File: interpol.c

package info (click to toggle)
gnuplot 3.5beta6.347-3
  • links: PTS
  • area: main
  • in suites: slink
  • size: 5,032 kB
  • ctags: 4,235
  • sloc: ansic: 42,086; makefile: 561; asm: 539; sh: 386; objc: 379; csh: 297; pascal: 194; perl: 138; lisp: 88
file content (963 lines) | stat: -rw-r--r-- 28,405 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
#ifndef lint
static char *RCSid = "$Id: interpol.c,v 1.29 1998/04/14 00:15:45 drd Exp $";
#endif

/* GNUPLOT - interpol.c */

/*[
 * Copyright 1986 - 1993, 1998   Thomas Williams, Colin Kelley
 *
 * Permission to use, copy, and distribute this software and its
 * documentation for any purpose with or without fee is hereby granted,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.
 *
 * Permission to modify the software is granted, but not the right to
 * distribute the complete modified source code.  Modifications are to
 * be distributed as patches to the released version.  Permission to
 * distribute binaries produced by compiling modified sources is granted,
 * provided you
 *   1. distribute the corresponding source modifications from the
 *    released version in the form of a patch file along with the binaries,
 *   2. add special version identification to distinguish your version
 *    in addition to the base release version number,
 *   3. provide your name and address as the primary contact for the
 *    support of your modified version, and
 *   4. retain our contact information in regard to use of the base
 *    software.
 * Permission to distribute the released version of the source code along
 * with corresponding source modifications in the form of a patch file is
 * granted with same provisions 2 through 4 for binary distributions.
 *
 * This software is provided "as is" without express or implied warranty
 * to the extent permitted by applicable law.
]*/


/*
 * C-Source file identification Header
 *
 * This file belongs to a project which is:
 *
 * done 1993 by MGR-Software, Asgard  (Lars Hanke)
 * written by Lars Hanke
 *
 * Contact me via:
 *
 *  InterNet: mgr@asgard.bo.open.de
 *      FIDO: Lars Hanke @ 2:243/4802.22   (as long as they keep addresses)
 *
 **************************************************************************
 *
 *   Project: gnuplot
 *    Module:
 *      File: interpol.c
 *
 *   Revisor: Lars Hanke
 *   Revised: 26/09/93
 *  Revision: 1.0
 *
 **************************************************************************
 *
 * LEGAL
 *  This module is part of gnuplot and distributed under whatever terms
 *  gnuplot is or will be published, unless exclusive rights are claimed.
 *
 * DESCRIPTION
 *  Supplies 2-D data interpolation and approximation routines
 *
 * IMPORTS
 *  plot.h
 *    - cp_extend()
 *    - structs: curve_points, coordval, coordinate
 *
 *  setshow.h
 *    - samples, is_log_x, base_log_x, xmin, xmax, autoscale_lx
 *    - plottypes
 *
 *  proto.h
 *    - solve_tri_diag()
 *    - typedef tri_diag
 *
 * EXPORTS
 *  gen_interp()
 *  sort_points()
 *  cp_implode()
 *
 * BUGS and TODO
 *  I would really have liked to use Gershon Elbers contouring code for
 *  all the stuff done here, but I failed. So I used my own code.
 *  If somebody is able to consolidate Gershon's code for this purpose
 *  a lot of gnuplot users would be very happy - due to memory problems.
 *
 **************************************************************************
 *
 * HISTORY
 * Changes:
 *  Nov 24, 1995  Markus Schuh (M.Schuh@meteo.uni-koeln.de):
 *      changed the algorithm for csplines
 *      added algorithm for approximation csplines
 *      copied point storage and range fix from plot2d.c
 *
 *  Dec 12, 1995 David Denholm
 *      oops - at the time this is called, stored co-ords are
 *      internal (ie maybe log of data) but min/max are in
 *      user co-ordinates. 
 *      Work with min and max of internal co-ords, and
 *      check at the end whether external min and max need to
 *      be increased. (since samples is typically 100 ; we
 *      dont want to take more logs than necessary)
 *      Also, need to take into account which axes are active
 *
 *  Jun 30, 1996 Jens Emmerich
 *      implemented handling of UNDEFINED points
 */

#include "plot.h"
#include "setshow.h"


/* in order to support multiple axes, and to simplify ranging in
 * parametric plots, we use arrays to store some things. For 2d plots,
 * elements are z=0,y1=1,x1=2,z2=4,y2=5,x2=6 these are given symbolic
 * names in plot.h
 */

extern double min_array[AXIS_ARRAY_SIZE];
extern double  max_array[AXIS_ARRAY_SIZE];
extern int auto_array[AXIS_ARRAY_SIZE];
extern TBOOLEAN log_array[AXIS_ARRAY_SIZE];
extern double base_array[AXIS_ARRAY_SIZE];
extern double log_base_array[AXIS_ARRAY_SIZE];


#define Inc_c_token if (++c_token >= num_tokens)	\
int_error ("Syntax error", c_token);


/*
 * IMHO, code is getting too cluttered with repeated chunks of
 * code. Some macros to simplify, I hope.
 *
 * do { } while(0) is comp.lang.c recommendation for complex macros
 * also means that break can be specified as an action, and it will
 * 
 */


/* store VALUE or log(VALUE) in STORE, set TYPE as appropriate
 * Do OUT_ACTION or UNDEF_ACTION as appropriate
 * adjust range provided type is INRANGE (ie dont adjust y if x is outrange
 * VALUE must not be same as STORE
 */

#define STORE_AND_FIXUP_RANGE(STORE, VALUE, TYPE, MIN, MAX, AUTO, OUT_ACTION, UNDEF_ACTION)\
do { STORE=VALUE; \
    if (TYPE != INRANGE) break;  /* dont set y range if x is outrange, for example */ \
    if ( VALUE<MIN ) \
       if (AUTO & 1) MIN=VALUE; else { TYPE=OUTRANGE; OUT_ACTION; break; }  \
    if ( VALUE>MAX ) \
       if (AUTO & 2) MAX=VALUE; else { TYPE=OUTRANGE; OUT_ACTION; }   \
} while(0)

#define UPDATE_RANGE(TEST,OLD,NEW,AXIS) \
do { if (TEST) \
     if (log_array[AXIS]) OLD = pow(base_array[AXIS], NEW); \
     else OLD = NEW; \
} while(0)

/* use this instead empty macro arguments to work around NeXT cpp bug */
/* if this fails on any system, we might use ((void)0) */

#define NOOP			/* */


#define inrange(z,min,max) ((min<max) ? ((z>=min)&&(z<=max)) : ((z>=max)&&(z<=min)) )

#define spline_coeff_size 4
typedef double spline_coeff[spline_coeff_size];
typedef double five_diag[5];

static int next_curve __PROTO((struct curve_points * plot, int * curve_start));
static int num_curves __PROTO((struct curve_points * plot));
static double *cp_binomial __PROTO((int points));
GP_INLINE static double s_pow __PROTO((double base, unsigned int exponent));
static void eval_bezier __PROTO((struct curve_points * cp, int first_point, int num_points, double sr, coordval * px, coordval * py, double *c));
static void do_bezier __PROTO((struct curve_points * cp, double *bc, int first_point, int num_points, struct coordinate *dest));
static int solve_five_diag __PROTO((five_diag m[], double r[], double x[], int n));
static spline_coeff *cp_approx_spline __PROTO((struct curve_points * plot, int first_point, int num_points));
static spline_coeff *cp_tridiag __PROTO((struct curve_points * plot, int first_point, int num_points));
static void do_cubic __PROTO((struct curve_points * plot, spline_coeff * sc, int first_point, int num_points, struct coordinate *dest));
static int compare_points __PROTO((struct coordinate * p1, struct coordinate * p2));


/*
 * position curve_start to index the next non-UNDEFINDED point,
 * start search at initial curve_start,
 * return number of non-UNDEFINDED points from there on,
 * if no more valid points are found, curve_start is set
 * to plot->p_count and 0 is returned
 */

static int next_curve(plot, curve_start)
struct curve_points *plot;
int *curve_start;
{
    int curve_length;

    /* Skip undefined points */
    while( *curve_start < plot->p_count 
	   && plot->points[*curve_start].type == UNDEFINED ) {
	(*curve_start)++;
    };
    curve_length = 0;
    /* curve_length is first used as an offset, then the correkt # points */
    while( (*curve_start)+curve_length < plot->p_count
	   && plot->points[(*curve_start)+curve_length].type != UNDEFINED ) {
	curve_length++;
    };
    return(curve_length);
}


/* 
 * determine the number of curves in plot->points, separated by
 * UNDEFINED points
 */

static int num_curves(plot)
struct curve_points *plot;
{
    int curves;
    int first_point;
    int num_points;

    first_point = 0;
    curves = 0;
    while((num_points=next_curve(plot, &first_point)) > 0) {
	curves++;
	first_point += num_points;
    }
    return(curves);
}



/*
 * build up a cntr_struct list from curve_points
 * this funtion is only used for the alternate entry point to
 * Gershon's code and thus commented out
 ***deleted***
 */


/*
 * cp_binomial() computes the binomial coefficients needed for BEZIER stuff
 *   and stores them into an array which is hooked to sdat.
 * (MGR 1992)
 */
static double *cp_binomial(points)
int points;
{
    register double *coeff;
    register int n, k;
    int e;

    e = points;		/* well we're going from k=0 to k=p_count-1 */
    coeff = (double *) gp_alloc(e * sizeof(double), "bezier coefficients");

    n = points - 1;
    e = n / 2;
    coeff[0] = 1.0;

    for (k = 0; k < e; k++) {
	coeff[k + 1] = coeff[k] * ((double) (n - k)) / ((double) (k + 1));
    }

    for (k = n; k >= e; k--)
	coeff[k] = coeff[n - k];

    return (coeff);
}


/* This is a subfunction of do_bezier() for BEZIER style computations.
 * It is passed the stepration (STEP/MAXSTEPS) and the addresses of
 * the double values holding the next x and y coordinates.
 * (MGR 1992)
 */

/*
 * well, this routine runs faster with the 68040 striptease FPU
 * and it handles zeroes correctly - there had been some trouble with TC
 */

GP_INLINE static double s_pow(base, exponent)
double base;
unsigned int exponent;
{
    double y;

    if (exponent == 0)
	return (1.0);
    if (base == 0.0)
	return (0.0);

    /* consider i in binary = abcd
     * x^i = x^(8a+4b+2c+d) = x^8a * x^4b * x^2b * x^d
     *                      = a?x^2^2^2:1 * b?x^2^2:1 + ...
     * so for each bit in exponent, square x, multiplying it into accumulator
     *
     */

    y = 1;
    while (exponent) {
	if (exponent & 1)
	    y *= base;
	base *= base;
	exponent >>= 1;		/* if exponent was signed, this could be trouble ! */
    }

    return (y);
}

static void eval_bezier(cp, first_point, num_points, sr, px, py, c)
struct curve_points *cp;
int first_point;		/* where to start in plot->points (to find x-range) */
int num_points;			/* to determine end in plot->points */
double sr;
coordval *px;
coordval *py;
double *c;
{
    unsigned int n = num_points - 1;
    struct coordinate GPHUGE *this_points; /* HBB 980308: added 'GPHUGE' tag for DOS */

    this_points = (cp->points)+first_point;

    if (sr == 0.0) {
	*px = this_points[0].x;
	*py = this_points[0].y;
    } else if (sr == 1.0) {
	*px = this_points[n].x;
	*py = this_points[n].y;
    } else {
	unsigned int i;
	double lx = 0.0, ly = 0.0;
	double sr_to_the_i = 1.0;
	double dsr_to_the_di = s_pow(1 - sr, n);
	double reciprocal_dsr = 1.0 / (1 - sr);

	for (i = 0; i <= n; i++) {
	    double u = c[i] * sr_to_the_i * s_pow(1 - sr, n - i);
	    lx += this_points[i].x * u;
	    ly += this_points[i].y * u;
	    sr_to_the_i *= sr;
	    dsr_to_the_di *= reciprocal_dsr;
	}

	*px = lx;
	*py = ly;
    }
}

/*
 * generate a new set of coordinates representing the bezier curve and
 * set it to the plot
 */

static void do_bezier(cp, bc, first_point, num_points, dest)
struct curve_points *cp;
double *bc;
int first_point;		/* where to start in plot->points */
int num_points;			/* to determine end in plot->points */
struct coordinate *dest;	/* where to put the interpolated data */
{
    int i;
    coordval x, y;
    int xaxis = cp->x_axis;
    int yaxis = cp->y_axis;

    /* min and max in internal (eg logged) co-ordinates. We update
     * these, then update the external extrema in user co-ordinates
     * at the end.
     */

    double ixmin, ixmax, iymin, iymax;
    double sxmin, sxmax, symin, symax;	/* starting values of above */

    if (log_array[xaxis]) {
	ixmin = sxmin = log(min_array[xaxis]) / log_base_array[xaxis];
	ixmax = sxmax = log(max_array[xaxis]) / log_base_array[xaxis];
    } else {
	ixmin = sxmin = min_array[xaxis];
	ixmax = sxmax = max_array[xaxis];
    }

    if (log_array[yaxis]) {
	iymin = symin = log(min_array[yaxis]) / log_base_array[yaxis];
	iymax = symax = log(max_array[yaxis]) / log_base_array[yaxis];
    } else {
	iymin = symin = min_array[yaxis];
	iymax = symax = max_array[yaxis];
    }

    for (i = 0; i < samples; i++) {
	eval_bezier(cp, first_point, num_points, (double) i / (double) (samples - 1), &x, &y, bc);

	/* now we have to store the points and adjust the ranges */

	dest[i].type = INRANGE;
	STORE_AND_FIXUP_RANGE(dest[i].x, x, dest[i].type, ixmin, ixmax, auto_array[xaxis], NOOP, continue);
	STORE_AND_FIXUP_RANGE(dest[i].y, y, dest[i].type, iymin, iymax, auto_array[yaxis], NOOP, NOOP);

	dest[i].xlow = dest[i].xhigh = dest[i].x;
	dest[i].ylow = dest[i].yhigh = dest[i].y;

	dest[i].z = -1;
    }

    UPDATE_RANGE(ixmax > sxmax, max_array[xaxis], ixmax, xaxis);
    UPDATE_RANGE(ixmin < sxmin, min_array[xaxis], ixmin, xaxis);
    UPDATE_RANGE(iymax > symax, max_array[yaxis], iymax, yaxis);
    UPDATE_RANGE(iymin < symin, min_array[yaxis], iymin, yaxis);
}

/*
 * call contouring routines -- main entry
 */

/* 
 * it should be like this, but it doesn't run. If you find out why,
 * contact me: mgr@asgard.bo.open.de or Lars Hanke 2:243/4802.22@fidonet
 *
 * Well, all this had originally been inside contour.c, so maybe links
 * to functions and of contour.c are broken.
 * ***deleted***
 * end of unused entry point to Gershon's code
 *
 */

/* 
 * Solve five diagonal linear system equation. The five diagonal matrix is
 * defined via matrix M, right side is r, and solution X i.e. M * X = R.
 * Size of system given in n. Return TRUE if solution exist.
 *  G. Engeln-Muellges/ F.Reutter: 
 *  "Formelsammlung zur Numerischen Mathematik mit Standard-FORTRAN-Programmen"
 *  ISBN 3-411-01677-9
 *
 * /  m02 m03 m04   0   0   0   0    .       .       . \   /  x0  \    / r0  \
 * I  m11 m12 m13 m14   0   0   0    .       .       . I   I  x1  I   I  r1  I
 * I  m20 m21 m22 m23 m24   0   0    .       .       . I * I  x2  I = I  r2  I
 * I    0 m30 m31 m32 m33 m34   0    .       .       . I   I  x3  I   I  r3  I
 *      .   .   .   .   .   .   .    .       .       .        .        .
 * \                           m(n-3)0 m(n-2)1 m(n-1)2 /   \x(n-1)/   \r(n-1)/
 * 
 */
static int solve_five_diag(m, r, x, n)
five_diag m[];
double r[], x[];
int n;
{
    int i;
    five_diag *hv;

    hv = (five_diag *) gp_alloc((n + 1) * sizeof(five_diag), "five_diag help vars");

    hv[0][0] = m[0][2];
    if (hv[0][0] == 0) {
	free(hv);
	return FALSE;
    }
    hv[0][1] = m[0][3] / hv[0][0];
    hv[0][2] = m[0][4] / hv[0][0];

    hv[1][3] = m[1][1];
    hv[1][0] = m[1][2] - hv[1][3] * hv[0][1];
    if (hv[1][0] == 0) {
	free(hv);
	return FALSE;
    }
    hv[1][1] = (m[1][3] - hv[1][3] * hv[0][2]) / hv[1][0];
    hv[1][2] = m[1][4] / hv[1][0];

    for (i = 2; i <= n - 1; i++) {
	hv[i][3] = m[i][1] - m[i][0] * hv[i - 2][1];
	hv[i][0] = m[i][2] - m[i][0] * hv[i - 2][2] - hv[i][3] * hv[i - 1][1];
	if (hv[i][0] == 0) {
	    free(hv);
	    return FALSE;
	}
	hv[i][1] = (m[i][3] - hv[i][3] * hv[i - 1][2]) / hv[i][0];
	hv[i][2] = m[i][4] / hv[i][0];
    }

    hv[0][4] = 0;
    hv[1][4] = r[0] / hv[0][0];
    for (i = 1; i <= n - 1; i++) {
	hv[i + 1][4] = (r[i] - m[i][0] * hv[i - 1][4] - hv[i][3] * hv[i][4]) / hv[i][0];
    }

    x[n - 1] = hv[n][4];
    x[n - 2] = hv[n - 1][4] - hv[n - 2][1] * x[n - 1];
    for (i = n - 3; i >= 0; i--)
	x[i] = hv[i + 1][4] - hv[i][1] * x[i + 1] - hv[i][2] * x[i + 2];

    free(hv);
    return TRUE;
}


/*
 * Calculation of approximation cubic splines
 * Input:  x[i], y[i], weights z[i]
 *         
 * Returns matrix of spline coefficients
 */
static spline_coeff *cp_approx_spline(plot, first_point, num_points)
struct curve_points *plot;
int first_point;		/* where to start in plot->points */
int num_points;			/* to determine end in plot->points */
{
    spline_coeff *sc;
    five_diag *m;
    double *r, *x, *h;
    struct coordinate GPHUGE *this_points; /* HBB 980308: added 'GPHUGE' tag */
    int i;

    sc = (spline_coeff *) gp_alloc((num_points) * sizeof(spline_coeff),
				"spline matrix");

    if (num_points < 4)
	int_error("Can't calculate approximation splines, need at least 4 points", NO_CARET);

    this_points = (plot->points)+first_point;

    for (i = 0; i <= num_points - 1; i++)
	if (this_points[i].z <= 0)
	    int_error("Can't calculate approximation splines, all weights have to be > 0", NO_CARET);

    m = (five_diag *) gp_alloc((num_points - 2) * sizeof(five_diag), "spline help matrix");

    r = (double *) gp_alloc((num_points - 2) * sizeof(double), "spline right side");
    x = (double *) gp_alloc((num_points - 2) * sizeof(double), "spline solution vector");
    h = (double *) gp_alloc((num_points - 1) * sizeof(double), "spline help vector");

    for (i = 0; i <= num_points - 2; i++)
	h[i] = this_points[i + 1].x - this_points[i].x;

    /* set up the matrix and the vector */

    for (i = 0; i <= num_points - 3; i++) {
	r[i] = 3 * ((this_points[i + 2].y - this_points[i + 1].y) / h[i + 1]
		    - (this_points[i + 1].y - this_points[i].y) / h[i]);

	if (i < 2)
	    m[i][0] = 0;
	else
	    m[i][0] = 6 / this_points[i].z / h[i - 1] / h[i];

	if (i < 1)
	    m[i][1] = 0;
	else
	    m[i][1] = h[i] - 6 / this_points[i].z / h[i] * (1 / h[i - 1] + 1 / h[i])
		- 6 / this_points[i + 1].z / h[i] * (1 / h[i] + 1 / h[i + 1]);

	m[i][2] = 2 * (h[i] + h[i + 1])
	    + 6 / this_points[i].z / h[i] / h[i]
	    + 6 / this_points[i + 1].z * (1 / h[i] + 1 / h[i + 1]) * (1 / h[i] + 1 / h[i + 1])
	    + 6 / this_points[i + 2].z / h[i + 1] / h[i + 1];

	if (i > num_points - 4)
	    m[i][3] = 0;
	else
	    m[i][3] = h[i + 1] - 6 / this_points[i + 1].z / h[i + 1] * (1 / h[i] + 1 / h[i + 1])
		- 6 / this_points[i + 2].z / h[i + 1] * (1 / h[i + 1] + 1 / h[i + 2]);

	if (i > num_points - 5)
	    m[i][4] = 0;
	else
	    m[i][4] = 6 / this_points[i + 2].z / h[i + 1] / h[i + 2];
    }

    /* solve the matrix */
    if (!solve_five_diag(m, r, x, num_points - 2)) {
	free(h);
	free(x);
	free(r);
	free(m);
	int_error("Can't calculate approximation splines", NO_CARET);
    }
    sc[0][2] = 0;
    for (i = 1; i <= num_points - 2; i++)
	sc[i][2] = x[i - 1];
    sc[num_points - 1][2] = 0;

    sc[0][0] = this_points[0].y + 2 / this_points[0].z / h[0] * (sc[0][2] - sc[1][2]);
    for (i = 1; i <= num_points - 2; i++)
	sc[i][0] = this_points[i].y - 2 / this_points[i].z *
	    (sc[i - 1][2] / h[i - 1]
	     - sc[i][2] * (1 / h[i - 1] + 1 / h[i])
	     + sc[i + 1][2] / h[i]);
    sc[num_points - 1][0] = this_points[num_points - 1].y
	- 2 / this_points[num_points - 1].z / h[num_points - 2]
	* (sc[num_points - 2][2] - sc[num_points - 1][2]);

    for (i = 0; i <= num_points - 2; i++) {
	sc[i][1] = (sc[i + 1][0] - sc[i][0]) / h[i]
	    - h[i] / 3 * (sc[i + 1][2] + 2 * sc[i][2]);
	sc[i][3] = (sc[i + 1][2] - sc[i][2]) / 3 / h[i];
    }

    free(h);
    free(x);
    free(r);
    free(m);

    return (sc);
}


/*
 * Calculation of cubic splines
 *
 * This can be treated as a special case of approximation cubic splines, with
 * all weights -> infinity.
 *         
 * Returns matrix of spline coefficients
 */
static spline_coeff *cp_tridiag(plot, first_point, num_points)
struct curve_points *plot;
int first_point, num_points;
{
    spline_coeff *sc;
    tri_diag *m;
    double *r, *x, *h;
    struct coordinate GPHUGE *this_points;  /* HBB 980308: added 'GPHUGE' tag */ 	 
    int i;

    if (num_points < 3)
	int_error("Can't calculate splines, need at least 3 points", NO_CARET);

    this_points = (plot->points)+first_point;

    sc = (spline_coeff *) gp_alloc((num_points) * sizeof(spline_coeff), "spline matrix");
    m = (tri_diag *) gp_alloc((num_points - 2) * sizeof(tri_diag), "spline help matrix");

    r = (double *) gp_alloc((num_points - 2) * sizeof(double), "spline right side");
    x = (double *) gp_alloc((num_points - 2) * sizeof(double), "spline solution vector");
    h = (double *) gp_alloc((num_points - 1) * sizeof(double), "spline help vector");

    for (i = 0; i <= num_points - 2; i++)
	h[i] = this_points[i + 1].x - this_points[i].x;

    /* set up the matrix and the vector */

    for (i = 0; i <= num_points - 3; i++) {
	r[i] = 3 * ((this_points[i + 2].y - this_points[i + 1].y) / h[i + 1]
		    - (this_points[i + 1].y - this_points[i].y) / h[i]);

	if (i < 1)
	    m[i][0] = 0;
	else
	    m[i][0] = h[i];

	m[i][1] = 2 * (h[i] + h[i + 1]);

	if (i > num_points - 4)
	    m[i][2] = 0;
	else
	    m[i][2] = h[i + 1];
    }

    /* solve the matrix */
    if (!solve_tri_diag(m, r, x, num_points - 2)) {
	free(h);
	free(x);
	free(r);
	free(m);
	int_error("Can't calculate cubic splines", NO_CARET);
    }
    sc[0][2] = 0;
    for (i = 1; i <= num_points - 2; i++)
	sc[i][2] = x[i - 1];
    sc[num_points - 1][2] = 0;

    for (i = 0; i <= num_points - 1; i++)
	sc[i][0] = this_points[i].y;

    for (i = 0; i <= num_points - 2; i++) {
	sc[i][1] = (sc[i + 1][0] - sc[i][0]) / h[i]
	    - h[i] / 3 * (sc[i + 1][2] + 2 * sc[i][2]);
	sc[i][3] = (sc[i + 1][2] - sc[i][2]) / 3 / h[i];
    }

    free(h);
    free(x);
    free(r);
    free(m);

    return (sc);
}

static void do_cubic(plot, sc, first_point, num_points, dest)
struct curve_points *plot;	/* still containes old plot->points */
spline_coeff *sc;		/* generated by cp_tridiag */
int first_point;		/* where to start in plot->points */
int num_points;			/* to determine end in plot->points */
struct coordinate *dest;	/* where to put the interpolated data */
{
    double xdiff, temp, x, y;
    int i, l;
    int xaxis = plot->x_axis;
    int yaxis = plot->y_axis;
    struct coordinate GPHUGE *this_points;  /* HBB 980308: added 'GPHUGE' tag */

    /* min and max in internal (eg logged) co-ordinates. We update
     * these, then update the external extrema in user co-ordinates
     * at the end.
     */

    double ixmin, ixmax, iymin, iymax;
    double sxmin, sxmax, symin, symax;	/* starting values of above */

    if (log_array[xaxis]) {
	ixmin = sxmin = log(min_array[xaxis]) / log_base_array[xaxis];
	ixmax = sxmax = log(max_array[xaxis]) / log_base_array[xaxis];
    } else {
	ixmin = sxmin = min_array[xaxis];
	ixmax = sxmax = max_array[xaxis];
    }

    if (log_array[yaxis]) {
	iymin = symin = log(min_array[yaxis]) / log_base_array[yaxis];
	iymax = symax = log(max_array[yaxis]) / log_base_array[yaxis];
    } else {
	iymin = symin = min_array[yaxis];
	iymax = symax = max_array[yaxis];
    }


    this_points = (plot->points)+first_point;

    l = 0;

    xdiff = (this_points[num_points - 1].x - this_points[0].x) / (samples - 1);

    for (i = 0; i < samples; i++) {
	x = this_points[0].x + i * xdiff;

	while ((x >= this_points[l + 1].x) && (l < num_points - 2))
	    l++;

	temp = x - this_points[l].x;

	y = ((sc[l][3] * temp + sc[l][2]) * temp + sc[l][1]) * temp + sc[l][0];

	dest[i].type = INRANGE;
	STORE_AND_FIXUP_RANGE(dest[i].x, x, dest[i].type, ixmin, ixmax, auto_array[xaxis], NOOP, continue);
	STORE_AND_FIXUP_RANGE(dest[i].y, y, dest[i].type, iymin, iymax, auto_array[yaxis], NOOP, NOOP);

	dest[i].xlow = dest[i].xhigh = dest[i].x;
	dest[i].ylow = dest[i].yhigh = dest[i].y;

	dest[i].z = -1;

    }

    UPDATE_RANGE(ixmax > sxmax, max_array[xaxis], ixmax, xaxis);
    UPDATE_RANGE(ixmin < sxmin, min_array[xaxis], ixmin, xaxis);
    UPDATE_RANGE(iymax > symax, max_array[yaxis], iymax, yaxis);
    UPDATE_RANGE(iymin < symin, min_array[yaxis], iymin, yaxis);

}

/*
 * This is the main entry point used. As stated in the header, it is fine,
 * but I'm not too happy with it.
 */

void gen_interp(plot)
struct curve_points *plot;
{

    spline_coeff *sc;
    double *bc;
    struct coordinate *new_points;
    int i, curves;
    int first_point, num_points;

    curves = num_curves(plot);
    new_points = (struct coordinate *) gp_alloc(
       (samples+1) * curves * sizeof(struct coordinate),"interpolation table");

    first_point = 0;
    for(i=0; i<curves; i++) {
	num_points = next_curve(plot, &first_point);
	switch (plot->plot_smooth) {
	case CSPLINES:
	    sc = cp_tridiag(plot, first_point, num_points);
	    do_cubic(plot, sc, first_point, num_points,
		     new_points+i*(samples+1));
	    free(sc);
	    break;
	case ACSPLINES:
	    sc = cp_approx_spline(plot, first_point, num_points);
	    do_cubic(plot, sc, first_point, num_points,
		     new_points+i*(samples+1));
	    free(sc);
	    break;

	case BEZIER:
	case SBEZIER:
	    bc = cp_binomial(num_points);
	    do_bezier(plot, bc, first_point, num_points,
		      new_points+i*(samples+1));
	    free((char *) bc);
	    break;
	default:			/* keep gcc -Wall quiet */
	    ;
	}
	new_points[(i+1)*(samples+1)-1].type = UNDEFINED;
	first_point += num_points;
    }

    free(plot->points);
    plot->points = new_points;
    plot->p_max = curves*(samples+1);
    plot->p_count = plot->p_max - 1;

    return;
}

/* 
 * sort_points
 *
 * sort data succession for further evaluation by plot_splines, etc.
 * This routine is mainly introduced for compilers *NOT* supporting the
 * UNIX qsort() routine. You can then easily replace it by more convenient
 * stuff for your compiler.
 * (MGR 1992)
 */

static int compare_points(p1, p2)
struct coordinate *p1;
struct coordinate *p2;
{
    if (p1->x > p2->x)
	return (1);
    if (p1->x < p2->x)
	return (-1);
    return (0);
}

void sort_points(plot)
struct curve_points *plot;
{
    int first_point, num_points;

    first_point = 0;
    while((num_points=next_curve(plot, &first_point)) > 0) {
	/* Sort this set of points, does qsort handle 1 point correctly? */
	qsort((char *) (plot->points + first_point), num_points,
	      sizeof(struct coordinate), (sortfunc) compare_points);
	first_point += num_points;
    }
    return;
}


/*
 * cp_implode() if averaging is selected this function computes the new
 *              entries and shortens the whole thing to the necessary
 *              size
 * MGR Addendum
 */

void cp_implode(cp)
struct curve_points *cp;
{
    int first_point, num_points;
    int i, j, k;
    double x, y, sux, slx, suy, sly;
    enum coord_type dot;

    
    j = 0;
    first_point = 0;
    while((num_points=next_curve(cp, &first_point)) > 0) {
	k = 0;
	for (i = first_point; i < first_point+num_points; i++) {
	    if (!k) {
		x = cp->points[i].x;
		y = cp->points[i].y;
		sux = cp->points[i].xhigh;
		slx = cp->points[i].xlow;
		suy = cp->points[i].yhigh;
		sly = cp->points[i].ylow;
		dot = INRANGE;
		if (cp->points[i].type != INRANGE)
		    dot = UNDEFINED; /* This means somthing other than usual */			                    /* just signal to check if INRANGE */
		k = 1;
	    } else if (cp->points[i].x == x) {
		y += cp->points[i].y;
		sux += cp->points[i].xhigh;
		slx += cp->points[i].xlow;
		suy += cp->points[i].yhigh;
		sly += cp->points[i].ylow;
		if (cp->points[i].type != INRANGE)
		    dot = UNDEFINED;
		k++;
	    } else {
		cp->points[j].x = x;
		cp->points[j].y = y / (double) k;
		cp->points[j].xhigh = sux / (double) k;
		cp->points[j].xlow = slx / (double) k;
		cp->points[j].yhigh = suy / (double) k;
		cp->points[j].ylow = sly / (double) k;
		cp->points[j].type = INRANGE;
		if (dot != INRANGE) {
		    if ((cp->points[j].x > xmax) || (cp->points[j].x < xmin))
			cp->points[j].type = OUTRANGE;
		    else if (!autoscale_ly) {
			if ((cp->points[j].y > ymax) || (cp->points[j].y < ymin))
			    cp->points[j].type = OUTRANGE;
		    } else
			cp->points[j].type = INRANGE;
		}
		j++;		/* next valid entry */
		k = 0;		/* to read */
		i--;		/* from this (-> last after for(;;)) entry */
	    }
	}
	if (k) {
	    cp->points[j].x = x;
	    cp->points[j].y = y / (double) k;
	    cp->points[j].xhigh = sux / (double) k;
	    cp->points[j].xlow = slx / (double) k;
	    cp->points[j].yhigh = suy / (double) k;
	    cp->points[j].ylow = sly / (double) k;
	    cp->points[j].type = INRANGE;
	    if (dot != INRANGE) {
		if ((cp->points[j].x > xmax) || (cp->points[j].x < xmin))
		    cp->points[j].type = OUTRANGE;
		else if (!autoscale_ly) {
		    if ((cp->points[j].y > ymax) || (cp->points[j].y < ymin))
			cp->points[j].type = OUTRANGE;
		} else
		    cp->points[j].type = INRANGE;
	    }
	    j++;			/* next valid entry */
	}
	/* insert invalid point to separate curves */
	if(j<cp->p_count) {
	    cp->points[j].type = UNDEFINED;
	    j++;
	}
	first_point += num_points;
    } /* end while */
    cp->p_count = j;
    cp_extend(cp, j);
}