File: prob.dem

package info (click to toggle)
gnuplot 3.5beta6.340-5
  • links: PTS
  • area: main
  • in suites: hamm
  • size: 4,792 kB
  • ctags: 4,205
  • sloc: ansic: 41,878; asm: 539; makefile: 498; objc: 379; csh: 297; sh: 277; pascal: 194; perl: 138; lisp: 88
file content (775 lines) | stat: -rw-r--r-- 21,725 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
#
# $Id: prob.dem,v 1.4 1996/12/09 15:58:09 drd Exp $
#
# Demo Statistical Functions version 2.3
#
# Permission granted to distribute freely for non-commercial purposes only
#
# Copyright (c) 1991, 1992 Jos van der Woude, jvdwoude@hut.nl

print "                   Statistical Library Demo, version 2.3"
print "\n          Copyright (c) 1991, 1992, Jos van de Woude, jvdwoude@hut.nl"
print "Permission granted to distribute freely for non-commercial purposes only"
print "\n\n\n\n\n\n\n"
print "NOTE: contains 54 plots and consequently takes a lot of time to run"
print "                      Press Ctrl-C to exit right now"
pause -1 "                      Press Return to start demo ..."

load "stat.inc"

# Arcsinus PDF and CDF
r = 2.0
mu = 0.0
sigma = r / sqrt2
xmin = -r
xmax = r
ymax = 1.1 * r #No mode
set nokey
set zeroaxis
set xrange [xmin : xmax]
set yrange [0 : ymax]
set xlabel "x ->"
set ylabel "probability density ->"
set xtics
set ytics
set format x "%.1f"
set format y "%.1f"
set sample 200
set title "arcsin PDF with r = 2.0"
plot arcsin(x)
pause -1 "Hit return to continue"
set title "arcsin CDF with r = 2.0"
set yrange [0 : 1.1]
plot carcsin(x)
pause -1 "Hit return to continue"

# Beta PDF and CDF
#p = 0.5; q = 0.7
#mu = p / (p + q)
#sigma = sqrt(p**q) / ((p + q ) * sqrt(p + q + 1.0))
#xmin = 0.0
#xmax = 1.0
#Mode of beta PDF used
#ymax = (p < 1.0 || q < 1.0) ? 2.0 : 1.1 * beta((p - 1.0)/(p + q - 2.0))
set key
set zeroaxis
#set xrange [xmin : xmax]
#set yrange [0 : ymax]
set xlabel "x ->"
set ylabel "probability density ->"
set xtics
set ytics
set format x "%.1f"
set format y "%.1f"
set sample 100
set title "beta PDF"
plot [0:1] [0:5] p = 0.5, q = 0.7, beta(x) title "p = 0.5, q = 0.7", \
                 p = 5.0, q = 3.0, beta(x) title "p = 5.0, q = 3.0", \
                 p = 0.5, q = 2.5, beta(x) title "p = 0.5, q = 2.5"
pause -1 "Hit return to continue"
set title "incomplete beta CDF"
plot [0:1] [0:1.1] p = 0.5, q = 0.7, cbeta(x) title "p = 0.5, q = 0.7", \
                   p = 5.0, q = 3.0, cbeta(x) title "p = 5.0, q = 3.0", \
                   p = 0.5, q = 2.5, cbeta(x) title "p = 0.5, q = 2.5"
pause -1 "Hit return to continue"

# Binomial PDF and CDF
n = 25; p = 0.15
mu = n * p
sigma = sqrt(n * p * (1.0 - p))
xmin = int(mu - 4.0 * sigma)
xmin = xmin < 0 ? 0 : xmin
xmax = int(mu + 4.0 * sigma)
ymax = 1.1 * binom(mu) #Mode of normal PDF used
xinc = ceil((xmax - xmin) / 10)
xinc = xinc > 1 ? xinc : 1
set nokey
set nozeroaxis
set xrange [xmin : xmax]
set yrange [0 : ymax]
set xlabel "k ->"
set ylabel "probability density ->"
set xtics xmin + 0.499, xinc, xmax
set ytics 0, ymax / 10, ymax
set format x "%2.0f"
set format y "%3.2f"
set sample (xmax - xmin) + 1
set title "binomial PDF with n = 25, p = 0.15"
plot binom(x) with steps
pause -1 "Hit return to continue"
set title "binomial CDF with n = 25, p = 0.15"
set yrange [0 : 1.1]
set ytics 0, 1.1 / 10.5, 1.1
plot cbinom(x) with steps
pause -1 "Hit return to continue"

# Cauchy PDF and CDF
#a = 0.0; b = 2.0
#cauchy PDF has no moments
#xmin = a - 4.0 * b
#xmax = a + 4.0 * b
#ymax = 1.1 * cauchy(a) #Mode of cauchy PDF used
set key
set zeroaxis
#set xrange [xmin : xmax]
#set yrange [0 : ymax]
set xlabel "x ->"
set ylabel "probability density ->"
set xtics
set ytics
set format x "%.1f"
set format y "%.2f"
set sample 100
set title "cauchy PDF"
plot [-15:15] [0:0.2] a = 0, b = 2, cauchy(x) title "a = 0, b = 2", \
                      a = 0, b = 4, cauchy(x) title "a = 0, b = 4"
pause -1 "Hit return to continue"
set title "cauchy CDF"
plot [-30:30] [0:1.1] a = 0, b = 2, ccauchy(x) title "a = 0, b = 2", \
                      a = 0, b = 4, ccauchy(x) title "a = 0, b = 4"
pause -1 "Hit return to continue"

# Chi-square PDF and CDF
#df1 = 4.0
#mu = df1
#sigma = sqrt(2.0 * df1)
#xmin = mu - 4.0 * sigma
#xmin = xmin < 0 ? 0 : xmin
#xmax = mu + 4.0 * sigma
#ymax = 1.1 * (df1 > 2.0 ? chi(df1 - 2.0) : 1.0) #Mode of chi PDF used
set key
set zeroaxis
#set xrange [xmin : xmax]
#set yrange [0 : ymax]
set xlabel "x ->"
set ylabel "probability density ->"
set xtics
set ytics
set format x "%.1f"
set format y "%.2f"
set sample 100
set title "chi-square PDF"
plot [0:15] [0:0.2] df1 = 4, chi(x) title "df = 4", \
                    df1 = 6, chi(x) title "df = 6", \
                    df1 = 8, chi(x) title "df = 8"
pause -1 "Hit return to continue"
set title "chi-square CDF"
plot [0:15] [0:1.1] df1 = 4, cchi(x) title "df = 4", \
                    df1 = 6, cchi(x) title "df = 6", \
                    df1 = 8, cchi(x) title "df = 8"
pause -1 "Hit return to continue"

# Erlang PDF and CDF
#lambda = 1.0; n = 2.0
#mu = n / lambda
#sigma = sqrt(n) / lambda
#xmin = mu - 4.0 * sigma
#xmin = xmin < 0 ? 0 : xmin
#xmax = mu + 4.0 * sigma
#ymax = n < 2.0 ? 1.0 : 1.1 * erlang((n - 1.0) / lambda) #Mode of erlang PDF used
set key
set zeroaxis
#set xrange [xmin : xmax]
#set yrange [0 : ymax]
set xlabel "x ->"
set ylabel "probability density ->"
set xtics
set ytics
set format x "%.1f"
set format y "%.1f"
set sample 100
set title "erlang PDF"
plot [0:10] [0:1] lambda = 1, n = 2, erlang(x) title "lambda = 1, n = 2", \
                  lambda = 2, n = 2, erlang(x) title "lambda = 2, n = 2"
pause -1 "Hit return to continue"
set title "erlang CDF"
plot [0:10] [0:1.1] lambda = 1, n = 2, cerlang(x) title "lambda = 1, n = 2", \
                    lambda = 2, n = 2, cerlang(x) title "lambda = 2, n = 2"
pause -1 "Hit return to continue"

# Thanks to mrb2j@kelvin.seas.Virginia.EDU for telling us about this.
# Extreme (Gumbel extreme value) PDF and CDF
#alpha = 0.5; u = 1.0
#mu = u + (0.577215665/alpha)   # Euler's constant
#sigma = pi/(sqrt(6.0)*alpha)
#xmin = mu - 4.0 * sigma
#xmax = mu + 4.0 * sigma
#ymax = 1.1 * extreme(u) #Mode of extreme PDF used
set key
set zeroaxis
#set xrange [xmin : xmax]
#set yrange [0 : ymax]
set xlabel "x ->"
set ylabel "probability density ->"
set xtics
set ytics
set format x "%.1f"
set format y "%.2f"
set sample 100
set title "extreme PDF"
plot [-10:10] [0:0.4] alpha = 0.5, u = 1.0, extreme(x) title "alpha = 0.5, u = 1.0", \
                      alpha = 1.0, u = 0.0, extreme(x) title "alpha = 1.0, u = 0.0"
pause -1 "Hit return to continue"
set title "extreme CDF"
plot [-10:10] [0:1.1] alpha = 0.5, u = 1.0, cextreme(x) title "alpha = 0.5, u = 1.0", \
                      alpha = 1.0, u = 0.0, cextreme(x) title "alpha = 1.0, u = 0.0"
pause -1 "Hit return to continue"

# F PDF and CDF
#df1 = 5.0; df2 = 9.0
#mu = df2 < 2.0 ? 1.0 : df2 / (df2 - 2.0)
#sigma = df2 < 4.0 ? 1.0 : mu * sqrt(2.0 * (df1 + df2 - 2.0) / (df1 * (df2 - 4.0)))
#xmin = mu - 4.0 * sigma
#xmin = xmin < 0 ? 0 : xmin
#xmax = mu + 4.0 * sigma
#Mode of F PDF used
#ymax = df1 < 3.0 ? 1.0 : 1.1 * f((df1 / 2.0 - 1.0) / (df1 / 2.0 + df1 / df2))
set key
set zeroaxis
#set xrange [xmin : xmax]
#set yrange [0 : ymax]
set xlabel "x ->"
set ylabel "probability density ->"
set xtics
set ytics
set format x "%.1f"
set format y "%.2f"
set sample 100
set title "F PDF"
plot [0:4] [0:0.8] df1 = 5.0, df2 = 9.0, f(x) title "df1 = 5, df2 = 9", \
                   df1 = 7.0, df2 = 6.0, f(x) title "df1 = 7, df2 = 6"
pause -1 "Hit return to continue"
set title "F CDF"
plot [0:4] [0:1.1] df1 = 5.0, df2 = 9.0, cf(x) title "df1 = 5, df2 = 9", \
                   df1 = 7.0, df2 = 6.0, cf(x) title "df1 = 7, df2 = 6"
pause -1 "Hit return to continue"

# Gamma PDF and incomplete gamma CDF
#rho = 0.5; lambda = 1.0
#mu = rho / lambda
#sigma = sqrt(rho) / lambda
#xmin = mu - 4.0 * sigma
#xmin = xmin < 0 ? 0 : xmin
#xmax = mu + 4.0 * sigma
#ymax = rho < 1.0 ? 2.0 : 1.1 * g((rho - 1.0) / lambda) #Mode of gamma pdf used
set key
set zeroaxis
#set xrange [xmin: xmax]
#set yrange [0: ymax]
set xlabel "x ->"
set ylabel "probability density ->"
set xtics
set ytics
set format x "%.1f"
set format y "%.1f"
set sample 100
set title "gamma PDF"
plot [0:5] [0:1.5] rho = 0.5, lambda = 1.0, g(x) title "rho = 0.5, lambda = 1.0", \
                   rho = 1.0, lambda = 1.0, g(x) title "rho = 1.0, lambda = 1.0", \
                   rho = 2.0, lambda = 2.0, g(x) title "rho = 2.0, lambda = 2.0"
pause -1 "Hit return to continue"
set title "incomplete gamma CDF (lambda == 1.0)"
plot [0:5] [0:1.1] rho = 0.5, cgamma(x) title "rho = 0.5", \
                   rho = 1.0, cgamma(x) title "rho = 1.0", \
                   rho = 2.0, cgamma(x) title "rho = 2.0"
pause -1 "Hit return to continue"

# Geometric PDF and CDF
p = 0.4
mu = (1.0 - p) / p
sigma = sqrt(mu / p)
xmin = int(mu - 4.0 * sigma)
xmin = xmin < 0 ? 0 : xmin
xmax = int(mu + 4.0 * sigma)
xinc = ceil((xmax - xmin) / 10)
xinc = xinc > 1 ? xinc : 1
ymax = 1.1 * geometric(mu - 1/p) #mode of gamma PDF used
set nokey
set nozeroaxis
set xrange [xmin : xmax]
set yrange [0 : ymax]
set xlabel "k ->"
set ylabel "probability density ->"
set xtics xmin + 0.499, xinc, xmax
set ytics 0, ymax / 10, ymax
set format x "%2.0f"
set format y "%3.2f"
set sample (xmax - xmin) + 1
set title "geometric PDF with p = 0.4"
plot geometric(x) with steps
pause -1 "Hit return to continue"
set title "geometric CDF with p = 0.4"
set yrange [0 : 1.1]
set ytics 0, 1.1 / 10.5, 1.1
plot cgeometric(x) with steps
pause -1 "Hit return to continue"

# Half normal PDF and CDF
mu = sqrt2invpi
sigma = 1.0
s = sigma*sqrt(1.0 - 2.0/pi)
xmin = 0.0
xmax = mu + 4.0 * s
ymax = 1.1 * halfnormal(0) #Mode of half normal PDF used
set nokey
set zeroaxis
set xrange [xmin: xmax]
set yrange [0: ymax]
set xlabel "x ->"
set ylabel "probability density ->"
set xtics
set ytics
set format x "%.1f"
set format y "%.1f"
set sample 100
set title "half normal PDF, sigma = 1.0"
plot halfnormal(x)
pause -1 "Hit return to continue"
set title "half normal CDF, sigma = 1.0"
set yrange [0:1.1]
plot chalfnormal(x)
pause -1 "Hit return to continue"

# Hypergeometric PDF and CPF
nn = 75; mm = 25; n = 10
p = real(mm) / nn
mu = n * p
sigma = sqrt(real(nn - n) / (nn - 1.0) * n * p * (1.0 - p))
xmin = int(mu - 4.0 * sigma)
xmin = xmin < 0 ? 0 : xmin
xmax = int(mu + 4.0 * sigma)
xinc = ceil((xmax - xmin) / 10)
xinc = xinc > 1 ? xinc : 1
ymax = 1.1 * hypgeo(mu) #mode of binomial PDF used
set nokey
set nozeroaxis
set xrange [xmin : xmax]
set yrange [0 : ymax]
set xlabel "k ->"
set ylabel "probability density ->"
set xtics xmin + 0.499, xinc, xmax
set ytics 0, ymax / 10, ymax
set format x "%2.0f"
set format y "%3.2f"
set sample (xmax - xmin) + 1
set title "hypergeometric PDF with nn = 75, mm = 25, n = 10"
plot hypgeo(x) with steps
pause -1 "Hit return to continue"
set yrange [0 : 1.1]
set ytics 0, 1.1 / 10.5, 1.1
set title "hypergeometric CDF with nn = 75, mm = 25, n = 10"
plot chypgeo(x) with steps
pause -1 "Hit return to continue"

# Laplace PDF
a = 0.0; b = 1.0
mu = a
sigma = sqrt(2.0) * b
xmin = mu - 4.0 * sigma
xmax = mu + 4.0 * sigma
ymax = 1.1 * laplace(a) #Mode of laplace PDF used
set nokey
set zeroaxis
set xrange [xmin: xmax]
set yrange [0: ymax]
set xlabel "x ->"
set ylabel "probability density ->"
set xtics
set ytics
set format x "%.1f"
set format y "%.2f"
set sample 100
set title "laplace (or double exponential) PDF with a = 0, b = 1"
plot laplace(x)
pause -1 "Hit return to continue"
set title "laplace (or double exponential) CDF with a = 0, b = 1"
set yrange [0: 1.1]
plot claplace(x)
pause -1 "Hit return to continue"

# Logistic PDF and CDF
a = 0.0; lambda = 2.0
mu = a
sigma = pi / (sqrt(3.0) * lambda)
xmin = mu - 4.0 * sigma
xmax = mu + 4.0 * sigma
ymax = 1.1 * logistic(mu) #Mode of logistic PDF used
set nokey
set zeroaxis
set xrange [xmin: xmax]
set yrange [0: ymax]
set nokey
set zeroaxis
set xlabel "x ->"
set ylabel "probability density ->"
set xtics
set ytics
set format x "%.1f"
set format y "%.1f"
set sample 100
set title "logistic PDF with a = 0, lambda = 2"
plot logistic(x)
pause -1 "Hit return to continue"
set title "logistic CDF with a = 0, lambda = 2"
set yrange [0: 1.1]
plot clogistic(x)
pause -1 "Hit return to continue"

# Lognormal PDF and CDF
mu = 1.0; sigma = 0.5
m = exp(mu + 0.5 * sigma**2)
s = sqrt(exp(2.0 * mu + sigma**2) * (2.0 * exp(sigma) - 1.0))
xmin = m - 4.0 * s
xmin = xmin < 0 ? 0 : xmin
xmax = m + 4.0 * s
ymax = 1.1 * lognormal(exp(mu - sigma**2)) #Mode of lognormal PDF used
set nokey
set zeroaxis
set xrange [xmin: xmax]
set yrange [0: ymax]
set xlabel "x ->"
set ylabel "probability density ->"
set xtics
set ytics
set format x "%.2f"
set format y "%.2f"
set sample 100
set title "lognormal PDF with mu = 1.0, sigma = 0.5"
plot lognormal(x)
pause -1 "Hit return to continue"
set title "lognormal CDF with mu = 1.0, sigma = 0.5"
set yrange [0: 1.1]
plot clognormal(x)
pause -1 "Hit return to continue"

# Maxwell PDF
#a = 0.1
#mu = 2.0 / sqrt(pi) / a
#sigma = sqrt(3.0 - 8.0/pi) / a
#xmin = mu - 4.0 * sigma
#xmin = xmin < 0 ? 0 : xmin
#xmax = mu + 4.0 * sigma
#ymax = 1.1 * maxwell(1.0 / a) #Mode of maxwell PDF used
set key
set zeroaxis
#set xrange[xmin: xmax]
#set yrange[0: ymax]
set xlabel "x ->"
set ylabel "probability density ->"
set xtics
set ytics
set format x "%.1f"
set format y "%.1f"
set sample 100
set title "maxwell PDF"
plot [0:6] [0:1.4] a = 1.5, maxwell(x) title "a = 1.5", \
                   a = 1.0, maxwell(x) title "a = 1.0", \
                   a = 0.5, maxwell(x) title "a = 0.5"
pause -1 "Hit return to continue"
set title "maxwell CDF"
plot [0:6] [0:1.1] a = 1.5, cmaxwell(x) title "a = 1.5", \
                   a = 1.0, cmaxwell(x) title "a = 1.0", \
                   a = 0.5, cmaxwell(x) title "a = 0.5"
pause -1 "Hit return to continue"

# Negative binomial PDF and CDF
r = 8; p = 0.4
mu = r * (1.0 - p) / p
sigma = sqrt(mu / p)
xmin = int(mu - 4.0 * sigma)
xmin = xmin < 0 ? 0 : xmin
xmax = int(mu + 4.0 * sigma)
xinc = ceil((xmax - xmin) / 10)
xinc = xinc > 1 ? xinc : 1
ymax = 1.1 * negbin(mu - 1.0/p) #mode of gamma PDF used
set nokey
set nozeroaxis
set xrange [xmin : xmax]
set yrange [0 : ymax]
set xlabel "k ->"
set ylabel "probability density ->"
set xtics xmin + 0.499, xinc, xmax
set ytics 0, ymax / 10, ymax
set format x "%2.0f"
set format y "%3.2f"
set sample (xmax - xmin) + 1
set title "negative binomial (or pascal or polya) PDF with r = 8, p = 0.4"
plot negbin(x) with steps
pause -1 "Hit return to continue"
set yrange [0 : 1.1]
set ytics 0, 1.1 / 10.5, 1.1
set title "negative binomial (or pascal or polya) CDF with r = 8, p = 0.4"
plot cnegbin(x) with steps
pause -1 "Hit return to continue"

# Negative exponential PDF and CDF
lambda = 2.0
mu = 1.0 / lambda
sigma = 1.0 / lambda
xmax =  mu + 4.0 * sigma
ymax = lambda #No mode
set nokey
set zeroaxis
set xrange [0: xmax]
set yrange [0: ymax]
set xlabel "x ->"
set ylabel "probability density ->"
set xtics
set ytics
set format x "%.2f"
set format y "%.1f"
set sample 100
set title "negative exponential (or exponential) PDF with lambda = 2.0"
plot nexp(x)
pause -1 "Hit return to continue"
set title "negative exponential (or exponential) CDF with lambda = 2.0"
set yrange [0: 1.1]
plot cnexp(x)
pause -1 "Hit return to continue"

# Normal PDF and CDF
#mu = 0.0; sigma = 1.0
#xmin = mu - 4.0 * sigma
#xmax = mu + 4.0 * sigma
#ymax = 1.1 * normal(mu) #Mode of normal PDF used
set key
set zeroaxis
#set xrange [xmin: xmax]
#set yrange [0: ymax]
set xlabel "x ->"
set ylabel "probability density ->"
set xtics
set ytics
set format x "%.1f"
set format y "%.1f"
set sample 100
set title "normal (also called gauss or bell-curved) PDF"
plot [-4:4] [0:1] mu = 0, sigma = 1.0, normal(x) title "mu = 0, sigma = 1.0", \
                  mu = 2, sigma = 0.5, normal(x) title "mu = 2, sigma = 0.5", \
                  mu = 1, sigma = 2.0, normal(x) title "mu = 1, sigma = 2.0"
pause -1 "Hit return to continue"
set title "normal (also called gauss or bell-curved) CDF"
plot [-4:4] [0:1.1] mu = 0, sigma = 1.0, cnormal(x) title "mu = 0, sigma = 1.0", \
                    mu = 2, sigma = 0.5, cnormal(x) title "mu = 2, sigma = 0.5", \
                    mu = 1, sigma = 2.0, cnormal(x) title "mu = 1, sigma = 2.0"
pause -1 "Hit return to continue"

# Pareto PDF and CDF
a = 1.0; b = 3.0
mu = a * b / (b - 1.0)
sigma = a * sqrt(b) / (sqrt(b - 2.0) * (b - 1.0))
xmin = mu - 4.0 * sigma
xmin = xmin < 0 ? 0 : xmin
xmax = mu + 4.0 * sigma
ymax = 1.1 * pareto(a) #mode of pareto PDF used
set nokey
set zeroaxis
set xrange [xmin: xmax]
set yrange [0: ymax]
set xlabel "x ->"
set ylabel "probability density ->"
set xtics
set ytics
set format x "%.1f"
set format y "%.1f"
set sample 500
set title "pareto PDF with a = 1, b = 3"
plot pareto(x)
pause -1 "Hit return to continue"
set title "pareto CDF with a = 1, b = 3"
set yrange [0: 1.1]
plot cpareto(x)
pause -1 "Hit return to continue"

# Poisson PDF and CDF
mu = 4.0
sigma = sqrt(mu)
xmin = int(mu - 4.0 * sigma)
xmin = xmin < 0 ? 0 : xmin
xmax = int(mu + 4.0 * sigma)
xinc = ceil((xmax - xmin) / 10)
xinc = xinc > 1 ? xinc : 1
ymax = 1.1 * poisson(mu) #mode of poisson PDF used
set nokey
set nozeroaxis
set xrange [xmin : xmax]
set yrange [0 : ymax]
set xlabel "k ->"
set ylabel "probability density ->"
set xtics xmin + 0.499, xinc, xmax
set ytics 0, ymax / 10, ymax
set format x "%2.0f"
set format y "%3.2f"
set sample (xmax - xmin) + 1
set title "poisson PDF with mu = 4.0"
plot poisson(x) with steps
pause -1 "Hit return to continue"
set yrange [0 : 1.1]
set ytics 0, 1.1 / 10.5, 1.1
set title "poisson CDF with mu = 4.0"
plot cpoisson(x) with steps
pause -1 "Hit return to continue"

# Rayleigh PDF and CDF
lambda = 2.0
mu = 0.5 * sqrt(pi / lambda)
sigma = sqrt((1.0 - pi / 4.0) / lambda)
xmax = mu + 4.0 * sigma
ymax = 1.1 * rayleigh(1.0 / sqrt(2.0 * lambda)) #Mode of rayleigh PDF used
set nokey
set zeroaxis
set xrange [0: xmax]
set yrange [0: ymax]
set xlabel "x ->"
set ylabel "probability density ->"
set xtics
set ytics
set format x "%.2f"
set format y "%.1f"
set sample 100
set title "rayleigh PDF with lambda = 2.0"
plot rayleigh(x)
pause -1 "Hit return to continue"
set title "rayleigh CDF with lambda = 2.0"
set yrange [0: 1.1]
plot crayleigh(x)
pause -1 "Hit return to continue"

# Sine PDF and CDF
#a = 3.0; n = 2
#mu = a / 2.0
#sigma = sqrt(a * a / 3.0 * (1.0 - 3.0 / (2.0 * n * n * pi * pi)) - mu * mu)
#xmin = 0.0
#xmax = a
#ymax = 1.1 * 2.0 / a #Mode of sine PDF used
set key
set zeroaxis
#set xrange [xmin: xmax]
#set yrange [0: ymax]
set xlabel "x ->"
set ylabel "probability density ->"
set xtics
set ytics
set format x "%.2f"
set format y "%.1f"
set sample 100
set title "sine PDF"
plot [0:2] [0:1.1] a = 2.0, n = 1, sine(x) title "a = 2.0, n = 1", \
                   a = 2.0, n = 3, sine(x) title "a = 2.0, n = 3"
pause -1 "Hit return to continue"
set title "sine CDF"
plot [0:2] [0:1.1] a = 2.0, n = 1, csine(x) title "a = 2.0, n = 1", \
                   a = 2.0, n = 3, csine(x) title "a = 2.0, n = 3"
pause -1 "Hit return to continue"

# t PDF and CDF
df1 = 3.0
mu = 0.0
sigma = df1 > 2.0 ? sqrt(df1 / (df1 - 2.0)) : 1.0
xmin = mu - 4.0 * sigma
xmax = mu + 4.0 * sigma
ymax = 1.1 * t(mu) #Mode of t PDF used
set nokey
set zeroaxis
set xrange [xmin: xmax]
set yrange [0: ymax]
set xlabel "x ->"
set ylabel "probability density ->"
set xtics
set ytics
set format x "%.1f"
set format y "%.2f"
set sample 100
set title "t PDF with df1 = 3.0"
plot t(x)
pause -1 "Hit return to continue"
set title "t CDF with df1 = 3.0"
set yrange [0: 1.1]
plot ct(x)
pause -1 "Hit return to continue"

# Thanks to efrank@upenn5.hep.upenn.edu for telling us about this
# triangular PDF and CDF
m = 3.0
g = 2.0
mu = m
sigma = g/sqrt(6.0)
xmin = m - g
xmax = m + g
ymax = 1.1 * triangular(m) #Mode of triangular PDF used
set nokey
set zeroaxis
set xrange [xmin: xmax]
set yrange [0: ymax]
set xlabel "x ->"
set ylabel "probability density ->"
set xtics
set ytics
set format x "%.1f"
set format y "%.2f"
set sample 100
set title "triangular PDF with m = 3.0, g = 2.0"
plot triangular(x)
pause -1 "Hit return to continue"
set title "triangular CDF with m = 3.0, g = 2.0"
set yrange [0: 1.1]
plot ctriangular(x)
pause -1 "Hit return to continue"

# Uniform PDF and CDF
a = -2.0; b= 2.0
mu = (a + b) / 2.0
sigma = (b - a) / sqrt(12.0)
xmin = a
xmax = b
ymax = 1.1 * uniform(mu) #No mode
set nokey
set zeroaxis
set xrange [xmin: xmax]
set yrange [0: ymax]
set xlabel "x ->"
set ylabel "probability density ->"
set xtics
set ytics
set format x "%.2f"
set format y "%.2f"
set sample 100
set title "uniform PDF with a = -2.0, b = 2.0"
plot uniform(x)
pause -1 "Hit return to continue"
set title "uniform CDF with a = -2.0, b = 2.0"
set yrange [0: 1.1]
plot cuniform(x)
pause -1 "Hit return to continue"

# Weibull PDF and CDF
#lambda = 1.0; n = 1.5
#mu = lambda**(-1.0 / n) * gamma(1.0 / n) / n
#sigma = sqrt(2.0 * lambda**(-2.0 / n) * gamma(2.0 / n) / n - mu * mu)
#xmin = mu - 4.0 * sigma
#xmin = xmin < 0 ? 0 : xmin
#xmax = mu + 4.0 * sigma
#Mode of weibull PDF used
#ymax = 1.1 * (n > 1.0 ? weibull(((n - 1.0) / (lambda * n))**(1.0 / n)) : 2.0)
set key
set zeroaxis
#set xrange [xmin : xmax]
#set yrange [0: ymax]
set xlabel "x ->"
set ylabel "probability density ->"
set xtics
set ytics
set format x "%.2f"
set format y "%.1f"
set sample 100
set title "weibull PDF"
plot [0:2] [0:1.5] lambda = 1, n = 0.5, weibull(x) title "lambda = 1, n = 0.5", \
                   lambda = 1, n = 1.0, weibull(x) title "lambda = 1, n = 1.0", \
                   lambda = 1, n = 2.0, weibull(x) title "lambda = 1, n = 2.0", \
                   lambda = 3, n = 2.0, weibull(x) title "lambda = 3, n = 2.0"
pause -1 "Hit return to continue"
set title "weibull CDF"
plot [0:3] [0:1.2] lambda = 1, n = 0.5, cweibull(x) title "lambda = 1, n = 0.5", \
                   lambda = 1, n = 1.0, cweibull(x) title "lambda = 1, n = 1.0", \
                   lambda = 1, n = 2.0, cweibull(x) title "lambda = 1, n = 2.0", \
                   lambda = 3, n = 2.0, cweibull(x) title "lambda = 3, n = 2.0"