribution and thus part
of any LaTeX implementation. Please do not forget to use this package.
Other point types use symbols from the amssymb package.
The default size for the plot is 5 inches by 3 inches. The @ref{size} option
changes this to whatever the user requests. By default the X and Y sizes
are taken to be in inches, but other units are possible (currently only cm).
If `rotate` is specified, rotated text, especially a rotated y-axis label,
is possible (the packages graphics or graphicx are needed). The 'stacked'
y-axis label mechanism is then deactivated. This will also significantly
improve the quality of line drawing, and is default since version 5.3.
The option `color` enables color, while @ref{monochrome} uses only black and white
drawing elements. You need to load the color or xcolor package in the preamble
of your latex document.
Examples:
About label positioning:
Use gnuplot defaults (mostly sensible, but sometimes not really best):
@example
set title '\\LaTeX\\ -- $ \\gamma $'
@end example
Force centering both horizontally and vertically:
@example
set label '@{\\LaTeX\\ -- $ \\gamma $@}' at 0,0
@end example
Specify own positioning (top here):
@example
set xlabel '[t]@{\\LaTeX\\ -- $ \\gamma $@}'
@end example
The other label -- account for long ticlabels:
@example
set ylabel '[r]@{\\LaTeX\\ -- $ \\gamma $\\rule@{7mm@}@{0pt@}@}'"
@end example
@node lua, mf, latex, complete_list_of_terminals
@subsection lua
@c ?commands set terminal lua
@c ?set terminal lua
@c ?set term lua
@c ?terminal lua
@c ?term lua
@cindex lua
@tmindex lua
The `lua` generic terminal driver works in conjunction with an
external Lua script to create a target-specific plot file.
Currently the only supported target is TikZ -> pdflatex.
Information about Lua is available at http://www.lua.org .
Syntax:
@example
set terminal lua <target name> | "<file name>"
@{<script_args> ...@}
@{help@}
@end example
A 'target name' or 'file name' (in quotes) for a script is mandatory.
If a 'target name' for the script is given, the terminal will look for
"gnuplot-<target name>.lua" in the local directory and on failure in
the environmental variable GNUPLOT_LUA_DIR.
All arguments will be provided to the selected script for further
evaluation. E.g. 'set term lua tikz help' will cause the script itself
to print additional help on options and choices for the script.
@node mf, mp, lua, complete_list_of_terminals
@subsection mf
@c ?commands set terminal mf
@c ?set terminal mf
@c ?set term mf
@c ?terminal mf
@c ?term mf
@cindex mf
@cindex metafont
Note: legacy terminal (not built by default).
The `mf` terminal driver creates an input file to the METAFONT program. Thus a
figure may be used in the TeX document in the same way as is a character.
To use a picture in a document, the METAFONT program must be run with the
output file from `gnuplot` as input. Thus, the user needs a basic knowledge
of the font creating process and the procedure for including a new font in a
document. However, if the METAFONT program is set up properly at the local
site, an unexperienced user could perform the operation without much trouble.
The text support is based on a METAFONT character set. Currently the
Computer Modern Roman font set is input, but the user is in principal free to
choose whatever fonts he or she needs. The METAFONT source files for the
chosen font must be available. Each character is stored in a separate
picture variable in METAFONT. These variables may be manipulated (rotated,
scaled etc.) when characters are needed. The drawback is the interpretation
time in the METAFONT program. On some machines (i.e. PC) the limited amount
of memory available may also cause problems if too many pictures are stored.
The `mf` terminal has no options.
@menu
* METAFONT_Instructions::
@end menu
@node METAFONT_Instructions, , mf, mf
@subsubsection METAFONT Instructions
@c ?commands set terminal mf detailed
@c ?set terminal mf detailed
@c ?set term mf detailed
@c ?mf detailed
@c ?metafont detailed
- Set your terminal to METAFONT:
@example
set terminal mf
@end example
- Select an output-file, e.g.:
@example
set output "myfigures.mf"
@end example
- Create your pictures. Each picture will generate a separate character. Its
default size will be 5*3 inches. You can change the size by saying `set size
0.5,0.5` or whatever fraction of the default size you want to have.
- Quit `gnuplot`.
- Generate a TFM and GF file by running METAFONT on the output of `gnuplot`.
Since the picture is quite large (5*3 in), you will have to use a version of
METAFONT that has a value of at least 150000 for memmax. On Unix systems
these are conventionally installed under the name bigmf. For the following
assume that the command virmf stands for a big version of METAFONT. For
example:
- Invoke METAFONT:
@example
virmf '&plain'
@end example
- Select the output device: At the METAFONT prompt ('*') type:
@example
\\mode:=CanonCX; % or whatever printer you use
@end example
- Optionally select a magnification:
@example
mag:=1; % or whatever you wish
@end example
- Input the `gnuplot`-file:
@example
input myfigures.mf
@end example
On a typical Unix machine there will usually be a script called "mf" that
executes virmf '&plain', so you probably can substitute mf for virmf &plain.
This will generate two files: mfput.tfm and mfput.$$$gf (where $$$ indicates
the resolution of your device). The above can be conveniently achieved by
typing everything on the command line, e.g.:
virmf '&plain' '\\mode:=CanonCX; mag:=1; input myfigures.mf'
In this case the output files will be named myfigures.tfm and
myfigures.300gf.
- Generate a PK file from the GF file using gftopk:
@example
gftopk myfigures.300gf myfigures.300pk
@end example
The name of the output file for gftopk depends on the DVI driver you use.
Ask your local TeX administrator about the naming conventions. Next, either
install the TFM and PK files in the appropriate directories, or set your
environment variables properly. Usually this involves setting TEXFONTS to
include the current directory and doing the same thing for the environment
variable that your DVI driver uses (no standard name here...). This step is
necessary so that TeX will find the font metric file and your DVI driver will
find the PK file.
- To include your pictures in your document you have to tell TeX the font:
@example
\\font\\gnufigs=myfigures
@end example
Each picture you made is stored in a single character. The first picture is
character 0, the second is character 1, and so on... After doing the above
step, you can use the pictures just like any other characters. Therefore, to
place pictures 1 and 2 centered in your document, all you have to do is:
@example
\\centerline@{\\gnufigs\\char0@}
\\centerline@{\\gnufigs\\char1@}
@end example
in plain TeX. For LaTeX you can, of course, use the picture environment and
place the picture wherever you wish by using the \\makebox and \\put macros.
This conversion saves you a lot of time once you have generated the font;
TeX handles the pictures as characters and uses minimal time to place them,
and the documents you make change more often than the pictures do. It also
saves a lot of TeX memory. One last advantage of using the METAFONT driver
is that the DVI file really remains device independent, because no \\special
commands are used as in the eepic and tpic drivers."
@node mp, mif, mf, complete_list_of_terminals
@subsection mp
@c ?commands set terminal mpost
@c ?set terminal mp
@c ?set term mp
@c ?terminal mp
@c ?term mp
@cindex mp
@cindex metapost
Note: legacy terminal (not built by default).
The `mp` driver produces output intended to be input to the Metapost program.
Running Metapost on the file creates EPS files containing the plots. By
default, Metapost passes all text through TeX. This has the advantage of
allowing essentially any TeX symbols in titles and labels.
Syntax:
@example
set term mp @{color | colour | monochrome@}
@{solid | dashed@}
@{notex | tex | latex@}
@{magnification <magsize>@}
@{psnfss | psnfss-version7 | nopsnfss@}
@{prologues <value>@}
@{a4paper@}
@{amstex@}
@{"<fontname> @{,<fontsize>@}"@}
@end example
The option `color` causes lines to be drawn in color (on a printer or display
that supports it), @ref{monochrome} (or nothing) selects black lines. The option
`solid` draws solid lines, while `dashed` (or nothing) selects lines with
different patterns of dashes. If `solid` is selected but `color` is not,
nearly all lines will be identical. This may occasionally be useful, so it is
allowed.
The option `notex` bypasses TeX entirely, therefore no TeX code can be used in
labels under this option. This is intended for use on old plot files or files
that make frequent use of common characters like `$` and `%` that require
special handling in TeX.
The option `tex` sets the terminal to output its text for TeX to process.
The option `latex` sets the terminal to output its text for processing by
LaTeX. This allows things like \\frac for fractions which LaTeX knows about
but TeX does not. Note that you must set the environment variable TEX to the
name of your LaTeX executable (normally latex) if you use this option or use
`mpost --tex=<name of LaTeX executable> ...`. Otherwise metapost will try and
use TeX to process the text and it won't work.
Changing font sizes in TeX has no effect on the size of mathematics, and there
is no foolproof way to make such a change, except by globally setting a
magnification factor. This is the purpose of the `magnification` option. It
must be followed by a scaling factor. All text (NOT the graphs) will be scaled
by this factor. Use this if you have math that you want at some size other
than the default 10pt. Unfortunately, all math will be the same size, but see
the discussion below on editing the MP output. `mag` will also work under
`notex` but there seems no point in using it as the font size option (below)
works as well.
The option `psnfss` uses postscript fonts in combination with LaTeX. Since
this option only makes sense, if LaTeX is being used, the `latex` option is selected
automatically. This option includes the following packages for LaTeX:
inputenc(latin1), fontenc(T1), mathptmx, helvet(scaled=09.2), courier, latexsym
and textcomp.
The option `psnfss-version7` uses also postscript fonts in LaTeX (option `latex`
is also automatically selected), but uses the following packages with LaTeX:
inputenc(latin1), fontenc(T1), times, mathptmx, helvet and courier.
The option `nopsnfss` is the default and uses the standard font (cmr10 if not
otherwise specified).
The option `prologues` takes a value as an additional argument and adds the line
`prologues:=<value>` to the metapost file. If a value of `2` is specified metapost
uses postscript fonts to generate the eps-file, so that the result can be viewed
using e.g. ghostscript. Normally the output of metapost uses TeX fonts and therefore
has to be included in a (La)TeX file before you can look at it.
The option `noprologues` is the default. No additional line specifying the prologue
will be added.
The option `a4paper` adds a `[a4paper]` to the documentclass. Normally letter paper
is used (default). Since this option is only used in case of LaTeX, the `latex` option
is selected automatically.
The option `amstex` automatically selects the `latex` option and includes the following
LaTeX packages: amsfonts, amsmath(intlimits). By default these packages are not
included.
A name in quotes selects the font that will be used when no explicit font is
given in a `set label` or @ref{title}. A name recognized by TeX (a TFM file
exists) must be used. The default is "cmr10" unless `notex` is selected,
then it is "pcrr8r" (Courier). Even under `notex`, a TFM file is needed by
Metapost. The file `pcrr8r.tfm` is the name given to Courier in LaTeX's psnfss
package. If you change the font from the `notex` default, choose a font that
matches the ASCII encoding at least in the range 32-126. `cmtt10` almost
works, but it has a nonblank character in position 32 (space).
The size can be any number between 5.0 and 99.99. If it is omitted, 10.0 is
used. It is advisable to use `magstep` sizes: 10 times an integer or
half-integer power of 1.2, rounded to two decimals, because those are the most
available sizes of fonts in TeX systems.
All the options are optional. If font information is given, it must be at the
end, with size (if present) last. The size is needed to select a size for the
font, even if the font name includes size information. For example,
`set term mp "cmtt12"` selects cmtt12 shrunk to the default size 10. This
is probably not what you want or you would have used cmtt10.
The following common ascii characters need special treatment in TeX:
@example
$, &, #, %, _; |, <, >; ^, ~, \\, @{, and @}
@end example
The five characters $, #, &, _, and % can simply be escaped, e.g., `\\$`.
The three characters <, >, and | can be wrapped in math mode, e.g., `$<$`.
The remainder require some TeX work-arounds. Any good book on TeX will give
some guidance.
If you type your labels inside double quotes, backslashes in TeX code need to
be escaped (doubled). Using single quotes will avoid having to do this, but
then you cannot use `\\n` for line breaks. As of this writing, version 3.7 of
gnuplot processes titles given in a `plot` command differently than in other
places, and backslashes in TeX commands need to be doubled regardless of the
style of quotes.
Metapost pictures are typically used in TeX documents. Metapost deals with
fonts pretty much the same way TeX does, which is different from most other
document preparation programs. If the picture is included in a LaTeX document
using the graphics package, or in a plainTeX document via epsf.tex, and then
converted to PostScript with dvips (or other dvi-to-ps converter), the text in
the plot will usually be handled correctly. However, the text may not appear
if you send the Metapost output as-is to a PostScript interpreter.
@menu
* Metapost_Instructions::
@end menu
@node Metapost_Instructions, , mp, mp
@subsubsection Metapost Instructions
@c ?commands set terminal mp detailed
@c ?set terminal mp detailed
@c ?set term mp detailed
@c ?mp detailed
@c ?metapost detailed
- Set your terminal to Metapost, e.g.:
@example
set terminal mp mono "cmtt12" 12
@end example
- Select an output-file, e.g.:
@example
set output "figure.mp"
@end example
- Create your pictures. Each plot (or multiplot group) will generate a
separate Metapost beginfig...endfig group. Its default size will be 5 by 3
inches. You can change the size by saying `set size 0.5,0.5` or whatever
fraction of the default size you want to have.
- Quit gnuplot.
- Generate EPS files by running Metapost on the output of gnuplot:
@example
mpost figure.mp OR mp figure.mp
@end example
The name of the Metapost program depends on the system, typically `mpost` for
a Unix machine and `mp` on many others. Metapost will generate one EPS file
for each picture.
- To include your pictures in your document you can use the graphics package
in LaTeX or epsf.tex in plainTeX:
@example
\\usepackage@{graphics@} % LaTeX
\\input epsf.tex % plainTeX
@end example
If you use a driver other than dvips for converting TeX DVI output to PS, you
may need to add the following line in your LaTeX document:
@example
\\DeclareGraphicsRule@{*@}@{eps@}@{*@}@{@}
@end example
Each picture you made is in a separate file. The first picture is in, e.g.,
figure.0, the second in figure.1, and so on.... To place the third picture in
your document, for example, all you have to do is:
@example
\\includegraphics@{figure.2@} % LaTeX
\\epsfbox@{figure.2@} % plainTeX
@end example
The advantage, if any, of the mp terminal over a postscript terminal is
editable output. Considerable effort went into making this output as clean as
possible. For those knowledgeable in the Metapost language, the default line
types and colors can be changed by editing the arrays `lt[]` and `col[]`.
The choice of solid vs dashed lines, and color vs black lines can be change by
changing the values assigned to the booleans `dashedlines` and `colorlines`.
If the default `tex` option was in effect, global changes to the text of
labels can be achieved by editing the `vebatimtex...etex` block. In
particular, a LaTeX preamble can be added if desired, and then LaTeX's
built-in size changing commands can be used for maximum flexibility. Be sure
to set the appropriate MP configuration variable to force Metapost to run
LaTeX instead of plainTeX."
@node mif, pbm, mp, complete_list_of_terminals
@subsection mif
@c ?commands set terminal mif
@c ?set terminal mif
@c ?set term mif
@c ?terminal mif
@c ?term mif
@cindex mif
@tmindex mif
Note: Legacy terminal.
The `mif` terminal driver produces Frame Maker MIF format version 3.00. It
plots in MIF Frames with the size 15*10 cm, and plot primitives with the same
pen will be grouped in the same MIF group. Plot primitives in a `gnuplot`
page will be plotted in a MIF Frame, and several MIF Frames are collected in
one large MIF Frame. The MIF font used for text is "Times".
Several options may be set in the MIF 3.00 driver.
Syntax:
@example
set terminal mif @{color | colour | monochrome@} @{polyline | vectors@}
@{help | ?@}
@end example
`colour` plots lines with line types >= 0 in colour (MIF sep. 2--7) and
@ref{monochrome} plots all line types in black (MIF sep. 0).
`polyline` plots curves as continuous curves and @ref{vectors} plots curves as
collections of vectors.
@ref{help} and `?` print online help on standard error output---both print a
short description of the usage; @ref{help} also lists the options.
Examples:
@example
set term mif colour polylines # defaults
set term mif # defaults
set term mif vectors
set term mif help"
@end example
@node pbm, dospc, mif, complete_list_of_terminals
@subsection pbm
@c ?commands set terminal pbm
@c ?set terminal pbm
@c ?set term pbm
@c ?terminal pbm
@c ?term pbm
@cindex pbm
@tmindex pbm
Note: only available if gnuplot is configured --with-bitmap-terminals.
Syntax:
@example
set terminal pbm @{<fontsize>@} @{<mode>@} @{size <x>,<y>@}
@end example
where <fontsize> is `small`, `medium`, or `large` and <mode> is @ref{monochrome},
@ref{gray} or `color`. The default plot size is 640 pixels wide and 480 pixels
high. The output size is white-space padded to the nearest multiple of
8 pixels on both x and y. This empty space may be cropped later if needed.
The output of the `pbm` driver depends upon <mode>: @ref{monochrome} produces a
portable bitmap (one bit per pixel), @ref{gray} a portable graymap (three bits
per pixel) and `color` a portable pixmap (color, four bits per pixel).
The output of this driver can be used with various image conversion and
manipulation utilities provided by NETPBM. Based on Jef Poskanzer's
PBMPLUS package, NETPBM provides programs to convert the above PBM formats
to GIF, TIFF, MacPaint, Macintosh PICT, PCX, X11 bitmap and many others.
Complete information is available at http://netpbm.sourceforge.net/.
Examples:
@example
set terminal pbm small monochrome # defaults
set terminal pbm color medium size 800,600
set output '| pnmrotate 45 | pnmtopng > tilted.png' # uses NETPBM"
@end example
@node dospc, pdf, pbm, complete_list_of_terminals
@subsection dospc
@c ?commands set terminal dospc
@c ?set terminal dospc
@c ?set term dospc
@c ?terminal dospc
@c ?term dospc
@cindex dospc
@tmindex dospc
Note: legacy terminal.
The `dospc` interactive terminal supports PCs with arbitrary graphics boards,
which will be automatically detected. It uses the OpenWatcom graphics
library.
Syntax:
@example
set terminal dospc
@{@{no@}@{enhanced@}@}
@{fontscale <scale>@} @{pointsize <scale>@} @{linewidth <scale@}
@{background <rgbcolor>@}
@end example
Line widths, and point and font sizes can be scaled using the `linewidth`,
`pointscale`, or `fontscale` options, respectively.
`background` sets the background color (default: black). It is only supported
with adapters with 16 or more colors.
@{`no`@}`enhanced` toggles enhanced text mode features like sub-
and superscripts, see `enhanced text` for more information.
To select a particular (S)VGA graphics mode, set the environment
variable PCTRM to one of S640, S800, S1024, S1280, or S1600.
Only 256 color SVGA modes are supported at this time.
For other adapters the resolution will be selected automatically.
Limitations:
This terminal supports a maximum of 256 colors. Transparency is not
available. Thick lines are approximated very crudely, so expect ugly
output for non-vertical or non-horizontal lines."
@node pdf, pstricks, dospc, complete_list_of_terminals
@subsection pdf
@c ?commands set terminal pdf
@c ?set terminal pdf
@c ?set term pdf
@c ?terminal pdf
@c ?term pdf
@cindex pdf
@tmindex pdf
[DEPRECATED] This terminal uses the non-free library PDFlib (GmbH Munchen)"
to produce files in Portable Document Format. Unless you have a commercial
license for PDFlib and need some special feature it provides you would do
better to use the cairo pdf terminal instead. Gnuplot can also export PDF
files from wxt or qt interactive terminal sessions.
Syntax:
@example
set terminal pdf @{monochrome|color|colour@}
@{@{no@}enhanced@}
@{fname "<font>"@} @{fsize <fontsize>@}
@{font "<fontname>@{,<fontsize>@}"@} @{fontscale <scale>@}
@{linewidth <lw>@} @{rounded|butt@}
@{dl <dashlength>@}@}
@{size <XX>@{unit@},<YY>@{unit@}@}
@end example
The default is to use a different color for each line type. Selecting
`monochome` will use black for all linetypes, Even in in mono mode
you can still use explicit colors for filled areas or linestyles.
where <font> is the name of the default font to use (default Helvetica)
and <fontsize> is the font size (in points, default 12).
For help on which fonts are available or how to install new ones, please
see the documentation for your local installation of pdflib.
The `enhanced` option enables enhanced text processing features
(subscripts, superscripts and mixed fonts). See `enhanced`.
The width of all lines in the plot can be increased by the factor <n>
specified in `linewidth`. Similarly `dashlength` is a multiplier for the
default dash spacing.
`rounded` sets line caps and line joins to be rounded; `butt` is the
default, butt caps and mitered joins.
The default size for PDF output is 5 inches by 3 inches. The @ref{size} option
changes this to whatever the user requests. By default the X and Y sizes
are taken to be in inches, but other units are possible (currently only cm).
* does not work.
@node pstricks, qms, pdf, complete_list_of_terminals
@subsection pstricks
@c ?commands set terminal pstricks
@c ?set terminal pstricks
@c ?set term pstricks
@c ?terminal pstricks
@c ?term pstricks
@cindex pstricks
@tmindex pstricks
The `pstricks` driver is intended for use with the "pstricks.sty" macro
package for TeX or LaTeX.
You need "pstricks.sty", and, of course, a printer that understands
PostScript, or a converter such as Ghostscript.
PSTricks is available at
@uref{http://tug.org/PSTricks/,http://tug.org/PSTricks/.
}
This driver definitely does not come close to using the full
capability of the PSTricks package.
Syntax:
@example
set terminal pstricks
@{unit | size <XX>@{unit@},<YY>@{unit@}@}
@{standalone | input@}
@{blacktext | colortext | colourtext@}
@{linewidth <lw>@} @{rounded | butt@}
@{pointscale <ps>@}
@{psarrows | gparrows@}
@{background <rgbcolor>@}
@{pstricks | pdftricks2@}
@end example
The `unit` option produces a plot with internal dimensions 1x1. The default
is a plot of `size 5in,3in`.
`standalone` produces a LaTeX file with possibly multiple plots, ready
to be compiled. The default is `input` to produce a TeX file which can
be included.
`blacktext` forces all text to be written in black. `colortext` enables
colored text. The default is `blacktext`.
`rounded` sets line caps and line joins to be rounded. `butt` sets butt
caps and mitered joins and is the default.
`linewidth` and `pointscale` scale the width of lines and the size of point
symbols, respectively.
`psarrows` draws `arrow`s using PSTricks commands which are shorter but do
not offer all options. `gparrows` selects drawing arrows using gnuplot's own
routine for full functionality instead.
With the option `pdftricks2` you can create output for the `pdftricks2`
macro package, which can be used with pdflatex/lualatex. Otherwise, output
for the `pstricks` package with traditional tex/latex or xelatex is
produced.
The old `hacktext` option has been replaced by the new default format (%h),
see `format specifiers`.
Transparency requires support by Ghostscript or conversion to PDF."
@node qms, regis, pstricks, complete_list_of_terminals
@subsection qms
@c ?commands set terminal qms
@c ?set terminal qms
@c ?set term qms
@c ?terminal qms
@c ?term qms
@cindex qms
@tmindex qms
The `qms` terminal driver supports the QMS/QUIC Laser printer, the Talaris
1200 and others. It has no options."
@node regis, svg, qms, complete_list_of_terminals
@subsection regis
@c ?commands set terminal regis
@c ?set terminal regis
@c ?set term regis
@c ?terminal regis
@c ?term regis
@cindex regis
@tmindex regis
Note: legacy terminal.
The `regis` terminal device generates output in the REGIS graphics language.
It has the option of using 4 (the default) or 16 colors.
Syntax:
@example
set terminal regis @{4 | 16@}"
@end example
@node svg, tek410x, regis, complete_list_of_terminals
@subsection svg
@c ?commands set terminal svg
@c ?set terminal svg
@c ?set term svg
@c ?terminal svg
@c ?term svg
@cindex svg
@tmindex svg
This terminal produces files in the W3C Scalable Vector Graphics format.
Syntax:
@example
set terminal svg @{size <x>,<y> @{|fixed|dynamic@}@}
@{mouse@} @{standalone | jsdir <dirname>@}
@{name <plotname>@}
@{font "<fontname>@{,<fontsize>@}"@} @{@{no@}enhanced@}
@{fontscale <multiplier>@}
@{rounded|butt|square@} @{solid|dashed@} @{linewidth <lw>@}
@{background <rgb_color>@}
@end example
where <x> and <y> are the size of the SVG plot to generate,
`dynamic` allows a svg-viewer to resize plot, whereas the default
setting, `fixed`, will request an absolute size.
`linewidth <w>` increases the width of all lines used in the figure
by a factor of <w>.
<font> is the name of the default font to use (default Arial) and
<fontsize> is the font size (in points, default 12). SVG viewing
programs may substitute other fonts when the file is displayed.
The enhanced text mode syntax is shared with other gnuplot terminal types.
See `enhanced` for more details.
The `mouse` option tells gnuplot to add support for mouse tracking and for
toggling individual plots on/off by clicking on the corresponding key entry.
By default this is done by including a link that points to a script in a
local directory, usually /usr/local/share/gnuplot/<version>/js.
You can change this by using the `jsdir` option to specify either a
different local directory or a general URL. The latter is usually
appropriate if you are embedding the svg into a web page.
Alternatively, the `standalone` option embeds the mousing code in the svg
document itself rather than linking to an external resource.
When an SVG file will be used in conjunction with external files,
e.g. if it is referenced by javascript code in a web page or parent document,
then a unique name is required to avoid potential conflicting references
to other SVG plots. Use the @ref{name} option to ensure uniqueness.
@node tek410x, tek40, svg, complete_list_of_terminals
@subsection tek410x
@c ?commands set terminal tek410x
@c ?set terminal tek410x
@c ?set term tek410x
@c ?terminal tek410x
@c ?term tek410x
@cindex tek410x
@tmindex tek410x
The `tek410x` terminal driver supports the 410x and 420x family of Tektronix
terminals. It has no options."
@node tek40, texdraw, tek410x, complete_list_of_terminals
@subsection tek40
@c ?commands set terminal tek40xx
@c ?set terminal tek40xx
@c ?set term tek40xx
@c ?terminal tek40xx
@c ?term tek40xx
@cindex tek40
@tmindex tek40
@c ?commands set terminal vttek
@c ?set terminal vttek
@c ?set term vttek
@c ?terminal vttek
@c ?term vttek
@cindex vttek
@tmindex vttek
@c ?commands set terminal xterm
@c ?set terminal xterm
@c ?set term xterm
@c ?terminal xterm
@c ?term xterm
@cindex xterm
@tmindex xterm
@c ?commands set terminal kc-tek40xx
@c ?set terminal kc-tek40xx
@c ?set term kc-tek40xx
@c ?terminal kc-tek40xx
@c ?term kc-tek40xx
@cindex kc-tek40xx
@tmindex kc-tek40xx
@c ?commands set terminal km-tek40xx
@c ?set terminal km-tek40xx
@c ?set term km-tek40xx
@c ?terminal km-tek40xx
@c ?term km-tek40xx
@cindex km-tek40xx
@c ?commands set terminal selanar
@c ?set terminal selanar
@c ?set term selanar
@c ?terminal selanar
@c ?term selanar
@cindex selanar
@c ?commands set terminal sixeltek
@c ?set terminal sixeltek
@c ?set term sixeltek
@c ?terminal sixeltek
@c ?term sixeltek
@cindex sixeltek
@tmindex sixeltek
Syntax:
@example
set terminal sixeltek @{<fontsize>@} @{mono|color|colors <n>@} @{size <x>,<y>@}
@{animate@}
@end example
The `sixel` output format was originally used by DEC terminals and printers.
This driver supports palette images with a maximum of 256 colors. The default
is 16 which can be changed using the `colors` option.
The font size can be specified as `small`, `medium` or `large`.
`anchor` causes each new plot to be anchored at the top left of the window.
`scroll` intead draws each plot at the current cursor position and allows it
to scroll with the text.
For use with xterm, xterm must be compiled/configured with
"--enable-sixel-graphics" and started with "-ti 340" on the command line.
Note that gnuplot also supports another sixel output terminal, `sixelgd`,
that offers more options and features."
@c ?commands set terminal bitgraph
@c ?set terminal bitgraph
@c ?set term bitgraph
@c ?terminal bitgraph
@c ?term bitgraph
@cindex bitgraph
This family of terminal drivers supports a variety of VT-like terminals.
`tek40xx` supports Tektronix 4010 and others as well as most TEK emulators.
`vttek` supports VT-like tek40xx terminal emulators.
The following are present only if selected when gnuplot is built:
`kc-tek40xx` supports MS-DOS Kermit Tek4010 terminal emulators in color;
`km-tek40xx` supports them in monochrome. `selanar` supports Selanar graphics.
`bitgraph` supports BBN Bitgraph terminals.
None have any options."
@node texdraw, tgif, tek40, complete_list_of_terminals
@subsection texdraw
@c ?commands set terminal texdraw
@c ?set terminal texdraw
@c ?set term texdraw
@c ?terminal texdraw
@c ?term texdraw
@cindex texdraw
@tmindex texdraw
The `texdraw` terminal driver supports the (La)TeX texdraw environment. It is
intended for use with the texdraw package,
see https://www.ctan.org/tex-archive/graphics/texdraw/ .
@example
set terminal texdraw
@{size <XX>@{unit@},<YY>@{unit@}@}
@{standalone | input@}
@{blacktext | colortext | colourtext@}
@{linewidth <lw>@} @{rounded | butt@}
@{pointscale <ps>@}
@{psarrows | gparrows@} @{texpoints | gppoints@}
@{background <rgbcolor>@}
@end example
Note: Graphics are in grayscale only. Text is always black. Boxes and polygons
are filled using solid gray levels only. Patterns are not available.
Points, among other things, are drawn using the LaTeX commands "\\Diamond" and
"\\Box". These commands no longer belong to the LaTeX2e core; they are included
in the latexsym package, which is part of the base distribution and thus part
of any LaTeX implementation. Please do not forget to use this package.
Other point types use symbols from the amssymb package. For compatibility with
plain TeX you need to specify the `gppoints` option.
`standalone` produces a LaTeX file with possibly multiple plots, ready
to be compiled. The default is `input` to produce a TeX file which can
be included.
`blacktext` forces all text to be written in black. `colortext` enables
"colored" text. The default is `blacktext` and "color" means grayscale
really.
`rounded` sets line caps and line joins to be rounded; `butt` sets butt
caps and mitered joins and is the default.
`linewidth` and `pointscale` scale the width of lines and the size of point
symbols, respectively. `pointscale` only applies to `gppoints`.
`psarrows` draws `arrow`s using TeXdraw commands which are shorter but do not
offer all options. `gparrows` selects drawing arrows using gnuplot's
own routine for full functionality instead. Similarly, `texpoints`, and
`gppoints` select LaTeX symbols or gnuplot's point drawing routines."
@node tgif, tkcanvas, texdraw, complete_list_of_terminals
@subsection tgif
@c ?commands set terminal tgif
@c ?set terminal tgif
@c ?set term tgif
@c ?terminal tgif
@c ?term tgif
@cindex tgif
@tmindex tgif
Legacy terminal (present only if gnuplot was configured --with-tgif).
Tgif is/was an Xlib based interactive 2-D vector graphics drawing tool
also capable of importing and marking up bitmap images.
The `tgif` driver supports a choice of font and font size and multiple
graphs on the page. The proportions of the axes are not changed.
Syntax:
@example
set terminal tgif @{portrait | landscape | default@} @{<[x,y]>@}
@{monochrome | color@}
@{@{linewidth | lw@} <LW>@}
@{solid | dashed@}
@{font "<fontname>@{,<fontsize>@}"@}
@end example
where <[x,y]> specifies the number of graphs in the x and y directions on the
page, `color` enables color, `linewidth` scales all linewidths by <LW>,
"<fontname>" is the name of a valid PostScript font, and <fontsize>
specifies the size of the PostScript font.
`defaults` sets all options to their defaults: `portrait`, `[1,1]`, `color`,
`linewidth 1.0`, `dashed`, `"Helvetica,18"`.
The `solid` option is usually preferred if lines are colored, as they often
are in the editor. Hardcopy will be black-and-white, so `dashed` should be
chosen for that.
Multiplot is implemented in two different ways.
The first multiplot implementation is the standard gnuplot multiplot feature:
@example
set terminal tgif
set output "file.obj"
set multiplot
set origin x01,y01
set size xs,ys
plot ...
...
set origin x02,y02
plot ...
unset multiplot
@end example
See @ref{multiplot} for further information.
The second version is the [x,y] option for the driver itself. The advantage
of this implementation is that everything is scaled and placed automatically
without the need for setting origins and sizes; the graphs keep their natural
x/y proportions of 3/2 (or whatever is fixed by @ref{size}).
If both multiplot methods are selected, the standard method is chosen and a
warning message is given.
Examples of single plots (or standard multiplot):
@example
set terminal tgif # defaults
set terminal tgif "Times-Roman,24"
set terminal tgif landscape
set terminal tgif landscape solid
@end example
Examples using the built-in multiplot mechanism:
@example
set terminal tgif portrait [2,4] # portrait; 2 plots in the x-
# and 4 in the y-direction
set terminal tgif [1,2] # portrait; 1 plot in the x-
# and 2 in the y-direction
set terminal tgif landscape [3,3] # landscape; 3 plots in both
# directions"
@end example
@node tkcanvas, tpic, tgif, complete_list_of_terminals
@subsection tkcanvas
@c ?commands set terminal tkcanvas
@c ?set terminal tkcanvas
@c ?set term tkcanvas
@c ?terminal tkcanvas
@c ?term tkcanvas
@cindex tkcanvas
@tmindex tkcanvas
This terminal driver generates Tk canvas widget commands in one of the
following scripting languages: Tcl (default), Perl, Python, Ruby, or REXX.
Syntax:
@example
set terminal tkcanvas @{tcl | perl | perltkx | python | ruby | rexx@}
@{standalone | input@}
@{interactive@}
@{rounded | butt@}
@{nobackground | background <rgb color>@}
@{@{no@}rottext@}
@{size <width>,<height>@}
@{@{no@}enhanced@}
@{externalimages | pixels@}
@end example
Execute the following sequence of Tcl/Tk commands to display the result:
@example
package require Tk
# the following two lines are only required to support external images
package require img::png
source resize.tcl
source plot.tcl
canvas .c -width 800 -height 600
pack .c
gnuplot .c
@end example
Or, for Perl/Tk use a program like this:
@example
use Tk;
my $top = MainWindow->new;
my $c = $top->Canvas(-width => 800, -height => 600)->pack;
my $gnuplot = do "plot.pl";
$gnuplot->($c);
MainLoop;
@end example
Or, for Perl/Tkx use a program like this:
@example
use Tkx;
my $top = Tkx::widget->new(".");
my $c = $top->new_tk__canvas(-width => 800, -height => 600);
$c->g_pack;
my $gnuplot = do "plot.pl";
$gnuplot->($c);
Tkx::MainLoop();
@end example
Or, for Python/Tkinter use a program like this:
@example
from tkinter import *
from tkinter import font
root = Tk()
c = Canvas(root, width=800, height=600)
c.pack()
exec(open('plot.py').read())
gnuplot(c)
root.mainloop()
@end example
Or, for Ruby/Tk use a program like this:
@example
require 'tk'
root = TkRoot.new @{ title 'Ruby/Tk' @}
c = TkCanvas.new(root, 'width'=>800, 'height'=>600) @{ pack @{ @} @}
load('plot.rb')
gnuplot(c)
Tk.mainloop
@end example
Or, for Rexx/Tk use a program like this:
@example
/**/
call RxFuncAdd 'TkLoadFuncs', 'rexxtk', 'TkLoadFuncs'
call TkLoadFuncs
cv = TkCanvas('.c', '-width', 800, '-height', 600)
call TkPack cv
call 'plot.rex' cv
do forever
cmd = TkWait()
if cmd = 'AWinClose' then leave
interpret 'call' cmd
end
@end example
The code generated by `gnuplot` (in the above examples, this code is
written to "plot.<ext>") contains the following procedures:
gnuplot(canvas)
@example
takes the name of a canvas as its argument.
When called, it clears the canvas, finds the size of the canvas and
draws the plot in it, scaled to fit.
@end example
gnuplot_plotarea()
@example
returns a list containing the borders of the plotting area
(xleft, xright, ytop, ybot) in canvas screen coordinates."
It works only for 2-dimensional plotting (`plot`).
@end example
gnuplot_axisranges()
@example
returns the ranges of the two axes in plot coordinates
(x1min, x1max, y1min, y1max, x2min, x2max, y2min, y2max).
It works only for 2-dimensional plotting (`plot`).
@end example
You can create self-contained, minimal scripts using the `standalone`
option. The default is `input` which creates scripts which have to be
source'd (or loaded or called or whatever the adequate term is for the
language selected).
If the `interactive` option is specified, mouse clicking on a line segment
will print the coordinates of its midpoint to stdout.
The user can supersede this behavior by supplying a procedure
user_gnuplot_coordinates which takes the following arguments:
@example
win id x1s y1s x2s y2s x1e y1e x2e y2e x1m y1m x2m y2m,
@end example
i.e. the name of the canvas and the id of the line segment followed by the
coordinates of its start and end point in the two possible axis ranges; the
coordinates of the midpoint are only filled for logarithmic axes.
By default the canvas is `transparent`, but an explicit background color
can be set with the `background` option.
`rounded` sets line caps and line joins to be rounded;
`butt` is the default: butt caps and mitered joins.
Text at arbitrary angles can be activated with the `rottext` option,
which requires Tcl/Tk 8.6 or later. The default is `norottext`.
The @ref{size} option tries to optimize the tic and font sizes for the given
canvas size. By default an output size of 800 x 600 pixels is assumed.
`enhanced` selects `enhanced text` processing (default), but is currently
only available for Tcl.
The `pixels` (default) option selects the failsafe pixel-by-pixel image
handler, see also `image pixels`.
The `externalimages` option saves images as external png images, which
are later loaded and scaled by the tkcanvas code. This option is only
available for Tcl and display may be slow in some situations since the
Tk image handler does not provide arbitrary scaling. Scripts need to source
the provided rescale.tcl.
Interactive mode is not yet implemented for Python/Tk and Rexx/Tk.
Interactive mode for Ruby/Tk does not yet support user_gnuplot_coordinates."
@node tpic, windows, tkcanvas, complete_list_of_terminals
@subsection tpic
@c ?commands set terminal tpic
@c ?set terminal tpic
@c ?set term tpic
@c ?terminal tpic
@c ?term tpic
@cindex tpic
@tmindex tpic
Note: Legacy terminal (not built by default).
The latex, emtex, eepic, and tpic terminals in older versions of gnuplot
provided minimal support for graphics styles beyond simple lines and points.
They have been directly superseded by the `pict2e` terminal.
For more capable TeX/LaTeX compatible terminal types see
`cairolatex`, `context`, `epslatex`, `mp`, `pstricks`, and `tikz`.
The `tpic` terminal driver supports the LaTeX picture environment with tpic
\\specials. Options are the point size, line width, and dot-dash interval.
Syntax:
@example
set terminal tpic <pointsize> <linewidth> <interval>
@end example
where @ref{pointsize} and `linewidth` are integers in milli-inches and `interval`
is a float in inches. If a non-positive value is specified, the default is
chosen: pointsize = 40, linewidth = 6, interval = 0.1.
All drivers for LaTeX offer a special way of controlling text positioning:
If any text string begins with '@{', you also need to include a '@}' at the
end of the text, and the whole text will be centered both horizontally
and vertically by LaTeX. --- If the text string begins with '[', you need
to continue it with: a position specification (up to two out of t,b,l,r),
']@{', the text itself, and finally, '@}'. The text itself may be anything
LaTeX can typeset as an LR-box. \\rule@{@}@{@}'s may help for best positioning.
Examples:
About label positioning:
Use gnuplot defaults (mostly sensible, but sometimes not really best):
@example
set title '\\LaTeX\\ -- $ \\gamma $'
@end example
Force centering both horizontally and vertically:
@example
set label '@{\\LaTeX\\ -- $ \\gamma $@}' at 0,0
@end example
Specify own positioning (top here):
@example
set xlabel '[t]@{\\LaTeX\\ -- $ \\gamma $@}'
@end example
The other label -- account for long ticlabels:
@example
set ylabel '[r]@{\\LaTeX\\ -- $ \\gamma $\\rule@{7mm@}@{0pt@}@}'"
@end example
@node windows, wxt, tpic, complete_list_of_terminals
@subsection windows
@c ?commands set terminal windows
@c ?set terminal windows
@c ?set term windows
@c ?terminal windows
@c ?term windows
@cindex windows
@tmindex windows
The `windows` terminal is a fast interactive terminal driver that uses the
Windows GDI to draw and write text. The cross-platform `terminal wxt` and
`terminal qt` are also supported on Windows.
Syntax:
@example
set terminal windows @{<n>@}
@{color | monochrome@}
@{solid | dashed@}
@{rounded | butt@}
@{enhanced | noenhanced@}
@{font <fontspec>@}
@{fontscale <scale>@}
@{linewidth <scale>@}
@{pointscale <scale>@}
@{background <rgb color>@}
@{title "Plot Window Title"@}
@{@{size | wsize@} <width>,<height>@}
@{position <x>,<y>@}
@{docked @{layout <rows>,<cols>@} | standalone@}
@{close@}
@end example
Multiple plot windows are supported: `set terminal win <n>` directs the
output to plot window number n.
`color` and @ref{monochrome} select colored or mono output,
`dashed` and `solid` select dashed or solid lines. Note that `color`
defaults to `solid`, whereas @ref{monochrome} defaults to `dashed`.
`rounded` sets line caps and line joins to be rounded; `butt` is the
default, butt caps and mitered joins.
`enhanced` enables enhanced text mode features (subscripts,
superscripts and mixed fonts, see `enhanced text` for more information).
`<fontspec>` is in the format "<fontface>,<fontsize>", where "<fontface>"
is the name of a valid Windows font, and <fontsize> is the size of the font
in points and both components are optional.
Note that in previous versions of gnuplot the `font` statement could be left
out and <fontsize> could be given as a number without double quotes. This is
no longer supported.
`linewidth`, `fontscale`, `pointscale` can be used to scale the width of
lines, the size of text, or the size of the point symbols.
@ref{title} changes the title of the graph window.
@ref{size} defines the width and height of the window's drawing area in pixels,
`wsize` defines the actual size of the window itself and @ref{position} defines
the origin of the window i.e. the position of the top left corner on the
screen (again in pixel). These options override any default settings
from the `wgnuplot.ini` file.
`docked` embeds the graph window in the wgnuplot text window and the @ref{size}
and @ref{position} options are ignored. Note that `docked` is not available for
console-mode gnuplot. Setting this option changes the default for new"
windows. The initial default is `standalone`. The `layout` option allows to
reserve a minimal number of columns and rows for graphs in docked mode. If
there are more graphs than fit the given layout, additional rows will be added.
Graphs are sorted by the numerical id, filling rows first.
Other options may be changed using the `graph-menu` or the initialization file
`wgnuplot.ini`.
/* FIXME: Move to persist section */
The Windows version normally terminates immediately as soon as the end of
any files given as command line arguments is reached (i.e. in non-interactive
mode), unless you specify `-` as the last command line option.
It will also not show the text-window at all, in this mode, only the plot.
By giving the optional argument `-persist` (same as for gnuplot under x11;
former Windows-only options `/noend` or `-noend` are still accepted as well),
will not close gnuplot. Contrary to gnuplot on other operating systems,
gnuplot's interactive command line is accessible after the -persist option.
The plot window remains open when the gnuplot terminal is changed with a
`set term` command. The plot window can be closed with `set term windows close`.
`gnuplot` supports different methods to create printed output on Windows,
see `windows printing`. The windows terminal supports data exchange with
other programs via clipboard and EMF files, see `graph-menu`. You can also
use the `terminal emf` to create EMF files.
@menu
* graph-menu::
* printing::
* text-menu"::
* wgnuplot.mnu"::
* wgnuplot.ini::
@end menu
@node graph-menu, printing, windows, windows
@subsubsection graph-menu
@c ?commands set terminal windows graph-menu
@c ?set terminal windows graph-menu
@c ?set term windows graph-menu
@c ?windows graph-menu
@cindex graph-menu
@tmindex graph-menu
The `gnuplot graph` window has the following options on a pop-up menu
accessed by pressing the right mouse button(*) or selecting `Options` from the
system menu or the toolbar:
`Copy to Clipboard` copies a bitmap and an enhanced metafile picture.
`Save as EMF...` allows the user to save the current graph window as
enhanced metafile (EMF or EMF+).
`Save as Bitmap...` allows the user to save a copy of the graph as bitmap
file.
`Print...` prints the graphics windows using a Windows printer driver and
allows selection of the printer and scaling of the output."
See also `windows printing`.
`Bring to Top` when checked raises the graph window to the top after every
plot.
`Color` when checked enables color output. When unchecked it forces
all grayscale output. This is e.g. useful to test appearance of monochrome
printouts.
`GDI backend` draws to the screen using Windows GDI. This is the classical
windows terminal, which is fast, but lacks many features such as
anti-aliasing, oversampling and full transparency support. It is now
deprecated.
The `GDI backend` which uses the classic GDI API is deprecated and has been
disabled in this version.
`GDI+ backend` draws to the screen using the GDI+ Windows API. It supports
full antialiasing, oversampling, transparency and custom dash patterns.
This was the default in versions 5.0 and 5.2.
`Direct2D backend` uses Direct2D & DirectWrite APIs to draw. It uses graphic
card acceleration and is hence typically much faster. Since Direct2D can"
not create EMF data, saving and copying to clipboard of EMF data fall back"
to GDI+ while bitmap data is generated by D2d.
This is the recommended and default backend since version 5.3.
`Oversampling` draws diagonal lines at fractional pixel positions to avoid
"wobbling" effects. Vertical or horizontal lines are still snapped
to integer pixel positions to avoid blurry lines.
`Antialiasing` enables smoothing of lines and edges. Note that this slows
down drawing. @ref{polygons} is enabled by default but might
slow down drawing with the GDI+ backend.
`Fast rotation` switches antialiasing temporarily off while rotating the
graph with the mouse. This speeds up drawing considerably at the expense
of an additional redraw after releasing the mouse button.
`Background...` sets the window background color.
`Choose Font...` selects the font used in the graphics window.
`Line Styles...` allows customization of the line colors and styles.
`Update wgnuplot.ini` saves the current window locations, window sizes, text
window font, text window font size, graph window font, graph window font
size, background color to the initialization file `wgnuplot.ini`.
@c ^<HR align="left" width="100">
(*) Note that this menu is only available by pressing the right mouse button
with `unset mouse`.
@node printing, text-menu", graph-menu, windows
@subsubsection printing
@c ?commands set terminal windows printing
@c ?set terminal windows printing
@c ?set term windows printing
@c ?windows printing
@cindex printing
@cindex screendump
In order of preference, graphs may be printed in the following ways:
`1.` Use the `gnuplot` command @ref{terminal} to select a printer and @ref{output} to redirect output to a file.
`2.` Select the `Print...` command from the `gnuplot graph` window. An extra
command `screendump` does this from the text window.
`3.` If `set output "PRN"` is used, output will go to a temporary file. When
you exit from `gnuplot` or when you change the output with another @ref{output} command, a dialog box will appear for you to select a printer port.
If you choose OK, the output will be printed on the selected port, passing
unmodified through the print manager. It is possible to accidentally (or
deliberately) send printer output meant for one printer to an incompatible
printer.
@node text-menu", wgnuplot.mnu", printing, windows
@subsubsection text-menu", /* FIXME: this is not really related to the windows driver, but the windows platform */
@c ?commands set terminal windows text-menu
@c ?set terminal windows text-menu
@c ?set term windows text-menu
@c ?windows text-menu
@cindex text-menu
@tmindex text-menu
The `gnuplot text` window has the following options on a pop-up menu accessed
by pressing the right mouse button or selecting `Options` from the system
menu:
`Copy to Clipboard` copies marked text to the clipboard.
`Paste` copies text from the clipboard as if typed by the user.
`Choose Font...` selects the font used in the text window.
`System Colors` when selected makes the text window honor the System Colors
set using the Control Panel. When unselected, text is black or blue on a
white background.
`Wrap long lines` when selected lines longer than the current window width
are wrapped.
`Update wgnuplot.ini` saves the current settings to the initialisation file
`wgnuplot.ini`, which is located in the user's application data directory.
@node wgnuplot.mnu", wgnuplot.ini, text-menu", windows
@subsubsection wgnuplot.mnu", /* FIXME: this is not really related to the windows driver, but the windows platform */
@c ?windows wgnuplot.mnu
@cindex wgnuplot.mnu
@tmindex wgnuplot.mnu
If the menu file `wgnuplot.mnu` is found in the same directory as
`gnuplot`, then the menu specified in `wgnuplot.mnu` will be loaded.
Menu commands:
@example
[Menu] starts a new menu with the name on the following line.
[EndMenu] ends the current menu.
[--] inserts a horizontal menu separator.
[|] inserts a vertical menu separator.
[Button] puts the next macro on a push button instead of a menu.
@end example
Macros take two lines with the macro name (menu entry) on the first line and
the macro on the second line. Leading spaces are ignored. Macro commands:
@example
[INPUT] Input string with prompt terminated by [EOS] or @{ENTER@}
[EOS] End Of String terminator. Generates no output.
[OPEN] Get name of a file to open, with the title of the dialog
terminated by [EOS], followed by a default filename terminated
by [EOS] or @{ENTER@}.
[SAVE] Get name of a file to save. Parameters like [OPEN]
[DIRECTORY] Get name of a directory, with the title of the dialog
terminated by [EOS] or @{ENTER@}
@end example
Macro character substitutions:
@example
@{ENTER@} Carriage Return '\\r'
@{TAB@} Tab '\\011'
@{ESC@} Escape '\\033'
@{^A@} '\\001'
...
@{^_@} '\\031'
@end example
Macros are limited to 256 characters after expansion.
@node wgnuplot.ini, , wgnuplot.mnu", windows
@subsubsection wgnuplot.ini
@c ?commands set terminal windows wgnuplot.ini
@c ?set terminal windows wgnuplot.ini
@c ?set term windows wgnuplot.ini
@c ?windows wgnuplot.ini
@cindex wgnuplot.ini
@tmindex wgnuplot.ini
The Windows text window and the `windows` terminal will read some of their options from
the `[WGNUPLOT]` section of `wgnuplot.ini`.
This file is located in the user's application data directory. Here's a sample
`wgnuplot.ini` file:
@example
[WGNUPLOT]
TextOrigin=0 0
TextSize=640 150
TextFont=Consolas,9
TextWrap=1
TextLines=400
TextMaximized=0
SysColors=0
GraphOrigin=0 150
GraphSize=640 330
GraphFont=Tahoma,10
GraphColor=1
GraphToTop=1
GraphGDI+=1
GraphD2D=0
GraphGDI+Oversampling=1
GraphAntialiasing=1
GraphPolygonAA=1
GraphFastRotation=1
GraphBackground=255 255 255
DockVerticalTextFrac=350
DockHorizontalTextFrac=400
Border=0 0 0 0 0
Axis=192 192 192 2 2
Line1=0 0 255 0 0
Line2=0 255 0 0 1
Line3=255 0 0 0 2
Line4=255 0 255 0 3
Line5=0 0 128 0 4
@end example
@c ^ <h3>Text window options</h3>
These settings apply to the wgnuplot text-window only."
The `TextOrigin` and `TextSize` entries specify the location and size of the
text window. If `TextMaximized` is non-zero, the window will be maximized.
The `TextFont` entry specifies the text window font and size.
The `TextWrap` entry selects wrapping of long text lines.
The `TextLines` entry specifies the number of (unwrapped) lines the internal
buffer of the text window can hold. This value currently cannot be changed
from within wgnuplot.
See `text-menu`.
@c ^ <h3>Docked graph options</h3>
`DockVerticalTextFrac` and `DockHorizontalTextFrac` set the fraction of the
window reserved for the text window in permille of the vertical or horizontal
layout.
@c ^ <h3>Graph window options</h3>
The `GraphFont` entry specifies the font name and size in points.
The five
numbers given in the `Border`, `Axis` and `Line` entries are the `Red`
intensity (0--255), `Green` intensity, `Blue` intensity, `Color Linestyle`
and `Mono Linestyle`. `Linestyles` are 0=SOLID, 1=DASH, 2=DOT, 3=DASHDOT,
4=DASHDOTDOT. In the sample `wgnuplot.ini` file above, Line 2 is a green
solid line in color mode, or a dashed line in monochrome mode. The default
line width is 1 pixel. If `Linestyle` is negative, it specifies the width of
a SOLID line in pixels. Line1 and any linestyle used with the `points` style
must be SOLID with unit width.
See `graph-menu`."
@node wxt, x11, windows, complete_list_of_terminals
@subsection wxt
@c ?set terminal wxt
@c ?terminal wxt
@c ?set term wxt
@c ?term wxt
@cindex wxt
@tmindex wxt
The `wxt` terminal device generates output in a separate window. The window
is created by the wxWidgets library, where the 'wxt' comes from. The actual
drawing is done via cairo, a 2D graphics library, and pango, a library for
laying out and rendering text.
Syntax:
@example
set term wxt @{<n>@}
@{size <width>,<height>@} @{position <x>,<y>@}
@{background <rgb_color> | nobackground@}
@{@{no@}enhanced@}
@{font <font>@} @{fontscale <scale>@}
@{title "title"@}
@{linewidth <lw>@} @{butt|rounded|square@}
@{dashlength <dl>@}
@{@{no@}persist@}
@{@{no@}raise@}
@{@{no@}ctrl@}
@{close@}
@end example
Multiple plot windows are supported: `set terminal wxt <n>` directs the
output to plot window number n.
The default window title is based on the window number. This title can also
be specified with the keyword "title".
Plot windows remain open even when the `gnuplot` driver is changed to a
different device. A plot window can be closed by pressing the letter 'q'
while that window has input focus, by choosing `close` from a window
manager menu, or with `set term wxt <n> close`.
The size of the plot area is given in pixels, it defaults to 640x384.
In addition to that, the actual size of the window also includes the space
reserved for the toolbar and the status bar.
When you resize a window, the plot is immediately scaled to fit in the
new size of the window. Unlike other interactive terminals, the `wxt`
terminal scales the whole plot, including fonts and linewidths, and keeps
its global aspect ratio constant, leaving an empty space painted in gray.
If you type @ref{replot}, click the @ref{replot} icon in the terminal toolbar or
type a new `plot` command, the new plot will completely fit in the window
and the font size and the linewidths will be reset to their defaults.
The position option can be used to set the position of the plot window.
The position option only applies to the first plot after the `set term`
command.
The active plot window (the one selected by `set term wxt <n>`) is
interactive. Its behaviour is shared with other terminal types. See `mouse`
for details. It also has some extra icons, which are supposed to be
self-explanatory.
This terminal supports an enhanced text mode, which allows font and other
formatting commands (subscripts, superscripts, etc.) to be embedded in labels
and other text strings. The enhanced text mode syntax is shared with other
gnuplot terminal types. See `enhanced` for more details.
<font> is in the format "FontFace,FontSize", i.e. the face and the size
comma-separated in a single string. FontFace is a usual font face name, such
as \'Arial\'. If you do not provide FontFace, the wxt terminal will use
\'Sans\'. FontSize is the font size, in points. If you do not provide it,
the wxt terminal will use a size of 10 points.
@example
For example :
set term wxt font "Arial,12"
set term wxt font "Arial" # to change the font face only
set term wxt font ",12" # to change the font size only
set term wxt font "" # to reset the font name and size
@end example
The fonts are retrieved from the usual fonts subsystems. Under Windows,
those fonts are to be found and configured in the entry "Fonts" of the
control panel. Under UNIX, they are handled by "fontconfig".
Pango, the library used to layout the text, is based on utf-8. Thus, the wxt
terminal has to convert from your encoding to utf-8. The default input
encoding is based on your \'locale\'. If you want to use another encoding,
make sure gnuplot knows which one you are using. See @ref{encoding} for more
details.
Pango may give unexpected results with fonts that do not respect the unicode
mapping. With the Symbol font, for example, the wxt terminal will use the map
provided by http://www.unicode.org/ to translate character codes to unicode.
Pango will do its best to find a font containing this character, looking for
your Symbol font, or other fonts with a broad unicode coverage, like the
DejaVu fonts. Note that "the Symbol font" is to be understood as the Adobe
Symbol font, distributed with Acrobat Reader as "SY______.PFB".
Alternatively, the OpenSymbol font, distributed with OpenOffice.org as
"opens___.ttf", offers the same characters. Microsoft has distributed a
Symbol font ("symbol.ttf"), but it has a different character set with
several missing or moved mathematic characters. If you experience problems
with your default setup (if the demo enhancedtext.dem is not displayed
properly for example), you probably have to install one of the Adobe or
OpenOffice Symbol fonts, and remove the Microsoft one.
Other non-conform fonts, such as "wingdings" have been observed working.
The rendering of the plot can be altered with a dialog available from the
toolbar. To obtain the best output possible, the rendering involves three
mechanisms : antialiasing, oversampling and hinting.
Antialiasing allows to display non-horizontal and non-vertical lines
smoother.
Oversampling combined with antialiasing provides subpixel accuracy,
so that gnuplot can draw a line from non-integer coordinates. This avoids
wobbling effects on diagonal lines ('plot x' for example).
Hinting avoids the blur on horizontal and vertical lines caused by
oversampling. The terminal will snap these lines to integer coordinates so
that a one-pixel-wide line will actually be drawn on one and only one pixel.
By default, the window is raised to the top of your desktop when a plot is
drawn. This can be controlled with the keyword "raise".
The keyword "persist" will prevent gnuplot from exiting before you
explicitly close all the plot windows.
Finally, by default the key <space> raises the gnuplot console window, and
'q' closes the plot window. The keyword "ctrl" allows you to replace those
bindings by <ctrl>+<space> and <ctrl>+'q', respectively.
These three keywords (raise, persist and ctrl) can also be set and remembered
between sessions through the configuration dialog."
@node x11, xlib, wxt, complete_list_of_terminals
@subsection x11
@c ?commands set terminal x11
@c ?set terminal x11
@c ?set term x11
@c ?terminal x11
@c ?term x11
@cindex x11
@cindex X11
Syntax:
@example
set terminal x11 @{<n> | window "<string>"@}
@{title "<string>"@}
@{@{no@}enhanced@} @{font <fontspec>@}
@{linewidth LW@}
@{@{no@}persist@} @{@{no@}raise@} @{@{no@}ctrlq@}
@{@{no@}replotonresize@}
@{close@}
@{size XX,YY@} @{position XX,YY@}
set terminal x11 @{reset@}
@end example
Multiple plot windows are supported: `set terminal x11 <n>` directs the
output to plot window number n. If n is not 0, the terminal number will be
appended to the window title (unless a title has been supplied manually)
and the icon will be labeled `Gnuplot <n>`. The active window may be
distinguished by a change in cursor (from default to crosshair).
The `x11` terminal can connect to X windows previously created by an outside
application via the option `window` followed by a string containing the
X ID for the window in hexadecimal format. Gnuplot uses that external X
window as a container since X does not allow for multiple clients selecting
the ButtonPress event. In this way, gnuplot's mouse features work within
the contained plot window.
@example
set term x11 window "220001e"
@end example
The x11 terminal supports enhanced text mode (see `enhanced`), subject
to the available fonts. In order for font size commands embedded in text
to have any effect, the default x11 font must be scalable. Thus the first
example below will work as expected, but the second will not.
@example
set term x11 enhanced font "arial,15"
set title '@{/=20 Big@} Medium @{/=5 Small@}'
@end example
@example
set term x11 enhanced font "terminal-14"
set title '@{/=20 Big@} Medium @{/=5 Small@}'
@end example
Plot windows remain open even when the `gnuplot` driver is changed to a
different device. A plot window can be closed by pressing the letter q
while that window has input focus, or by choosing `close` from a window
manager menu. All plot windows can be closed by specifying @ref{reset}, which
actually terminates the subprocess which maintains the windows (unless
`-persist` was specified). The `close` command can be used to close
individual plot windows by number. However, after a @ref{reset}, those plot
windows left due to persist cannot be closed with the command `close`.
A `close` without a number closes the current active plot window.
The gnuplot outboard driver, gnuplot_x11, is searched in a default place
chosen when the program is compiled. You can override that by defining
the environment variable GNUPLOT_DRIVER_DIR to point to a different
location.
Plot windows will automatically be closed at the end of the session
unless the `-persist` option was given.
The options `persist` and @ref{raise} are unset by default, which means that
the defaults (persist == no and raise == yes) or the command line options
-persist / -raise or the Xresources are taken. If [no]persist or
[no]raise are specified, they will override command line options and
Xresources. Setting one of these options takes place immediately, so
the behaviour of an already running driver can be modified. If the window
does not get raised, see discussion in @ref{raise}.
The option `replotonresize` (active by default) replots the data when the
plot window is resized. Without this option, the even-aspect-ratio scaling
may result in the plot filling only part of the window after resizing.
With this option, gnuplot does a full replot on each resize event, resulting
in better space utilization. This option is generally desirable, unless the
potentially CPU-intensive replotting during resizing is a concern. Replots
can be manually initiated with hotkey 'e' or the 'replot' command.
@example
"
@end example
The option `title "<title name>"` will supply the title name of the window
for the current plot window or plot window <n> if a number is given.
Where (or if) this title is shown depends on your X window manager.
The size option can be used to set the size of the plot window. The
size option will only apply to newly created windows.
The position option can be used to set the position of the plot window. The
position option will only apply to newly created windows.
The size or aspect ratio of a plot may be changed by resizing the `gnuplot`
window.
Linewidths and pointsizes may be changed from within `gnuplot` with
`set linestyle`.
For terminal type `x11`, `gnuplot` accepts (when initialized) the standard
X Toolkit options and resources such as geometry, font, and name from the
command line arguments or a configuration file. See the X(1) man page
(or its equivalent) for a description of such options.
@cindex X resources
A number of other `gnuplot` options are available for the `x11` terminal.
These may be specified either as command-line options when `gnuplot` is
invoked or as resources in the configuration file ".Xdefaults". They are
set upon initialization and cannot be altered during a `gnuplot` session.
(except `persist` and @ref{raise})
@menu
* x11_fonts::
* command-line_options_::
* color_resources_::
* grayscale_resources_::
* line_resources_::
* x11_pm3d_resources::
* x11_other_resources::
@end menu
@node x11_fonts, command-line_options_, x11, x11
@subsubsection x11_fonts
@c ?commands set terminal x11 x11_fonts
@c ?set terminal x11 x11_fonts
@c ?set term x11 x11_fonts
@c ?x11 x11_fonts
@cindex x11_fonts
@cindex fonts
Upon initial startup, the default font is taken from the X11 resources
as set in the system or user .Xdefaults file or on the command line.
Example:
@example
gnuplot*font: lucidasans-bold-12
@end example
A new default font may be specified to the x11 driver from inside
gnuplot using
@example
`set term x11 font "<fontspec>"`
@end example
The driver first queries the X-server for a font of the exact name given.
If this query fails, then it tries to interpret <fontspec> as
"<font>,<size>,<slant>,<weight>" and to construct a full X11 font name
of the form
@example
-*-<font>-<weight>-<s>-*-*-<size>-*-*-*-*-*-<encoding>
@end example
@example
<font> is the base name of the font (e.g. Times or Symbol)
<size> is the point size (defaults to 12 if not specified)
<s> is 'i' if <slant>=="italic" 'o' if <slant>=="oblique" 'r' otherwise
<weight> is 'medium' or 'bold' if explicitly requested, otherwise '*'
<encoding> is set based on the current character set.
@end example
So `set term x11 font "arial,15,italic"` will be translated to
-*-arial-*-i-*-*-15-*-*-*-*-*-iso8859-1 (assuming default encoding).
The <size>, <slant>, and <weight> specifications are all optional.
If you do not specify <slant> or <weight> then you will get whatever font
variant the font server offers first.
You may set a default encoding via the corresponding X11 resource. E.g.
@example
gnuplot*encoding: iso8859-15
@end example
The driver also recognizes some common PostScript font names and
replaces them with possible X11 or TrueType equivalents.
This same sequence is used to process font requests from `set label`.
If your gnuplot was built with configuration option --enable-x11-mbfonts,
you can specify multi-byte fonts by using the prefix "mbfont:" on the font
name. An additional font may be given, separated by a semicolon.
Since multi-byte font encodings are interpreted according to the locale
setting, you must make sure that the environmental variable LC_CTYPE is set
to some appropriate locale value such as ja_JP.eucJP, ko_KR.EUC, or zh_CN.EUC.
Example:
@example
set term x11 font 'mbfont:kana14;k14'
# 'kana14' and 'k14' are Japanese X11 font aliases, and ';'
# is the separator of font names.
set term x11 font 'mbfont:fixed,16,r,medium'
# <font>,<size>,<slant>,<weight> form is also usable.
set title '(mb strings)' font 'mbfont:*-fixed-medium-r-normal--14-*'
@end example
The same syntax applies to the default font in Xresources settings,
for example,
@example
gnuplot*font: \\
mbfont:-misc-fixed-medium-r-normal--14-*-*-*-c-*-jisx0208.1983-0
@end example
If gnuplot is built with --enable-x11-mbfonts, you can use two special
PostScript font names 'Ryumin-Light-*' and 'GothicBBB-Medium-*' (standard
Japanese PS fonts) without the prefix "mbfont:".
@node command-line_options_, color_resources_, x11_fonts, x11
@subsubsection command-line_options
@c ?commands set terminal x11 command-line-options
@c ?set terminal x11 command-line-options
@c ?set term x11 command-line-options
@c ?x11 command-line-options
In addition to the X Toolkit options, the following options may be specified
on the command line when starting `gnuplot` or as resources in your
".Xdefaults" file (note that @ref{raise} and `persist` can be overridden
later by `set term x11 [no]raise [no]persist)`:
@example
`-mono` forces monochrome rendering on color displays.
`-gray` requests grayscale rendering on grayscale or color displays.
(Grayscale displays receive monochrome rendering by default.)
`-clear` requests that the window be cleared momentarily before a
new plot is displayed.
`-tvtwm` requests that geometry specifications for position of the
window be made relative to the currently displayed portion
of the virtual root.
`-raise` raises plot window after each plot
`-noraise` does not raise plot window after each plot
`-ctrlq ` closes window on ctrl-q rather than q
`-persist` plot windows survive after main gnuplot program exits
@end example
@cindex X resources
The options are shown above in their command-line syntax. When entered as
resources in ".Xdefaults", they require a different syntax.
Example:
@example
gnuplot*gray: on
gnuplot*ctrlq: on
@end example
`gnuplot` also provides a command line option (`-pointsize <v>`) and a
resource, `gnuplot*pointsize: <v>`, to control the size of points plotted
with the `points` plotting style. The value `v` is a real number (greater
than 0 and less than or equal to ten) used as a scaling factor for point
sizes. For example, `-pointsize 2` uses points twice the default size, and
`-pointsize 0.5` uses points half the normal size.
The `-ctrlq` switch changes the hot-key that closes a plot window from `q`
to `<ctrl>q`. This is useful is you are using the keystroke-capture feature
`pause mouse keystroke`, since it allows the character `q` to be captured
just as all other alphanumeric characters. The `-ctrlq` switch similarly
replaces the <space> hot-key with <ctrl><space> for the same reason.
@node color_resources_, grayscale_resources_, command-line_options_, x11
@subsubsection color_resources
@c ?set terminal x11 color_resources
@c ?set term x11 color_resources
@c ?x11 color_resources
@cindex X resources
NB: THIS SECTION IS LARGELY IRRELEVANT IN GNUPLOT VERSION 5
The X11 terminal honors the following resources (shown here with their
default values) or the greyscale resources. The values may be color names
as listed in the X11 rgb.txt file on your system, hexadecimal RGB color
specifications (see X11 documentation), or a color name followed by a comma
and an `intensity` value from 0 to 1. For example, `blue, 0.5` means a half
intensity blue.
@example
gnuplot*background: white
gnuplot*textColor: black
gnuplot*borderColor: black
gnuplot*axisColor: black
gnuplot*line1Color: red
gnuplot*line2Color: green
gnuplot*line3Color: blue
gnuplot*line4Color: magenta
gnuplot*line5Color: cyan
gnuplot*line6Color: sienna
gnuplot*line7Color: orange
gnuplot*line8Color: coral
@end example
The command-line syntax for these is simple only for background,
which maps directly to the usual X11 toolkit option "-bg". All
others can only be set on the command line by use of the generic
"-xrm" resource override option
Examples:
@example
gnuplot -background coral
@end example
to change the background color.
@example
gnuplot -xrm 'gnuplot*line1Color:blue'
@end example
to override the first linetype color.
@node grayscale_resources_, line_resources_, color_resources_, x11
@subsubsection grayscale_resources
@c ?commands set terminal x11 grayscale_resources
@c ?set terminal x11 grayscale_resources
@c ?set term x11 grayscale_resources
@c ?x11 grayscale_resources
@cindex grayscale_resources
@cindex X resources
When `-gray` is selected, `gnuplot` honors the following resources for
grayscale or color displays (shown here with their default values). Note
that the default background is black.
@example
gnuplot*background: black
gnuplot*textGray: white
gnuplot*borderGray: gray50
gnuplot*axisGray: gray50
gnuplot*line1Gray: gray100
gnuplot*line2Gray: gray60
gnuplot*line3Gray: gray80
gnuplot*line4Gray: gray40
gnuplot*line5Gray: gray90
gnuplot*line6Gray: gray50
gnuplot*line7Gray: gray70
gnuplot*line8Gray: gray30
@end example
@node line_resources_, x11_pm3d_resources, grayscale_resources_, x11
@subsubsection line_resources
@c ?set terminal x11 line_resources
@c ?set term x11 line_resources
@c ?x11 line_resources
@cindex X resources
NB: THIS SECTION IS LARGELY IRRELEVANT IN GNUPLOT VERSION 5
`gnuplot` honors the following resources for setting the width (in pixels) of
plot lines (shown here with their default values.) 0 or 1 means a minimal
width line of 1 pixel width. A value of 2 or 3 may improve the appearance of
some plots.
@example
gnuplot*borderWidth: 1
gnuplot*axisWidth: 0
gnuplot*line1Width: 0
gnuplot*line2Width: 0
gnuplot*line3Width: 0
gnuplot*line4Width: 0
gnuplot*line5Width: 0
gnuplot*line6Width: 0
gnuplot*line7Width: 0
gnuplot*line8Width: 0
@end example
`gnuplot` honors the following resources for setting the dash style used for
plotting lines. 0 means a solid line. A two-digit number `jk` (`j` and `k`
are >= 1 and <= 9) means a dashed line with a repeated pattern of `j` pixels
on followed by `k` pixels off. For example, '16' is a dotted line with one
pixel on followed by six pixels off. More elaborate on/off patterns can be
specified with a four-digit value. For example, '4441' is four on, four off,
four on, one off. The default values shown below are for monochrome displays
or monochrome rendering on color or grayscale displays.
Color displays default to dashed:off
@example
gnuplot*dashed: off
gnuplot*borderDashes: 0
gnuplot*axisDashes: 16
gnuplot*line1Dashes: 0
gnuplot*line2Dashes: 42
gnuplot*line3Dashes: 13
gnuplot*line4Dashes: 44
gnuplot*line5Dashes: 15
gnuplot*line6Dashes: 4441
gnuplot*line7Dashes: 42
gnuplot*line8Dashes: 13
@end example
, "
@node x11_pm3d_resources, x11_other_resources, line_resources_, x11
@subsubsection x11 pm3d_resources
@c ?set terminal x11 pm3d_resources
@c ?set term x11 pm3d_resources
@c ?x11 pm3d_resources
@c ?x11 pm3d
@cindex X resources
NB: THIS SECTION IS LARGELY IRRELEVANT IN GNUPLOT VERSION 5
By default `gnuplot` uses the default visual of the screen. The number of
colors which can be allocated depends on the visual class chosen. On a
visual class with a depth > 12bit, gnuplot starts with a maximal number
of 0x200 colors. On a visual class with a depth > 8bit (but <= 12 bit)
the maximal number of colors is 0x100, on <= 8bit displays the maximum
number of colors is 240 (16 are left for line colors).
Gnuplot first starts to allocate the maximal number of colors as stated
above. If this fails, the number of colors is reduced by the factor 2
until gnuplot gets all colors which are requested. If dividing @ref{maxcolors}
by 2 repeatedly results in a number which is smaller than `mincolors`
`gnuplot` tries to install a private colormap. In this case the window
manager is responsible for swapping colormaps when the pointer is moved
in and out the x11 driver's window.
The default for `mincolors` is maxcolors / (num_colormaps > 1 ? 2 : 8),
where num_colormaps is the number of colormaps which are currently used
by gnuplot (usually 1, if only one x11 window is open).
@node x11_other_resources, , x11_pm3d_resources, x11
@subsubsection x11 other_resources
@c ?commands set terminal x11 other_resources
@c ?set terminal x11 other_resources
@c ?set term x11 other_resources
@c ?x11 other_resources
@cindex X resources
By default the contents of the current plot window are exported to the X11
clipboard in response to X events in the window. Setting the resource
'gnuplot*exportselection' to 'off' or 'false' will disable this.
By default text rotation is done using a method that is fast, but can
corrupt nearby colors depending on the background. If this is a problem,
you can set the resource 'gnuplot.fastrotate' to 'off'
@example
gnuplot*exportselection: off
gnuplot*fastrotate: on
gnuplot*ctrlq: off
@end example
@node xlib, , x11, complete_list_of_terminals
@subsection xlib
@c ?commands set terminal xlib
@c ?set terminal xlib
@c ?set term xlib
@c ?terminal xlib
@c ?term xlib
@cindex xlib
@tmindex xlib
The `xlib` terminal driver supports the X11 Windows System. It generates
gnuplot_x11 commands, but sends them to the output file specified by
`set output '<filename>'`. `set term x11` is equivalent to
`set output "|gnuplot_x11 -noevents"; set term xlib`.
`xlib` takes the same set of options as `x11`."
@node Concept_Index, Command_Index, Terminal_types, Top
@unnumbered Concept Index
@printindex cp
@node Command_Index, Options_Index, Concept_Index, Top
@unnumbered Command Index
@printindex cm
@node Options_Index, Function_Index, Command_Index, Top
@unnumbered Options Index
@printindex op
@node Function_Index, Terminal_Index, Options_Index, Top
@unnumbered Function Index
@printindex fn
@node Terminal_Index, , Function_Index, Top
@unnumbered Terminal Index
@printindex tm
@c @shortcontents
@contents
@bye
|